Toward 2 Non-Atomic Era :
¢-Exclusion as a Test Case

Danny Dolev*

Abstract

Eli Gafnit

Most of the research in concurrency control has
been based on the existence of strong syr.chro-

nization primitives such as test and set.

Fol-

lowing Lamport, recent research promoting the
use of weaker primitives, “safe” rather than
“atomic,” has resulted in construction of atomic
registers from safe ones, in the belief that they
would be useful tools for process synchroniza-
tion. We argue that the properties provided by
atomic operations may be too powerful, masking
core difficulties of problems and leading to incf-
ficiecncy. We therefore advocate a different ap-
proach, to skip the intermediate step of achiev-
ing atomicity, and solve problems directly from
safe registers. Though it has been shown that
“test and set” cannot he implemented from safe
registers, we show how to achieve a fair solu-

*IBM ARC and Computer Science Department, He-

brew University, Jerusalem.

tComputer Science Department, University of Califor-
nia, Los Angeles. Supported by NSF Presidential Young
Investigator Award under grant DCR84-51396 and match-
ing funds from IBM Faculty Development Awarc. under

grant D840622.

}Computer Science Department, Hebrew University,

Jerusalem.

Supported by Graduate Student Award-

Israeli Ministry of Communication, and by ILeibnitz

Fellowship-Hebrew University.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. T
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1988 ACM-0-89791-264-0/88/0005/0078 $1.50

78

Nir Shavit?

tion 1o f-exclusion, a classical concurrency con-
trol problem previously solved assuming a very
powerful form of atomic “test and set”. We do
so using safe registers alone and without intro-
ducing atomicity. The solution is based on the
construction of a simple novel non-atomic syn-
chronization primitive.

1 Introduction

Understanding the fundamental complexities of
synchronizing concurrent operations of processes
that share resources has been a constant re-
search topic in multi-process computing. Most
of the past research was based on the assump-
tion that cven though processes access shared
memory concurrently, they preform their oper-
ations atomically, or even worse, they have ac-
cess to powerful constructs like atomic memory
operations or “test-and-set.” This assumption
introduces the possibility of circularity in design

- what value is there in breaking pro-
cesses’ collision using a primitive oper-
ation that itself requires breaking the
same collision?

Powerful operations can mask the “core” dif-
ficulties in coordinating concurrent processes.
Lamport has made an important step in avoiding
the use of powerful operations by introducing a
very weak shared memory communication mech-
anism, the Single-Writer-Single-Reader Safe Bit
(subsequently referred to as a Safe Bit). Read

and Write operations on a Safe Bit are assumed
to take up a non-zero interval of time whose ac-
tual length depends solely on the spced of the
process performing the operation. A read inter-
val that does not overlap a write interval, returns
the last value that was written, otherwise it ar-
bitrarily returns zero or one. The question we
face is: what is the power of safe bits, and how
many safe bits are used to solve a problem?

Much rescarch has been directed towards con-
structing atomic registers from safe bits. That
is, shared memory communication mechanisms
in which, though performed concurrently, each
operation can be considered to have been per-
formed at an instance of time. These con-
structions [B87,BP87,N87,PB87,VA86,IL87] are
costly (in the number of safe bits used), quite
complex, and their correctness difficult to verify.
Moreover, it has been shown by Herlihy [H&7],
that no “powerful” concurrency control element
can be constructed using atomic registers, unless
one process waits for another to complete its op-
eration, (i.c. faster processes are forced to wait
for a slower one to complete its operations), His
conclusion is, that since the wait-freeness prop-
erty of atomic registers is of no significance, one
might as well employ a universal element that is
“stronger” than test-and-set, even though it has
the drawback of introducing waiting.

Our approach here, in contrast, is to tailor spe-
cial waitfree data-structures to various classes of
problems, in the belief that the special seman-
tics and features of each class will allow one to
manage with data-structures that are much less
complex than atomic registers.

1.1 Our Results

The main result of the paper is the construction
of a fair deterministic solution to the €-Erelusion
problem (rom safe bits directly, bypassing the
construction of atomic registers. T'o this end,
we introduce a simple new data-type implemented
from Safe Bits. The cost of the solution (mea-
sured in number of safe bits used) is equivalent
to the lowest cost [PB87, IL87] of constructing
only a constant number of atomic registers.

79

The €-exclusion problem, a classic example in
concurrency control, was first introduced and
solved by Fischer, Lynch, Burns, and Borodin
in [FLBB79]. The problem arises when a group
of processes are spontancously invoked, possibly
needing private access to one of £ identical re-
sources. The ability of the solution to withstand
the slow-down or even the crash of few processes
(€~ 1 of them), as well as the absence of col-
laboration of process not requesting a resource,
are inherent to the problem. Previous solutions
([FLBB79,FLBB85]) to this problem, assumed
existence of an atomic memory operation much
more powerful than test-and-set, and were fo-
cused on achieving strong fairness properties. It
was assumed that processes do not fail while per-
forming this atomic operation.

A test-and-set operation is itself much more
powerful than any operation that is imple-
mentable by safe bits. Its definition implies the
mutual exclusion of the processes that concur-
rently access it. It can be used to serialize con-
current events by “time-stamping” them. One
can easily reach a consensus among participat-
ing processes, in spite of a single crash, using a
test-and-set. By a direct reduction to Theorem
12in [DDS87], one can prove that there is no im-
plementation of test-and-set by atomic registers
(by safe bits as well), even if only a single fault
can occur. This result was previously proved in
[LA87,CIL87] using a direct proof along the lines
of [FLP85]). Thus, a solution to the f-exclusion
problem that does not employ “test-and-set”, is
of interest (let alone not using “atomic” registers,
with their complex and costly implementation).

