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ABSTRACT 
This paper introduces operation-valency, a generalization of 
the valency proof technique originated by Fischer, Lynch, 
and Paterson. By focusing on critical events that  influ- 
ence the return values of individual operations rather then 
on critical events that  influence a protocol's single return 
value, the new technique allows us to derive a collection 
of realistic lower bounds for lock-free implementations of 
concurrent objects such as linearizable queues, stacks, sets, 
hash tables, shared counters, approximate agreement, and 
more. By realistic we mean that they follow the real-world 
model introduced by Dwork, Herlihy, and Waarts, count- 
ing both memory-references and memory-stalls due to con- 
tention, and that  they allow the combined use of read, write, 
and read-modify-write operations available on current ma- 
chines. 

By using the operation-valency technique, we derive an 
f~(X/~) non-cached shared memory accesses lower bound on 
the worst-case time complexity of lock-free implementations 
of objects in Influence(n), a wide class of concurrent objects 
including all of those mentioned above, in which an individ- 
ual operation can be influenced by all others. 

We also prove the existence of a fundamental relationship 
between the space complexity, latency, contention, and "in- 
fluence level" of any lock-free object implementation. Our 
results are broad in that  they hold for implementations com- 
bining read/write memory and any collection of read-modify- 
write operations, and in that  they apply even if shared mem- 
ory words have unbounded size. 

Categories and Subject Descriptors 
C.1.4.1 [ C o m p u t e r  S y s t e m s  Organ iza t i on ] :  Processor 
Architectures--Parallel  Architectures, Distr~ibuted Architec- 
tures 
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1. INTRODUCTION 
In 1993, Dwork et. al [7] introduced a formal model to 

capture the real world phenomenon of memory contention 
on today's shared memory machines, machines that  allow 
read, write, and read-modify-write (RMW) operations. Us- 
ing FLP-style valency arguments, they proved that  there 
are inherent tradeoffs between contention and latency 1 in 
concurrent data structure design. Their work was extended 
in several directions, most notably in the context of mutual  
exclusion [1, 2, 6] and counting networks [3, 4]. 

This paper presents ope¢ution-valency, a generalization of 
the valency proof technique of Fischer et. al (FLP) [9], and 
uses it to continue the above work in deriving real-world time 
complexity lower bounds for state of the art concurrent ob- 
jects. As surveyed by Lynch [15] and by Fich and Rupert [8], 
there are numerous elegant extensions and reformulations of 
the FLP-style valency technique. The main difference be- 
tween the operation-valency approach we present here and 
FLP-style arguments is that  we focus on temporary changes 
in the anticipated results of individual-ope'rution solo execu- 
tions rather than on permanent changes in the valency of 
the protocol as a whole. In doing so, we are able to capture 
some of the complexity resulting from the influence among 
shared object operations that  return distinct yet dependent 
values. 

The time metric we use, which we call memory steps, 
counts only first-access shared memory events, and memory 
stalls due to contention in writing to shared locations. It is 
stricter than the time metric used by [7], as the later counts 
all shared memory references and also counts memory stalls 
due to contention in reading; it is similar to the communi- 
cation cost metric used by Cypher [6], and to the remote 
memory references metric used by Anderson and Yang [1], 
and by Anderson and Kim [2], in that a single unit  of both 
metrics corresponds to a shared memory reference that  can- 
not be resolved by a local cache 2 

ZIn [7] Dwork et. al define a protocol's latency to be the 
maximal number of shared variable accesses, over all execu- 
tions, a single high-level operation does. 
2Note, however, that the communication cost metric and 
the remote memory references metric are stricter than our 
memory steps metric, since in distributed shared memory 
(DSM) systems, they do not count references to local mem- 
ory, whereas such references may be connted as memory 
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We use the new operation-valency technique to derive a 
collection of tradeoffs and lower bound results. Specifically, 
we axe able to show an f2(v/~ ) time-complexity lower bound 
on lock-free implementations of objects in a class we call 
Influence(n), a wide class of concurrent objects in which an 
individual operation can be influenced by f~(n) other op- 
erations. Influence(n) includes data structures such as lin- 
earizable queues, stacks, shared counters, hash tables, sets, 
multi-sets, and approximate agreement objects. Our results 
are the first known time complexity lower bounds for im- 
plementing these objects using any RMW operation. Be- 
fore listing our results in detail, let us briefly describe the 
operation-valency technique. 

1.1 The Operation-Yalency Technique 
Valency arguments, introduced by Fischer et. al [9], have 

been used extensively [5, 7, 10, 14] to derive impossibility 
results and lower bounds for consensus and related prob- 
lems. In problems such as consensus, a protocol is required 
to eventually output  a single protocol value. Valency ar- 
guments classify system states according to whether they 
are univalent or multivalent. A state S is univalent if, in 
any two execution extensions starting from S, the protocol 
outputs the same value, and multivalent otherwise. Thus, 
essentially, a state S is unvialent iff the protocol's output 
value is already determined in S 3. The valency technique 
looks at critical events that  atomically change the system 
state from multivalent to univalent. Valency arguments are 
then applied w.r.t, to these critical events to derive impos- 
sibility results or lower bounds. 

