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Abstract. List-based implementations of sets are a fundamental build-
ing block of many concurrent algorithms. A skiplist based on the lock-free
list-based set algorithm of Michael will be included in the JavaTM Con-
currency Package of JDK 1.6.0. However, Michael’s lock-free algorithm
has several drawbacks, most notably that it requires all list traversal op-
erations, including membership tests, to perform cleanup operations of
logically removed nodes, and that it uses the equivalent of an atomically
markable reference, a pointer that can be atomically “marked,” which is
expensive in some languages and unavailable in others.
We present a novel “lazy” list-based implementation of a concurrent set
object. It is based on an optimistic locking scheme for inserts and re-
moves, eliminating the need to use the equivalent of an atomically mark-
able reference. It also has a novel wait-free membership test operation
(as opposed to Michael’s lock-free one) that does not need to perform
cleanup operations and is more efficient than that of all previous algo-
rithms.
Empirical testing shows that the new lazy-list algorithm consistently out-
performs all known algorithms, including Michael’s lock-free algorithm,
throughout the concurrency range. At high load, with 90% membership
tests, the lazy algorithm is more than twice as fast as Michael’s. This is
encouraging given that typical search structure usage patterns include
around 90% membership tests. By replacing the lock-free membership
test of Michael’s algorithm with our new wait-free one, we achieve an
algorithm that slightly outperforms our new lazy-list (though it may not
be as efficient in other contexts as it uses Java’s RTTI mechanism to
create pointers that can be atomically marked).

1 Introduction

Lists are a fundamental building block for concurrent data structures, both in
their own right, and as the basis for many types of search and dictionary data
types [12]. We consider three kinds of list operations: inserting a list entry, re-
moving a list entry, and testing whether an entry is in the list.

This paper introduces the lazy list, a simple new concurrent list-based set al-
gorithm with a number of novel concurrency-related properties. To explain the
novel aspects of lazy lists, we start with an overview of different ways to synchro-
nize lists. Coarse-grained locking, which uses a single lock to protect the entire



list, has the advantage of simplicity, but provides no concurrency. With lock
coupling (sometimes called “hand-over-hand” locking) [1], a thread acquires the
lock for each successive entry before releasing the lock for its predecessor. Lock
coupling provides more concurrency than coarse-grained locking, but threads
may acquire many successive locks, which is undesirable because lock acquisi-
tion typically involves expensive atomic operations (such as compare-and-swap).
Moreover, concurrent threads moving through the list may contend for locks even
if they are searching for unrelated list entries. Valois [14] was the first to sug-
gest a non-blocking implementation of a concurrent list-based set. Harris [3] and
later Michael [10], presented highly efficient lock-free algorithms for list-based
sets. Fomitchev and Ruppert [10] present more complex algorithms that pro-
vide an amortized cost guarantee for all operations that is provably linear in the
length of the list. Michael’s algorithm is the basis for a concurrent skip-list data
structure in the JavaTM Concurrency Package of JDK 1.6.0.

As in most previous list-based set algorithms, we represent a set as a sorted
linked list. In our new lazy list algorithm, insertion and removal operations
are optimistic: each operation searches the list without acquiring any locks or
interfering with other threads. When an operation locates the entry it is seeking
it locks that entry and its predecessor and checks for synchronization conflicts. If
no conflict is detected, an entry is inserted or removed, and otherwise the locks
are released and the operation is restarted.

This optimistic approach to insertion and removal has the advantage that
insert and remove calls that access non-adjacent list entries never interfere. In
the absence of synchronization conflicts, these operations acquire only a constant
number of locks. Entries are removed from the list in a lazy manner: the entry
is first marked as removed (the “logical” removal), and then it is physically
unlinked from the list (the “physical” removal). The simplifying power of lazy
techniques has been exploited by Harris [3] and Michael [10] for concurrent
lists, and by Maier [9] in more general contexts. Nevertheless, the algorithms of
Harris and Michael require the ability to perform an atomic compare-and-swap
on two fields at once: a Boolean marked field and a reference field to the next
entry in the list (the equivalent of an AtomicMarkableReference in the Java
Programming Language). Since in many systems it is unacceptable to “steal a
bit” from a reference, one must use alternative techniques. In modern object
oriented languages, one can have two trivial (empty) subclasses of a node object
and use a run time type identification (RTTI) mechanism [2] to determine which
subclass the current instance belongs to, where each subclass represents a state
of the bit. In languages without RTTI support, one can use an additional level
of indirection, adding a pointer to a special dummy node to signify that the bit
is set. This is the mechanism used to implement AtomicMarkableReference in
the Java Concurrency Package, which unfortunately can introduce significant
performance penalties.

