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This paper addresses the problem of designing scalable concurrent priority queues for large scale mul-
tiprocessors – machines with up to several hundred processors. Priority queues are fundamental in the
design of modern multiprocessor algorithms, with many classical applications ranging from numerical
algorithms through discrete event simulation and expert systems.

While highly scalable approaches have been introduced for the special case of queues with a fixed set
of priorities, the most efficient designs for the general case are based on the parallelization of the heap
data structure. Though numerous intricate heap-based schemes have been suggested in the literature,
their scalability seems to be limited to small machines in the range of ten to twenty processors.

This paper proposes an alternative approach: to base the design of concurrent priority queues on
the probabilistic skiplist data structure, rather than on a heap. To this end, we show that a concurrent
skiplist structure, following a simple set of modifications, provides a concurrent priority queue with a
higher level of parallelism and significantly less contention than the fastest known heap-based algorithms.

Our initial empirical evidence, collected on a simulated 256 node shared memory multiprocessor
architecture similar to the MIT Alewife, suggests that the new skiplist based priority queue algorithm
scales significantly better than heap based schemes throughout most of the concurrency range. With 256
processors, they are about 3 times faster in performing deletions and up to 10 times faster in performing
insertions.

0A preliminary version of this paper appeared in the proceedings of the first International Parallel and
Distributed Processing Symposium, Cancun, Mexico, May 2000.
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1. INTRODUCTION

In recent years, we have seen a steady increase in the number of processors available on
commercial multiprocessors. Machines with 64 processors [42], and ccNUMA architec-
tures which scale to more than a hundred processors [40], are no longer found only in
research labs. This increase in the availability of larger computing platforms, has not
been met by a matching improvement in our ability to construct scalable software. If
anything, it has made the difficulties more acute.

Priority queues are of fundamental importance in the design of modern multiprocessor
algorithms. They have many classical applications ranging from numerical algorithms,
through discrete event simulation, and expert system design. Though there is a wide
body of literature addressing the design of concurrent priority queue algorithms for small
scale machines, the problem of designing scalable priority queues for large machines has
yet to be addressed.

This paper begins to tackle this problem by proposing an alternative approach: base
the design of concurrent priority queues on the SkipList data structures of Pugh [30],
rather than on the popular Heap structures found throughout the literature [3; 4; 9; 10;
16; 17; 23; 24; 26; 29; 34; 35; 36; 37; 43]. As we will show, this design shift, even in the
simple form presented here, can produce significant performance gains.

The next three subsections in the introduction summarize the main points detailed in
later sections of the paper.

1.1 Priority Queues

A priority queue is an abstract data type that allows n asynchronous processors to
each perform one of two operations: an Insert of an item with a given priority, and a
Delete-min operation that returns the item of highest priority in the queue1. We are
interested in “general” queues, ones that have an unlimited range of priorities, where
between any two priority values there may be an unbounded number of other priorities.
Such queues are found in numerical algorithms and expert systems [25; 33], and differ
from the bounded priority queues used in operating systems, where the small set of
possible priorities is known in advance. The latter special case has scalable solutions
applicable to large machines [39].

How does one go about constructing a concurrent priority queue allowing arbitrary pri-
orities? Since for most reasonable size queues, logarithmic search time easily dominates
linear one, the literature on concurrent priority queues consists mostly of algorithms
based on two paradigms: search trees [18; 5] and heaps [3; 4; 9; 10; 16; 17; 23; 24; 26;
29; 34; 35; 36; 37; 43]. Empirical evidence collected in recent years [10; 17; 39] shows
that heap-based structures tend to outperform search tree structures. This is probably
due to a collection of factors, among them that heaps do not need to be locked in order
to be “rebalanced,” and that Insert operations on a heap can proceed from bottom to
root, thus minimizing contention along their concurrent traversal paths.

1Though there are a variety of other operations, such as merging and searching for the k-th item, that
can be added to priority queues based on SkipLists [32] and Heaps, such operations are outside the scope
of this paper.
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One of the most effective concurrent priority structures known to date is the heap-
based algorithm of Hunt et al. [17], which builds on and improves other known heap
based algorithms [3; 4; 23; 29; 35; 36; 43]. Its good performance is the result of several
techniques for minimizing locking and contention: inserts traverse bottom up, only a
single counter location is locked for a “short” duration by all operations, and a bit
reversal scheme distributes delete requests that traverse top-down.

