
Operation-Valency and the Cost of Coordination

[Extended Abstract]

Danny Hendler
School of Computer Science

TeI-Aviv University
Tel Aviv, Israel 69978

hendlerd@post.tau.ac.il

Nir Shavit
School of Computer Science

TeI-Aviv University
Tel Aviv, Israel 69978

shanir@cs.tau.ac.il

ABSTRACT
This paper introduces operation-valency, a generalization of
the valency proof technique originated by Fischer, Lynch,
and Paterson. By focusing on critical events that influ-
ence the return values of individual operations rather then
on critical events that influence a protocol's single return
value, the new technique allows us to derive a collection
of realistic lower bounds for lock-free implementations of
concurrent objects such as linearizable queues, stacks, sets,
hash tables, shared counters, approximate agreement, and
more. By realistic we mean that they follow the real-world
model introduced by Dwork, Herlihy, and Waarts, count-
ing both memory-references and memory-stalls due to con-
tention, and that they allow the combined use of read, write,
and read-modify-write operations available on current ma-
chines.

By using the operation-valency technique, we derive an
f~(X/~) non-cached shared memory accesses lower bound on
the worst-case time complexity of lock-free implementations
of objects in Influence(n), a wide class of concurrent objects
including all of those mentioned above, in which an individ-
ual operation can be influenced by all others.

We also prove the existence of a fundamental relationship
between the space complexity, latency, contention, and "in-
fluence level" of any lock-free object implementation. Our
results are broad in that they hold for implementations com-
bining read/write memory and any collection of read-modify-
write operations, and in that they apply even if shared mem-
ory words have unbounded size.

Categories and Subject Descriptors
C.1.4.1 [C o m p u t e r S y s t e m s Organ iza t i on] : Processor
Architectures--Parallel Architectures, Distr~ibuted Architec-
tures

*This work was supported in part by a grant from Sun Mi-
crosystems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without f¢¢ provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior speeific permission and/or a f¢¢.
PODC'03, July 13-16, 2003, Boston, Massachusetts, USA.
Copyright 2003 ACM 1-58113-708-7/03/0007...$5.00.

General Terms
Algorithms Theory

1. INTRODUCTION
In 1993, Dwork et. al [7] introduced a formal model to

capture the real world phenomenon of memory contention
on today's shared memory machines, machines that allow
read, write, and read-modify-write (RMW) operations. Us-
ing FLP-style valency arguments, they proved that there
are inherent tradeoffs between contention and latency 1 in
concurrent data structure design. Their work was extended
in several directions, most notably in the context of mutual
exclusion [1, 2, 6] and counting networks [3, 4].

This paper presents ope¢ution-valency, a generalization of
the valency proof technique of Fischer et. al (FLP) [9], and
uses it to continue the above work in deriving real-world time
complexity lower bounds for state of the art concurrent ob-
jects. As surveyed by Lynch [15] and by Fich and Rupert [8],
there are numerous elegant extensions and reformulations of
the FLP-style valency technique. The main difference be-
tween the operation-valency approach we present here and
FLP-style arguments is that we focus on temporary changes
in the anticipated results of individual-ope'rution solo execu-
tions rather than on permanent changes in the valency of
the protocol as a whole. In doing so, we are able to capture
some of the complexity resulting from the influence among
shared object operations that return distinct yet dependent
values.

The time metric we use, which we call memory steps,
counts only first-access shared memory events, and memory
stalls due to contention in writing to shared locations. It is
stricter than the time metric used by [7], as the later counts
all shared memory references and also counts memory stalls
due to contention in reading; it is similar to the communi-
cation cost metric used by Cypher [6], and to the remote
memory references metric used by Anderson and Yang [1],
and by Anderson and Kim [2], in that a single unit of both
metrics corresponds to a shared memory reference that can-
not be resolved by a local cache 2

ZIn [7] Dwork et. al define a protocol's latency to be the
maximal number of shared variable accesses, over all execu-
tions, a single high-level operation does.
2Note, however, that the communication cost metric and
the remote memory references metric are stricter than our
memory steps metric, since in distributed shared memory
(DSM) systems, they do not count references to local mem-
ory, whereas such references may be connted as memory

84

We use the new operation-valency technique to derive a
collection of tradeoffs and lower bound results. Specifically,
we axe able to show an f2(v/~) time-complexity lower bound
on lock-free implementations of objects in a class we call
Influence(n), a wide class of concurrent objects in which an
individual operation can be influenced by f~(n) other op-
erations. Influence(n) includes data structures such as lin-
earizable queues, stacks, shared counters, hash tables, sets,
multi-sets, and approximate agreement objects. Our results
are the first known time complexity lower bounds for im-
plementing these objects using any RMW operation. Be-
fore listing our results in detail, let us briefly describe the
operation-valency technique.