Perhaps the most substantial advantage of the new algorithm is that mem-
bership test operations are wait-free [4]. The lock-freedom progress property of
the membership test in Michael’s algorithm guarantees that if some threads are



executing method calls, and at least one thread continues taking steps, then at
least one thread will complete its call, but makes no progress guarantee for any
individual thread. Wait-freedom is a stronger progress property that guarantees
that any thread that continues taking steps in executing a method call, will
eventually complete the call.

The membership test of our algorithm acquires no locks, requires no synchro-
nization, and never interferes with any concurrent operations. This last property
is particularly important because it is reasonable to expect that in most real-
world applications, membership tests are by far the most common operations.
In Michael’s lock-free list algorithm, and unlike in ours, if a thread traversing
the list encounters an entry that has been logically but not physically removed,
then the thread must stop to complete the physical removal. Physical removal
requires calling a compare-and-swap operation, and if several concurrent threads
attempt to remove the same entry, then only one will succeed, and the rest will
be forced to abandon their traversals and start over. While the number of such
removals is likely to be small, our empirical testing shows that when there is
a high level of concurrent traversals, contention among threads competing to
perform the removal causes a large number of traversals to be abandoned and
restarted.

By contrast, in the new lazy list algorithm, only the remove operations are
required to perform physical removals, while the insertion and (more impor-
tantly) membership query traversals are not delayed by physical removals. The
wait-free nature of the membership operation means that ongoing changes to the
list cannot delay even a single thread from deciding membership. We note that
our wait-free membership test is of independent value: one can readily replace
the membership test in Michael’s algorithm with the lazy list’s new membership
test, allowing it to obtain improved performance by eliminating the need for
physical removals.

To evaluate our new lazy list algorithm, we implemented it in the JavaTM

programming language and conducted a series of benchmarks comparing our
new algorithm to known algorithms on a 16 node SunFireTM 6800 cache coherent
bus-based multiprocessor machine. We found that when there is a high fraction
of membership tests (as in search structures) the new lazy list algorithm and
a new version of Michael’s algorithm that uses our wait-free membership test,
outperform all others by a factor of two or more. The good performance of
our new version of Michael’s lock-free list depended on the use of Java’s RTTI
mechanism. We also found that as the fraction of membership queries dropped,
the relative performance advantage of the lazy list disappeared, and the new
version of Michael’s list with our wait-free membership test showed the best
performance.

In summary, we conclude that adding the new wait-free membership test
always offers a performance advantage and has no performance penalties. For
applications with a high fraction of membership tests, one should definitely use
the new algorithms, while the choice of which algorithm to use—the new lazy
list, or Michael’s lock-free list with our new wait-free membership test—seems to



depend on the cost and availability of mechanisms for implementing the equiv-
alent of AtomicMarkableReference in a given system and language.

Following our initial presentation of the algorithms in this paper, a complete
formal treatment was provided by Vafeiadis et al in [13]. We therefore focus on
providing an informal and easily accessible explanation of why our new algorithm
works, and refer the interested reader to [13] for the detailed correctness proofs.

2 The New Algorithm

We present our concurrent linked-list implementation in the context of a list-
based set object. For our purposes, a Set provides three methods:

– The add(x) method adds x to the set, returning true if and only if x was
not already in the set.

– The remove(x) method removes x from the set, returning true if and only if
x was in the set.

– The contains(x) method returns true if and only if the set contains x.

For each method, we say that a call is successful if it returns true, and unsuc-
cessful otherwise.

Linearizability [6] is a standard correctness condition for concurrent data
structures. The list-based set implementation that we present is a linearizable
implementation of a set object. To prove this it is enough to identify, for each
method call in each possible execution history, a linearization point, a single
operation when the method call “takes effect”. For example, the linearization
point defines exactly when add(a) adds an entry, a point during the execution of
the method immediately before which a is not in the set, and immediately after
which a is in the set.

Lock-freedom is a progress property that guarantees that if some threads are
executing method calls, and at least one thread continues taking steps, then at
least one thread will complete its call. It guarantees that the system as a whole
continues to make progress, but makes no progress guarantee for any individual
thread. Wait-freedom is a stronger progress property that guarantees that any
thread that continues taking steps in executing a method call, will eventually
complete the call.

