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Abstract. In this paper we present a complete, compiler independent, Java
STM framework called Deuce, intended as a development platform for scal-
able concurrent applications and as a research tool for designing STM algo-
rithms. Deuce provides several benefits over existing Java STM frameworks:
it avoids any changes or additions to the JVM, it does not require language
extensions or intrusive APIs, and it does not impose any memory footprint
or GC overhead. To support legacy libraries, Deuce dynamically instruments
classes at load time and uses an original “field-based” locking strategy to
improve concurrency. Deuce also provides a simple internal API allowing
different STMs algorithms to be plugged in. We show empirical results that
highlight the scalability of our framework running benchmarks with hundreds
of concurrent threads. This paper shows, for the first time, that one can ac-
tually design a Java STM with reasonable performance, without compiler
support.

1 Introduction

Multicore CPUs have become commonplace, with dual-cores powering almost any
modern portable or desktop computer, and quad-cores being the norm for new
servers. While multicore hardware has been advancing at an accelerated pace, soft-
ware for multicore platforms seems to be at a crossroads.

Currently, two diverging programming methods are commonly used. The first ex-
ploits concurrency by synchronizing multiple threads based on locks. This approach
is well known to be a two-edged sword: on the one hand, locks give the programmer
a fine-grained way to control the applications critical sections, allowing an expert to
provide great scalability; on the other hand, because of the risk of deadlocks, starva-
tion, priority inversions, etc., they impose a great burden on non-expert programmers,
often leading them to prefer the safer but non-scalable alternative of coarse-grained
locking.

The second method is a shared-nothing model common in Web based architec-
tures. The applications usually contain only the business logic, deployed in a con-
tainer, while the state is saved in an external multi-versioned control system, such
as database, message queue, or distributed cache. While this method removes the
burden of handling concurrency in the application, it imposes a huge performance
impact on data accesses and, for many types of applications, is difficult to apply.



The hope is that transactional memory (TM) [11] will simplify concurrent pro-
gramming by combining the desirable features of both methods, providing state-aware
shared memory with simple concurrency control.

In the past several years there has been a flurry of design and implementation
work on the software transactional memory (STM) [21]. However, the state of the
art today is less than appealing. With the notable exception of transactional C/C++
compilers [15], most STM initiatives have remained academic experiments, applicable
only to “toy applications”, and though we have learned much from the process of de-
veloping them, they have not reached a state that will allow them to be seriously field
tested. There are several reasons for this. Among them are the problematic handling
of many features of the target language, the large performance overheads, and the
lack of support for legacy libraries. Moreover, many of the published results have been
based on prototypes whose source code is unavailable or poorly maintained, making
a reliable comparison between the various algorithms and designs very difficult.

In this paper, we introduce Deuce, our novel open-source Java framework for
transactional memory. Deuce has several desired features not found in earlier Java
STM frameworks. As we discuss in Section 2, there currently does not exist an effi-
cient Java STM framework that delivers a full set of features and can be added to
an existing application without changes to its compiler or libraries. It was not clear
if one could build such an an efficient “compiler independent” Java STM.

Deuce is intended to fill this gap. It is non-intrusive in the sense that no modifica-
tions to the Java virtual machine (JVM) or extensions to the language are necessary.
It uses, by default, an original locking design that detects conflicts at the level of in-
dividual fields without a significant increase in the memory footprint (no extra data
is added to any of the classes) and therefore there is no GC overhead. This locking
scheme provides finer granularity and better parallelism than former object-based
lock designs. Deuce provides weak atomicity, i.e., does not guarantee that concur-
rent accesses to a shared memory location from both inside and outside a transaction
are consistent. This is in order to avoid a performance penalty. Finally, it supports
a pluggable STM back-end and an open and easily extendable architecture, allow-
ing researchers to integrate and test their own STM algorithms within the Deuce
framework.

Deuce has been heavily optimized for efficiency and, while there is still room
for improvements, our performance evaluations on several high-end machines (up to
128 hardware threads on a 16-core Sun Niagara-based machine and a 96-core Azul
machine) demonstrate that it scales well. Our benchmarks show that it outperforms
the main competing JVM-independent Java STM, the DSTM2 framework [9], in
many cases by two orders of magnitude, and in general scales well on many workloads.
This paper shows for the first time that one can actually design a Java STM with
reasonable performance without compiler support.

The Deuce framework has been in development for more than two years, and we
believe it has reached a level of maturity sufficient to allow it to be used by developers
with no prior expertise in transactional memory. It is our hope that Deuce will help
democratize the use of STMs among developers, and that its open-source nature will
encourage STM them to extend the infrastructure with novel features, as has been
the case, for instance, with the Jikes RVM [1].



The rest of the paper is organized as follows. We first overview related work in
Section 2. Section 3 describes Deuce from the perspective of the developer of a con-
current application. In Section 4 we discuss the implementation of the framework, and
then show how it can be extended, by the means of the STM backends, in Section 5.
Section 6 presents a companion front-end to Deuce that supports transactional Java
language extensions. Finally, in Section 7, we evaluate the performance of Deuce.