1.1 The Operation-Yalency Technique
Valency arguments, introduced by Fischer et. al [9], have

been used extensively [5, 7, 10, 14] to derive impossibility
results and lower bounds for consensus and related prob-
lems. In problems such as consensus, a protocol is required
to eventually output a single protocol value. Valency ar-
guments classify system states according to whether they
are univalent or multivalent. A state S is univalent if, in
any two execution extensions starting from S, the protocol
outputs the same value, and multivalent otherwise. Thus,
essentially, a state S is unvialent iff the protocol's output
value is already determined in S 3. The valency technique
looks at critical events that atomically change the system
state from multivalent to univalent. Valency arguments are
then applied w.r.t, to these critical events to derive impos-
sibility results or lower bounds.

The basic idea behind our operation-valency technique is
to generalize the approach of [9] by looking at the return
values of individual operations instead of the single return
value of the protocol as a whole. Similarly to FLP-style va-
lency, we identify critical events that atomically affect return
values, and we argue about the order and location of these
events to obtain our results. We note, however, the signif-
icant differences between operation-valency and FLP-style
valency:

• FLP-style valency looks at a single protocol output
value; operation-valency looks at the output value of
specific operations, in protocols where different opera-
tions are allowed to return, different values;

• FLP-style valency looks at critical events that have
permanent effect on the protocol output value: be-
fore the event, there exist two different execution ex-
tensions that yield two different output values; af-
ter the critical event is executed, all execution exten-
sions yield the same protocol output value. Operation-
valency looks at a different class of critical events,
which we call modifying events. These events atom-
ically modify the return value of a solo execution of a
specific operation R: before such a modifying event e
is executed, R's solo execution must return some value
V; right after e is executed, R's solo execution must
return some other value. If after e is executed, addi-
tionM events are executed, a solo execution of R may,
once more, have to return value V. This implies that
the effect of a modifying event may be temporary.

steps by our metric.
3The output value may still be nnknown to all participating
processes, however, even in a univalent state.

As an example, consider an implementation of a "one
time" n-process linearizable counter object allowing fetch-
and-increment (FAI) operations. Before execution starts,
any process may start a solo execution that returns 1. Let
E be an execution where process p is idle, and assume some
process q, q ~ p, completes its FAI operation in E, then a
solo execution by p after E must return a value bigger than
1. We identify the critical modifying memory events, write,
or RMW events, following which the return value of p's solo
execution is modified. Our proof technique constructs ex-
ecutions in which such modifying events are pending, and
shows that the operations whose return values are about
to be atomically influenced by them must read the mem-
ory locations on which they are pending, otherwise we can
construct indistinguishable executions that will lead to con-
tradicting outcomes.

1.2 Our Results
To characterize the coordination requirements of shared

objects, we introduce the influence level metric L inibrmally
defined as the maximal number of high level operations by
other processes that can influence the outcome of another
given process' high level operation. For example, in a lin-
earizable shared counter, the outcome of a given operation
can be influenced by n - 1 others: if it runs alone it will
return one value, but if any of the n - 1 other processes
precedes it, the value returned will be different.

1.2.1 New Fundamental Tradeoffs
We prove that the following fundamental relationships ex-

ist for all lock-free protocols. Let P be a lock-free protocol
for a shared object with influence level I; let L(P), S(P), and
C(P) respectively denote the latency, space complexity, and
write-contention of P, then:

L(P) > I /C(P), S(P) > I /C(P) (1)

For example, for linearizable counting this tradeoff strength-
ens a result of Herlihy et. al [12], which try to capture
contention via a static measure of capacity: the maximal
number of processes c(P) that access any particular vari-
able in any execution. They prove the existence of the
tradeoff L(P) > (n-1)/c(P) between the capacity and la-
tency of linearizable counters. However, they note that the
capacity c(P) is not necessarily correlated with contention.
Our tradeoff captures a stronger relationship between la-
tency and the actual write-contention for a broad class of
problems, which for linearizable shared counting implies the
desired relationship L(P) > (n-1)/C(P). The above tradeoff
also answers an open question posed by Dwork et. al [7]
as to whether there exists a tradeoff between latency and
contention for the approximate agreement problem.

1.2.2 New Time Complexity Lower Bounds
We identilty Influence(n), the class of problems where a

single operation has influence level I E f~(n). This class in-
cludes lock-free implementations of key objects such as lin-
earizable queues, stacks, hash-tables, sets, shared counters,
approximate agreement, and consensus. We prove a lower
bound of f2(v/n) memory steps for any object belonging to
Influence(n). This bound has an immediate real-world im-
plication: any lock-free implementation tor any of the above
objects on any of today's architectures, using any combina-
tion of reads, writes, and RMWs, has a worst-case opera-

85

t ion t ime-complexi ty of at least v /~ shared memory accesses;
moreover, we show tha t these accesses cannot be resolved by
a local cache.