The basic idea behind our operation-valency technique is 
to generalize the approach of [9] by looking at the return 
values of individual operations instead of the single return 
value of the protocol as a whole. Similarly to FLP-style va- 
lency, we identify critical events that  atomically affect return 
values, and we argue about the order and location of these 
events to obtain our results. We note, however, the signif- 
icant differences between operation-valency and FLP-style 
valency: 

• FLP-style valency looks at a single protocol output 
value; operation-valency looks at the output value of 
specific operations, in protocols where different opera- 
tions are allowed to return, different values; 

• FLP-style valency looks at critical events that have 
permanent effect on the protocol output value: be- 
fore the event, there exist two different execution ex- 
tensions that yield two different output values; af- 
ter the critical event is executed, all execution exten- 
sions yield the same protocol output value. Operation- 
valency looks at a different class of critical events, 
which we call modifying events. These events atom- 
ically modify the return value of a solo execution of a 
specific operation R: before such a modifying event e 
is executed, R's solo execution must return some value 
V; right after e is executed, R's solo execution must 
return some other value. If after e is executed, addi- 
tionM events are executed, a solo execution of R may, 
once more, have to return value V. This implies that 
the effect of a modifying event may be temporary. 

steps by our metric. 
3The output value may still be nnknown to all participating 
processes, however, even in a univalent state. 

As an example, consider an implementation of a "one 
time" n-process linearizable counter object allowing fetch- 
and-increment (FAI) operations. Before execution starts, 
any process may start a solo execution that  returns 1. Let 
E be an execution where process p is idle, and assume some 
process q, q ~ p, completes its FAI operation in E, then a 
solo execution by p after E must return a value bigger than 
1. We identify the critical modifying memory events, write, 
or RMW events, following which the return value of p's solo 
execution is modified. Our proof technique constructs ex- 
ecutions in which such modifying events are pending, and 
shows that the operations whose return values are about 
to be atomically influenced by them must read the mem- 
ory locations on which they are pending, otherwise we can 
construct indistinguishable executions that  will lead to con- 
tradicting outcomes. 

1.2 Our Results 
To characterize the coordination requirements of shared 

objects, we introduce the influence level metric L inibrmally 
defined as the maximal number of high level operations by 
other processes that can influence the outcome of another 
given process' high level operation. For example, in a lin- 
earizable shared counter, the outcome of a given operation 
can be influenced by n - 1 others: if it runs alone it will 
return one value, but  if any of the n - 1 other processes 
precedes it, the value returned will be different. 

1.2.1 New Fundamental Tradeoffs 
We prove that the following fundamental relationships ex- 

ist for all lock-free protocols. Let P be a lock-free protocol 
for a shared object with influence level I; let L(P), S(P), and 
C(P) respectively denote the latency, space complexity, and 
write-contention of P,  then: 

L(P) > I /C(P),  S(P) > I /C(P)  (1) 

For example, for linearizable counting this tradeoff strength- 
ens a result of Herlihy et. al [12], which try to capture 
contention via a static measure of capacity: the maximal 
number of processes c(P) that access any particular vari- 
able in any execution. They prove the existence of the 
tradeoff L(P) > (n-1)/c(P) between the capacity and la- 
tency of linearizable counters. However, they note that the 
capacity c(P) is not necessarily correlated with contention. 
Our tradeoff captures a stronger relationship between la- 
tency and the actual write-contention for a broad class of 
problems, which for linearizable shared counting implies the 
desired relationship L(P) > (n-1)/C(P). The above tradeoff 
also answers an open question posed by Dwork et. al [7] 
as to whether there exists a tradeoff between latency and 
contention for the approximate agreement problem. 

1.2.2 New Time Complexity Lower Bounds 
We identilty Influence(n), the class of problems where a 

single operation has influence level I E f~(n). This class in- 
cludes lock-free implementations of key objects such as lin- 
earizable queues, stacks, hash-tables, sets, shared counters, 
approximate agreement, and consensus. We prove a lower 
bound of f2(v/n) memory steps for any object belonging to 
Influence(n). This bound has an immediate real-world im- 
plication: any lock-free implementation tor any of the above 
objects on any of today's architectures, using any combina- 
tion of reads, writes, and RMWs, has a worst-case opera- 
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t ion t ime-complexi ty  of at  least v /~  shared memory  accesses; 
moreover,  we show tha t  these accesses cannot  be resolved by 
a local cache. 