As noted earlier, following our initial presentation of the algorithms in this
paper, a complete formal treatment was provided by Vafeiadis et al in [13]. We
therefore focus here on giving an informal and easily readable explanation of
why our new algorithm works.

We represent the set as a sorted list of entries. As shown in Figure 1, the
Entry class has four fields. The key field is the set element. Our algorithm works
for any ordered set of keys that has maximum and minimum values and is well-
founded, that is, for any given key, there are only finitely many smaller keys.
This is trivially satisfied by most real-world key types because the size of the
key is fixed; for simplicity, we present our algorithm assuming that the keys
are integers. We will use the well-foundedness assumption to technically capture



private class Entry {
int key;

Entry next;

boolean marked;

lock lock;

}

Fig. 1. List entry: an entry keeps track of the set element itself (the key), the next
entry in the list, a marked field to denote logical removal of the entry, and a lock field
for synchronization.

the notion that the progress of a membership query in Michael’s algorithm is
lock-free while the new algorithm’s membership query is wait-free.

The list is maintained in key order, providing an efficient way to determine
whether a given key is in the list. We sometimes abuse notation slightly and use
the same symbol to refer to an entry and its associated key (entry a will have
key a and so on.). The next field is a reference to the next entry in the list,
the marked field indicates if its associated key is logically removed or still in the
data structure, and the lock field is a lock used for synchronization.

We assume that the add(), remove(), and contains() methods are the only
ones that modify entries, a property sometimes called freedom from interference.
We require freedom from interference even for entries that have been removed
from the list, since a thread may unlink an entry while it is being traversed by
others. In a language such as Java, we can rely on the garbage collector to recycle
unreachable entries. In a programming language without garbage collection, this
property can be maintained by using methods like ROP [5] or SMR [11].

The list has two kinds of entries. In addition to regular entries that hold
elements (keys) in the set, we use two sentinel entries, called head and tail,

a b
remove b

head tail
c

pred curr

a
badd b

head tail
c

pred curr

Fig. 2. Insertion and removal of list entries.



public boolean remove(int key) {
while (true) {

Entry pred = this.head;
Entry curr = head.next;

while (curr.key < key) {
pred = curr; curr = curr.next;

}
pred.lock();

try {
curr.lock();

try {
if (validate(pred, curr)) {

if (curr.key != key) { // present
return false;

} else { // absent
LR: curr.marked = true; // logically remove

pred.next = curr.next; // physically remove
return true;

}
}

} finally { // always unlock curr
curr.unlock();

}
} finally { // always unlock pred

pred.unlock();

}
}

}

Fig. 3. The lazy remove() method: removes entries in two steps, logical and physical.

as the first and last list entries. The sentinel entries contain the minimum and
maximum key values, respectively; we assume that these values are never added,
removed or searched for. Ignoring the details of synchronization for the moment,
the top part of Figure 2 shows a schematic description of how a key is added to
the set. Each thread has two local variables used to traverse down the list: curr
is the current entry and pred is its predecessor.

To add a new key to the set, a thread sets the local variable pred to head
and curr to head’s successor, and moves down the list, comparing curr’s key to
the key being added. If they match, the key is already present in the set, so the
thread returns false. If pred precedes curr in the list, pred’s key is lower than
the inserted key, and curr’s key is higher, then the key is not present in the list.
Therefore, the thread creates a new entry b to hold the key, sets b to point to
curr, and then sets pred to point to b. The key is now a member of the set.



private boolean validate(Entry pred, Entry curr) {
return !pred.marked && !curr.marked && pred.next == curr;

}

Fig. 4. The lazy lists validation.

Removing a key is similar: we scan the list to find the relevant adjacent pair
of entries. The target entry is removed from the list in two steps: first, its marked
field is set to true, indicating that the entry has been logically removed from the
list, and second, the predecessor entry’s next field is redirected to point to the
successor entry, physically removing the entry from the list. As discussed more
precisely later, the removal “actually happens” when an entry is marked, and
the physical removal is just a way to clean up.

