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Abstract

In practice, the design of distributed systems is of-

ten geared towards optimizing the time complex-

ity of algorithms in %orrnal” executions, i.e. ones

in which at most a small number of failures oc-

cur, while at the same time building in safety pro-

visions to protect against many failures. In this

paper we present an optimally fast and highly re-

silient shared-memory randomized consensus algo-

rithm that runs in only O(log n) expected time if

@or less failures occur, and takes at most O(*)

expected tim~ for any j. Every previously known

resilient algorithm required polynomial expected

time even if no faults occurred. Using the novel con-

sensus algorithm, we show a method for speeding-

up resilient algorithms: for any decision problem on

n processors, given a highly resilient algorithm as

a black box, it modularly generates an algorithm

with the same strong properties, that runs in only

O(log n) expected time in executions where no fail-

ures occur.
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1 Introduction

1.1 Motivation

This paper addresses the issue of designing

highly resilient algorithms that perform opti-

mally when only a small number of failures oc-

cur. These algorithms can be viewed as bridg-

ing the gap between the theoretical goal of hav-

ing an algorithm with good running time even

when the system exhibits extremely patholog-

ical behavior, and the practical goal (cf. [19])

of having an algorithm that runs optimally on

“normal executions,)’ namely, ones in which no

failures or only a small number of failures oc-

cur. There has recently been a growing inter-

est in devising algorithms that can be proven

to have such properties [7, 11, 13, 22, 16]. It

was introduced in the context of asynchronous

shared memory algorithms by Attiya, Lynch

and Shavit [7]. 1

The consensus problem for asynchronous

sha~ea’ memory systems (defined below) pro-

vides a paradigmatic illustration of the prob-

lem: for reliable systems there is a trivial al-

gorithm that runs in constant time, but there

is provably no deterministic algorithm that is

‘ [11, 13,22, 16] treat it in the context of synchronous

message passing systems.
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guaranteed to solve the problem if even one

processor might fail. Using randomization, al-

gorithms have been developed that guarantee

an expected execution time that is polynomial

in the number of processors, even if arbitrar-

ily many processors fail. However, these al-

gorithms pay a stiff price for this guarantee:

even when the system is fully reliable and syn-

chronous they require time at least quadratic

in the number of processors.

1.2 The consensus problem

In the fault-tolerant consensus pToblem each

processor z gets as input a boolean value z;

and returns as output a boolean value d~ (called

its decision value) subject to the following con-

straints: Validity : If all processors have the

same initial value, then all decision values re-

turned are equal to that value; Consistency: All

decision values returned are the same; and Ter-

mination : For each non-faulty process, the ex-

pected number of steps taken by the processor

before it returns a decision value is finite.

We consider the consensus problem in

the standard model of asynchronous shaTed-

memory systems. Such systems consist of n

processors that communicate with each other

via a set of shared-registers. Each shared reg-

ister can be written by only one processor, its

owner, but all processors can read it. The

processors operate in an asynchronous manner,

possibly at very different speeds. In addition it

is possible for one or more of the processors

to halt before completing the task, causing a

faiLstop fault. Note that in such a model it is

impossible for other processors to distinguish

between processors that have failed and those

that are delayed but non-faulty. We use the

standard notion of asynchronous time (see, e.g.,

[3, 17, 18,20, 21]) in which one time unit is de-

fined to be a minimal interval in the execution

of the algorithm during which each non-faulty

processor executes at least one step. Thus if

during some interval, one processor performs

10 operations while another performs 100, then

the elapsed time is at most 10 time units. Note

that an algorithm that runs in time T under

this measure of time, is guaranteed to run in

real time T . A where A is the maximum time

required for a non-faulty processor to take a

step.

Remarkably, it has been shown that in this

model there can be no deterministic solution

to the problem. This result was directly proved

by [2, 9, 20] and implicitly can be deduced from

[12, 15]. Herlihy [17] presents a comprehensive

study of this fundamental problem, and of its

implications on the construction of many syn-

chronization primitives. (See also [23, 8]).

