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Abstract. A crucial property required from software transactional
memory systems (STMs) is that transactions, even ones that will even-
tually abort, will operate on consistent states. The only known tech-
nique for providing this property is through the introduction of a globally
shared version clock whose values are used to tag memory locations. Un-
fortunately, the need for a shared clock moves STM designs from being
completely decentralized back to using centralized global information.

This paper presents TLC, the first thread-local clock mechanism for
allowing transactions to operate on consistent states. TLC is the proof
that one can devise coherent-state STM systems without a global clock.

A set of early benchmarks presented here within the context of the
TL2 STM algorithm, shows that TLC’s thread-local clocks perform as
well as a global clock on small scale machines. Of course, the big promise
of the TLC approach is in providing a decentralized solution for future
large scale machines, ones with hundreds of cores. On such machines, a
globally coherent clock based solution is most likely infeasible, and TLC
promises a way for transactions to operate consistently in a distributed
fashion.

1 Introduction

The question of the inherent need for global versus local information has been
central to distributed computing, and will become central to parallel computing
as multicore machines, now in the less than 50 core range, move beyond bus
based architectures and into the 1000 core range. This question has recently
arisen in the context of designing state-of-the-art software transactional memo-
ries (STMs).

Until recently, STM algorithms [1,2,3,4,5] allowed the execution of “zombie”
transactions: transactions that have observed an inconsistent read-set but have
yet to abort. The reliance on an accumulated read-set that is not a valid snap-
shot [6] of the shared memory locations accessed can cause unexpected behavior
such as infinite loops, illegal memory accesses, and other run-time misbehavior.
Overcoming zombie behavior requires specialized compiler and runtime support,
and even then cannot fully guarantee transactional termination [7].
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In response, Reigel, Felber, and Fetzer [8] and Dice, Shalev, and Shavit [7] in-
troduced a global clock mechanism as a means of guaranteeing that transactions
operate on consistent states. Transactions in past STM systems [1,2,3,4,5] typi-
cally updated a tag in the lock-word or object-record associated with a memory
location as a means of providing transactional validation. In the new global clock
based STMs [7,9,10] instead of having transactions locally increment the tags
of memory locations, they update them with a time stamp from the globally
coherent clock. Transactions provide consistency (recently given the name opac-
ity [11]) by comparing the tags of memory locations being read to a value read
from the global clock at the transaction’s start, guaranteeing that the collected
read-set remains coherent.

Unfortunately, this globally shared clock requires frequent remote accesses and
introduces invalidation traffic, which causes a loss of performance even on small
scale machines [7]. This problem will most likely make global clocks infeasible
on large scale machines with hundreds of cores, machines that no longer seem
fictional [12,13].

To overcome this problem, there have been suggestions of distributing the
global clock (breaking the clock up into a collection of shared clocks) [14,15],
or of providing globally coherent clock support in hardware [16]. The prob-
lem with schemes that aim to distribute the global clock is that the cost of
reading a distributed clock grows with the extent to which it is distributed.
The problem with globally coherent hardware clocks, even of such hardware
modifications were to be introduced, is that they seem to be limited to small
scale machines.

This paper presents TLC, the first thread-local clock mechanism that allows
transactions to operate on consistent states. The breakthrough TLC offers is
in showing that one can support coherent states without the need for a global
notion of time. Rather, one can operate on coherent states by validating mem-
ory locations on a per thread basis. TLC is a painfully simple mechanism that
has the same access patterns as prior STMs that operate on inconsistent states
[1,3,2,4,5]: the only shared locations to be read and written are the tags associ-
ated with memory locations accessed by a transaction. This makes TLC a highly
distributed scheme by its very nature.

1.1 TLC in a Nutshell

Here is how TLC works in a nutshell. As usual, a tag containing a time-stamp
(and other information such as a lock bit or HyTM coordination bit) is associated
with each transactional memory location. In TLC, the time-stamp is appended
with the ID of the thread that wrote it. In addition, each thread has a thread
local clock which is initially 0, and is incremented by 1 at the start of every
new transaction. There is also a thread local array of entries, each recording a
time-stamp for each other thread in the system. We stress that this array is local
to each thread and will never be read by others.