Our lower bounds  are the  first real-world t ime  bounds for 
such objects.  T h o u g h  they  seem stronger  t han  Jayant i ' s  in- 
teres t ing O(log n) t ime bounds  [13] on similar objects,  they  
are in a sense or thogonal .  This  is because Jayant i ' s  t ime 
metr ic  does not  count  content ion when accessing shared lo- 
cations. For example,  according to Jayan t ' s  metric,  a shared 
l inearizable counter  for n processes can be implemented  in 
constant  t ime. Unlike our  results, Jayant i ' s  bounds are re- 
s t r ic ted to a model  wi th  only load-locked/s tore-condi t ional ,  
a specific type  of R M W  operat ion.  

Finally, we show tha t  there  exists an object  in Influ- 
ence(n), which we name  First-Generation, for which our 
bound  is t ight ,  t ha t  is, it has O(V'~) t ime complexity. How- 
ever, we believe the  t ight  bounds  on many  interest ing prob- 
lems in Influence(n) are higher, and tha t  the  operat ion-  
valency approach might  be the  key to deriving them. 

2. PRELIMINARIES 

2.1 Shared Memory System Model 
Our model  of an asynchronous shared memory  sys tem is 

based on the  mode l  descr ibed by Cypher  in [6], which is 
based, in turn,  on the  model  given by Merr i t t  and Tauben-  
feld [16]. We will assume tha t  shared objects  are specified 
as in [11]. Our  model  allows three  types of shared memory  
events: a tomic  Read,  a tomic  Write ,  arid Read-Modify-Wri te  
events. No bound  is assumed on register size. An  n-process 
shared m e m o r y  protocol  ( E , P , R , I )  consists of a non-empty  
set E of executions,  a set P of n processes, a set R of mem- 
ory registers, and a funct ion I tha t  assigns an initial value to 
each register  in R .  An  execut ion is a sequence (either finite 
or infinite) of events,  where an event  is an a tomic  memory  
access per formed by a single process. An  event  can have one 
of the  following three  forms: 

• A tomic  Read:  read(p,r,v) indicates tha t  process p reads 
the  value v from register  r;  

• A tomic  Write:  write(p,r,w) indicates tha t  process p 
writes the  value w to register  r;  

• A tomic  R M W :  RMW(p,r,v,w) indicates t ha t  process p 
a tomica l ly  does the  following: it  reads the  value v from 
register  r and computes  w based on v. p then  proceeds 
in one of the  following two ways: if w is different from 
the  special  value null, p writes the  value w to register 
r, o therwise  p does not  wri te  to register r. 4 

Given any event  e, read(e) is t rue  if e is e i ther  a Read or 
a R M W  event,  and write(e) is t rue  if e is a Wri te  event,  
or if e is a RMW(p ,  r, v, w) event  wi th  w ~ null. mere(e) 
is the  m e m o r y  register  accessed (read a n d / o r  wri t ten)  by 
e; proc(e) is the  process tha t  executed  e. For any e E E,  
index(e, E)  -is the  number  of events  t ha t  precede e in E;  
when the  execut ion  discussed is clear from the  context ,  we 
jus t  use index(e). 

4This defini t ion of R M W  events  captures  bo th  condi- 
t ional  (such as: Compare-and-swap,  Test-and-set ,  Load- 
l inked/Store-condi t iona l )  and non condit ional  R M W  opera-  
tions. 

For any finite execut ion E and any sequence of events 
E ' ,  E o E '  denotes the  conca tena t ion  of E arLd E' .  For any 
sequence of events  E', we define procs(E') to  be the  set 
of processes tha t  perform some event  in E ' .  Let  r E R 
be a memory  register,  and E C E a finite execut ion,  then  
value(r, E) (the value of r after E )  is the  value wr i t ten  by 
the last event  in E tha t  wrote  to  r,  or  I ( r )  if there  was no 
such event.  Given an execut ion E and any subset  P C P ,  
we let proj(E, P) denote  the  subsequence of E conta ining 
only the  events  in E tha t  were issued by processes in P .  
If  P ---- {p}, we also use the  no ta t ion  proj(E,p)  instead of 
proj(E, {p}). If proj(El ,p)  = proj(E2,p), we say t h a t  the  
executions E l ,  E2 are indistinguishable by p. 

DEFINITION 2.1. A shared memory protocol satisfies the 
following shared memory  axioms A1 - A3: 

• A I :  I f E o e  E E, then E C E. 

• A2: Let E o  e E E be an execution, and let e be 
a Read or R M W  event, then the value read by e is 
value(mere(e), E). 

• A3: Let E o e E E be an execution, and assume 
proj(E,p) = proj(E' ,p),  then E' o e E E holds. 