While it is impossible to solve the consen-

sus problem by a deterministic algorithm, sev-

eral researchers have shown that, under the as-

sumption that each processor has access to a

fair coin, there are randomized solutions to the

problem that guarantee a probabilistic version

of termination. Chor, Israeli, and Li [9] and

Abrahamson [1] provided the first solutions to

the problem, but in the first case the solution

requires a strong assumption about the opera-

tion of the random coins available to each pro-

cessor, and in the latter the expected running

time was exponential in n. A breakthrough

by Aspnes and Herlihy [4] yielded an algorithm

that runs in expected time O(a) (here ~

is the (unknown) number of faulty processor);

later Attiya, Dolev and Shavit [6] and Asp-

nes [5] acheived a similar running time with

algorithms that use only bounded size memory.

1.3 Our results

In this paper, we present a new randomized

consensus algorithm that matches the 0( J&)

expected time performance of the above algo-

rithms for G < f < n, yet exhibits op tima~

expected time O(log n) in the presence of -

faults or less.

The starting point for our algorithm is a sim-

plified and streamlined version of the Aspnes-

Herlihy algorithm. From there, we reduce the

2A straightforward modification of the deterministic

lower bound of [7] implies an Q(log n) lower bound.
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running time using several new techniques that

are potentially applicable to other share mem-

ory problems. The first is a method that al-

lows processors to collectively scan their shared

memory in expected time O(log n) time despite

asynchrony and even if a large fraction of the

processors are faulty. The second is the con-

struction of an efficient shared-coin that pro-

vides a value to each processor and has the

property that for each b E {O, 1} there is a

non-trivial probability that all of the proces-

sors receive value b. This primitive has been

studied in many models of distributed comput-

ing (e.g., [24] ,[10]); polynomial time implemen-

tations of shared-coins for shared memory sys-

tems were given by [4] and [5]. By combining

three distinct shared coin implementations us-

ing the algorithm interleaving method of [7], we

construct a shared coin which runs in expected

time O(log n) for executions where ~ < W,

and in O(s) expected time for any ~.

The above algorithm relies on two standard

assumptions about the characteristics of the

system: (z) the atomic registers addressable in

one step have size polynomial in the number

of processors and (ii) the time for operations

other than writes and reads of shared mem-

ory is negligible. We provide a variation of our

consensus algorithm that eliminates the need

for the above assumptions: it uses registers of

logarithmic size and has low local computation

time. This algorithm is obtained from the first

one by replacing the randomized procedure for

performing the collective scan of memory by

a deterministic algorithm which uses a binary

tree to collect information about what the pro-

cessors have written to the vector.

In summary, our two different implementa-

tions of the global scan primitive give rise to

two different wait-free solutions to the consen-

sus algorithm. In the case that the number

of failing processors, ~, is bounded by fi,

our first algorithm acheives the optimal ex-

pected time of O(log n) and our second algo-

rithm acheives expected time O(log n + j), and

in general, when f is not specially bounded,

both algorithms run in expected time 0(~).
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Finally, using the fast consensus algorithm

and the alternated-interleaving method of [7],

we are able to prove the following powerful the-

orem: for any decision problem P, given any

wait-free or expected wait-free solution algo-

rithm A(P) as a black box, one can modularly

generate an expected wait-free algorithm with

the same worst-case time complexity, that runs

in only O(log n) expected time in failure-free

executions.

The rest of the paper is organized as fol-

lows. In the next section we present a pre-

liminary ‘(slow” consensus algorithm which is

based on the structure of the Aspnes - Herlihy

algorithm. We show that this algorithm can be

defined in terms of the two primitives, scan and

shared-flip. In Section 4, we present a fast im-

plementation of the scan primitive and in Sec-

tion 5, we describe our fast implementations of

the coin primitive. The last section describes

the above-mentioned application and concludes

with some remarks concerning extensions and

improvements of our work. When possible, we

give an informal indication of the correctness

and timing analysis of the algorithms. Proofs

of correctness and the timing analysis will ap-

pear in the final paper.

2 An Outline of a Consensus

Algorithm

This section contains our main algorithm for

the consensus problem, which we express using

two simple abstractions:a shaTed-coin, which

was used in [4] and a shared write-once-vector.

Each has a “natural” implementation, which

when used in the algorithm yields a correct

but very slow consensus algorithm. The main

contributions of this paper, presented in the

two sections following this one, are new highly

efficient randomized implementations for these

primitives. Using these implementations in the

consensus algorithm yields a consensus algo-

rithm with the properties claimed in the in-

troduction.