2.1 The remove() method

As shown in Figure 3, when the remove() method attempts to remove the entry
with key k, it scans through the list without acquiring any locks, traversing both
marked and unmarked entries. The remove() method uses two local variables:
curr is the current entry and pred is its predecessor. When curr is set to the
first entry with a key greater than or equal to k, the traversal stops, and the
method locks curr and pred. Because there is a gap between the unsynchronized
traversal and the lock acquisition, it is necessary to validate that the method
has locked the correct entries. What can go wrong? There are three obvious
problems: the curr entry could have been removed, the pred entry could have
been removed, or another entry may have been inserted between pred and curr.
Surprisingly, perhaps, these are the only things that can go wrong, and moreover,
they can be detected very efficiently. It is enough to check that curr and pred
are both unmarked, and that pred’s next pointer points to curr (see Figure 4).
If these conditions hold, the entries are adjacent and present in the list. If the
validation succeeds, the remove() method logically removes the entry, physically
removes the entry, releases both locks and returns true. If the entry with key
k is absent, the method unlocks the entries and returns false. If the validation
fails, the thread restarts the method.

For an unsuccessful remove() call, the linearization point is the point at
which it finds (reads the pointer to) a marked entry with the same key or the
first unmarked entry with a larger key. For a successful remove() method call,
the linearization point is the moment the entry is marked (line LR of Figure 3).

2.2 List traversal

We pause momentarily to discuss list traversal. The list traversal in the remove()
method in Figure 3 seems straightforward: simply follow the list pointers. The
same approach is used in the add() and contains() methods. It is important



to note that this traversal differs from those of other concurrent list-based set
algorithms in the literature in two important ways:

– it requires no additional synchronization (such as acquiring locks [1] or clean-
ing up logically removed nodes [10]), and

– it traverses both logically and physically removed nodes.

This latter property, which allows us to achieve the former, is the key to our
algorithm’s good performance. Figure 7 shows how a concurrent physical removal
of a node during thread A’s traversal can cause it to traverse a physically removed
part of the list. The traversal works correctly because we assume the freedom
from interference property which implies that nodes, even if they are removed
from the list, are not recycled (freed back to the available memory pool) as long
as they are reachable. Thus, if a node is removed while it is being traversed, the
traversing thread will continue to follow the list of pointers and eventually reach
its target node. Our algorithm maintains the property that if an entry was in
the list when a given thread started searching for it, it will remain reachable
from this thread’s curr pointer as long as it is not removed.

2.3 The add() method

Like the remove() method, the add() method (Figure 5) scans the list without
acquiring locks, until curr is set to the first entry with a key greater than or
equal to the key to be inserted. The method locks both entries, validates them,
and if an entry with the specified key is not already present in the list, inserts a
new entry, unlocks the entries, and returns true. The remaining cases are just as
in the remove() method. For an unsuccessful add() method call, the linearization
point is the moment at which the entry is observed to be unmarked in the list.
For a successful add() method call, it is the moment when pred.next is set.
We note that one can make the add() method more efficient by locking only
the pred node, but for the sake of keeping our algorithm simple, we omit this
optimization here.

2.4 The wait-free contains() method

The key to the performance of our algorithm is the new wait-free contains()
method. This method is of independent interest. For example, we show in Sec-
tion 3 that it can readily replace the lock-free contains() method in the algo-
rithm of Michael [10] to provide improved performance.

The contains() method scans the list, just like the remove() and add()
methods, ignoring whether nodes are marked or not, until curr is set to the
first entry with a key greater than or equal to the sought-after key. Instead of
locking the entry, however, it simply returns true if and only if the curr entry
is unmarked with the desired key. This is correct since the list is ordered and so,
if a node is removed, it must be marked or not present in the list.

It is easy to see that this method is wait-free. First, notice that because the
universe of keys is well-founded there are only a finite number of keys that are



public boolean add(int key) {
while (true) {

Entry pred = this.head;
Entry curr = head.next;

while (curr.key < key) {
pred = curr; curr = curr.next;

}
pred.lock();

try {
curr.lock();

try {
if (validate(pred, curr)) {

if (curr.key == key) { // present
return false;

} else { // not present
Entry entry = new Entry(key);

entry.next = curr;

pred.next = entry;

return true;
}

}
} finally { // always unlock

curr.unlock();

}
} finally { // always unlock

pred.unlock();

}
}

}

Fig. 5. The add() method.

public boolean contains(int key) {
Entry curr = this.head;
while (curr.key < key)

curr = curr.next;

return curr.key == key && !curr.marked;

}

Fig. 6. The lazy list’s wait-free contains() method.