Intuitively, Ax iom A 1  states  t ha t  a prefix of any possi- 
ble execut ion is also a possible execut ion;  A x i o m  A 2  s ta tes  
tha t  the value read by any Read  or R M W  event  re turns  the  
value of the  most  recent wri te  to the  accessed register  (or 
the register 's  initial value if there  were no earl ier  writes to 
tha t  register); finally, Ax iom A 3  s ta tes  t ha t  if there  are two 
possible execut ions  tha t  are indis t inguishable  by process p, 
and it is possible for p to per form a memory -ope ra t ion  (ei- 
ther  Read,  Wri te  or R M W )  following one of the  executions,  
then  it is also possible for p to  per form the  same opera t ion  
following the  o ther  execut ion.  

2.2 High Level Operations 
Shared m e m o r y  protocols  suppor t  high-level  opera t ions  

tha t  processes can execute.  We consider  protocols  tha t  
suppor t  at least one opera t ion- type  tha t  re turns  a value. 
High-level operat ions  involve, in general,  bo th  pr ivate-  and 
shared-memory  events; in this paper  we only deal  wi th  shared- 
memory  events, and so we view a high-level opera t ion  Op 
as consisting of a sequence of one or more a tomic  shared 
memory  events, each of which can be ei ther  Read, Write, 
or RMW. We only consider execut ions  where each process 
performs at most  a single high-level operat ion.  5 Let  Op 
be an opera t ion  performed by some process in some exe- 
cut ion E.  We denote  by proc(Op, E) the  process tha t  ex- 
ecutes Op in E ;  we denote  by events(Op, E) the  sequence 
of memory-events  performed by proc(Op) while execut ing  
Op in E.  Whenever  E is clear from the context ,  we s imply 
wri te  proc( Op) azld events( Op). We denote  by f i'rst( Op, E) 
and last(Op, E) the  first and last events,  respectively,  in 
events(Op, E). (Note tha t  f irst(Op, E) and last(Op, E) 
may  be the  same event.)  As before, we omi t  E when it 
is clear from the  context ,  and s imply wri te  f irst(Op) and 
last(Op). We say tha t  an opera t ion  Op starts in E,  and 
write  starts(Op, E), if f irst(Op) appears  in E .  We say 
tha t  an opera t ion  Op is conta ined wi th in  an execut ion  E 
(Op C E) if all the  events of events(Op) appear  in E .  If 

5Obviously, this jus t  s t rengthens  our  lower bounds.  
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Op C E, we denote by result(Op, E) the value returned 
by Op in E.  Let Opl, Op2 be two operations contained in 
E; if index(last(Opl),  E) < index(first(Op2),  E), we write 

Opl -~+ Op2. Note that  for any execution E, -~ is a partial 
order on all the operations contained in E. We say that  an 
execution E is quiescent, if there is no operation that started 
in E but did not terminate in E. We say that  a high-level 
operation Op is pending after an execution E,  if Op can 
start at any time after E. A formal definition follows. 

DEFINITION 2.2. We say that a high-level operation Op 
is pending after an execution E,  if  Op did not start in E, 
and the following holds for every extension E ~ of E: 

E o E '  E EA(-,starts(Op, EoE' ) )  ~ EoE 'o ( f i r s t (Op) )  E E 

Slightly abnsing notation, and for presentation simplicity, 
we sometimes refer to an underlying execution as a state. 
Thus, e.g., instead of saying that  E is quiescent, we may say 
that  the state after E is quiescent; instead of saying that  a 
high-level operation Op is pending after E, we may say that  
after E the system is in a state where Op is pending. 

2.3 The Time Complexity Metric 
Our time complexity metric counts the worst-case num- 

ber of memory steps that  a single high-level operation may 
incur. Our metric counts both first-access shared memory 
events and stalls that  are incurred when a few processes con- 
currently a t tempt  to perform a Write or RMW operation to 
the same memory register. Formal definitions of first-access 
events and stalls follow. 

DEFINITION 2.3. Let E C E be an execution; let e be an 
event in E; let r = mere(e) be the memory register accessed 
by e, and let Op be a high-level operation such that e E 
events(Op, E), then we say that e is a first-access event of 
Op, ire is the first event in events(Op, E) that reads and/or 
writes r. 

In other words, an event is a first-access event of a high- 
level operation Op, if it is the first event of Op to access 
some memory register. 

DEFINITION 2.4. Let E E E be an execution, let l > 0 be 
an integer, and let ej, 0 < j _< l be a sequence of consecutive 
events in E such that the following holds: 

1. Vj, O < j _< l : ej is either a Write or a RMW event. 

2. Vjl, j2, 0 ~ j l  # j2 ~ 1 : 
(p'roc(~j~ ) # proc(e~) ) A (me 'm(~  ) = mem(~j~) ) 

Let Op be the high-level operation whose execution issued 
ej, then we add j stalls to the memory step count of Op on 
account of ej. 