A wTite-once vector v consists of a set of n
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memory locations, one controlled by each pro-

cess. The location controlled by processor z is

denoted vi. All locations are initialized to a null

value 1- and each processor can perform a single

write operation on the vector to the location it

controls. Each processor can also perform one

or more scan operations on the vector. This op-

eration returns a “view” of the vector, that is, a

vector whose Zth entry contains either the value

written to vi by processor z or is J-. The key

property of this view is that any value written

to v, before the scan began must appear in the

view. A trivial O(n) -time implementation of a

scan that ensures this property is: read each

register of the vector in some arbitrary order

and return the values of each read. Indeed,

it would appear that any implementation of a

scan would have to do something like this; as

we will see later, if each processor in some set

needs to perform a scan, then they can combine

their efforts and achieve a considerably faster

scan despite the a~ynchrony.

A shaTed-coin with agreement paTameter b is

an object which can be accessed by each pro-

cessor only through a call to the function flip

applied to that object. Each processor can call

this function at most once. The function re-

turns a (possibly different value in {0,1} to

each processor, subject to the following condi-

tion: For each value b c {O, 1 }, the probability

that all processors that call the function get

the value b is at least 6, (and further this holds

even when the probability is conditioned on the

outcome of shared flips for other shared-coin

objects and upon the events that happen prior

to the first call to shared-flip for that object.)

The simplest implementation of a shared-coin

is just to have flip return to each processor the

result of a local coin flip by the processor; this

implementation has agreement parameter 2–n.

The structure of our basic algorithm, pre-

sented in Figure 1, is a streamlined version of

the algorithm proposed by [4] based on the two

phase locking []]. The algorithm proceeds in a

sequence of rounds. In every round, each of the

processors proposes a possible decision value,

and all processors attempt to converge to the

function consensus

begin

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:
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my-value : input);

T := 1;decade := false:

repeat

T:= T+l;

write (pmp”o$ed [T], my-vaiue);

prop_view := scan (pmpOsed [~]);

if both O and 1 appear in prop_view

then write (check [~], ‘disagree’);

else write (check [T], ‘agree’);

fc;

check-view := scan (check [r]);

if ‘disagree’ appears in check-view then

begin

coin := shared-coin-flip (~);

if for some p check-view [p]= ‘agree’

then my-value := prop-view [P]

else my_value := coin;

fi

end

else decide := true

fi;

until decide;

return my-value;

end;

Figure 1: Main Algorithm — Code for Pa.

same value. (The reader should keep in mind

that, due to the asynchrony of the system, pro-

cessors are not necessarily in the same round

at the same time. )

In each round ~, a processor P1 publicly an-

nounces its proposed decision value by writing

it to its location in a shared-array pmposed[T]

(Line 3). It then (Line 4) performs a scan of

the values proposed by the other processors,

recording “agree” or “disagree” in its location

of a second shared array check [r] (Lines 6-7)

depending on whether all of the proposed val-

ues it saw were the same. Next each processor

performs a scan of check [T] and acts as follows:

1) If it only sees “agree” values in check [r] then

it completes the round and decides on its own

value; 2) If it sees at least one “agree’) and at

least one “disagree” it adopts the value writ-

ten to proposed [r] by one of the processors that

wrote “agree”; 3) If it sees only “disagree” then
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it changes its value to be the result of a coin-

flip.

The formal proof that the algorithm satisfies

the validity and consistency properties (con-

tained in the full version of the paper) is ac-

complished by establishing a series of proper-

ties listed in the lemma below.

Lemma 2.1 FOT each Tound r:

1.

2.

3.

4.

5.

If ail pTocessoTs that start round r have the

same myvalue then all non-faulty pToces-

SOTSwill decide on that value in that Tound.

All processors that wTite agTee to check[r]

wTote the same va/ue to pToposed[T].

If any pTocessoT decides on a vaiue v in

round r, then each non-fauity pTocesso Ts

that comp/etes Tound T sees at least one sf

agTee in its scan of check[r].

Every pTocessoT that sees at least one agree

value in its scan of check[T] and completes

Tound T with the same rnyvalue.