Our lower bounds are the first real-world t ime bounds for
such objects. T h o u g h they seem stronger t han Jayant i ' s in-
teres t ing O(log n) t ime bounds [13] on similar objects, they
are in a sense or thogonal . This is because Jayant i ' s t ime
metr ic does not count content ion when accessing shared lo-
cations. For example, according to Jayan t ' s metric, a shared
l inearizable counter for n processes can be implemented in
constant t ime. Unlike our results, Jayant i ' s bounds are re-
s t r ic ted to a model wi th only load-locked/s tore-condi t ional ,
a specific type of R M W operat ion.

Finally, we show tha t there exists an object in Influ-
ence(n), which we name First-Generation, for which our
bound is t ight , t ha t is, it has O(V'~) t ime complexity. How-
ever, we believe the t ight bounds on many interest ing prob-
lems in Influence(n) are higher, and tha t the operat ion-
valency approach might be the key to deriving them.

2. PRELIMINARIES

2.1 Shared Memory System Model
Our model of an asynchronous shared memory sys tem is

based on the mode l descr ibed by Cypher in [6], which is
based, in turn, on the model given by Merr i t t and Tauben-
feld [16]. We will assume tha t shared objects are specified
as in [11]. Our model allows three types of shared memory
events: a tomic Read, a tomic Write , arid Read-Modify-Wri te
events. No bound is assumed on register size. An n-process
shared m e m o r y protocol (E , P , R , I) consists of a non-empty
set E of executions, a set P of n processes, a set R of mem-
ory registers, and a funct ion I tha t assigns an initial value to
each register in R . An execut ion is a sequence (either finite
or infinite) of events, where an event is an a tomic memory
access per formed by a single process. An event can have one
of the following three forms:

• A tomic Read: read(p,r,v) indicates tha t process p reads
the value v from register r;

• A tomic Write: write(p,r,w) indicates tha t process p
writes the value w to register r;

• A tomic R M W : RMW(p,r,v,w) indicates t ha t process p
a tomica l ly does the following: it reads the value v from
register r and computes w based on v. p then proceeds
in one of the following two ways: if w is different from
the special value null, p writes the value w to register
r, o therwise p does not wri te to register r. 4

Given any event e, read(e) is t rue if e is e i ther a Read or
a R M W event, and write(e) is t rue if e is a Wri te event,
or if e is a RMW(p , r, v, w) event wi th w ~ null. mere(e)
is the m e m o r y register accessed (read a n d / o r wri t ten) by
e; proc(e) is the process tha t executed e. For any e E E,
index(e, E) -is the number of events t ha t precede e in E;
when the execut ion discussed is clear from the context , we
jus t use index(e).

4This defini t ion of R M W events captures bo th condi-
t ional (such as: Compare-and-swap, Test-and-set , Load-
l inked/Store-condi t iona l) and non condit ional R M W opera-
tions.

For any finite execut ion E and any sequence of events
E ' , E o E ' denotes the conca tena t ion of E arLd E' . For any
sequence of events E', we define procs(E') to be the set
of processes tha t perform some event in E ' . Let r E R
be a memory register, and E C E a finite execut ion, then
value(r, E) (the value of r after E) is the value wr i t ten by
the last event in E tha t wrote to r, or I (r) if there was no
such event. Given an execut ion E and any subset P C P ,
we let proj(E, P) denote the subsequence of E conta ining
only the events in E tha t were issued by processes in P .
If P ---- {p}, we also use the no ta t ion proj(E,p) instead of
proj(E, {p}). If proj(El ,p) = proj(E2,p), we say t h a t the
executions E l , E2 are indistinguishable by p.

DEFINITION 2.1. A shared memory protocol satisfies the
following shared memory axioms A1 - A3:

• A I : I f E o e E E, then E C E.

• A2: Let E o e E E be an execution, and let e be
a Read or R M W event, then the value read by e is
value(mere(e), E).

• A3: Let E o e E E be an execution, and assume
proj(E,p) = proj(E' ,p), then E' o e E E holds.

Intuitively, Ax iom A 1 states t ha t a prefix of any possi-
ble execut ion is also a possible execut ion; A x i o m A 2 s ta tes
tha t the value read by any Read or R M W event re turns the
value of the most recent wri te to the accessed register (or
the register 's initial value if there were no earl ier writes to
tha t register); finally, Ax iom A 3 s ta tes t ha t if there are two
possible execut ions tha t are indis t inguishable by process p,
and it is possible for p to per form a memory -ope ra t ion (ei-
ther Read, Wri te or R M W) following one of the executions,
then it is also possible for p to per form the same opera t ion
following the o ther execut ion.