Without getting into the details of a particular STM algorithm, we remind the
reader that transactions in coherent-state STMs [7,10,9] typically read a location
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by first checking its associated tag. If the tag passes a check, the location is
consistent with locations read earlier and the transaction continues. If it is not,
the transaction is aborted. Transactions write a memory location by updating
its associated tag upon commit.

Here is how TLC’s check and update operations would be used in a transaction
by a given thread i:

1. Update(location) Write to the locations tag my current transaction’s new
local clock value together with my ID i.

2. Check(location) Read the location’s tag, and extract the ID of the thread j
that wrote it. If the location’s time-stamp is higher than the current time-
stamp stored in my local array for the thread j, update entry j and abort
my current transaction. If it is less than or equal to the stored value for j,
the state is consistent and the current transaction can continue.

This set of operations fits easily into the global-clock-based schemes in many of
today’s STM frameworks, among them McRT [10], TinySTM [17], or TL2 [7],
as well as hardware supported schemes such as HyTM [1] and SigTM [9].

How does the TLC algorithm guarantee that a transaction operates on a con-
sistent read-set? We argue that a TLC transaction will always fail if it attempts
to read a location that was written by some other transaction after it started.
For any transaction by thread i, if a location is modified by some thread j af-
ter the start of i’s transaction, the first time the transaction reads the location
written by j, it must find the associated time-stamp larger than its last recorded
time-stamp for j, causing it to abort.

An interesting property of the TLC scheme is that it provides natural local-
ity. On a large machine, especially NUMA machines, transactions that access a
particular region of the machine’s memory will only ever affect time-stamps of
transactions accessing the same region. In other words, the interconnect traffic
generated by any transaction is limited to the region it accessed and goes no fur-
ther. This compares favorably to global clock schemes where each clock update
must be machine-wide.

The advantages of TLC come at a price: it introduces more false-aborts than
a global clock scheme. This is because a transaction by a thread j may complete
a write of some location completely before a given transaction by i reads it, yet
i’s transaction may fail because its array recorded only a much older time-stamp
for j.

As our initial benchmarks show, on small scale state of the art multicore
machines, the benefits of TLC are overshadowed by its higher abort rate. We
did not have a 1000 node NUMA machine to test TLC on, and so we show that
on an older generation 144 node NUMA machine, in benchmarks with a high
level of locality, TLC can significantly outperform a global clock. Though this is
by no way an indication that one should use TLC today, it is an indicator of its
potential on future architectures, where a global clock will most likely be costly
or even impossible to implement.
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2 An STM Using TLC

We now describe an STM implementation that operates on consistent states
without the need for a global clock by using the TLC algorithm. Our choice
STM is the TL2 algorithm of Dice, Shalev, and Shavit [7], though TLC could
fit in other STM frameworks such as McRT [10], or TinySTM [17] as well as
hardware supported schemes such as HyTM [1] and SigTM [9]. We will call this
algorithm TL2C.

Recall that with every transacted memory location TL2 associates a special
versioned write-lock. The time-stamp used in the TL2C algorithm will reside
in this lock. The structure of the TL2C algorithm is surprisingly simple. Each
time-stamp written will be tagged with the ID of the thread that wrote it. Each
thread has:

– a thread local TLClock, initially 0, which is incremented by 1 at the start of
every new transaction, and

– a thread local CArray of entries, each entry of which records a time-stamp
for each other thread in the system.

The clock has no shared components.
In the TL2C algorithm, as in the original TL2, the write-lock is updated by ev-

ery successful lock-release, and it is at this point that the associated time-stamp
is updated. The algorithm maintains thread local read-and write-sets as linked
lists. The read-set entries contain the address of the lock. The write-set entries
contain the address of the memory location accessed, the value to be written, and
the address of the associated lock. The write-set is kept in chronological order
to avoid write-after-write hazards. During transactional writing operations the
read-set is checked for coherency, then write set is locked, and then the read-set
is rechecked. Obviously aborts that happen before locking are preferable.