If any pTocessoT decides on a vahJe v in

Tound T then each non-faulty pTocesso Ts

wiii decide on v duTing some round r’ <

T+].

Theorem 2.2 The aigoTzthm of jiguTe 1 satis-

fies both the validity and consistency properties

of the consensus problem.

To prove that the algorithm also satisfies

the (almost sure) termination property, define

ET to be the event that all processors that

start round -ET have the same myvaiue. From

Lemma 2.1 it follows that if E, holds then

each non-faulty processor decides no later than

round r + 1. Using the lemma and the prop-

erty of the shared-coin, it can be shown that for

any given round greater than 1, the conditional

probability that E, holds given the events of all

rounds prior to round r – 1 is at least 6 (where

6 is the parameter of the shared-coin). This

can be used to prove the following:
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Lemma 2.3 1. With probability l,theTe ex-

ists an T such that E, holds.

2. The expected numbeT of Tounds until the

last non-faulty pTocessoT decides is at most

1 + 1/6.

Furthermore it can be shown that the ex-

pected running time of the algorithm can be

estimated by 1 + 1/6 times the expected time

required for all non-faulty processors to com-

plete a round.

For the naive implementations of the shared-

coin and scan primitives, this yields an ex-

pected running time of 0(n2n).

3 Interleaving Algorithms

The construction of our algorithms is based on

using a variant of the a/teTnated-inteT/caving

method of [7], a technique for integrating wait-

free (resilient but slow) and non-wait-free (fast

but not resilient) algorithms to obtain new al-

gorithms that are both resilient and fast.

The procedure(s) to be alternated are encap-

suled in begin-alternate and end-alternate

brackets or in begin-alternate and end-

alternate-and-halt brackets (see Figure 3).

The implied semantics are as follows. Each

process Pi is assumed at any point in its exe-

cution to maintain a current list of procedures

to be alternately-executed. Instead of simply

executing the code of the listed procedures one

after another, the algorithm alternates strictly

between executing single steps from each. The

begin end-alternate brackets indicate a new

set of procedures (possibly only one) to be

added to the list of those currently being al-

ternately executed. The procedure or program

from which the alternation construct is called

continues to execute once the alternated proce-

dures are added to the list, and can terminate

even if the alternated procedures have not ter-

minated.

For any subset of procedures added to the

list in the same begin end-alternate state-
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ment, all are deleted from the list (their execu-

tion is stopped) upon completion of any one of

them. This however does not include any “sib-

ling procedures,” i.e. those spawned by be-

gin end-alternate statements inside the al-

ternated procedures themselves. Such sibling

procedures are not deleted. The begin end-

alternate-and-halt construct is the same as

the above, yet if any one of the alternated

procedures completes its execution, all “sister”

procedures and ali their sibling procedures are

deleted. For example, the scan procedure (Fig-

ure 2) is added to the alternated list by fast.flip,

but will not terminate upon termination of

the alternate construct in shared -coin.flip (Fig-

ure 3). It will however be terminated upon

termination of the begin end-alternate-and-

halt construct of termi nating.consensus (Fig-

ure 6), of which it is a sibling by way of the

consensus algorithm.

Notice that the begin end-alternate con-

struct is just a coding convenience, used to sim-

plify the complexity analysis and modularize

the presentation. It is implemented locally at

one process and does not cause spawning of new

processes. For all practical purposes, it could

be directly converted into sequential code. The

resulting constructed algorithm will have the

running time of the faster algorithm and the

fault-tolerance of the more resilient, though it

could be that the different processors do not

all finish in the same procedure. For exam-

ple, in the case of the coin-flip of Figure 3, this

could mean that different processors end with

different outcomes, depending on which of the

interleaved coin-flip operations they completed

first.

4 A Fast Write-Scan Prirni-

t ive

Most of the known consensus algorithms in-

clude some type of information gathering stage

that requires each processor to perform a read

of (n – 1) different locations in the shared mem-

ory. A fairly simple adversary can exploit the

asynchrony of the system to ensure that this

stage requires n – 1 time steps even if there

are no faults. However, in this section we show

how to implement a scan of a write-once shared

memo Ty_vecto T so that each processor obtains

the results within expected time O(log n) even

in the case that there are n 1‘c fault y proces-

sors. This fast behavior is obtained by having

processors share the work for the scan. A ma-

jor difficulty is that, because the processors call

the scan asynchronously, the scan that one pro-

cessor obtains may not be adequate for another

process that began its scan later. (Recall that

a valid scan must return a value for each pro-

cess that wrote before that particular scan was

called.)