1.2 Properties of the Solution

In order to eliminate solutions that “hide” the
waiting for a slow or faulty process to complete
execution of concurrent operations, the failure
model assumed is one in which a process may un-
detectably stop functioning while executing any
operation in its protocol (this is the failure model
of [FLBB79]). In fact, a process may fail while
writing a single bit. Since processes can not dis-
tinguish between a failed process and a very slow

one, a process cannot “wait” on less than £ other
processes.

Lamport [L86d] solves the mutual exclusion
problem using safe registers, but in his solution a
slow process can slow down (or block) every other
process. He assumes a weak failure model in
which a failed process eventually resumes its op-
erations and ends up stopping gracefully. Thus,
he avoids the problem that may be associated
with a process “never” terminating its wrise op-
eration.

The fairness we achicve in this paper is that
any process that indicates its wish to utilize a re-
source, will eventually obtain it. Achieving fair-
ness is the crux of the difficulty. Because there
are £ resources, and because no process may wait
for any other process since it might be faulty, re-
solving the contention among the processes in a
fair manner becomes more complicated than in
mutual exclusion, making a novel approaca nec-
essary for fair £-exclusion.

1.3 A New Synchronization Data
Structure

The basic entity required is a data-structure that
implies some precedence relation between pairs
of processes. Both processes have to be able
to manipulate it, and all processes should be
able to read it. The problem is, that ii’ both
processes may failstop while writing the data-
structure, no single read outcome is ever possi-
ble without communication among all readers.
What is crucial for the purpose of synchioniza-
tion is that if only one process in a pair is faulty,
the other process can still unambiguously ma-
nipulate the data structure to give precedence to
the one that failed. This is accomplished with
a data-structure that is implemented by a pair
of symmetrical sub-structures, each consisting of
three safe bits and manipulated by a single pro-
cess. Our solution to the {-exclusion problem
utilizes three instances of the data structure per
pair of processes, each in a different role. Em-
ploying the same data structure in differert roles
may indicate its usefulness in solving other as-

80

pects of synchronization problems, and may sub-
stitute atomicity in these applications.

The organization of our solution lends itself
to a simple ciear and modularly structured cor-
rectness proof. The problem is separated into
its different elements. The interface between the
elements is such that when one element is con-
sidered, the effect of the other elements can be
abstracted via “black-boxes™ whose interface is
concise enough as not to increase the complexity
of the solution of each element. All the separate
solutions put together solve the original prob-
lem. A by-product of the ability of our solu-
tion to withstand € — 1 possible failures is that
only the “slow-down” of £ processes or more can
slow-down the progress of a process wanting a re-
source. Another implication is that the reading
and writing of our data-structures, each in isola-
tion, are waitfree and bounded, since no process
needs to wait for any other,

In the following sections the f-exclusion prob-
lem and its solution are presented. For clarity,
some of the proofs are left to the appendix.

2 The Problem

A concurrent system is composed of n processes
communicating via a shared memory consist-
ing of of safe rcgisters ([L86b)), the operations
on which are reads and writes. Since single-
writer-multi-reader (SWMR) boolean safe regis-
ters can easily be constructed from single-reader-
single-writer boolean safe registers [L86b], it will
be assumed that the shared memory consists of
SWMR safe registers.

In the ¢-Fzclusion Problem, the program of ev-
ery process consists of two distinguished sections:
a Remainder Sectionand a Critical Section. Pro-
cesses alternate between executing the remainder
and the critical sections. A Jfuilstopped process
may stop at any operation, or may never com-
plete executing its current operation. The exe-
cution of any operation by a non-faulty process
takes unbounded but finite time. It is assumed
that failure is undetetectable by other processes.

To solve the €-Frclusion Problem, one is required
to design entry and erit program sections to be
performed before entering and after exiting the
Critical Section, such that when added to the
original program of every process, will assure
that the following properties hold:

£-Fzclusion — no more than £ process are con-
currently executing the critical section at any
time.

£-Deadlock Avoidance — if there always exists
some non-faulty process outside the remainder,
and less than £ processes failed outside the re-
mainder, then, there always exists a non-faulty
process that alternates between executing the
Remainder and the Critical Sections infinitely
often!.

Lockout Freedom -— if less than ¢ processes fail
outside the Remainder, then any non-faulty pro-
cess outside the Remainder will eventually exe-
cute the Critical Section.

In the paper definitions follow the basic sys-
tem formalism of Lamport ([L86a]). A global
time model of such a system is assumed. An ab-
stract data type will be defined and proved to be
implementable in the system. The protocols for
solving the f-exclution problem will be given in
terms of the abstract data type.

3 The Solution

In [L86d], Lamport shows how fair solutions to
mutual exclusion problems can be created, by su-
perimposing a fairness construct on a completely
unfair deadlock-free mutual-exclusion construct.
Many such unfair deadlock-free mutual-exclusion
constructs appear in the literature, where pro-
cesses having greater ids or ones that are fast
enough, may cause others to starve. To provide
fairness, a two part fairness construct is added,
one part of it to be performed before entering
the unfair deadlock free exclusion construct, and
the other after exiting the Critical Section. One
is able to construct a solution based on such a

1This definition is equivalent to the definition of £-
Deadlock in [FLBBT79].

81

superimposition, because the fairness construct
can be allowed to prevent processes leaving the
Remainder, from entcering the unfair exclusion
section, as long as some process is alrcady in it (if
there is no process already in it, all those entering
have equal precedence, and favoring any of them
will not impair the fairness). This possibility is
unique to the mutual exclusion problem, since if
some process is in the unfair exclusion construct
when others enter the fairness construct, it has
priority, and they can delay entering the Critical
Section (via the unfair construct) without caus-
ing deadlock or violating fairness.