2 Related work

Several tools have been proposed to allow the introduction of STM into Java. They
differ in their programming interface and in the way they are implemented. One of
the first proposals is Harris and Fraser’s CCR [8] that used a C-based STM imple-
mentation underneath the JVM and a programmatic API to use STM in Java.

DSTM [10] is another pioneering Java STM implementation. It used an explicit
API to demarcate transactions and read/write shared data. Transactional objects
had to additionally provide some pre-defined functionality for cloning their state.

More recently, the DSTM2 [9] framework was introduced, proposing a set of
higher-level mechanisms to support transactions in Java. DSTM2 is a pure Java
library that does not require any change to the JVM nor to the compiler. It uses
a special annotation to mark an atomic interface. Only a class that implements
an annotated interface can participate in a transaction. This class is created using a
special factory and it can only support transactional access to primitive types or other
annotated classes. Transactions must be started using a Callable object. This design
creates an API that, while powerful and elegant, requires important refactoring of
legacy code, and introduces many limitations, such as the lack of support for existing
libraries.

The LSA-STM [19] is a Java STM that also relies primarily on annotations for TM
programming. Transactional objects, to be accessed in the context of a transaction,
are annotated as @Transactional, and methods are declared as @Atomic. Additional
annotations can be used to indicate that some methods will not modify the state of
the target object, (read-only) or to specify the behavior in case an exception is thrown
within a transaction. Transactional objects are implemented in the LSA-STM using
inheritance and must support state cloning. As such it does not fully support legacy
code, and unlike Deuce is not transparent or non-invasive. Among the limitations
of the framework, one can mention that accesses to a field are only supported as
part of methods from the owner class. Therefore, public and static fields cannot be
accessed transactionally. Note that this limitation also applies to other Java STM
implementations that use object-level conflict detection such as DSTM and DSTM2.

AtomJava [12] takes a different approach to Java STM design by providing a
source-to-source translator based on Polyglot [16], an extensible compiler framework.
AtomJava adds a new atomic keyword to mark atomic blocks, and performs some
major extensions during code transformation, such as adding an extra instance field
to each and every class. AtomJava relies on this field to maintain an object-based lock
schema. This schema is shown to reduce lock access overhead, but imposes a memory
overhead which impacts not only transactional objects but all the application objects.
The source code translation approach simplifies the tuning and verification of STM
instrumentation, but it makes it harder for the programmer to debug her original



code. Also, by translating source code, AtomJava imposes a major limitation on users
in that it prevents them from using compiled libraries, and renders their source code
with atomic blocks incompatible with regular Java compilers (unlike approaches such
as DSTM2 and LSA-STM that are based on annotations).

Multiverse [14] is another STM implementation for Java that performs instrumen-
tation driven by annotations. Similarly to Deuce, Multiverse supports field-based
conflict detection granularity, but fields can be monitored as part of a transaction
only if their owner class was annotated as @TransactionalObject. This requires the
developer to be aware of all the data structures that might be accessed as part of a
transaction. Nevertheless, this approach provides Multiverse with the ability to main-
tain strong atomicity by preventing any access to transactional object members that
is not part of a transaction’s context. Multiverse provides several other features, such
as a retry/orelse construct, different levels of optimistic and pessimistic behavior,
and limited commuting operations.

Modifications to the JVM have been proposed [22] to replace Java monitors by
transactions. Atomos [4] is a Java extension that replaces the synchronized keyword
by atomic, and wait/notify operations by retry statements. Such conversions are
quite complex, because the transformed code must maintain the same semantics as
the original code, and has to support operations like irrevocable actions or signaling.
In the end, the decision to replace a monitor depends on the tradeoff between STM
overhead and the gain in parallelism.

There exist several other STM implementations for various programming lan-
guages. An exhaustive list is outside of the scope of this paper, but the interested
readers can consult the online TM bibliography available from the Web page at
http://www.cs.wisc.edu/trans-memory/biblio/index.html.

3 Concurrent Programming with DEUCE

One of the main goals in designing the Deuce API was to keep it simple. A survey
of the past designs (see previous section) reveals three main approaches: (i) adding
a new reserved keyword to mark a block as atomic, e.g., atomic in AtomJava [12];
(ii) using explicit method calls to demarcate transactions and access shared objects,
e.g., DSTM2 [9] and CCR [8]; or (iii) requiring atomic classes to implement a prede-
fined interface or extend a base class, and to implement a set of methods [10]. The
first approach requires modifying the compiler and/or the JVM, while the others are
intrusive from the programmer’s perspective as they require significant modifications
to the code (even though some systems use semi-automatic weaving mechanisms such
as aspect-oriented programming to ease the task of the programmer, e.g., [19]).

In contrast, Deuce has been designed to avoid any addition to the language or
changes to the JVM. In particular, no special code is necessary to indicate which
objects are transactional, no method needs to be implemented to supporting trans-
actional objects (e.g., cloning the state as in [10]). This allows Deuce to seamlessly
support transactional accesses to compiled libraries. The only piece of information
that must be specified by the programmer is, obviously, which part of the code should
execute atomically in the context of a transaction.