A processor performing a scan of an array

needs to collect values written by other proces-

sors. The main idea for collecting these values

more quickly is to have each participating pro-

cess record all of the information it has learned

about the array in a single location that can be

read by any other processor. When one proces-

sor reads from anothers location it learns not

only that processor’s value, but all values that

that processor has learned.

In what order should processors read other’s

information so as to spread it most rapidly?

The difficulty here is to define such an ordering

that will guarantee rapid spreading of the infor-

mation in the face of asynchrony and possible

faults. Our solution is very simple: each par-

ticipating processor chooses the next processor

to be read at Tandem.

The above process can be viewed as the

spreading of communicable diseases among the

processors. Each processor starts with its own

unique disease (the value it wrote to the array

being scanned), and each time it reads from

another processor, it catches all the diseases

that processor has. Proving upper bounds on

the expected time of a scan amounts to ana-

lyzing the time until everyone catches all dis-

eases. The analysis is complicated by the fact

that the processors join each disease-spreading

process asynchronously. Furthermore, some of

them may spontaneously become faulty. In



OPTIMAL TIME RANDOMIZED CONSENSUS

fact, achieving the level of fault tolerance that

we claim requires a modification in the proce-

dure above. Instead of always reading a pro-

cessor randomly chosen from among all proces-

sors, a processor alternately chooses a processor

in this manner and then a processor at random

from the set of processors whose value (disease)

it does not yet have.

Because of the presence of asynchrony and

failures, it is neither necessary nor possible to

guarantee that a processor always gets a value

for every other processor’s memory-location.

The requirement of a scan is simply that the

processor obtains a value for all processors that

wrote before the scan began. Thus far, how-

ever, we have ignored a crucial issue: since a

processor is not personally reading all other

processors registers, how can it know that the

processors for which it has no value did not

write before it started its scan? Define the re-

lation before by saying that before (j, k) holds

if Pj began its scan before pk completed its

write.If all processors write before scanning

then this relation is transitive. The solution

now is for each processor to record all be~ore

relations that it has learned or deduced. Now

a processor Pe can terminate its scan as soon

as it can deduce before (i, j) for each processor

PJ for which it has no value.

A further complication in the operation of

the scan occurs because processors may want

to scan the same vector more than once. In this

case, the bejore relations that hold with respect

to one scan of the processor need not hold for

later scans. Thus processors must distinguish

between different calls to scan by maintaining

scan-number counters, readable by all, and by

passing information regarding the last known

scan-number for each of the other processors.

The time analysis of this algorithm essen-

tially reduces to a careful analysis of the “dis-

ease spreading” process described above. This

analysis (which will be presented in the full pa-

per) results in the following:

Theorem 4.1 If all non-jaulty pTocesses par-

ticipate in the scan, then the expected time until
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function scan (mem: memory-vector);

procedure random-update(j : id);

begin

1: latest.lmown.scanmumber; [j] :=

latest.known-scanmumber j[j];

2: for k 6 {1..n}

do update mem.view; [k] by

mern.vicwj [k] # 1 od;

3: if rnern.viewi[j] = L then

any

4: for k c {1..n} do mem.beforei[k, j] :=

htest-known-scan-numberi[k]

od fi;

5: for k, 1 G {l..Tz} do mem. beforei[k, 1] :=

max(mem. befoTei [k, /], mem. be}orej [k, /])

od;

6: for k, 1 c {l..TL} do update mem.beforei[k, /]

based on the transitive closure

of rnem. beforei od;

end;

begin

1: increment Iatest-known-scan.num beri [i] by 1;

2: if latest-known_scan-number~ [z] = 1 then

3: begin-alternate

4: ( repeat

5: choose j uniformly from {1..n} - {z}

do random-update (j) od;

6: choose j uniformly from the set of

processes k such that

mem.view~ [j] = J-

do random-update (j) od;

7: until for every k mem.viewi [k] # 1;)

8: end-alternate

9: repeat read ith mem entry

10: until for every k mem.viewi[k] # 1- or

mem. befoTei [k] = ;

11: return mern. view:;

end;

Figure 2: Fast Scan — Code for Pi.

each obtains a scan is O(lO~~&f).