Unfortunately, the above type of modularity, is
impossible for £-exclusion, the reason being that
there is more than one slot in the critical sec-
tion. Having the fairness construct prevent all
processes from entering the unfair exclusion con-
struct because there is a process there, would
cause ¢-deadlock. Having it prevent only a nec-
essary number would mean that it is not only a
fairness construct but a solution to the problem.
On the other, hand if it will allow processes to
enter the unfair exclusion construct, then lock-
out may occur. A novel type of construction is
therefore needed.

The solution presented in the sequel is of such
a novel type, providing a different form of modu-
larity than that described above. It decomposes
(and is therefore presented) as follows: In Subsec-
tion 3.2, an f-exclusion construct that is unfair
and deadlock prone is presented. This construct
is refined in Subsection 3.3 to provide deedlock-
free €-exclusion. Though unfair, it will prevent
the starvation of the non-faulty processes, out-
side the Remainder, that have the highest ids.
In Subsection 3.4, a construct providing consis-
tent dynamic ids is presented. This construct
is embedded in the above constructions, so that
any starved process will eventually obtain a dy-
namic id higher than any non-starved process,
making itself eligible to pass through the unfair
deadlock-free exclusion construct.

In a pictorial manner, the core of the above
constructions may be viewed as a form of a
“blackboard” in shared memory, where each pro-
cess writes down its relations with others, for

all to see. The board consists of a collection
of abstract data-structures, each written by two
processes, readable by all, and denoting a prece-
dence relation between them. In the following
section, a detatled definition of these abstract el-
ements and their implementation is provided.

3.1 The Abstract Data-Types

In this section a novel abstract data type fork is
defined and implemented, resembling the *fork”
in Chandy and Misra’s [CM84] solution Lo the
Generalized Dining Philosophers problem. As in
[CMB84], it is used to establish precedence be-
tween the two processes that operate on it.. The
solution to the ¢-Exclusion problem will employ
three instances of the data-type per each pair
of processes. In two of these instances, tae full
power of the fork will not be utilized, and a sim-
pler data-type arrow is thus defined, by coalesc-
ing groups of states and groups of operations of
the fork.

An instance of fork, FORKj;, is asscciated
with two processes ¢ and j. Logically, it can
be thought of as an actual “fork” that is shared
by ¢ and j. At all times the “fork” is “in the
hand” of one of the processes. The fork cy-
cles through four states in_use;, offered;, in.use;,
and offered;, in that order. The transitions to
in_use; or offered; may happen as a result of
the operations take; or offer; (respectively), ex-
ecuted by %, and likewise for 7. An important
characteristic of the fork is that it is “observ-
able” by all processes (not only the two o anipu-
lating it)%. A read) operation may thus he per-
formed by any process in the system, returning
one of the four possible fork states (character-
ized by a collection of properties defined in the
sequel). Formally:

Definition 1 A fork FORK;; 1s a datc struc-
turc that can be mutated by two processes, i and j
(tutators), and rcad by all processes. Allowable
operations on FORK,; arc a readi(FORK;j)

?A major diffcrence from the forks in [CM84], and
the core difficulty in implementing it and proving its
correctness.

82

t,‘“ 04 tj‘ 0; 1

Figure 1: sequential fork manipulations

by an arbitrary k, and an offer,(FORK;;) or
taker(FORK;;), by a mutator k € {i,5}.

The first property of the fork is that each read
returns just one of the four allowable states?

P1 “safeness”: The value returned by a
read (FORK;;) operation is one of in_use;,
offcred;, in_usc; or offered;.

The second property formalizes the indepen-
dence between processes manipulating the fork,
that is, that no operation requires the coopera-
tion of other process.

P2 “wait-freeness”: the read and mutation op-
erations (by a process that does not fail be-
fore their completion) are completed within
a finite time independent of the relative ex-
ccution speeds of other processes.

From the above description, it might seem that
operations on the fork are completely serial in
time (as in Figure I, where time runs from left to
right, and the intervals represent the duration of
take and offer operations). Following Lamport,
one could provide serializability, i.e., the illusion
that the operations are serial in time, by creating
a fork that is atomic. It turns out thongh, that
atomicity is not necessary. ‘The reason for the
simplicity of the fork’s construction is that un-
like atomicity, which is a claim about all points
in time, the main claims made about the fork are
restricted to specific points, or rather, to inter-
vals of a limited type. The only claim that need
be made about the fork at every point in time, is
that it be safe! All other claims will be limited

3Note that this property in itsell does not imply that
the fork is “safe” [L86bL], though this will follow when
other properties arc added.

to special types of intervals, such as those begin-
ning at the end of the most recently started take
or offer mutation, and ending before the start of
the following mutation. As an example, given a
situation as in Figure 2, claims about t; (a take;
operation) are limited to the interval ¢, bounded
by the beginning of the next operation (offer;).

Define [R1..R2] to be the interval from the
start of R1 to the end of R2, where R2 started
after R1. Continuing in the description of the
fork’s properties, the following property states
that the forks do not “change hands sponta-
neously.” This is formalized by:

P3 “stability”:

a. Tworeads R1 and R2 such that no muta-
tion overlaps the interval [R1..R2], re-
turn the same result.

b. If a read R1 by mutator ¢ returns either
offer; or in_use;, then any read R2 by
mutator i that follows R1 such that the
interval [R1..R2] contains no mutation
by ¢, will return the same result as R1.

A fourth property states that if some process saw
a fork offered to j, 7 will also see this.

P4 “consistency”: Let R1 be areadly a process
k and R2 a read by mutator j that strictly
follows R1. If Rl returned offered; and no
mutation by joccur in the interval [R1..R2],
then R2 will return the same result.

Finally, the following fifth property enforces the
power of the mutators to actually mutate the
data-type.