To that end, Deuce relies on Java annotations. Introduced as a new feature in
Java 5, annotations allow programmers to mark a method with metadata that can be



consulted at class loading time. Deuce introduces new types of annotations to mark
methods as atomic: their execution will take place in the context of a transaction.

This approach has several advantages, both technically and semantically. First
technically, the smallest code block Java can annotate is a method, which simplifies
the instrumentation process of Deuce and provides a simple model for the program-
mer. Second, atomic annotations operate at the same level as synchronized methods,
which execute in a mutually exclusion manner on a given object; therefore, atomic
methods provide a familiar programming model.

1 public int sum(List list) {
2 int total = 0;
3 atomic {
4 for (Node n : list )
5 total += n.getValue();
6 }
7 return total;
8 }

Fig. 1. Atomic block example.

From a semantic point of view, implementing atomic blocks at the granularity of
methods removes the need to deal with local variables as part of the transaction. In
particular, since Java doesn’t allow any access to stack variables outside the current
method, the STM can avoid logging many memory accesses. For instance, in Figure 1,
a finer-granularity atomic block would require costly logging of the total local vari-
able (otherwise the method would yield incorrect results upon abort) whereas no
logging would be necessary when considering atomic blocks at the granularity of in-
dividual methods. In cases when finer granularity is desirable, Deuce can be used
in combination with the TMJava front-end discussed in Section 6.

To illustrate the use and implementation of Deuce, we will consider a well-known
but non-trivial data structure: the skip list [17]. A skip list is a probabilistic structure
based on multiple parallel, sorted linked lists, with efficient search time in O(log n).

Figure 2 shows a partial implementation of skip list, with an inner class represent-
ing nodes and a method to search for a value through the list. The key observation
in this code is that transactifying an application is as easy as adding @Atomic anno-
tations to methods that should execute as transactions. No code needs to be changed
within the method or elsewhere in the class. Interestingly, the linked list directly
manipulates arrays and accesses public fields from outside their enclosing objects,
which would not be possible with DSTM2 or LSA-STM.

One can also observe that the @Atomic annotation provides one configurable
attribute, retries, to optionally limit the amount of retries the transaction attempts
(at most 64 times in the example). A TransactionException is thrown in case this
limit is reached. Alternatively one can envision providing timeout instead (Which we
might add in future versions).

A Deuce application is compiled with a regular Java compiler. Upon execution,
one needs to specify a Java agent that allows Deuce to intercept every class loaded
and manipulate it before it is loaded by the JVM. The agent is simply specified on
the command line as a parameter to the JVM, as follows:



1 public class SkipList {
2 private static class Node {
3 public final int value;
4 public final Node[] forward;
5 // ...
6 public Node(int level, int v) {
7 value = v;
8 forward = new Node[level + 1];
9 }

10 //...
11 }
12 private static int MAX LEVEL = 32;
13 private int level ;
14 private final Node head;
15 // Continued in next column...

16 @Atomic(retries=64)
17 public boolean contains(int v) {
18 Node node = head;
19 for (int i = level ; i >= 0; i−−) {
20 Node next = node.forward[i];
21 while (next.value < v) {
22 node = next;
23 next = node.forward[i];
24 }
25 }
26 node = node.forward[0];
27 return (node.value == v);
28 }
29 // ...
30 }

Fig. 2. @Atomic method example.

java -javaagent:deuceAgent.jar MainClass args...

As will be discussed in the next section, Deuce instruments every class that may be
used from within a transaction, not only classes that have @Atomic annotations. If
it is known that a class will never be used in the context of a transaction, one can
prevent it from being instrumented by providing exclusion lists to the Deuce agent.
This will speed up the application loading time yet should not affect execution speed.

4 DEUCE Implementation

This section describes the implementation of the Deuce framework. We first give
a high-level overview of its main components. Then, we explain the process of code
instrumentation. Finally, we describe various optimizations that enhance the perfor-
mance of transactional code.

JVM

Application

DEUCE runtime

TL2 LSALock

!
!
!

DEUCE

agent

Java

classes

Fig. 3. Main components of the Deuce architecture.

4.1 Overview

The Deuce framework is conceptually made up of 3 layers, as shown in Figure 3:
1. The application layer, which consists of user classes written without any rela-

tionship to the STM implementation, except for annotations added to atomic
methods.



2. The Deuce runtime layer, which orchestrates the interactions between transac-
tions executed by the application and the underlying STM implementation.

3. The layer of actual STM libraries that implement the Deuce context API (see
Section 5), including a single-global-lock implementation (denoted as “Lock” in
the figure, and used as a performance “reference point” for all other libraries).
In addition, the Deuce agent intercepts classes as they are loaded and instru-

ments them before they start executing.