The above definition of stalls captures the fact that  in 
shared memory systems, when a group of processes have 
pending Write or RMW events on the same memory loca- 
tion, then a scheduling adversary can release all these events 
simultaneously, thus causing the operation that  issued the 
second event to incur a single stall, the operation that  issued 
the third event to incur two stalls, and so on. 6 

6This definition of stalls does 'not assume that  concurrent 
write events to the same memory-register are serviced in 
FIFO order, or in any other order. 

2.4 The Influence Metric for Coordination Level 
In this section we define a quantitative metric which is a 

measure of the coordination level of distributed protocols. 
More specifically, the influence level metric is a measure 
of the extent to which concurrently executing operations 
(which we call influencing operations or just influencers) 
can influence the result of another pending operation (which 
we call the influenced operation). To get a feel for this 
metric, consider an n-process protocol that  implements a 
linearizable stack, with push and pap high-level operations. 
Consider a quiescent state S, where the stack contains a sin- 
gle item - the number 1. Assume that  process pl has a pend- 
ing pop operation, and each of the processes pi, 2 < i < n 
has a pending push(i), for 2 < i < n, respectively. Clearly, 
the value returned by the pop operation can be influenced by 
the push operations: if the pop operation is allowed a solo- 
execution while the push operations have not yet begun, 
then, from linearizability, it has to return 1; on the other 
hand, if we allow any interleaved execution of the push op- 
erations where at least one of them terminates, and only 
then start a solo-execution of the pop - then (again from 
linearizability) the pop must return a different value. De- 
pendencies of this type are what we capture in the following 
definitions: 

DEFINITION 2.5. We say that  a s tate  S has influence level 
K (and write I(S) = K )  if the following holds: 

* S is quiescent; 

There is a process that has a pending operation R so 
that a solo-execution of R starting from S returns some 
value V; 

There are K other processes, each having a pending op- 
eration Wi, 1 < i < K,  such that the following holds: 
after any execution E, consisting of events issued by 
the operations Wi, where at least one operation ter- 
minates - a solo-execution of R returns a value other 
than V. r 

• K is 'maximal. 

We say that R is K-influenced in S and that the operations 
Wi are the influencers of R in S. We call V the distinguished 
value of R in S. I f  a state S is not quiescent, we define I(S) 
to be O. 

We next extend the above definition of influence level to 
executions, protocols, and concurrent objects. 

DEFINITION 2.6. The influence level of an execution E, 
denoted by I(E), is the maximum influence level over all 
the states E 'reaches; the infuence level of a protocol P,  
denoted by I[(P), is the maximum, influence level over all its 
executions. 

Slightly abusing notation, we now define the influence 
level of objects. 

DEFINITION 2.7. A concurrent object 0 has influence level 
I, if the influence level of every lock-free protocol implement- 
ing it is at least I. 

7It is not assumed that  the operations W~ return a value. 
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Based on the above definitions, we can now determine 
a lower bound on the influence level of linearizable imple- 
mentations of a concurrent object, based on the object 's 
sequential specification. 

LEMMA 2.1. Let 0 be an object whose sequential specifi- 
cation S includes a history H, such that: 

• H can be extended by a value-returning operation R, 
and result(R, H o R) = V for some V; 

• There are K operations, W~,I < i _< K,  such that 
the following holds: for any non-empty subset of in- 
dices T C {1, . . .  , K ) ,  and for every permutation fiT 
of T,  the following extension of H exists: H~ T = 
HOWaT(1)o...OWaT(iTi)OR and result(R, HaT) ~ V. 

Then any linearizable implementation of 0 has influence 
level at least K.  

PROOF. Immediate from the definition of influence level 
and from the linearizability of the implementation. [] 

3. TRADEOFFS AND LOWER BOUNDS 
We consider a lock-free n-process protocol, P, for n > 2, 

that  has influence level K. We define P ' s  latency as the 
maximal number of shared memory events issued by a single 
high-level operation, over all executions, and denote it by 
L(P); we define P ' s  read latency as the maximal number of 
r ead /RMW shared memory events issued by a single high- 
level operation, over all executions, and denote it by LIt(P); 
we define P ' s  space complexity as the total number of shared 
memory registers read/wri t ten by P, over all executions, 
and denote it by S(P); we define P ' s  write-contention as the 
maximal number of consecutive wr i t e /RMW events to the 
same memory register, over all executions, and denote it by 
C(P). Recall that  the definition of a protocol's influence 
level states that  P can be brought to a state with influence- 
level K. For presentation-simplicity, and w.l.o.g., the proofs 
in this section assume that  the execution starts from such a 
state S, where process p has a pending influenced operation 
R with distinguished value V, and each process ql E Q, 1 < 
i < K has a pending influencer Wi. Our proofs need only 
consider executions where each process executes at most a 
single operation s . 

The following lemma defines what modifying events are 
and proves their existence. 