P5 “mutability™:

a. A read R2 strictly following a sequence
of a read R\ followed by take;, where
R1 returns offered; or in_use;, will re-
turn in_use; if no offer; started in the
interval [R1..R2].

b. A read R2 strictly following a se-
quence of a read Rl followed by

83

——— f———y
tj 0;

Figure 2: concurrent fork manipulations

offer; (resp. take;), where R1 re-
turns in_use; (offered;), will not re-
turn ¢n_use; (offered;) if one or more
of take; (offer;), take; and offer; does
not occur in the interval [R1..R2].

c. A read R2 strictly following a sequence
of a read R1 followed by offer;, where
R1 returns in_use;, will return offered,
if no mutation, other than offered;, by
either ¢ or j occurs in the interval
[R1..R2].

Based on the above definitions of the fork data
type, a possible approach one might take in im-
plementing it would be as a mutual exclusion
algorithm between ¢ and j. The process gain-
ing control of the critical scetion, would have the
fork, releasing it only when it leaves the critical
section. A problem though is that this solution
is not safe (Where is the fork when both 7 and
J are outside their critical sections?). One can
overcome this problem easily if processes have
access to some ordinary shared memory, that is,
multi-reader multi-writer memory where a pro-
cess can overwrite what others wrote (with the
assumption of course, that it is safe, and that the
user is responsible for providing mutually exclu-
sive writing access to it). The improved imple-
mentation therefore uses a single safe bit F of
this shared memory to represent the fork. For
any two processes i and j, where without loss of
generality 7 > j, /' = 1 will mean that ¢ has the
fork, and F = 0 will mean that j has it. An
additional SWMR safe bit w; is used in every
process i to provide mutual exclusion while pro-
cesses access the shared memory bit F' (since no
such “ordinary” shared memory is available, F’
itself will later be constructed from safe bits). A

correctness proof of the construction appears in
the Appendix.

Construction 1 Let FORK;; be composed of a
bit of shared memory, F, and two SWMR safe
bits w;, w;, written by i and j respectively, where
a readi(FORK;;) is performed as®

if F = I then
if w; then return in_use;
else return offered; fi
else
if w; then return in_use;
else return offered; fi

fi;

and take;(FORK;;) and offer;(FORK;;) by a
mutator i (those for mutator j are similar) are

take;: if read(FORK;;) = offered; ther

w; = true;
F:= 1,‘
fi;
offer;: if read(FORK;) = in_use; then
w; = false;
fi;

then

Construction Lemmma 1 Construclion 1 is a
fork with properties [P1] ...[P3].

To implement F' by safe registers notice that
since F is written only by the mutators ¥ and j,
it can be constructed from safe bits in a simple
manner® (proof omitted).

Construction 2 Let F be composed of two
SWMR safe bits f; and f;, wrillen by i and j
respeclively, where a read of F is

if f; = f; then return [
else return 0 fi;

*The order of the reads of F and wi, w, is cracial!
5This use of “xor” bits appeared before in [P83],[L.87d].

84

and a write of F (say of the value 1) is

if fi # f; then f; := not f;
else fi;

then

Construction Lemma 2 Construction 1 with
F as in construction 2 is a fork with propertics

[P1] ...[P3).

How can one achieve “consistency” (property
[P4] which is implied also by the stronger prop-
erty [P5])? Given any variable v;, and two dis-
joint subsets of processes p,¢ C {1...n}, consis-
tency would mean that if processes in ¢ see the
new value written to v;, processes in p reading
v; following the read of those in ¢, will also read
the new value (unless a following write begins).
A variable v; consistent with respect to g is con-
structed in a simple manner (proof omitted):

Construction 3 Let v; be constructed of two
variables vp; and vq;, where a write of v; ts per-
formed as

op; o= drucy
vy ;= lrue;

and a read of v; is a read of vp; for processes in
p and of vq; for processes in q, then®

Construction Lemma 3 The wvariable v; is
consistent with respect to q.

Based on the above, the following theorem can
be proved (the proof appears in the Appendix).

Theorem 1 Construction [with F as in Con-
struction 2 and with w; (and w;) consistent with
respect to {1...n}—{i} ({1...n}—{7}) is a fork
satisfying properties [P1] ...(P5].

®Note that if one constructs a SWMR safe or regular
register as in construction 1 of [L86b), then consistency
can be achieved using a single register by simply changing
the ordering of the writes.

To simplify the presentation, the forkis further
abstracted to create an arrow abstract data type.
The arrow is actually a fork in which the states
offcr; and in_use; are coalesced to form the state
i — 7, and the same holds with the exchange of
the roles of < and j. In a similar manner, the
operations redirect; and redirect; are considered
to be take; followed by offer;, and take; followed
by offer; respectively. Properties of the arrow
will follow from those of the fork by way of its
construction.

Construction 4 The data structure ARROW;;
is constructed from a FORK;; data structure
mutable by i and j, where a readi(ARROW;;)

operation for a process k is defined as

case readi(FORK;;) of
offered; or in_use;: return j — i;
offercd; or in_use;: return ¢ — j;
end case;

and a redirect;{(ARROW;) as a sequence of a
take (FORK;;) followcd by an offer;(FORK;;).

The following two claims about the abstract
data types are made in order to simplify the
proofs of the algorithms in following sections.
The first claim characterizes a processes ability
to manipulate the fork though the other process
sharing it has failed. This includes for example
the ability of a process to “pull an offered fork
out of the other’s hand”.

Claim 1 “Infinite mutation” - If a mutation by
7 lasts infinitely long, then

o if i performs offer; (redirect;) infinitely of-
ten, then eventually all reads will never re-
turn in_use; (j— i);

o if i performs take; infinitely often and even-
tually does not perform any offer;, then
eventually all reads either always return
in_use; or never return in._use;.

Proof By [P2], j must have failed during its
current infinitely long mutation, which is either

offer; or take;.