4.2 Instrumentation Framework

Deuce’s instrumentation engine is based on ASM [3], an all-purpose Java bytecode
manipulation and analysis framework. It can be used to modify existing classes, or
to dynamically generate classes, directly in binary form. The Deuce Java agent uses
ASM to dynamically instrument classes as they are loaded, before their first instance
is created in the virtual machine. During instrumentation, new fields and methods
are added, and the code of transactional methods is transformed. We now describe
the different manipulations performed by the Java agent.

Fields. For each instance field in any loaded class, Deuce adds a synthetic constant
field (final static public) that represents the relative position of the field in the
class. This value, together with the instance of the class, uniquely identifies a field,
and is used by the STM implementation to log field accesses.

1 public class SkipList {
2 public static final long CLASS BASE = ...
3 public static final long MAX LEVEL address = ...
4 public static final long level address = ...
5 // ...
6 private static int MAX LEVEL = 32;
7 private int level ;
8 // ...
9 }

Fig. 4. Fields address.

Static fields in Java are effectively fields of the enclosing class. To designate static
fields, Deuce defines for each class a constant that represents the base class, and
can be used in combination with the field position instead of the class instance.

For instance, in Figure 4, the level field is represented by level ADDRESS
while the SkipList base class is represented by CLASS BASE .

Accessors. For each field of any loaded class, Deuce adds synthetic static acces-
sors used to trigger field’s access events on the local context.

Figure 5 shows the synthetic accessors of class SkipList. The getter level Getter$
receives the current field value and a context, and triggers two events: beforeReadAccess
and onReadAccess; the result of the latter is returned by the getter. The setter re-
ceives a context and yields a single event: onWriteAccess. The reason for having
two events in the getter is technical: the “before” and “after” events allow the STM



1 public class SkipList {
2 private int level ;
3 // ...
4
5 // Synthetic getter
6 public int level Getter$(Context c) {
7 c.beforeReadAccess(this, level ADDRESS );
8 return c.onReadAccess(this, level, level ADDRESS );
9 }

10 // Synthetic setter
11 public void level Setter$(int v, Context c) {
12 c.onWriteAccess(this, v, level ADDRESS );
13 }
14 // ...
15 }

Fig. 5. Fields accessors.

backend to verify that the value of the field, which is accessed between both events
without using costly reflection mechanisms, is consistent. This is typically the case
in time-based STM algorithms like TL2 and LSA that ship with Deuce.

1 private static class Node {
2 public Node[] forward;
3 // ...
4
5 // Original method
6 public void setForward(int level, Node next) {
7 forward[ level ] = next;
8 }
9

10 // Synthetic duplicate method
11 public void setForward(int level, Node next, Context c) {
12 Node[] f = forward Getter$(c) {
13 forward Setter$(f , level , c)
14 }
15 // ...
16 }

Fig. 6. Duplicate method.

Duplicate methods. In order to avoid any performance penalty for non trans-
actional code, and since Deuce provides weak atomicity, Deuce duplicates each
method to provide two distinct versions. The first version is identical to the original
method: it does not trigger an event upon memory access and, consequently, does not
impose any transactional overhead. The second version is a synthetic method with an
extra Context parameter. In this instrumented copy of the original method, all field
accesses (except for final fields) are replaced by calls to the associated transactional
accessors. Figure 4 shows the two versions of a method of class Node. The second
synthetic overload replaces forward[level] = next by calls to the synthetic getter
and setter of the forward array. The first call obtains the reference to the array
object, while the second one changes the specified array element (note that getters
and setters for array elements have an extra index parameter).



1 public class SkipList {
2 // ...
3
4 // Original method instrumented
5 public boolean contains(int v) {
6 Throwable throwable = null;
7 Context context =
8 ContextDelegator.getInstance();
9 boolean commit = true;

10 boolean result;
11
12 for (int i = 64; i > 0; −−i) {
13 context. init ();
14 try {
15 result = contains(v, context);
16 } catch(TransactionException ex) {
17 // Must rollback
18 commit = false;
19 } catch(Throwable ex) {
20 throwable = ex;
21 }
22 // Continued in next column...

23 // Try to commit
24 if (commit) {
25 if (context.commit()) {
26 if (throwable == null)
27 return result;
28 // Rethrow application exception
29 throw (IOException)throwable;
30 }
31 } else {
32 context. rollback ();
33 commit = true;
34 }
35 } // Retry loop
36 throw new TransactionException();
37 }
38
39 // Synthetic duplicate method
40 public boolean contains(int v, Context c) {
41 Node node = head Getter$(c);
42 // ...
43 }
44 }

Fig. 7. Atomic method.

Atomic methods. The duplication process described above has one exception:
a method annotated as @Atomic does not need the first uninstrumented version.
Instead, the original method is replaced by a transactional version that calls the
instrumented version from within a transaction that executes in a loop. The process
repeats as long as the transaction aborts and a bound on the number of allowed
retries is not reached. Figure 7 shows the transactional version of method contains.