We now describe how TL2C, executes in commit mode a sequential code frag-
ment that was placed within a transaction. The following sequence of operations
is performed by a writing transaction, one that performs writes to the shared
memory. We will assume that a transaction is a writing transaction. If it is a
read-only transaction this can be annotated by the programmer, determined at
compile time, or heuristically inferred at runtime.

1. Run through a speculative execution in a TL2 manner collecting read and
write sets. A load instruction sampling the associated lock is inserted before
each original load, which is then followed by post-validation code which is
different than in the original TL2 algorithm. If the lock is free, a TL2C check
operation is performed. It reads the location’s time-stamp from the lock, and
extracts the ID of the thread j that wrote it. If the location’s time-stamp is
higher than the current time-stamp stored in its CArray for the thread j,
it updates entry j and aborts the transaction. If it is less than or equal to
the stored value for j, the state is consistent and the speculative execution
continues.
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2. Lock the write set: Acquire the locks in any convenient order using bounded
spinning to avoid indefinite deadlock. In case not all of these locks are suc-
cessfully acquired, the transaction fails.

3. Re-validate the read-set. For each location in the read-set, first check it was
not locked by another other thread. It might have been locked by the local
thread if it is a part of both the read and write sets. Then complete the
TL2C check for the location, making sure that its time stamp is less than
the associated thread j’s entry in the CArray. In case the check fails, the jth
entry of the CArray transaction is aborted. By re-validating the read-set, we
guarantee that its memory locations have not been modified while steps 1,2
and 3 were being executed.

4. Increment the local TLClock.
5. Commit and release the locks. For each location in the write-set, store to the

location the new value from the write-set and update the time-stamp in the
location’s lock to the value of the TLClock before releasing it. This is done
using a simple store.

Note that the updating of the time-stamps in the write-locks requires only a
simple store operation. Also, notice that the local TLClock is only updated once
it has been determined that the transaction will successfully commit.

The key idea of the above algorithm is the maintaining of a consistent read-set
by maintaining a local view of each thread’s latest time-stamp, and aborting the
transaction every time a new time-stamp value is detected for a given thread.
This prevents any concurrent modifications of the locations in the read set since a
thread’s past time-stamp was determined in an older transaction, so if the change
occurs within the new transaction the new time stamp will be detected as new.
This allows detection to proceed on a completely local basis. It does however
introduce false aborts, aborts by threads that completed their transaction long
before the current one, but will cause it to fail since the time-stamp recorded for
them in the CArray was not current enough.

We view the above TL2C as a proof of concept, and are currently testing var-
ious schemes to improve its performance even on today’s machines by reducing
its abort rate.

3 Proof of the TL2C Algorithm

We outline the correctness argument for the TLC algorithm in the context of the
TL2C algorithm. Since the TLC scheme is by construction wait-free, we only to
argue safety. The proof of safety amounts to a simple argument that transactions
always operate on a consistent state.

We will assume correctness of the basic underlaying TL2 algorithm as proven
in [7]. In our proof argument, we refer to the TL2C algorithm’s steps as they
were defined in Section 2. Given the assumption that TL2 operates correctly, we
need only prove that in both steps (1) and (3) in which the algorithm collects a
read-set using TLC, this set forms a coherent snapshot of the memory, one that
can be linearized at the start (first read) of the given collection phase.
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We recall that every TL2 transaction that writes to at least one variable, can
be serialized at the point in which it acquired all the locks on the locations it is
about to write. Consider any collection phase (of read and write sets), including
reads and writes by memory by a transaction of thread i in either step (1) or (3).
For every location read by i, let the transaction that wrote to it last before it was
read by i be one performed by a thread j. If j’s transaction was not serialized
before the start of the current collection, then we claim the collection will fail
and the transaction by i will be aborted. The reason for this is simple. The last
value stored in the CArray of i for j was read in a prior transaction of i, one
that must have completed before i started the current transaction. Thus, since
j increments its TLClock before starting its new transaction, if j’s transaction
was not linearized before i, then the value it wrote was at least one greater than
the one recorded for j in the CArray of i. Thus i will detect an inconsistent view
and abort its current transaction.