LEMMA 3.1. Let E be an execution such that procs(E) C_ 
Q, and assume some influencer Wi completes in E, then 
there is at least one event e E E, which we call a modifying 
event, such that the following holds: 

• Until e is executed, a solo execution of R must return 
V; 

• I f  a solo execution of R starts immediately after e, then 
it returns a value other than V. 

PROOF. Since S has influence level K w.r.t. R, with V 
as its distinguished value, then before E starts, a solo exe- 
cution of R must return V. On the other hand, since some 
infiuencer completes in E, then, again from the definition 
of influence, a solo execution of R cannot return V after E, 
hence the result follows. [] 

SObviously this just strengthens our lower bounds. 

Intuitively, we consider executions that  start  from a state 
S, with influence level K,  that  only include events executed 
by the influencers. A modifying event e is an event within 
such an execution. Before e occurs, a solo execution of R 
must return V; right after e is executed, a solo execution of 
R must return a different value. 

We now prove that  modifying events are either write or 
RMW events. 

LEMMA 3.2. Let e E E be a modifying event, then write(e) 
holds. 

PROOF. Assume by way of contradiction that  the claim 
does not hold, then e does not write any value. Let E = 
E%eoE",  then from the definition of modifying events, right 
after E '  (i.e. just before e) p can execute a solo execution of 
R that  returns V, and so there is an extension E1 of E '  such 
that  E1 = events(R), proc(R) = p, and result(R, E' oE1) = 
V. Since the modifying event e does not involve a write, and 
since e is not an event of p, the executions E '  and E '  o e are 
indistinguishable by p, and therefore, by Axiom A3 of the 
shared memory model, E '  o e o E1 is also an execution of 
P,  which implies that  a solo execution of R returns V also 
right after e is performed. This obviously implies that  e is 
not a modifying event, a contradiction. [] 

The following lemma proves that  starting from state S, 
the processes in Q can be brought to a state where they all 
have pending modifying events. 

LEMMA 3.3. There is a finite execution E E E, such that 
following E every q C Q has a pending modifying event. 

PROOF. From the definition of influence level, no influ- 
encer can terminate before some modifying event is per- 
formed. We construct an execution E where every process 
q E Q has a pending modifying event, by letting the pro- 
cesses qi, 1 < i < k, initiate simultaneously their influencers, 
and by letting each q~ execute its infiuencer, until it is about 
to perform a modifying event. Note that  this is a~ iterative 
construction, as bringing one process to be on the verge of 
performing a modifying event can take another process out 
of this state, but the constructed execution is finite because 
P is lock-free. [] 

As a corollary we can prove the following tradeoff between 
the space-complexity and write-contention of any lock-free 
object implementation. 

THEOREM 3.4. Let 0 be an object with influence level 
and let P be a lock-free implementation of O, then the fol- 
lowing holds: 

S(P) > r~/c(P)]  

PROOF. Since P implements O, I (P)  _> I. Consequently, 
from Lemmas 3.2 and 3.3, P can be brought to a state where 
at least ~ write or RMW events are pending. Since at most 
C(P) such events can be pending on any single register, the 
result follows. [] 

We next prove a similar tradeoff between the latency and 
write-contention of lock-free implementations. We actually 
prove a stronger result, by showing that  the tradeoff holds 
even if we exclude write events from the latency count. 
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THEOREM 3.5. Let 0 be an object with influence level I 
and let P be a lock-free implementation of O, then the fol- 
lowing holds: 

L(P) ~ Lll(P) > rx/c(p)]  

PROOF. As all the events counted by La(P) are also counted 
by L(P), the first inequality is obvious. As for the second 
inequality, let I (P)  = K. Since P implements O, we have 
K > L From Lemma 3.3, P has an execution E, such 
that following E each of q l , ' "  qK has a pending modifying 
event. Let B be the set of registers to which these outstand- 
ing events are about to write. Note that IBI _> rK/C(P)] .  
Since no modifying event has been performed yet, then from 
the definition of modifying ewents E can now be extended 
by a sequence E' ,  which are the events of the solo execution 
of operation R by process p, so that resul t (R)  = V. We 
prove the theorem by showing that  R must read all the reg- 
isters in B. Assume to the contrary, then R returns a value 
without reading some register r E B. Let e be some modi- 
fying event which is outstanding on register r, then clearly 
p r o j ( E  o e o E ' ,p )  = p r o j ( E  o E ~ o e,p) and so R must re- 
turn the same value whether it executes before the event e 
or after it, which is a contradiction to our assumption that 
e is a modifying event. -[] 

Based on Theorem 3.5, we can now establish a lower 
bound on the memory steps complexity of any lock-free ob- 
ject implementation. 

THEOREM 3.6. Let 0 be an object with influence level I, 
and let P be a lock-free implementation of O, then the mem- 
ory steps complexity of P is at least [~/~J. 