4.3 Summary

To summarize, Deuce performs the following instrumentation operations on the Java
bytecode at load-time.
– For every field, a constant is added to keep the relative location of the field in

the class for fast access.
– For every field, 2 accessors are added (getter and setter).
– For every class, a constant is added to keep the reference to the class definition

and allow fast access to static fields.
– Every (non-@Atomic) method is duplicated to provide an atomic and a non-

atomic version.
– For every @Atomic method, an atomic version is created and the original version

is replaced with a retry loop calling the atomic version in the context of a new
transaction.

4.4 Optimizations

During the instrumentation, we perform several optimizations to improve the perfor-
mance of Deuce. First, we do not instrument accesses to final fields as they cannot
be modified after creation. This optimization, together with the declaration of final
fields whenever possible in the application code, dramatically reduces the overhead.

Second, fields accessed as part of the constructor are ignored as they are not
accessible by concurrent threads until the constructor returns.



Third, instead of generating accessor methods, Deuce actually inlines the code of
the getters and setters directly in the transactional code. We have observed a slight
performance improvement from this optimization.

Fourth, we chose to use the sun.misc.Unsafe pseudo-standard internal library
to implement fast reflection, as it proved to be vastly more efficient than the stan-
dard Java reflection mechanisms. The implementation using sun.misc.Unsafe even
outperformed the approach taken in AtomJava [12], which is based on using an
anonymous class per field to replace reflection.

Finally, we tried to limit as much as possible the stress on the garbage collector,
notably by using object pools when keeping track of accessed fields (read and write
sets) in threads. In order to avoid any contention on the pool, we had each thread
keep a separate object pool as part of its context.

Together, the above optimizations helped to significantly decrease the implemen-
tation overhead, in some of our benchmarks this improved performance by almost an
order of magnitude (i.e., tenfold faster) as compared to our initial implementation.

5 Customizing Concurrency Control

Deuce was designed to provide a research platform for STM algorithms. In order to
provide a simple API for researchers to plug in their own STM algorithm’s imple-
mentation, Deuce defines the Context API as shown in Listing 8. The API includes
an init method, called once before the transaction starts and then upon each retry,
allowing the transaction to initialize its internal data structures. The atomicBlockId
argument allows the transaction to log information about the specific atomic block
(statically assigned in the bytecode).

1 public interface Context {
2 void init(int atomicBlockId);
3 boolean commit();
4 void rollback();
5
6 void beforeReadAccess(Object obj, long field);
7
8 Object onReadAccess(Object obj, Object value, long field);
9 int onReadAccess(Object obj, int value, long field );

10 long onReadAccess(Object obj, long value, long field );
11 // ...
12
13 void onWriteAccess(Object obj, Object value, long field);
14 void onWriteAccess(Object obj, int value, long field );
15 void onWriteAccess(Object obj, long value, long field );
16 // ...
17 }

Fig. 8. Context interface.

One of the heuristics we added to the LSA implementation is, following [6], that
each one of the atomic blocks will initially be a read-only block. It will be converted
to become a writable block upon retry, once it encounters a first write. Using this
method, read-only blocks can save most of the overhead of logging the fields’ access.

Another heuristic is that commit is called in case the atomic block finishes without
a TransactionException and can return false in case the commit fails, which in



turn will cause a retry. A rollback is called when a TransactionException is thrown
during the atomic block (this can be used by the business logic to force a retry).

The rest of the methods are called upon field access: a field read event will trigger
a beforeReadAccess event followed by a onReadAccess event. A write field event
will trigger an onWriteAccess event. Deuce currently includes three Context im-
plementations, tl2.Context, lsa.Context, and norec.Context, implementing the
TL2 [6], LSA [19], and NOrec [5] STM algorithms. Deuce also provides a reference
implementation based on a single global lock. Since a global lock doesn’t log any field
access, it doesn’t implement the Context interface and doesn’t impose any overhead
on the fields’ access.

TL2 Context. The TL2 context is a straightforward implementation of the TL2
algorithm [6]. The general principle is as follows (many details omitted).

TL2 uses a shared array of revokable versioned locks, with each object field being
mapped to a single lock. Each lock has a version that corresponds to the commit
timestamp of the transaction that last updated some field protected by this lock.
Timestamps are acquired upon commit from a global time base, implemented as a
simple counter, updated as infrequently as possible by writing transactions.

When reading some data, a transaction checks that the associated timestamp is
valid, i.e., not more recent than the time when the transaction started, and keeps
track of the accessed location in its read set. Upon write, the transaction buffers the
update in its write set.

At commit time, the transaction acquires (using an atomic compare-and-set op-
eration) the locks protecting all written fields, verifies that all entries in the read
set are still valid, acquires a unique commit timestamp, writes the modified fields to
memory, and releases the locks. If locks cannot be acquires or validation fails, the
transaction aborts, discarding buffered updates.

LSA Context. The LSA context uses the LSA algorithm [19] that was developed
concurrently with TL2 and is based on a similar design. The main differences are that
(1) LSA acquires locks as fields are written (encounter order), instead of at commit
time, and (2) it performs “incremental validation” to avoid aborting transactions that
read data that has been modified more recently than the start time of the transaction.