4 Empirical Performance Evaluation

The type of large scale NUMA multicore machine on which we believe one will
benefit from the TLC approach is still several years ahead. We will therefore
present two sets of benchmarks to allow the reader to gauge the limitations of
the TLC approach on today’s architectures and its potential benefits on future
ones.

– The first benchmark is a performance comparison of the TL2C algorithm
to the original TL2 algorithm with a version GV5 global clock (see [7] for
details, the key idea of GV5 is to avoid frequent increments of the shared
clock by limiting these accesses to aborted transactions.) on a 32-way Sun
UltraSPARC T1TM machine. This is a present day single chip multi-core
machine based on the Niagara architecture that has 8 cores, each supporting
4 multiplexed hardware threads.

Our benchmark is the standard concurrent red-black tree algorithm, writ-
ten by Dave Dice, taken from the official TL2 release. It was in turn derived
from the java.util.TreeMap implementation found in the Java 6.0 JDK.
That implementation was written by Doug Lea and Josh Bloch. In turn,
parts of the Java TreeMap were derived from the Cormen et al [18].

– The second benchmark is a performance comparison of the TL2C algorithm
to the TL2 algorithm on a Sun E25KTM system, an older generation NUMA
multiprocessor machine with 144 nodes arranged in clusters of 2, each of
which sits within a cluster of 4 (so there are 8 cores per cluster, and 18
clusters in the machine), all of which are connected via a large and relatively
slow switch.

Our benchmark is a synthetic work-distribution benchmark in the style of
Shavit and Touitou [19]. The benchmark picks random locations to modify,
in our case 4 per transaction, and has overwhelming fraction of operations
within the cluster and a minute fraction outside it. This is intended to mimic
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Fig. 1. Throughput of TL2 and TL2C on a Red-Black Tree with 30% puts, 30% deletes.
The figure shows the throughput and the abort rate of each algorithm.

the behavior of future NUMA multicore algorithms that will make use of
locality but will nevertheless have some small fraction of global coordination.

The graph of an execution of small (1000 nodes) and large red-black trees (1
million nodes) appears in Figure 1. The operation distribution was 30% puts,
30% deletes, and 40% gets. To show that the dominant performance factor in
terms of TLC is the abort rate, we plot it on the same graph.

As can be seen, in both cases the smaller overhead of the TLC mechanism in
the TL2C algorithm is shadowed by the increased abort rate. On the smaller tree
the algorithms perform about the same, yet on the larger one the price of the
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Fig. 2. Throughput of TL2 and TL2C on the work distribution benchmark in which
most of the work is local within a cluster of 8 nodes

aborts is larger because the transactions are longer, and so TL2C performs more
poorly than the original TL2 with a global clock. This result is not surprising as
the overhead of the GV5 clock mechanism is very minimal given the fast uniform
memory access rates of the Niagara I architecture.

The graph in Figure 2 shows the performance of the artificial work-distribution
benchmark where each thread picks a random subset of memory locations out
of 2000 to read and write during a transaction, mimicking a pattern of access
that has high locality by having an overwhelming fraction of operations happen
within a cluster of 8 nodes and a minute fraction outside it. As can be seen, the
TL2C algorithm has about twice the throughput of TL2, despite having a high
abort rate (not shown) as in the Niagara I benchmarks. The reason is that the
cost of accessing the global clock, even if it is reduced by in relatively infrequent
accesses in TL2’s GV5 clock scheme, still dominates performance. We expect the
phenomena which we created in this benchmark to become prevalent as machine
size increases. Algorithms, even if they are distributed across a machine, will
have higher locality, and the price of accessing the global clock will become a
dominant performance bottleneck.

5 Conclusion

We presented a novel decentralized local clock based implementation of the
coherence scheme used in the TL2 STM. The scheme is simple, and can greatly
reduce the overheads of accessing a shared location. It did however significantly
increase the abort rate in the microbenhmarks we tested. Variations of the algo-
rithm that we tried, for example, having threads give other threads hints, proved
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too expensive given the simplicity of the basic TLC mechanism: they reduced
the abort rate but increased the overhead. The hope is that in the future, on
larger distributed machines, the cost of the higher abort rate will be offset by
the reduction in the cost that would have been incurred by using a shared global
clock.
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