85

o Assume that ¢ performs offer; infinitely of-
ten. Assume that following the failure of j
there exists a time at which a processor per-
forms a read R1 that returns n_use;. Let
R2 be any read strictly following an offer;
that follows R1. By [P5b] and because j
performs at most one of its operation dur-
ing the interval [R1..R2], R2 will not return
in.use;. (The claim for redirect; follows di-
rectly from the above).

o The proof follows directly by letting R1 of
[P5a] be a read that returns in_use; follow-
ing the failure of 7. g

The second claim deals with the conditions un-
der which a a process that continuously tries to
take the fork, will eventually obtain it.

Claim 2 If all mutations apart from offer; are
exccuted infinitely often while eventually no
offer; is executed, then eventually all reads will
return in_usc;.

Proof Consider the following cases:

1. Eventually a process reads offered;, then by
[P5b], since no offer; will ever be performed,
following the next take; no process will ever
read offered; again.

2. Eventually a process reads in_use;, then by
[P5b], by exactly the same arguments no
process will ever read in_use; again.

3. Eventually a process reads offered; or
in_use;, then by [P5a], following the next
take; all reads will always return :n_use;. g

3.2 {¢-Exclusion

To obtain £-exclusion, a GRAPH data structure
is constructed. It consists of one instance of
ARROW;; (denoted G_ARROW;;) between ev-
ery pair of processes ¢,7 € {1...n}. In addition
to GRAPH, each process k maintains a SWMR
safe bit zx, which it sets to true upon leaving the
remainder, and to false just before returning to
it. The collection of all such zx, k € {1...n} is
denoted as X.

Every process wishing to execute the :ritical
section, reads X and GRAPH. The order in
which arrows in GRAPH and z, variables are
read is unimportant’. By reading the GRAPH,
a process obtains a tournament graph G(i) on n
nodes. Each edge (j, k) in the graph is directed
in the direction read for G_LARROW ;. It is im-
portant to note that G(z) is a graph that may
never have existed®, since even the reading of a
single edge (4, k) involves reading the six bits of
a G_ARROW;, concurrently with possible redi-
rection operations by i and j.

Let R;(() denote the set of all nodes reachable
via a directed path from a node ¢ (including i
itself) in a directed graph G. The result of the
procedure R(i, GRAPH, X) is defined as follows:

Definition 2 R(:,GRAPH,X): Read X and
GRAPH. Let G'(3i) be the subgraph of G(3) in-
duced by all nodes k for which 1 read x4 = true.
Return R(G'(7)).

If the cardinality of the reachability set
R(i, GRAPH, X) returned to 7 is less than or
equal to £, node 1 may enter the critical section.
The reason for choosing reachability is that a
transitive precedence relation is needed. Taking
“7 is reachable from j” to mean “i is belore j7,
if a process jis reachable from i, and a process
k is reachable from j, then the transitivity of the
reachability relation assures that both j and &
will be before 7. In general, transitivity assures
that in any group of £-+ 1 processes, some process
will have all others before it. Since GRAPH is
a dynamically changing structure, it remains to
be shown that the reachability condition indeed
suffices for {-exclusion.

Observe that the reachability condition is to a
large extent independent of the rules governing a
process’s mutation of arrows. In the coustruction
below, this independence is abstracted by the

"Although as mentioned before, the order of reads of
single bits of each arrow is important.

81t is not even a snapshot [CL85], that is, onc that
could have existed.

Unfortunately, the reachability relation is not a total
order (which can be uscd to break deadlock), since it is
not antisymmetric.

86

procedure oracle(GRAPH), whose arbitrary be-
havior will later be replaced by that of a deadlock
prevention mechanism. Thus, oracle(GRAPH)
when called by ¢ arbitrarily chooses some subset
of arrows ot which ¢ is a mutator, and performs
redirect on them. Let redirect(i,j, GRAPH) be
redirect;{(G_ARROW;;) and let every process i
€ { 1...n } perform the algorithm that fol-
lows, then, even in face of the arbitrary behavior
of oracle(GRAPII), the following construction
provides ¢-exclusion:

Construction 5

do forever
remainder
x; = lrue;
for all jin {1...n} do
redirect(i, j,GRAPH)
od;
L: oracle(GRAPH);
if |R(:,GRAPH,X)| > (then goto L fi:
critical section
z; = false;
od;

then

Construction Lemmma 5 No more than € pro-
cesses will ever be in the critical section simulta-
neously.

Proof Assume by a way of contradiction that
a set C of more than £ processes is in the crifi-
cal section between t° and t'. Since no process
in the critical section is in the middle of exe-
cuting a mutation of GRAPH, then by [P1}
[P3], any readx(i,7) that started after t® and
ended before t!, for 3,7 € C, will return a
unique result for any k. Thus, the graph ¢y =
(C, {GArrow(i,j) : 1,7 € ('}), as would have
been defined by the above reads, is well defined.
A contradiction will be obtained by showing that
there exists a node 7 € (y whose last execution
of R(i,GRAPH,X) before entering the Critical
Section satisfies [R(:, GRAPH, X)| > |Ri(G})| >
{+1.

Observe that G is a tournament and con-
sider the strongly-connected-component decom-
position of ;. There exists a “root” strongly
connccted component R C G;, where for all
i € Rand j ¢ R, i — j Let i be the last
process in R to call R(:, GRAPH, X) before en-
tering the critical section, and let #* < t° be the
operation start time. From time ¢t* to t!, no pro-
cess in R executed any mutation, and therefore
by [P3] the induced graphs of R in G'(¢) and G
are isomorphic. Moreover, since any read; of an
G_ARROW;,j € C — R between ¢® and ¢! re-
turns ¢ — j, and since 1 performed no mutation
after t*, it foliows by [P3b] that the last read of
GRAPH by i returned ¢ — .