PROOF. Let [(P) = K. Since P implements O, we have 
K _> L By using Lemma 3.3, there is an execution E, such 
that following E each of ql, • - • qk has a pending modifying 
event. According to Lemma 3.2 all of the modifying events 
are either Write or RMW events. Let B be the set of reg- 
isters to which these outstanding events are about to write. 
Assume that  IBI < [~/~J, then there is at least one regis- 
ter r E B that  has at least [x/-I~J outstanding events about 
to write to it. Let Wj be the influencer whose outstanding 
event is executed last, then Wj is charged by It/k] - 1 mem- 
ory steps because of the stalls it incurs when accessing r, plus 
an additional memory step on account of the first access of 
r, which proves the theorem. Otherwise, IB[ _> Ix/K], and 
based on Theorem 3.5 R can be made to access all the reg- 
isters in B. Consequently we can charge R by [B I memory 
steps for the first-access events of all the registers in B. [] 

3.1 Memory Steps and Time 
We now discuss how the memory steps lower bound trans- 

lates to a time lower bound. For this, we need the following 
definition: 

DEFINITION 3.1. Let M be a shared memory multiproces- 
sot; we denote by nlcr-time(M) the minimal time a non- 
local-cache-reference takes in ~4, i.e. the minimal time in 
M of a memory reference that is not resolved by the local 
cache ('if any) of the processor that issued it. 

If M is a distributed shared memory system without caches, 
nlcr-time(M) is simply the minimal time it takes a processor 
in M to access its local memory (the minimum taken over 

all processors); if M is a cache-coherent multiprocessor, then 
the minimum in the above definition is taken over all mem- 
ory references that cannot be resolved by the local cache 
and generate interconnect traffic, such as: references to a 
memory location that  is not in the local cache; writes that  
generates cache-invalidate transactions; writes that  gener- 
ate cache-update transactions, or any other shared memory 
references not resolved in the local cache. 

In the proof of Theorem 3.6 we have shown that  either 
some operation incurs at least [~/~J consecutive stalls, or 
some other operation performs at least L~/~J first-access events. 
We now analyse both cases. 

• In any shared-memory multiprocessor M, when mul- 
tiple processors attempt to write to the same memory 
register simultaneously, the writes are being serialized 
and are serviced one after the other. Moreover, even if 
M is a cache-coherent system, x consecutive stalls take 
at least x. nlcr-time(M) time: if the cache scheme is 
write-through, then every write generates a cache miss; 
and even if the cache scheme is write-back, then since 
the writes are by different processors, none of them 
(except, maybe, the first) can be accomplished by just 
updating the local cache: they have to either invalidate 
or update other caches. 

• Clearly in no shared-memory multiprocessor can a first- 
time shared memory read be resolved from the lo- 
cal cache; as for first-time shared memory writes, in 
write-through cache schenms every write generates a 
cache-miss, and in write-back cache schemes, the first 
write to a shared location must either invalidate or 
update other caches, which implies interconnect traf- 
fic. Consequently, if we assume M does not support 
non-blocking reads and writes, then x first-time access 
events by an operation take at least x. nlcr-time(M) 
time. If M does support multiple outstanding refer- 
ences per processor, then, theoretically, x first-access 
references may be resolved in a time equivalent to x 
cache references. 

3 .2  T h e  Influence(n) O b j e c t s  C l a s s  

We now define the Influence(n) class of concurrent ob- 
jects, that contains objects for which every lock-free n-process 
implementation has influence level in fl(n). We then show 
that many key distributed objects belong to this class, and 
thus have an inherent operation complexity of ~(~/~) mem- 
ory steps. 

DEFINITION 3.2. A generic object O is an object that is 
specified for  any number of  processes n. The influence- 
function of O, denoted Ko, is defined as follows: Io(n)  = K ,  
i f  the influence level of every lock-free n-process implemen- 
tation of 0 is at least K .  

DEFINITION 3.3. Influence(n) is the objects class that con- 
tains all generic objects 0 such that Io  is in ~(n) .  

It is easily shown that the following objects are in Influ- 
ence(n): linearizable counters, stacks, queues, hash-tables, 
sets, approximate agreenmnt. As two examples, we show 
that approximate agreement and linearizable counting be- 
long to Influence(n). 

An approximate agreement object supports a single decide 
operation. Each participating process calls decide with the 
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process' real-number input-value. The values returned by 
the decide operation to different processes are required to 
be within a given distance e of each other, and are also 
required to be within the range of the inputs. 

THEOREM 3.7. Approximate agreement is in Influence(n). 