2.2 High Level Operations
Shared m e m o r y protocols suppor t high-level opera t ions

tha t processes can execute. We consider protocols tha t
suppor t at least one opera t ion- type tha t re turns a value.
High-level operat ions involve, in general, bo th pr ivate- and
shared-memory events; in this paper we only deal wi th shared-
memory events, and so we view a high-level opera t ion Op
as consisting of a sequence of one or more a tomic shared
memory events, each of which can be ei ther Read, Write,
or RMW. We only consider execut ions where each process
performs at most a single high-level operat ion. 5 Let Op
be an opera t ion performed by some process in some exe-
cut ion E. We denote by proc(Op, E) the process tha t ex-
ecutes Op in E ; we denote by events(Op, E) the sequence
of memory-events performed by proc(Op) while execut ing
Op in E. Whenever E is clear from the context , we s imply
wri te proc(Op) azld events(Op). We denote by f i'rst(Op, E)
and last(Op, E) the first and last events, respectively, in
events(Op, E). (Note tha t f irst(Op, E) and last(Op, E)
may be the same event.) As before, we omi t E when it
is clear from the context , and s imply wri te f irst(Op) and
last(Op). We say tha t an opera t ion Op starts in E, and
write starts(Op, E), if f irst(Op) appears in E . We say
tha t an opera t ion Op is conta ined wi th in an execut ion E
(Op C E) if all the events of events(Op) appear in E . If

5Obviously, this jus t s t rengthens our lower bounds.

86

Op C E, we denote by result(Op, E) the value returned
by Op in E. Let Opl, Op2 be two operations contained in
E; if index(last(Opl), E) < index(first(Op2), E), we write

Opl -~+ Op2. Note that for any execution E, -~ is a partial
order on all the operations contained in E. We say that an
execution E is quiescent, if there is no operation that started
in E but did not terminate in E. We say that a high-level
operation Op is pending after an execution E, if Op can
start at any time after E. A formal definition follows.

DEFINITION 2.2. We say that a high-level operation Op
is pending after an execution E, if Op did not start in E,
and the following holds for every extension E ~ of E:

E o E ' E EA(-,starts(Op, EoE')) ~ EoE 'o (f i r s t (Op)) E E

Slightly abnsing notation, and for presentation simplicity,
we sometimes refer to an underlying execution as a state.
Thus, e.g., instead of saying that E is quiescent, we may say
that the state after E is quiescent; instead of saying that a
high-level operation Op is pending after E, we may say that
after E the system is in a state where Op is pending.

2.3 The Time Complexity Metric
Our time complexity metric counts the worst-case num-

ber of memory steps that a single high-level operation may
incur. Our metric counts both first-access shared memory
events and stalls that are incurred when a few processes con-
currently a t tempt to perform a Write or RMW operation to
the same memory register. Formal definitions of first-access
events and stalls follow.

DEFINITION 2.3. Let E C E be an execution; let e be an
event in E; let r = mere(e) be the memory register accessed
by e, and let Op be a high-level operation such that e E
events(Op, E), then we say that e is a first-access event of
Op, ire is the first event in events(Op, E) that reads and/or
writes r.

In other words, an event is a first-access event of a high-
level operation Op, if it is the first event of Op to access
some memory register.

DEFINITION 2.4. Let E E E be an execution, let l > 0 be
an integer, and let ej, 0 < j _< l be a sequence of consecutive
events in E such that the following holds:

1. Vj, O < j _< l : ej is either a Write or a RMW event.

2. Vjl, j2, 0 ~ j l # j2 ~ 1 :
(p'roc(~j~) # proc(e~)) A (me 'm(~) = mem(~j~))

Let Op be the high-level operation whose execution issued
ej, then we add j stalls to the memory step count of Op on
account of ej.

The above definition of stalls captures the fact that in
shared memory systems, when a group of processes have
pending Write or RMW events on the same memory loca-
tion, then a scheduling adversary can release all these events
simultaneously, thus causing the operation that issued the
second event to incur a single stall, the operation that issued
the third event to incur two stalls, and so on. 6

6This definition of stalls does 'not assume that concurrent
write events to the same memory-register are serviced in
FIFO order, or in any other order.

2.4 The Influence Metric for Coordination Level
In this section we define a quantitative metric which is a

measure of the coordination level of distributed protocols.
More specifically, the influence level metric is a measure
of the extent to which concurrently executing operations
(which we call influencing operations or just influencers)
can influence the result of another pending operation (which
we call the influenced operation). To get a feel for this
metric, consider an n-process protocol that implements a
linearizable stack, with push and pap high-level operations.
Consider a quiescent state S, where the stack contains a sin-
gle item - the number 1. Assume that process pl has a pend-
ing pop operation, and each of the processes pi, 2 < i < n
has a pending push(i), for 2 < i < n, respectively. Clearly,
the value returned by the pop operation can be influenced by
the push operations: if the pop operation is allowed a solo-
execution while the push operations have not yet begun,
then, from linearizability, it has to return 1; on the other
hand, if we allow any interleaved execution of the push op-
erations where at least one of them terminates, and only
then start a solo-execution of the pop - then (again from
linearizability) the pop must return a different value. De-
pendencies of this type are what we capture in the following
definitions:

DEFINITION 2.5. We say that a s tate S has influence level
K (and write I(S) = K) if the following holds:

* S is quiescent;

There is a process that has a pending operation R so
that a solo-execution of R starting from S returns some
value V;

There are K other processes, each having a pending op-
eration Wi, 1 < i < K, such that the following holds:
after any execution E, consisting of events issued by
the operations Wi, where at least one operation ter-
minates - a solo-execution of R returns a value other
than V. r

• K is 'maximal.