‘Though this assures that ¢ saw R;(G(7)) > €41,
it still remains to be shown that R;(('(7)) > ¢+1.
In its last read of z;,j € C'— R, i must have read
z; = true, since otherwise j would have redi-
rected its arrow to ¢ following its last setting of
z; to true before entering the Critical Section.
By [P5c], since ¢ does not perform mutations
after t*, any read after t° would have returned
j — 4. This would have contradicted the fact
that the edge points from i to j € C — R in G;.
It thus follows that an edge (¢,7),7 € C — R
in G implies an edge (4,7) in G’'(7). Thus,
R/(G'(?)) > Ri(G;) > £+1. A contradiction.
|

3.3 Deadlock Avoidance

In construction 5, deadlock may occur because
many processes may repeatedly have reachability
greater than ¢, never entering the critical section.
To overcome this problem, the arbitrary behav-
jor of oracle(GRAPH) is replaced by the rule
that processes redirect arrows towards those with
higher ids. If there were no faulty processes, it
is easy to see that deadlock would be prevented,
since in a group of blocked processes, the one
with highest id would eventually have all arrows
directed towards it, and therefore its reachability
set would be of size less than €.

Unfortunately this is not true if there is even a
single faulty process, In the example of Figuwre 3,

87

Figure -1: Several Faulty Processes

process y has an 4d less than all the other € pro-
cesses 2...0+1 (say 1). If y fails with arrows
directed as in the figure, even though the pro-
cess £+ 1 with highest id will eventually have all
arrows directed towards it by all non-faulty pro-
cesses, its reachability will remain greater than
£. The reason for this is that processes 2...£ will
never redirect edges towards the smaller y, and y
will never redirect the edge toward £+ 1 because
it failed.

To overcome this problem, one can introduce
the idea of redirecting arrows according to in-
duced ids. The induced id of a process j as scen
by ¢ is the id of the process with highest id {ex-
cluding ¢) from which jis reachablein G'(37). The
problem occurring in the example of Figure 3 is
solved, since the induced id of y is £41, and all
processes will thus redirect their arrows towards
it.

Yet, this modification does not suffice. In the
example of Figure 4, the two processes z and y
may have both failed in the middle of a redirect
mutation. Thus, none of the properties assuring
that all processes will read the same arrow state
for G_LARROW,, will ever hold. The largest live
process with id £+ 1 may see the arrow pointed
from z to y, and have reachability greater than
¢, while all processes 2...€0+1 see the arrow di-
rected from y to z, thus not seeing y as having
an induced id of €41,

The problem arises because the induced id
“flows” from the inducing node through inter-
mediate nodes that may be faulty. To overcome
this problem, a second data structure RANGE
is added, constructed from arrows in a manner
equivalent to GRAPH, allowing the induced ids
to “flow” directly. The induced id of j as scen
by ¢ is the id of the process with the lighest
id (excluding i) who points an arrow toward j
in RANGE. Processes will indicate which pro-
cesses are in their reachability sets by redirecting
arrows in RANGE toward them. The following
is a construction of a deadlock free £-exclusion
algorithm based on the above scheme.

Construction 6

do forever
remainder
z; := true;
for all jin {1...n} do

redirect(i,j, GRAPH)

od;

L: update(GRAPIH);
update(RANGE);
if |R(;,GRAPH,X)| > £ then goto L fi;
critical-section
z; := false;

od ;
where the update procedures are

update(GRAPH):
for all jdo
if not z; then
redirect(t,j, GRAPH) fi;
C: if j > iand z; then
redirect(i, 5, GRAPH);
for all kdo
if j - kin RANGE then
redirect(i,k, GRAPIT)
fi;
od
fi;
od;

update(RANGE):
for all jdo

88

if (jin ®({,GRAPH,X))
or (not z;) then
redirect(i, j, RANGE);
fi
od ;

Construction Lemma 6 The construction is

free of ¢-deadlock.

In the next section the “static” idls used in
line C of construction 6 will be replaced by “dy-
namic” ones, therefore weaker requirements than
the ones met by the static ids in construction 6
are used in the proof below.

Proof Assume by a way of contradiction that
the system is deadlocked. Let L be the set of
live processes outside the remainder, and F' be
the set of faulty processes outside the remainder.
There exists a time after which all live processes
outside the remainder cease entering the Critical
Section, and no new processes join L. Assume
that eventually there exists a unique process with
a maximal id maz in L (for simplicity denote
this process as maz). A maximal id is such that
all processes in L see themselves as having ids
smaller than maz, and max sees its id as larger
than all other ids in L. (There always exists such
a “static” id maz). Since all processes ¢ € L
call (i, GRAPH, X) infinitely often, obtaining
[R(:,GRAPH,X)| > ¢+1, and since by assump-
tion |F| < £ — 1, it must be the case that there
exists a process ¢ € L apart from maz that ap-
pears in R(maz,GRAPH, X) of maz infinitely
often.

Without loss of generality, assume that there
exists a fixed path of edges starting in max and
leading to ¢, in which all the intermediate nodes
(if they exist) belong to F, and that path ap-
pears infinitely often in G’(maz). Let qp € F
be the process that directly precedes ¢ in path.
Each time qp appears in R(max, GRAPII, X)
when called by mazx, process maz performs
redirect(maz,qgr, RANGE). Since gg is faulty
and therefore does not start any new mutation,
then by Claim 1, eventually the RANGE arrow
between maz and g is dirccted toward g, Also
by Claim 1, every other live process reads it so.

Hence, eventually ¢ will direct its GRA PII arrow
toward gr, and again because gr is faulty, Claim
! implies the arrow will eventually stay that way
in all reads. This contradicts the fact that maz
reads this arrow from g to ¢ infinitely often. g

Corollary 2 Construction 6 prevenis lockout of
the process with the highest id among the non-
faulty processes outside the Remainder.

Proof Notice that in the proof of construction
Claim 6, one uses only the assumption that maz
does not enter the Critical Section. The proof
proceeds verbatim even if the other non-faulty
processes do enter the Critical Section infinitely
often.