As mentioned in the introduction, the analy-

sis of this implementation of scan assumes that

the shared registers have quadratic size and

that computation other than shared memory

accesses is negligible.

These assumptions can be eliminated by us-

ing an alternative procedure, which works de-

terministically using a shared binary tree data
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structure. The leaves of this tree are the entries

of the memory-vector being scanned. Each of

the n – 1 shared variables corresponding to the

internal nodes of the tree has a different writer

and the entry of the memory-vector belonging

to that writer is a leaf in the subtree of the

internal node.

The scan is performed by collecting infor-

function shared.coin-flip (n integer);

begin

begin-alternate

1: ( return leader-flip (~));

and

2: ( return fast-flip (~));

and

3: ( return slow-flip(~));

end-alternate;

end;

mation through the scan tree. The scan algo-

rithm for a process consists of two interleaved

procedures. The first is a waiting algorithm Figure 3: The Shared Coin - Code for Pi.

that continually checks the children of the in-

ternal node controlled by the process to see if

they have both been written, and if so, writes
5 A Fast Joint Coin Flip

the combined information at the internal node.

The second is a wait free algorithm that does Recall from Section 2, that the expected num-

a depth first search of the scan tree, advancing ber of rounds to reach a decision is 1/6 where

only from nodes that are not yet written. 6 is the agreement parameter of the coin. In

[4] Aspnes and Herlihy showed how to im-

plement such a shared coin with a constant

As described, this algorithm still requires agreement-parameter, and expected running

that each internal node represent a large regis- time in 0(n3/(n – ~)). This time for imple-

ter, in order to store all of the information that menting the coin is the main bottleneck of their

has been passed up. However, we can now take algorithm.

advantage of the fact that whenever a process

performs a scan in the consensus algorithm, it

does not need to know the distinct entries of

the memory-vector. Rather, the process only

needs to know which of the two binary values

(O or 1, in the case of a scan of proposed[r] and

agree or disagree, in the case of check[r]) ap-

peared in its scan. Thus, it is only necessary

for each internal node to record. the subset of

values that appear in the leaves below it. (This

is not quite the whole story; a memory-vector

scan is also used in the shared-flip procedure of

the next section and the information that must

be recorded in each node is the number of 1‘s

at the leaves of the subtree. )

In this section, we give three shared-coin con-

structions, one trivial one for failure free execu-

tions that takes 0(1) expected time, one new

one which runs in expected time O(log n) for

executions where ~ < ‘fi, and a third which

achieves the properties of the Aspnes-Herlihy

coin with a simplified construction, and runs

in o(~) expected time for any .f. Using an

alternated interleaving construct we combine

these algorithms to get a single powerful shared

global coin enjoying the best of all three algo-

rithms. (See Figure 3. Notice that the shared

coin procedure does not terminate until one of

the alternate-interleaved return statements is

completed.)

The ~eader-coin is obtained by having one

The main drawback relative to the other im- pre-designated processor flip its coin and write

plementation is that the expected time for exe- the result to a shared register. All the other

cutions with ~ faults, which is 0((~ + 1) log n), processors repeatedly read this register until

degrades more rapidly as the number of faults the coin value appears. While this coin is only

increases. guaranteed to terminate if the designated pro-
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cessor is non-faulty, on those executions it takes

at most 0(1) time and has an agreement pa-

rameter 1/2.

The other two coins are motivated by a sim-

ple fact from probability theory, which was also

used by [4] to construct their coin: For suffi-

ciently large t,in a set of t2 + t independent and

unbiased coin flips, the probability that the mi-

nority value appears less than t2/2 times is at

least 1/2.

The slow flip algorithm of Figure 4 is simi-

lar in spirit to the coin originally proposed in

[4]. The processors flip their individual coins

in order to generate a total of n2 coin flips;

the value of the global coin is taken to be

the majority value of the coins. To accom-

plish this, each processor alternates between

two steps: 1) flipping a local coin and con-

tributing it to the global collection of coins

(Lines 4-5), and 2) checking to see if the n2

threshold has been reached and terminating

with the majority value in that case (Lines 6-7).