We say that R is K-influenced in S and that the operations
Wi are the influencers of R in S. We call V the distinguished
value of R in S. I f a state S is not quiescent, we define I(S)
to be O.

We next extend the above definition of influence level to
executions, protocols, and concurrent objects.

DEFINITION 2.6. The influence level of an execution E,
denoted by I(E), is the maximum influence level over all
the states E 'reaches; the infuence level of a protocol P,
denoted by I[(P), is the maximum, influence level over all its
executions.

Slightly abusing notation, we now define the influence
level of objects.

DEFINITION 2.7. A concurrent object 0 has influence level
I, if the influence level of every lock-free protocol implement-
ing it is at least I.

7It is not assumed that the operations W~ return a value.

87

Based on the above definitions, we can now determine
a lower bound on the influence level of linearizable imple-
mentations of a concurrent object, based on the object 's
sequential specification.

LEMMA 2.1. Let 0 be an object whose sequential specifi-
cation S includes a history H, such that:

• H can be extended by a value-returning operation R,
and result(R, H o R) = V for some V;

• There are K operations, W~,I < i _< K, such that
the following holds: for any non-empty subset of in-
dices T C {1, . . . , K) , and for every permutation fiT
of T, the following extension of H exists: H~ T =
HOWaT(1)o...OWaT(iTi)OR and result(R, HaT) ~ V.

Then any linearizable implementation of 0 has influence
level at least K.

PROOF. Immediate from the definition of influence level
and from the linearizability of the implementation. []

3. TRADEOFFS AND LOWER BOUNDS
We consider a lock-free n-process protocol, P, for n > 2,

that has influence level K. We define P ' s latency as the
maximal number of shared memory events issued by a single
high-level operation, over all executions, and denote it by
L(P); we define P ' s read latency as the maximal number of
r ead /RMW shared memory events issued by a single high-
level operation, over all executions, and denote it by LIt(P);
we define P ' s space complexity as the total number of shared
memory registers read/wri t ten by P, over all executions,
and denote it by S(P); we define P ' s write-contention as the
maximal number of consecutive wr i t e /RMW events to the
same memory register, over all executions, and denote it by
C(P). Recall that the definition of a protocol's influence
level states that P can be brought to a state with influence-
level K. For presentation-simplicity, and w.l.o.g., the proofs
in this section assume that the execution starts from such a
state S, where process p has a pending influenced operation
R with distinguished value V, and each process ql E Q, 1 <
i < K has a pending influencer Wi. Our proofs need only
consider executions where each process executes at most a
single operation s .

The following lemma defines what modifying events are
and proves their existence.

LEMMA 3.1. Let E be an execution such that procs(E) C_
Q, and assume some influencer Wi completes in E, then
there is at least one event e E E, which we call a modifying
event, such that the following holds:

• Until e is executed, a solo execution of R must return
V;

• I f a solo execution of R starts immediately after e, then
it returns a value other than V.

PROOF. Since S has influence level K w.r.t. R, with V
as its distinguished value, then before E starts, a solo exe-
cution of R must return V. On the other hand, since some
infiuencer completes in E, then, again from the definition
of influence, a solo execution of R cannot return V after E,
hence the result follows. []

SObviously this just strengthens our lower bounds.

Intuitively, we consider executions that start from a state
S, with influence level K, that only include events executed
by the influencers. A modifying event e is an event within
such an execution. Before e occurs, a solo execution of R
must return V; right after e is executed, a solo execution of
R must return a different value.

We now prove that modifying events are either write or
RMW events.

LEMMA 3.2. Let e E E be a modifying event, then write(e)
holds.

PROOF. Assume by way of contradiction that the claim
does not hold, then e does not write any value. Let E =
E%eoE", then from the definition of modifying events, right
after E ' (i.e. just before e) p can execute a solo execution of
R that returns V, and so there is an extension E1 of E ' such
that E1 = events(R), proc(R) = p, and result(R, E' oE1) =
V. Since the modifying event e does not involve a write, and
since e is not an event of p, the executions E ' and E ' o e are
indistinguishable by p, and therefore, by Axiom A3 of the
shared memory model, E ' o e o E1 is also an execution of
P, which implies that a solo execution of R returns V also
right after e is performed. This obviously implies that e is
not a modifying event, a contradiction. []

The following lemma proves that starting from state S,
the processes in Q can be brought to a state where they all
have pending modifying events.