3.4 Avoiding Lockout

In this section a mechanism for creating dy-
namically increasing ids is presented. Using
this mechanism, the ids of locked out processes
can be made to increase, until they have an id
higher than that of any process that is not locked
out. By corollary 2, the dynamic id assignment
grafted into the algorithm of the previous sub-
section will establish a lockout free £-exclusion
algorithm.

To create a dynamic id mechanism, an addi-
tional new data-structure ID is introduced, con-
sisting of a collection of FORK;; data-types (de-
noted ID_FORK;;), one for each pair processes
i,j € {l...n}, in a manner similar to that
of GRAPH. Every process wishing to enter the
Critical Section, will repeatedly attempt to col-
lect all forks offered to it. The number of forks a
process has in_use will constitute its dynamic id.
The process will offer the forks it has ¢n_use only
after leaving the Critical Section. Thus, a pro-
cess that is blocked and is repeatedly collecting
forks, will have a monotonically increasing id.

To prove correctness of the mechanism, while
abstracting the details of the previous construc-
tions, define oraclel to be a procedure that arbi-
trarily generates a value of loop or not-loop, mim-
icking entrance to the Critical Section or failure
to do so.

89

Construction 7 Let ID be as defined below,
and let every process i € {1...n} perform the
following algorithm

do forever
L: increment_your(ID);
observe(ID);
if oracle! = loop then goto L fi ;
initialize_your(ID);
end;
od;

where increment_your(ID), observe(ID) and ini-
tialize.your(ID) are defined as

increment_your(ID):
for all jin{1...n} do
take(i, j,1D) fi
od;

initialize_your(ID):
for all jin{f...n} do
offer(, 3, ID)
od;

observe(ID):
for all jin{1...n} do
count := 0
forall kin{1...n} do
if read(j,k,ID) = in_use; then
count := count + I
fi
od;
id := (count, j);
od;

Construction Lemma 7 If there exists @ non-
faulty process i, that in an infinite run has ceased
performing initialize_your operations, then

1. All live processes will eventually have id’
greater than all id’ for processes that ini-
tialize_your infinitely often.

2. All live processes will eventually have the
same value for id'.

Proof Let B be the set of “blocked” live pro-
cesses which from some time on do not per-
form initialize_your, U the set of “unblocked”
live processes which perform it infinitely often,
and F the set of faulty processes. Eventually
every process in j € U performs take followed
by offer infinitely often, and every process in
i € B performs take infinitely often and never
performs offer. Thus, by Claim 2, eventually
all ID_FORKs between processes in B and pro-
cesses in U must be read as in.use at B. In
addition, since every process in U performs offer
infinitely often and every process in F' is either
forever in the midst of the same mutation or not
mutating forever, then again by Claim 1, eventu-
ally no read of an ID_.FORK between a process
in U and a process in F returns in_useg, k € U.
It follows that eventually each id in B will be
read as being greater or equal to {U[, and each
id in U will be less than |U|, which establishes
the first part of the lemma.

The second part of the lemma follows directly
from the first part and Claim 1. g

Combining the above constructions, the fol-
lowing is a solution to the £-Exclusion Problem.

Construction 8

do forever
remainder
x; = lrue;
for all jin {/...n} do

redirect(t, j, GRAP)

od;

L: increment_your(ID);
observe(ID);
update(GRAPH);
update(RANGE);
if |R({, GRAPH,X)|> (then goto L fi;
critical-section
tnitialize_your(ID);
z; := false;

od ;

Construction Lemma 8 The consiruction

provides lockout free (-exclusion.

Proof Follows from Construction Lemmas 6 and
7 and corollary 2. g

4 Acknowledgements

We wish to thank Mike Merrit and Larry
Rudolph for important conversations during the
course of our work.

5 References

[B87] B. Bloom, “Constructing two-writer
atomic registers,” Proc. 6th ACM Symp.
on Principles of Distributed Computation,
1987, pp. 249-259.

[BP87] J. E. Burns, and G. L. Peterson, “Con-
structing two-writer atomic registers,” Proc.
6th ACM Symp. on Principles of Dis-
tributed Computation, 1987, pp. 222-231.

[CIL87] B. Chor, A. Israeli, and M. Li,
“On Processor Coordination Using Asyn-
chronous Hardware”, Proc. 6th ACM Symp.
on Principles of Distributed Computation,
1987, pp. 86-97.

[CL85] K. M. Chandy, and L. Lamport, “Dis-
tributed Snapshot: Determining Global
States of Distributed Systems,” ACM
Trans. on Prog. Lang. and Sys. I, 6 1985,
pp. 63-75.

[CM84] K. M. Chandy, and J. Misra, “The
Drinking Plilosophers Problem,” ACM
Trans. on Prog. Lang. and Sys. 6, 4 1984,
pp. 632-646.

[DDS87] D. Dolev, C. Dwork, and L. Stock-
meyer, “On the Minimal Synchronism
Needed for Distributed Consensus,” J. ACM
24, 1987, pp. 77-97.

[FLBB79] M. J. Fischer, N. A. Lynch, J. E.
Burns, and A. Borodin, “Resource Alloca-
tion with Immunity to Limited Process Fail-
ure,” Proc. 20th IEFEE Symp. on Founda-
tions of Computer Science, 1979, pp. 234-
254.

[FL.BB85] M. J. Fischer, N. A. Lynch, J.
E. Burns, and A. Borodin, “Distributed
Fifo Allocation of Identical Resources Using
Small Shared Space,” MIT/LCS/TM-290,
1985.

[FLP85] M. J. Fischer, N. A. Lynch, and M.
S. Paterson, “Impossibility of Distributed
Consensus with One Faulty Processor,” J.
ACM 32,1985, pp. 374-382.