Both TL2 and LSA take a simple approach to conflict management: they simply
abort and restart (possibly after a delay) the transaction that encounters the conflict.
This strategy is simple and efficient to implement, because transactions unilaterally
an abort without any synchronization with others. However, this can sometimes
hamper progress by producing livelocks. Deuce also supports variants of the TL2
and LSA algorithms that provide modular contention management strategies (as
first proposed in [10]), at the price of some additional synchronization overhead at
runtime.

NOrec Context. The NOrec context implements the lightweight algorithm pro-
posed in [5]. Roughly speaking, NOrec differs from TL2 and LSA in that it uses a
single ownership record (a global versioned lock) and relies on value-based validation
in addition to time-based validation. The rationale of this design is to avoid having



to pay the runtime overheads associated with accessing multiple ownership records
while still providing a reasonable level of concurrency thanks value-based validation
which helps identify false conflicts. This algorithm was shown to be efficient at low
thread counts, but tends to fall apart as concurrency increases. In contrast, TL2 and
LSA provide better scalability, performing better as concurrent threads are added or
when there are more frequent but disjoint commits of software transactions.

6 Java language extensions

Deuce uses annotation to indicate transaction demarcation. Therefore, it only sup-
ports transactions at the granularity of whole methods, and cannot declare shorter
“atomic blocks” as in Listing 9. In this example, one wants to transfer the balance of
a set of accounts to another account. Transfer operations must be atomic, but using
a single transaction for all transfers would produce an unnecessarily long transaction,
and would increase the risk of conflicts with concurrent operations. In contrast, us-
ing one transaction per transfer would reduce the likelihood of aborts, and allow for
better concurrency. Note that the local variable total, which holds the total amount
transferred, must be accessed transactionally, with its previous value restored upon
transactional abort.

1 public int transferAll(Account[] src , Account dst) {
2 int total = 0;
3 for (Account acc : src) {
4 atomic {
5 int amount = acc.balance();
6 acc.withdraw(amount);
7 dst.deposit(amount);
8 total += amount;
9 }

10 }
11 return total;
12 }

Fig. 9. Transactions at the granularity of atomic blocks.

Introducing new keywords to support transactional memory at the language level
does not only provide finer transaction granularity, but also allows for more sophisti-
cated constructs to control recovery, retries, etc. This allows transactions to be used
in more powerful ways. Such transactional extensions do, however, require either
using a pre-processor, or modifying the Java compiler to support the new constructs.

We have therefore developed a front-end tool, TMJava, that transforms the
source code from a program written with the language extension for atomic blocks,
into a program that is suitable for instrumentation by Deuce.

The transformation performed by the front-end tool maps the atomic blocks in
the extended language into annotated atomic methods. In other words, the front-
end tool analyzes the code to find the atomic blocks (atomic keyword) inside class
methods; it then creates new methods whose bodies consist of the content of the
atomic blocks, and replaces the blocks with calls to these new methods. However,
mapping an atomic block into an annotated atomic method is not trivial as we need
to take into account several issues, notably:



1. Variables and objects, that are accessible inside the scope of the method in which
the atomic block is declared, should also be available inside the scope of the
atomic block.

2. Modifications inside an atomic block of variables and objects that are defined
outside the scope of the block, should be visible outside the atomic block.

Variables and objects that are defined outside the atomic block, but are used
and/or modified inside the atomic block, are passed as parameters to the correspond-
ing annotated atomic method. As Java only supports parameter passing by-value for
primitive types, variables that are modified inside the atomic block are passed in
arrays, and updated values are copied back to the variables when returning from the
atomic method (in case a single variable is modified, its new value is simply returned
by the method). Listing 10 shows the Deuce-compatible code produced by TMJava
from Listing 9.

1 public class Bank {
2 public int transferAll(Account[] src , Account dst) {
3 int total = 0;
4 for (Account acc : src) {
5 total = transferAll ab1(total , dst, acc);
6 }
7 return total;
8 }
9 @Atomic

10 private final int transferAll ab1(int total , Account dst, Account acc) {
11 int amount = acc.balance();
12 acc.withdraw(amount);
13 dst.deposit(amount);
14 total += amount;
15 return total;
16 }
17 }

Fig. 10. Code of Listing 9 transformed by TMJava for Deuce.

In addition to supporting basic atomic blocks, TMJava provides several addi-
tional keywords, notably retry, next, leave (for control flow), either/or/otherwise
(for alternatives), and on failure (for atomic exception handling).

The TMJava front-end tool is based on the JastAdd extensible Java compiler [7].
In a first step, an abstract syntax tree (AST) is constructed from the source core. The
AST is then analyzed to locate transactional language extensions, and is modified
accordingly. Finally, Deuce-compatible annotated source code is generated from the
modified AST. Therefore, TMJava transforms Java code with TM extensions into
“pure” Java source code that can be compiled using a standard compiler, but with
the structure and annotations expected by Deuce for transactifying the application.