smaller than the one being searched for. According to the algorithm, entries with
lower or equal keys to a given entry will never be added ahead of it (i.e. so that
they are reachable from it) even if the entry points into the list but is logically
and physically removed from the list. Thus, each time the traversal moves to a
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currA
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Fig. 7. Linearizing an unsuccessful contains() method calls is a bit tricky. Dark nodes
are physically in the list and white nodes are physically removed. During a traversal of
the list by thread A, the sublist starting at the node pointed to by curr (and schemat-
ically represented by “. . .”) may be disconnected from the main list by a concurrent
remove() method execution. Both nodes with items a and b can still be reached, and
the determination if an item is in the list is based solely on the mark-bit.

new node, the new node has a larger key than the previous one, and this can
happen only finitely many times, which implies that traversal is wait-free. This
contrasts with Michael’s membership test [10] which is only lock-free [4], since
it can be forced to restart its traversal from the beginning of the list infinitely
often if the same item is re-inserted and removed, and it fails each time when
attempting to clean it up.

A successful contains() method call is linearized when the marked field of a
matching entry is observed to be false. Linearizing an unsuccessful contains()
method call is a bit tricky, and is a good example showing that it is not always
possible to define a single linearization point for each method that works for all
method calls in all executions. In particular, simply choosing the linearization
point for an unsuccessful contains() as the point at which a marked entry with
the sought-after key or an entry greater than the sought-after key is found is
incorrect. Consider the following scenario. Assume that entry a is marked and
thread A is attempting to find the entry matching a’s key. While A is traversing
the list, currA and all entries between currA and a including a are removed
logically and physically. Thread A would still proceed to the point where currA

points to a. It would then detect that a is marked and therefore no longer in
the list. Linearizing at this point is correct in this case. However, consider what
happens if while thread A is traversing the removed section of the list leading to
a, and before it reaches the removed a, another thread adds a new entry with a
key a to the reachable part of the list. Linearizing the unsuccessful contains()
method at the point at which it observed the marked entry a would be wrong,
since it occurs after the insertion of the new entry with key a to the list.



We therefore linearize an unsuccessful contains() method call within its
execution interval at the earlier of the following points: (1) the point where a
removed matching entry is found and (2) the point immediately before a new
matching entry is added to the list. As can be seen, this linearization point is
determined by the ordering of events in the execution, and not predetermined
as a specific point in the method execution.

3 Performance

We evaluated our new algorithm on a SunFireTM 6800 cache coherent bus-based
multiprocessor machine with 16 1.2 GHz processors. The algorithms were im-
plemented in Java 1.5.0. We varied the percentage of contains() method calls
and the percentage of add() and remove() method calls. Each thread randomly
selected both the type of call to make (respecting the given percentages) and
the operand for it; operands are integers in the range 0..1023. We repeated this
test suite both with and without an additional load of 16 threads performing
computation in order to evaluate the sensitivity of our results to background
load, but do not report the additional load tests here as there were no signifi-
cant differences noted. In all our benchmarks, we measured throughput : the total
number of calls completed over the course of 8 seconds, averaged across three
runs. We tested six different list algorithms in all.

– Coarse – We use a single java.util.concurrent.ReentrantLocks lock to
protect all access to the list.

– Fine – This is a fine grained hand-over-hand locking (lock-coupling) [8, 1]
list-based implementation using a lock per list entry. Threads traverse down
the list holding multiple locks at a time, releasing the earlier acquired entry’s
lock only after acquiring the next one in the list.

– LockFree – This is a lock-free list implemented according to Michael’s al-
gorithm [10], using the AtomicMarkableReference of JDK 1.5.0 to allow
a markable next pointer per entry. As in our algorithm, the mark is used
to denote that an entry is logically removed. Unlike in our algorithm, the
contains() method is lock-free and not wait-free as calls do not traverse
marked entries, instead, they clean them up before continuing traversal down
the list.

– LockFreeRTTI – This is the lock-free list of Michael’s algorithm [10] using
the Java RTTI mechanism to distinguish marked entries. Such mechanisms
are not available in all languages. Achieving the effect of marking a bit in the
next pointer is done more efficiently than with AtomicMarkableReference
by having two trivial (empty) subclasses of each entry object and using RTTI
to determine at runtime which subclass the current instance is, where each
subclass represents a state of the mark bit.