[H87] M. P. Herlihy, “WaitFree Implementa-
tions of Concurrent Objects,” Technical Re-
port, Dept. of CS, CMU, 1987.

[IL87] A. Israeli, and M. Li, “Bounded Time-
Stamps,” Proceedings of the 28th Annual
Symposium on Foundations of Computer
Science, 1987, pp. 371-382.

[L86a] L. Lamport, “On Interprocess Commu-
nication. Part I: Basic Formalism,” Dis-
tributed Computing 1, 2 1986, 77-85.

[L86b] L. Lamport, “On Interprocess Commu-
nication. Part II: Algorithms,” Distributed
Computing 1, 2 1986, pp. 86-101.

[L86¢c] L. Lamport, “The Mutual Exclusion
Problem. Part I: A Theory of Interprocess
Communication,* J. ACM 33, 2 1986, pp.
313-326.

[L86d] L. Lamport, “The Mutual Exclusion
Problem. Part II: Statement and Solu-
tions,* J. ACM 33, 21986, pp. 327-348.

[LA87] M. G. Loui, and H. Abu-Amara, “Mem-
ory Requirements for Agreement Among
Unreliable Asynchronous Processes”, Ad-
vances in Computing Research, vol. 4, 1987,
pp. 163-183.

[N87] R. Newman-Wolfe, “A Protocol for Wait-
free Atomic, Multi Reader Shared Vari-
ables,” Proc. 6th ACM Symp. on Princi-
ples of Distributed Computation, 1987, pp.
232-248.

91

[P83] G. L. Peterson, “Concurrent Reading
While Writing,” ACM TOPLAS 5, 1 1983,
pp. 46-55.

[PB87] G. L. Peterson, and J. E. Burns, “Cou-
current Reading While Wriling,” Proceced-
ings of the 28th Annual Symposium on
Foundations of Computer Science, 1987, pp.
383-392.

[VA86] P. Vitanyi, and B. Awerbuch, Atomic
shared register access by asynchronous
hardware, Proceedings of the 27th Annual
Symposium on Foundations of Computer
Science, 1986, pp. 233-243.

6 Appendix

In this appendix, an informal proof of the valid-
ity of constructions 1-3 is presented. A formal
proof based on Lamport formalism ([L86a]) will
be given in a later version of the paper.

For the proof consider a given FORK;;. It
will be argued that the set of lower level sys-
tem executions defined by constructions 1-3 are
implementations of a set of higher level system
executions defined by the abstract data type. It
is assumed that no system execution begins in
the middle of a mutation. A global time model
of system executions is assumed.

Assume that initially any read returns F = 0
and w; = w; = false.’”

Consider the following pre-conditions and post-
conditions for mutation operations. A condition
such as { F = 0A w; = (rue } is interpreted to
mean that a read by any process would return
F' = 0 and w; = true. These conditions will
be required to hold only for reads performed in
intervals of the designated type described in sec-
tion 3.1, They constrain possible alternative ex-
ecutions of the prefixes of sequences of the lower

1®This assumption is not mecessary but simplifies the
proofs.

level operations as implied by the implementa-
tion. Thus, if a read is performed in an interval
as designated, the appropriate value will be re-
turned. The conditions are written in short form,
where for a program statement S and some pred-
icate P, {condition}S{post_condition} means
that {condition A P}S{post_condition A P} and
{—condition A P}S{-condition A P} (where
condition and post.condition are different).

take;:
{F =0Awj = false}
if read(FORK;;) = offered; then

w; = true;
{F =0Aw; = true}
F:=1;
{F =1Aw; =true}
fi;
offer;:

{F = 1Aw; =true}
if read(FORK;;) = in_use; then

w; := false;
{F = 1Aw; = false}
fi;
take;:

{F =1Aw; = false}
if read(FORK ;) = offered; then

w; = true;
{F = 1Awj = true}
F:=0
{F = 0A w; = true}
fi;
offer;:

{F =0Aw; =true}

if read(FORK ;) = in_use; then
w; := false;

{F =0Aw; = false}

fi;

Given the initial conditions, the only muta-
tion whose pre-condition is met is take;. Since
the pre-condition of any mutation that could be
concurrent with take; will not hold until the com-
pletion of take;, the post conditions of take; will
hold upon its completion.

92

After the completion of the take; mutation,
the pre-condition for offer;, and only for it, holds.
Until the execution of the assignment to w; in
offer;, the pre-conditions of none of the other
mutations hold. Only once this assignment oper-
ation is started, the pre-condition of take;, and
only take;, may hold. Thus might be writing w;
while j performs take;, yet, this does not impair
the correctness of the post-condition of take;,
given that its pre-condition was true. Though
the post condition of ¢ might not hold following
the a take; (and only it), it will not matter since
anyhow it is a pre-condition only for take;. The
pre-condition of any mutation by ¢ will not hold
prior to the assignment of w; in offer;. This will
only happen after the completion of the current
take;, after which only the pre-condition of an
offer; can hold, and so on.

The above arguments informally imply that
once a pre-condition of a mutation holds, it will
continue to hold until the mutation takes place,
and as long as it doesn’t take place the pre-
conditions for all other mutations do not hold.

Proof of Construction Lemma 1 Properties
P1, P2, and P3a clearly hold. The above ar-
guments imply that when the pre-condition for
a mutation holds, it will hold until the process
performs the mutation, therefore Property P3b
holds. g

Proof of Theorem 1 Construction Lemma 3
implies that if any process reads offered;, then
j also will also read it. Thus, the pre-condition
to take; holds and by the above arguments will
still hold as long as j will not perform take;.
Therefore, P4 holds.

Property P4 further implies that once a pro-
cess has read offered; following which a take;
was performed, every process will read in_use;
as long as an offer; will not start.

Proofs of all other properties follow by similar
arguments. g