7 Performance Evaluation

We evaluated the performance of Deuce on a Sun UltraSPARCTM T2 Plus multicore
machine (2 CPUs each with 8 cores at 1.2 GHz, each with 8 hardware threads) and
an Azul Vega2TM (2 CPUs each with 48 cores).



7.1 Deuce overheads

We first briefly discuss the overheads introduced by the Deuce agent when instru-
menting Java classes. Table 1 shows the memory footprint and the processing over-
head when processing compiled libraries: rt.jar is the runtime library containing all
Java built-in classes for JDK 6; cache4j.jar (version 0.4) is a widely used in-memory
cache for Java objects; JavaGrande (version 1.0) is a well-known collection of Java
benchmarks. Instrumentation times were measured on an Intel Core 2 DuoTM CPU
running at 1.8 GHz. Note that instrumentation was executed serially, i.e., without
exploiting multiple cores.

Application Memory Instrumentation
Original Instrumented Time

rt.jar 50 MB 115 MB 29 s
cache4j.jar 248 KB 473 KB <1 s
JavaGrande 360 KB 679 KB <1 s

Table 1. Memory footprint and processing overhead.

As expected, the size of the code approximately doubles because Deuce du-
plicates each method, and the processing overhead is proportional to the size of the
code. However, because Java uses lazy class loading, only the classes that are actually
used in an application will be instrumented at load time. Therefore, the overheads
of Deuce are negligible considering individual classes are loaded on demand.

In terms of execution time, instrumented classes, that are not invoked within a
transaction, incur no performance penalty as the original method executes.

7.2 Benchmarks

We tested the four built-in Deuce STM options: LSA, TL2, NOrec, and the simple
global lock. Our LSA version captures many of the properties of the LSA-STM [20]
framework. The TL2 [6] form provides an alternative STM implementation that
acquires locks at commit time using a write set, as opposed to the encounter order
locking approach used in LSA.

Our experiments included three classical micro-benchmarks: a red/black tree, a
sorted linked list, and a skip list, on which we performed concurrent insert, delete,
and search operations. We controlled the size of the data structures, which remained
constant for the duration of the experiments, and the mix of operations.

We also experimented with three real-world applications, the first implements
the Lee routing algorithm (as presented in Lee-TM [2]). It is worth noting that
adapting the application to Deuce was straightforward, with little more than a
change of synchronized blocks into atomic methods. The second application is called
Cache4J, an LRU cache implementation. Again adapting the application to Deuce
was straightforward. The third application comes from the widely used STAMP [13]
TM benchmark suite.



Micro-benchmarks. We began by comparing Deuce to DSTM2, the only com-
peting STM framework that does not require compiler support. We benchmarked
DSTM2 and Deuce based on the Red/Black tree benchmark provided with the
DSTM2 framework. We tried many variations of operation combinations and levels
of concurrency on both the Azul and Sun machines. Comparison results for a tree
with 10k elements are shown in Figure 11, we found that in all the benchmarks
DSTM2 was about 100 times (two orders of magnitude) slower than Deuce. Our
results are consistent with those published in [9], where DSTM2’s throughput, mea-
sured in operations per second, is in the thousands, while Deuce’s throughput is in
the millions. Based on these experiments, we believe one can conclude that Deuce
is the first viable compiler and JVM independent Java STM framework.
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Fig. 11. The red/black tree benchmark (Sun).

On the other hand we observe that the Deuce STMs scale in an impressive way
even with 20% updates (up to 32 threads). While DSTM2 shows no scalability. When
we investigated deeper we found out that most of DSTM2 overhead rest in two areas.
The most significant area is the contention manager which acts as a contention point,
the second area is the reflection mechanism used by DSTM2 to retrieve and assign
values during the transaction and in commit.

Next we present the results of the tests with the linked list and the skip list
on the Sun and Azul machines. The linked list benchmark is known to produce a
large degree of contention as all threads must traverse the same long sequence of
nodes to reach the target element. Results of experiments are shown in Figure 12
and Figure 13 for a linked list with 256 elements and different update rates. We
observe that because there is little potential for parallelism, the single lock, which
performs significantly less lock acquisition and tracking work than the STMs, wins in
all three benchmarks. The STMs scale slightly until 30 threads when there are up to
5% updates, and then drop due to a rise in overhead with no benefit in parallelism.
With 20% updates, the max is reached at about 5 threads, because as concurrency
further increases one can expect at least 2 concurrent updates, and the STMs suffer
from repeated transactional aborts.