– NewLockFreeRTTI – This is LockFreeRTTI with Michael’s lock-free contains()
method directly replaced by the new wait-free contains() method of this
paper, one that does not clean up marked entries and instead traverses them
in a wait-free manner.
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Fig. 8. The top two graphs show the change in throughput as concurrency increases
to 32 threads with 60% and 90% of the operations being contains() method calls, and
a 9/1 ratio of add() to remove() method calls. The bottom graph shows the change in
throughput for the case of 32 threads as the fraction of contains() calls increases to
90%

– NewLazy – This is the new lazy list algorithm of this paper, with its new
wait-free contains() and an optimization of the add() method to use only
a single lock.

The top of Figure 8 shows the results of running a benchmark with 90%
contains() method calls, 9% add() method calls and 1% remove() method calls
(left) and another benchmark with 50% contains() method calls, 45% add()
method calls and 5% remove() method calls (right). The 90/9/1 ratio and the
high fraction of add() method calls to remove() method calls are considered
typical of search structures, a common application of linked-lists [7].

If we look at the graph of the 90% test on the lefthand side of Figure 8, we
see that the two new algorithms, the lazy list and the new lock-free list with a
wait-free contains() method, outperform all others by a factor of two or more,
including both versions of Michael’s lock-free list, the one implemented with
AtomicMarkableReference and the one implemented with the RTTI mecha-
nism. The reason for this is as follows: even though there is a very small fraction



of remove() method calls, there are many concurrent contains() method traver-
sals, and in both of the original versions of Michael’s algorithm they all compete
to clean up the same small set of logically removed entries. All traversals that
fail must restart, leading to a significant overhead. The new version of Michael’s
algorithm with RTTI and our wait-free contains() method performs slightly
better than the lock-based lazy list. However, the reader is reminded that many
languages do not have the equivalent of RTTI.
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Fig. 9. The graph shows throughput as concurrency increases with a 34%, 33% and
33% ratio respectively of contains(), add(), and remove() method calls.

The graph of the 50% test on the righthand side of Figure 8 shows what
happens when we drop the fraction of contains() method calls. As can be
seen, the lock-free RTTI-based implementation of Michael’s algorithm stays at
about the same throughput level, yet the performance of the two new algorithms
deteriorates because (1) the large number of additional add() method calls in the
new version of Michael’s algorithm incur cleanup contention (they fail attempts
at cleaning up the same entries) and must restart their traversals, and (2) the
add() method calls in the lazy list acquire more costly locks and fail validation
at a much higher rate, forcing them to restart their traversals.

The bottom graph of Figure 8 shows the change in throughput for the case of
32 threads as the fraction of contains() method calls increases (maintaining the
9/1 ratio of add() and remove() method calls). As can be seen, from 50% and
onward the two new algorithms outperform all others, and have more than twice
their throughput at 90%. The choice of which algorithm to use, the new lazy list,
or Michael’s lock-free list with our new wait-free membership test, for typical
search applications with a high fraction of memberships tests, seems to depend
on the cost of implementing the equivalent of AtomicMarkableReference in a
given system and language.



The graph in Figure 9 shows the change in throughput when running a
benchmark with 34% contains() method calls, 33% add() method calls and
33% remove() method calls. Though this is not a typical search structure access
pattern, we present it here to explore how the algorithms compare across a
wider range of loads. As can be seen, the throughput of the lock-free RTTI
based implementations drops slightly, and the performance of the lazy list drops
more significantly. As before, this is due to the further increase in the number
of costly lock acquisitions and of failed validations.

We conclude that even with higher add() and remove() method call rates
than we expect in many applications, our results show how to improve on the
performance of previous algorithms. Furthermore, without using any nonstan-
dard language tricks, our new algorithms soundly beat previous ones.

4 Conclusions

We introduced the lazy list, a simple new concurrent list algorithm based on
lazy marking and deletion of nodes. Perhaps the most substantial advantage of
the new algorithm is a wait-free membership test operation, an operation that
can readily replace membership tests in other list-based set algorithms such as
Michael’s lock-free lists [10].

Various optimizations to our algorithm are possible. As noted earlier, one can
make the add() method more efficient by locking only the pred node. One can
also add an optimization whereby threads “prevalidate” the state of an entry
before acquiring the entry locks, thereby saving the cost of acquiring them upon
failure.

Most importantly, we believe the algorithmic approach introduced in this
paper, the combination of lazy lock-based list manipulation coupled with wait-
free traversal, can lead to simpler and possibly more efficient algorithms for
related data structures such as concurrent skip-lists and other search structures.
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