LEMMA 3.3. There is a finite execution E E E, such that
following E every q C Q has a pending modifying event.

PROOF. From the definition of influence level, no influ-
encer can terminate before some modifying event is per-
formed. We construct an execution E where every process
q E Q has a pending modifying event, by letting the pro-
cesses qi, 1 < i < k, initiate simultaneously their influencers,
and by letting each q~ execute its infiuencer, until it is about
to perform a modifying event. Note that this is a~ iterative
construction, as bringing one process to be on the verge of
performing a modifying event can take another process out
of this state, but the constructed execution is finite because
P is lock-free. []

As a corollary we can prove the following tradeoff between
the space-complexity and write-contention of any lock-free
object implementation.

THEOREM 3.4. Let 0 be an object with influence level
and let P be a lock-free implementation of O, then the fol-
lowing holds:

S(P) > r~/c(P)]

PROOF. Since P implements O, I (P) _> I. Consequently,
from Lemmas 3.2 and 3.3, P can be brought to a state where
at least ~ write or RMW events are pending. Since at most
C(P) such events can be pending on any single register, the
result follows. []

We next prove a similar tradeoff between the latency and
write-contention of lock-free implementations. We actually
prove a stronger result, by showing that the tradeoff holds
even if we exclude write events from the latency count.

88

THEOREM 3.5. Let 0 be an object with influence level I
and let P be a lock-free implementation of O, then the fol-
lowing holds:

L(P) ~ Lll(P) > rx/c(p)]

PROOF. As all the events counted by La(P) are also counted
by L(P), the first inequality is obvious. As for the second
inequality, let I (P) = K. Since P implements O, we have
K > L From Lemma 3.3, P has an execution E, such
that following E each of q l , ' " qK has a pending modifying
event. Let B be the set of registers to which these outstand-
ing events are about to write. Note that IBI _> rK/C(P)] .
Since no modifying event has been performed yet, then from
the definition of modifying ewents E can now be extended
by a sequence E' , which are the events of the solo execution
of operation R by process p, so that resul t (R) = V. We
prove the theorem by showing that R must read all the reg-
isters in B. Assume to the contrary, then R returns a value
without reading some register r E B. Let e be some modi-
fying event which is outstanding on register r, then clearly
p r o j (E o e o E ' ,p) = p r o j (E o E ~ o e,p) and so R must re-
turn the same value whether it executes before the event e
or after it, which is a contradiction to our assumption that
e is a modifying event. -[]

Based on Theorem 3.5, we can now establish a lower
bound on the memory steps complexity of any lock-free ob-
ject implementation.

THEOREM 3.6. Let 0 be an object with influence level I,
and let P be a lock-free implementation of O, then the mem-
ory steps complexity of P is at least [~/~J.

PROOF. Let [(P) = K. Since P implements O, we have
K _> L By using Lemma 3.3, there is an execution E, such
that following E each of ql, • - • qk has a pending modifying
event. According to Lemma 3.2 all of the modifying events
are either Write or RMW events. Let B be the set of reg-
isters to which these outstanding events are about to write.
Assume that IBI < [~/~J, then there is at least one regis-
ter r E B that has at least [x/-I~J outstanding events about
to write to it. Let Wj be the influencer whose outstanding
event is executed last, then Wj is charged by It/k] - 1 mem-
ory steps because of the stalls it incurs when accessing r, plus
an additional memory step on account of the first access of
r, which proves the theorem. Otherwise, IB[_> Ix/K], and
based on Theorem 3.5 R can be made to access all the reg-
isters in B. Consequently we can charge R by [B I memory
steps for the first-access events of all the registers in B. []

3.1 Memory Steps and Time
We now discuss how the memory steps lower bound trans-

lates to a time lower bound. For this, we need the following
definition:

DEFINITION 3.1. Let M be a shared memory multiproces-
sot; we denote by nlcr-time(M) the minimal time a non-
local-cache-reference takes in ~4, i.e. the minimal time in
M of a memory reference that is not resolved by the local
cache ('if any) of the processor that issued it.

If M is a distributed shared memory system without caches,
nlcr-time(M) is simply the minimal time it takes a processor
in M to access its local memory (the minimum taken over

all processors); if M is a cache-coherent multiprocessor, then
the minimum in the above definition is taken over all mem-
ory references that cannot be resolved by the local cache
and generate interconnect traffic, such as: references to a
memory location that is not in the local cache; writes that
generates cache-invalidate transactions; writes that gener-
ate cache-update transactions, or any other shared memory
references not resolved in the local cache.

In the proof of Theorem 3.6 we have shown that either
some operation incurs at least [~/~J consecutive stalls, or
some other operation performs at least L~/~J first-access events.
We now analyse both cases.