PROOF. We prove that  any lock-free approximate agree- 
ment protocol for n processes has influence level n -  1. Con- 
sider the problem instance where process pl, 1 < i < n, 
starts with value 2(i - 1). e. We denote the decide operation 
executed by process i as decidei. We prove that  the initial 
state, S, has influence level n - 1, by showing that decide1 
is i n - 1)-influenced in S, with decide~,2 < i < n as its 
influencers: clearly, if decide1 runs alone, it must return 0. 
On the other hand, in any execution E which does not in- 
volve pl,  in which some other process decides - the decision 
value must be in the range [2e. • • 2 ( n -  1)e], and so if decide1 
starts a solo execution al'ter E, decide~ must return a value 
no less than e. [] 

A shared counter object supports a single 
fetch-and-increment ( F A I )  operation. The counter-values 
returned by F A I  operations are required to be unique nat- 
ural numbers. It  is also required that  in quiescent states 
the values distributed by the counter constitute a contigu- 
ous range of numbers. Linearizable shared counters are also 
required to be lineaxizable, i.e. if FAI~ and F A I j  are two 

activations of the F A I  operation, and FAI l  -~ F A I j  in an 
execution E, then resul t (FAI~,  E)  < r e s u l t ( F A I j ,  E) must 
hold. 

THEOREM 3.8. Linearizable counting is in Influence(n). 

PROOF. We prove that  any lock-free linearizable-counting 
protocol for n processes has influence level n - 1. Consider 
the sequential specification of a shared counter object L C  for 
n processes, and let H be a history after which the counter 
value is V. We denote an F A I  operation performed by 
process i by F A I i .  H can be extended by F A I l ,  that must 
return V. On the other hand, if the execution of F A I l  
is preceded by any FAI~,2  < i _< n, operations, in any 
order, then clearly F A I l  must return a value greater than 
V. Consequently, by using Lemma 2.1 the result follows [] 

The proofs that  linearizable stacks, queues, sets and hash- 
tables axe in Influence(n) axe very similar to the proof of 
Theorem 3.8, and are consequently omited. 

We next present the First-Generation problem. We show 
that it belongs to the I ~ u e n c e ( n )  class and that  it can be 
implemented in O(v ' n  ) memory steps; thus we prove, that  
there are problems in Influence(n) for which our bound is 
tight. Let E be an execution; we say that an operation Op 
belongs to the first-generation of E, and write Op 6 FG(E) ,  

if it has no predecessor in the partial-order induced by -~-~. 

DEFINITION 3.4. A First-Generation object supports a sin- 
gle operation - First, which every process can call once. The 
operation returns a boolean value. Any  correct implementa- 
tion must meet the following requirements for  every execu- 
tion E: 

• An operation which is not in F G ( E )  cannot return 
true; 

• I f  all the operations in F G ( E )  terminate, then at least 
one of them returns true. 

LEMMA 3.9. First-Generation is in Influence(n). 

PROOF. We denote by Firs t i  the First operation per- 
formed by process i, 1 < i < n. It is immediate from the 
problem-definition that the initial state has influence level 
n -  1, with (e.g.) First1 an ( n -  1) influenced-operation and 
First~, 2 < i < n its infiuencers. [] 

We now present a simple O(x/~ ) time lock-free n-process 
protocol implementing a First-Generation object. The pro- 
tocol uses an array of multi reader multi writer atomic reg- 
isters, mark, of size [V~]. The entries of the mark array are 
initialized to false. The code implementing the First opera- 
tion is shown in Figure 1. The unique id of each process is 
stored in a local register called myId. 

boolean First() 
{ 
for (k=O; k< (sizeof mark); k++) 

if (mark(k) == true) 

return false; 
mark[sqrt (myId)] = true ; 

return true ; 
} 

F i g u r e  h F i r s t  O p e r a t i o n  C o d e  

The proof of the following lemma is straightforward and 
is therefore omitted. 

LEMMA 3.10. The code shown in Figure 1 correctly im- 
plements a First-Generation object, and has memory steps 
complexity of O( x/rn ). 

4. DISCUSSION AND FURTHER RESEARCH 
This paper introduces the operation-valency technique and 

the influence metric for reasoning about multi-valued proto- 
cols, and uses them to obtain v/(n)  time lower bounds for 
a broad class of objects. The time metric we use - memory 
steps - is similar to the communication-cost metric and the 
remote-memory-references metric used by [1, 2, 6] in that  it 
counts only memory references that  cannot be resolved by 
a local cache. 

We have proven an fl(x/~ ) time lower bound for all objects 
in the Influence(n) class, and we have also shown that  the 
bound is tight for some objects in it. For most of the inter- 
esting objects in Influence(n), however, including lineariz- 
able counters, stacks and queues, all known lock-free im- 
plementations require f2(n) time. Note that  for linearizable 
objects such as these, differently from the First-Generation 
object, there's generally a requirement of distinctness - i.e. 
there are scenarios in which all n high-level operations are 
required to return distinct values. Finding the tight time 
complexity for this class of objects remains an interesting 
open problem. 

It would also be interesting to see whether our f2(~/~) 
lower bound for a single operation holds also for the proto- 
col's amortized complexity, possibly by showing that  it holds 
for f2(n) different operations. 
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