Due to the asynchrony of the system, it is pos-

sible that different processors will end up with

different values for the global coin. However,

it can be shown that the total number of local

coins flipped is at most n2 + (n – 1). Notice

that whenever the minority value of the entire

set of flips occurs fewer than n2/2 times, ev-

ery processor will get the same coin value. By

the observation of the previous paragraph, this

occurs wit h probability y at least 1/2, and thus

the algorithm has constant agreement param-

eter at least 1/4. Furthermore it tolerates up

to n – 1 faulty processors and runs in 0(~)

time. (Using the fast scan this can be reduced

to 0( ~ log n); details are omitted).

In the final ~ast flip algorithm of Figure 5, a

processor flips a single coin, and writes it to its

location in a shared memory vector (Line 1).

Then it repeatedly scans the collection of coins

until it sees that at Ieast n – @ of the proces-

sors have contributed their coins and at that

point it decides on the majority value of those

coins it saw (Lines 3-4). We can apply the prob-

abilistic observation to conclude that the mi-

nority value will occur less than (n – @/2
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function slow-flip (c integer);

begin

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

SiOW.COi?l. TLU?lLflip Sa [T] := o;
s[ow.coch. num-onesi [T] := O;
repeat

coin := coin-flip;

increment slow-co in.num-flipsi [T] by 1;

increment slow-coin. num.onesi[T] by coin;

for all j read slow_coin.num.flipsj [T]

and s/ow-coin. num_onesj[r]

sum respectively into total-flips

and total-ones;

until total-j7z’ps > nz;

if total_ ones ftotal.flips ~ 1/2

then return 1

else return O

t-i;
end;

Figure 4: A Slow Resilient Coin - Code for Pi.

times with probability at least 1/4 in which

case all processors will obtain the majority

value as their shared-flip. Of course, if there

are more than @ faulty processors then it is

possible that no processor will complete the al-

gorithm. However, in the case that the num-

ber of faulty processors is at most @, all non-

faulty processors will complete the algorithm

using up one unit of time to toss the individual

coins (and perform all but the last completed

scan) then the time for the last scan. The re-

sult is an algorithm that is resilient for up to

@ faults and runs in expected time O(log n)

in that case.

Finally, let us consider the expected running

time of the composite coin. The interleaving

operation effectively slows the time of each of

the component procedures by a factor of three;

but since the processor stops as soon as one

of three procedures terminates, for each num-

ber of faults the running time can be bounded

by the time of the procedure that terminated

first process. The agreement parameter of the

composite coin is easily seen to be at least the

product of the agreement parameters of the in-

dividual coins. We summarize the property of
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function fast.flip (n integer);

begin

1: write(}a9Lc0in [~],coin-flip);

2: repeat coin.view := scan (fast-coin [~])

3: until coin-view contains at least

n — @ non--l- values;

4: return the majority non-l value

in coin-view,

end;

Figure 5: A Fast Coin Flip - Code for Pa.

the joint coin with:

Theorem 5.1 The joint-coin z’mp~ements a

shared-flip with constant agTeement parameteT.

The expected Tunning time foT any numbeT of

faults less than n is O(s). In any execu-

tion wheTe theTe aTe no faults, the expected run-

ning time is O(l). In any execution in which

there aTe at most & faults, the expected run-

ning time 2s O(log n).

6

our

Ensuring Fast Termination

consensus algorithm is obtained from the

main consensus algorithm presented in Sec-

tion 2 by using the fast implementations of the

scan and shared-coin-flip given in the last two

sections. There is one difficulty; the implemen-

tations of these primitives require each proces-

sor to continue participating in the work even

after it has received its own desired output from

the function; this shared work is necessary to

obtain the desired time bounds. As a result,

each processor is alternating between the steps

of the main part of the consensus algorithm

and work of various scans and shared-coins in

which it is still participating. Thus when it

reaches a decision, its consensus program halts,

but the other interleaved work must continue,

potentially forever. Furthermore, if the proces-

sor simply stops working on the scans that are

still active, then its absence could delay the

completion of other processors, resulting in a

high time complexity, To solve this problem we

SAKS ET

add a new memo Ty-vecto Tcal]ed decision-value.