• In any shared-memory multiprocessor M, when mul-
tiple processors attempt to write to the same memory
register simultaneously, the writes are being serialized
and are serviced one after the other. Moreover, even if
M is a cache-coherent system, x consecutive stalls take
at least x. nlcr-time(M) time: if the cache scheme is
write-through, then every write generates a cache miss;
and even if the cache scheme is write-back, then since
the writes are by different processors, none of them
(except, maybe, the first) can be accomplished by just
updating the local cache: they have to either invalidate
or update other caches.

• Clearly in no shared-memory multiprocessor can a first-
time shared memory read be resolved from the lo-
cal cache; as for first-time shared memory writes, in
write-through cache schenms every write generates a
cache-miss, and in write-back cache schemes, the first
write to a shared location must either invalidate or
update other caches, which implies interconnect traf-
fic. Consequently, if we assume M does not support
non-blocking reads and writes, then x first-time access
events by an operation take at least x. nlcr-time(M)
time. If M does support multiple outstanding refer-
ences per processor, then, theoretically, x first-access
references may be resolved in a time equivalent to x
cache references.

3 .2 T h e Influence(n) O b j e c t s C l a s s

We now define the Influence(n) class of concurrent ob-
jects, that contains objects for which every lock-free n-process
implementation has influence level in fl(n). We then show
that many key distributed objects belong to this class, and
thus have an inherent operation complexity of ~(~/~) mem-
ory steps.

DEFINITION 3.2. A generic object O is an object that is
specified for any number of processes n. The influence-
function of O, denoted Ko, is defined as follows: Io(n) = K ,
i f the influence level of every lock-free n-process implemen-
tation of 0 is at least K .

DEFINITION 3.3. Influence(n) is the objects class that con-
tains all generic objects 0 such that Io is in ~(n) .

It is easily shown that the following objects are in Influ-
ence(n): linearizable counters, stacks, queues, hash-tables,
sets, approximate agreenmnt. As two examples, we show
that approximate agreement and linearizable counting be-
long to Influence(n).

An approximate agreement object supports a single decide
operation. Each participating process calls decide with the

89

process' real-number input-value. The values returned by
the decide operation to different processes are required to
be within a given distance e of each other, and are also
required to be within the range of the inputs.

THEOREM 3.7. Approximate agreement is in Influence(n).

PROOF. We prove that any lock-free approximate agree-
ment protocol for n processes has influence level n - 1. Con-
sider the problem instance where process pl, 1 < i < n,
starts with value 2(i - 1). e. We denote the decide operation
executed by process i as decidei. We prove that the initial
state, S, has influence level n - 1, by showing that decide1
is i n - 1)-influenced in S, with decide~,2 < i < n as its
influencers: clearly, if decide1 runs alone, it must return 0.
On the other hand, in any execution E which does not in-
volve pl, in which some other process decides - the decision
value must be in the range [2e. • • 2 (n - 1)e], and so if decide1
starts a solo execution al'ter E, decide~ must return a value
no less than e. []

A shared counter object supports a single
fetch-and-increment (F A I) operation. The counter-values
returned by F A I operations are required to be unique nat-
ural numbers. It is also required that in quiescent states
the values distributed by the counter constitute a contigu-
ous range of numbers. Linearizable shared counters are also
required to be lineaxizable, i.e. if FAI~ and F A I j are two

activations of the F A I operation, and FAI l -~ F A I j in an
execution E, then resul t (FAI~, E) < r e s u l t (F A I j , E) must
hold.

THEOREM 3.8. Linearizable counting is in Influence(n).

PROOF. We prove that any lock-free linearizable-counting
protocol for n processes has influence level n - 1. Consider
the sequential specification of a shared counter object L C for
n processes, and let H be a history after which the counter
value is V. We denote an F A I operation performed by
process i by F A I i . H can be extended by F A I l , that must
return V. On the other hand, if the execution of F A I l
is preceded by any FAI~,2 < i _< n, operations, in any
order, then clearly F A I l must return a value greater than
V. Consequently, by using Lemma 2.1 the result follows []

The proofs that linearizable stacks, queues, sets and hash-
tables axe in Influence(n) axe very similar to the proof of
Theorem 3.8, and are consequently omited.

We next present the First-Generation problem. We show
that it belongs to the I ~ u e n c e (n) class and that it can be
implemented in O(v ' n) memory steps; thus we prove, that
there are problems in Influence(n) for which our bound is
tight. Let E be an execution; we say that an operation Op
belongs to the first-generation of E, and write Op 6 FG(E) ,

if it has no predecessor in the partial-order induced by -~-~.

DEFINITION 3.4. A First-Generation object supports a sin-
gle operation - First, which every process can call once. The
operation returns a boolean value. Any correct implementa-
tion must meet the following requirements for every execu-
tion E:

• An operation which is not in F G (E) cannot return
true;

• I f all the operations in F G (E) terminate, then at least
one of them returns true.

LEMMA 3.9. First-Generation is in Influence(n).