Finally, we consider results from the skip list benchmark. Skip lists [18] allow sig-
nificantly greater potential for parallelism than linked lists because different threads
are likely to traverse the data structure following distinct paths. Results for a list
with 16k elements are shown in Figure 14 and Figure 15. We observe that the STMs
scale in an impressive way, as long as there is an increase in the level of parallelism,
and provide great scalability even with 20% updates as long as the abort rate remains
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Fig. 12. The linked list benchmark (Sun).
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Fig. 13. The linked list benchmark (Azul).
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Fig. 14. The skiplist benchmark (Sun).
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Fig. 15. The skiplist benchmark (Azul).

at a reasonable level. We added a benchmark with 50% updates to show that there
is a limit to their scalability. When we increase the fraction of updates to 50%, the
STMs in Figure 15 reach a “melting point” much earlier (at about 10 threads versus
100 threads in the 20% benchmark) and overall the lock wins again because the abort
rate is high and the STMs incur and overhead without a gain in parallelism. We note
that typically search structures have about 10% updates.

Real applications. Our last benchmarks demonstrate how simple it is to replace
the critical sections with transactions. The first takes a serial version of the Lee rout-



ing algorithm and demonstrates how a simple replacement of the critical sections by
transactions significantly improves scalability. The second takes a non-multi-threaded
lock based a LRU cache implementation (Cache4J) and shows that it is straightfor-
ward to replace the critical sections, but scalability isn’t promised.

Circuit routing is the process of automatically producing an interconnection be-
tween electronic components. Lee’s routing algorithm is an attractive candidate for
parallelization since circuits (as shown in [2]) consist of thousands of routes, each of
which can potentially be routed concurrently.

The graph in Figure 16 shows execution time (that is, latency, not throughput)
for three different boards with the TL2, LSA, and NOrec algorithms. As can be seen,
Deuce scales well with all algorithms, with the overall time decreasing even in the
case of a large board (MemBoard). NOrec exhibits better performance with a single
thread due to the lower overhead of its single ownership record. With more threads,
the performance of all algorithms is virtually identical. This can be explained by the
natural parallelism and low contention of this benchmark.
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Fig. 16. The Lee Routing benchmark (Sun).

Cache4J is an LRU lock-based cache implementation. The implementation is
based on two internal data structures, a tree and a hash-map. The tree manages
the LRU while the hash-map holds the data. The Cache4J implementation is based
on a single global lock which naturally leads to no scalability. The graph in Fig-
ure 17 shows the result of replacing the single lock with transactions using the LSA
algorithm. As can be seen, Deuce doesn’t scale well, with the overall throughput
slightly decreasing. A quick profiling shows that the fact that Cache4J is an LRU
cache implies that every get operation also updated the internal tree. This alone
makes every transaction an update transaction. Yet, the fact that the total through-
put remains almost the same even with 80 threads is encouraging due to the fact
that transactional memory’s main advantages, besides scalability, are code simplicity
and robustness.

Finally, we tested Deuce on the Vacation benchmark from STAMP [13], which is
the most widely used TM benchmark suite. As STAMP was been originally written in
C, we used a Java port of the original benchmarks adapted for Deuce. The Vacation
application models an online travel reservation system, implemented as a set of trees
that keep track of customers and their reservations. Threads spend time executing
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Fig. 17. The Cache4J benchmark (Sun).

transactions, and the contention level is moderate. Figure 18 shows the execution
time of Vacation with the TL2, LSA, and NOrec algorithms. We can observe that
both TL2 and LSA scale well with the number of cores. In contrast, NOrec shows
almost no scalability, although it performs better than TL2 and LSA under low
thread counts. This can be explained by the fact that (1) NOrec’s single ownership
record is penalized by the size of the transactions, and (2) value-based validation is
quite expensive in Java since it requires accessing memory via APIs that are slower
than the direct memory accesses provided by unmanaged languages.
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Fig. 18. The Vacation benchmark from the STAMP suite (Sun).

In conclusion, Deuce shows the typical performance patterns of an STM, good
scalability when there is a potential for parallelism, and unimpressive performance
when parallelism is low. The results, however, are very encouraging considering the
fact that Deuce, a pure Java library with all the implied overheads, shows scalability
even at low thread counts.

8 Conclusion

We introduced Deuce, a novel open-source Java framework for transactional mem-
ory. As we showed, Deuce is the first efficient fully featured Java STM framework



that can be added to an existing application without changes to its compiler or li-
braries. It demonstrates that one can design an efficient, pure Java STM without
a compiler support, even though language support as provided by the companion
front-end TMJava provides additional expressiveness.

Though much work obviously remains to be done, we believe Deuce is ready for
use by developers. It is freely downloadable from http://code.google.com/p/deuce
under the Apache license.

In conclusion, Table 2 shows a general overview comparing the two well-known
Java STMs AtomJava 1 and DTMS2 vs. Deuce. This comparison shows that Deuce
ranks highest overall, and provides novel capabilities which yield much better usabil-
ity and performance than formerly existed.

AtomJava DSTM2 Deuce

Locks Object based Object based Field based
Instrumentation Source Runtime Runtime
API Non-Intrusive Intrusive Non-Intrusive
Libraries support None None Runtime & offline
Fields access Anonymous classes Reflection Low level unsafe
Execution overhead Medium High Medium
Extensible Yes Yes Yes
Transaction context atomic block Callable object @Atomic annotation

Table 2. Comparing AtomJava, DSTM2, and Deuce
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