Upon reaching a decision, each processor writes

its value in this vector before halting. Now, we

embed the main consensus algorithm in a new

program called terminating consensus (see Fig-

ure 6) that simply alternates the main consen-

sus algorithm with an algorithm that monitors

the decision_value vector, using an begin end-

alternate-and-halt construct. If a processor

ever sees that some other process has reached

a decision, it can safely decide on that value

and halt. Furthermore, by the properties of the

scan, once at least one processor has written a

decision-value, the expected time until all non-

faulty processors will see this value is bounded

above by a constant multiple of the expected

time to complete a scan.

Let us now consider the time complexity of

the algorithm of Figure 1. Since the agreement

parameter of the shared-coin is constant, the

expected number of rounds is constant. Essen-

tially each round consists of a constant number

of writes, two scan operations and one shared-

coin flip; Putting together the properties of the

various parts oft he consensus algorithm we get:

Theorem 6.1 The aigorithm terminating

consensus satisfies the correctness, validity and

termination pTopeTties. Furthermore, on any

execution with feweT than O(W) failuTes the

expected memory based time until ail non-faulty

pTocessoTs reach a decision is O(log n) and the

expected time is O(n log n). OtheT’wzse, the ex-

pected time until al! non-faulty processors Teach

a decision is O(5).

7 Modularly Speeding-Up

Resilient Algorithms

In this section we present a constructive proof

that any decision problem that has a wait-free

or expected wait-free solution, has an expected

wait-free solution that takes only O(log n) ex-

pected time in normal executions.

AL.
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function terminating.consensus (w input.vaiue);

begin

begin-alternate

1: ( write (decision-value [~], consensus(v);)

and

( repeat

2: choose j uniformly from {1..n} – {z}

3: decision := (j’th position of decision-value [T])

4: until decision

is not 1;

5: write (decz’st’on_va/ue [~], decision); )

end-alternate

end;

Figure 6: Terminating — Code for Pi.

Theorem 7.1 FOT any decision probiem P,

given any wait-free OT expected wait-free soiu-

tion a/goTz’thm A(P) as a black box, one can

modulaT!y geneTate an expected wait-fTee algo-

Tithm with the same worst-case time complex-

ity, that Tuns in only O(log n) expected time in

failuTe-fTee executions.

For lack of space we only outline the method

on which the proof is based. Given A(P), it is

a rather straightforward task to design a non-

resilient CCwaiting” algorithm to solve P. As

with the tree scan of Section 4, we use a bi-

nary tree whose leaves are the input variables

to pass up the values through the tree. A pro-

cessor responsible for an internal node waits

for both children to be written and passes up

the values. Each processor waits to read the

root’s out put which is the set of all input val-

ues, locally simulating A(P) on the inputs to

get the output decision value 3. This algorithm

takes at most O(log n) expected time in ex-

ecutions in which no failures occur. We can

now perform an alternated-interleaving execu-

tion of A(P)i and the waiting algorithm de-

scribed above, that is, each processor alternates

between talking a step of each, returning the
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value of the first one completed. Though the

new protocol takes O(log n) time in the failure

free executions and has all the resiliency and

worst case properties of A(P), there is one ma-

jor problem: it is possible for some processors

to terminate with the decision of A(P), while

others terminate with the possibly different de-

cision of the waiting protocol. The solution is

to have each process, upon completion of the

interleaved phase, participate in a fast consen-

sus algorithm, with the input value to consen-

sus being the output of the interleaving phase.

All processors will thus have the same output

within an added logarithmic expected time, im-

plying the desired result.

Based on Theorem 7.1, we can derive an

O(log n) expected wait-free algorithm to solve

the approximate e agreement problem, using any

simple wait-free solution to the problem as a

black-box (this compares with the optimally

fast yet intricate deterministic wait-free solu-

tion of [7]). The Theorem also implies a fast

solution to multi-valued fault-tolerant consen-

sus. As a black box one could use the simple

exponential-time multi-valued consensus of [1]

(or for better performance the above consensus

algorithm with the coin flip operation replaced

by a

8

uniform selection among up to n values).
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