PROOF. We denote by Firs t i the First operation per-
formed by process i, 1 < i < n. It is immediate from the
problem-definition that the initial state has influence level
n - 1, with (e.g.) First1 an (n - 1) influenced-operation and
First~, 2 < i < n its infiuencers. []

We now present a simple O(x/~) time lock-free n-process
protocol implementing a First-Generation object. The pro-
tocol uses an array of multi reader multi writer atomic reg-
isters, mark, of size [V~]. The entries of the mark array are
initialized to false. The code implementing the First opera-
tion is shown in Figure 1. The unique id of each process is
stored in a local register called myId.

boolean First()
{
for (k=O; k< (sizeof mark); k++)

if (mark(k) == true)

return false;
mark[sqrt (myId)] = true ;

return true ;
}

F i g u r e h F i r s t O p e r a t i o n C o d e

The proof of the following lemma is straightforward and
is therefore omitted.

LEMMA 3.10. The code shown in Figure 1 correctly im-
plements a First-Generation object, and has memory steps
complexity of O(x/rn).

4. DISCUSSION AND FURTHER RESEARCH
This paper introduces the operation-valency technique and

the influence metric for reasoning about multi-valued proto-
cols, and uses them to obtain v/(n) time lower bounds for
a broad class of objects. The time metric we use - memory
steps - is similar to the communication-cost metric and the
remote-memory-references metric used by [1, 2, 6] in that it
counts only memory references that cannot be resolved by
a local cache.

We have proven an fl(x/~) time lower bound for all objects
in the Influence(n) class, and we have also shown that the
bound is tight for some objects in it. For most of the inter-
esting objects in Influence(n), however, including lineariz-
able counters, stacks and queues, all known lock-free im-
plementations require f2(n) time. Note that for linearizable
objects such as these, differently from the First-Generation
object, there's generally a requirement of distinctness - i.e.
there are scenarios in which all n high-level operations are
required to return distinct values. Finding the tight time
complexity for this class of objects remains an interesting
open problem.

It would also be interesting to see whether our f2(~/~)
lower bound for a single operation holds also for the proto-
col's amortized complexity, possibly by showing that it holds
for f2(n) different operations.

90

5. ACKNOWLEDGEMENTS
We would like to thank Ori Shalev for helpful comments.

Comments of the anonymous PODC referees were also very
helpful.

6. REFERENCES
[1] Anderson and Yang. Time/contention trade-offs for

multiprocessor synchronization. INFCTRL:
InJbrmation and Computation (formerly Information
and Control), 124, 1996.

[2] J. Anderson and Y. Kim. An improved lower bound
for the time complexity of mutual exclusion, 2001.

[3] C. Busch, N. Hardavellas, and M. Mavronicolas.
Contention in counting networks. In Symposium on
Principles of Distributed Computing, page 404, 1994.

[4] C. Busch and M. Mavronicolas. An efficient counting
network. In Proceedings of the 1st Merged
International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing
(IPPS/SPDP'98), pages 380-385, 1998.

[5] B. Chor, A. Israeli, and M. Li. On processor
coordination using asy.nchronous hardware. In
Proceedings of the 6th A CM Symposium on Principles
of Distributed Computing (PODC), pages 86-97, New
York, NY, 1987. ACM Press.

[6] R. Cypher. The communication requirements of
mutual exclusion. In A CM Proceedings of the Seventh
Annual Symposium on Parallel Algorithms and
Architectures, pages 147-1,56, 1995.

[7] C. Dwork, M. Herlihy, azld O. Waarts. Contention in
shared memory algorithms. Journal of the A CM
(JACM), 44(6):779-805, 1!)97.

[8] F. E. Fich and E. Ruppert. Lower bounds in
distributed computing. In International Symposium on
Distributed Computing, pages 1-28, 2000.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374-382, April
1985.

[10] M. Herlihy. Wait-free synchronization. ACM
Transactions On Programming Languages and
Systems, 13(1):123-149, Jan. 1991.

[11] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124-149, January 1991.

[12] M. Herlihy, N. Shavit, and O. Waarts. Linearizable
counting networks. Distributed Computing,
9(4):193-203, April 1996.

[13] P. Jayanti. A time complexity lower bound for
randomized implementations of some shared objects.
In Symposium on Principles of Distributed Computing,
pages 201-210, 1998.

[14] M. C. Loui and H. H. Abu.-Amara. Memory
requirements for agreement among unreliable
asynchronous processes. Advances in Computing
Research, 4:163-183, 1987.

[15] N. Lynch. A hundred impossibility proofs for
distributed computing. In .Proceedings of the 8th A CM
Symposium on Principles of Distributed Computing
(PODC), pages 1-28, New York, NY, 1989. ACM
Press.

[16] M. Merrit and G. Taubenfeld. Knowledge in shared
memory systems. In A CM Symp. on Principles of
Distributed Computing, pages 189-200, 1991.

91