Unfortunately, as our empirical evidence shows, the performance of [17] does not scale
beyond a few tens of concurrent processors. As concurrency increases, the algorithm’s
locking of a shared counter location, however short, introduces a sequential bottleneck
that hurts performance. The root of the tree also becomes a source of contention and
a major problem when the number of processors is in the hundreds. In summary, both
balanced search trees and heaps suffer from the typical scalability impediments of cen-
tralized structures: sequential bottlenecks and increased contention.

1.2 The New Approach

The solution we propose in this paper is to design concurrent priority queues based on
the highly distributed SkipList data structures of Pugh [30; 31]. Surprisingly, SkipLists
have received little attention in the parallel computing world, in spite of their highly
decentralized nature.

SkipLists are search structures based on hierarchically ordered linked-lists, with a
probabilistic guarantee of being balanced. The basic idea behind SkipLists is to keep
elements in an ordered list, but have each record in the list be part of up to a logarithmic
number of sub-lists. These sub-lists play the same role as the levels of a binary search
structure, having twice the number of items as one goes down from one level to the next.
To search a list of N items, O(log N) level lists are traversed, and a constant number
of items is traversed per level, making the expected overall complexity of an Insert or
Delete operation on a SkipList O(log N).

In this paper we introduce the SkipQueue, a highly distributed priority queue based
on a simple modification of Pugh’s concurrent SkipList algorithm [31]. Inserts in the
SkipQueue proceed down the levels as in [31]. For Delete-min, multiple “minimal”
elements are to be handed out concurrently. This means that one must coordinate
the requests, with minimal contention and bottlenecking, even though Delete-mins are
interleaved with Insert operations.

Our solution is as follows. We keep a specialized delete pointer which points to the
current minimal item in this list. By following the pointer, each Delete-min operation
directly traverses the lowest level list, until it finds an unmarked item, which it marks
as “deleted.” It then proceeds to perform a regular Delete operation by searching the
SkipList for the items immediately preceding the item deleted at each level of the list,
and then redirecting their pointers in order to remove the deleted node.

We note that SkipQueue is fundamentally different from the bounded-priority SkipList-
based priority queues described in [39]. Those queues work only for the special case where
priorities are derived from a small predetermined set. They are based on a small SkipList
structure whose elements are “bins,” one per priority. Each “bin” contains many items
of the same priority, with a specialized “delete-bin” [18] added to the structure to speed
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up deletions. As a consequence, the key factors governing their performance are the
contention and bottlenecks in the “bins,” and not the efficiency of the operations on the
SkipList as in the case of the more general SkipQueues.

SkipQueues have several notable advantages over prior heap and tree based schemes:

—Unlike in trees and heaps, all locking is distributed. There is no locking of a root or
centralized counter.

—Unlike in search trees, balancing is probabilistic and there is no need for a major
synchronized “rebalancing” operation.

—Unlike in heaps, Delete-min operations are evenly distributed over the data structure,
minimizing locking contention.

—Unlike in heaps, there is no need to pre-allocate all memory since the structure is not
placed in an array.

1.3 Empirical Performance Study

To the best of our knowledge, our work is the first attempt to empirically evaluate a
SkipList based data structure on a large scale machine. In Section 5, we evaluated
the performance of our SkipQueue algorithm in comparison to the most effective of
former priority queue algorithms, the heap-based priority queue algorithm of [17]. As a
comparison base, since a linked-list protected by a single lock had already been shown to
perform rather poorly [17], we tested a simple FunnelList structure, a linked-list of items
with a combining-funnel front-end [38] instead of a single lock. The combining-funnel
[38] is a structure similar to a combining tree [15; 13], intended to allow high levels of
parallelism in accessing the linked list.

We ran a collection of standard synthetic benchmarks [17; 39] on a simulated 256
processor ccNUMA multiprocessor architecture similar to the MIT Alewife [1]. The sim-
ulation was done on the well accepted Proteus platform of Brewer et al. [7]. Though
this is not a real 256 node machine, we note that previous research by Della-Libera [11]
has shown that with appropriate scaling, Proteus simulates a 32 node Alewife machine
accurately for the kinds of data structures tested in this paper. Our benchmarks tested
sequences of Insert and Delete-min operations on small and large queues. Our con-
clusions, presented in Section 5, are that the SkipQueue outperforms the heap-based
algorithms throughout the concurrency range.

2. SKIPLISTS

The basic structure of the SkipList is as follows. Each item inserted into the SkipList
is represented by a node (record) with a number of outgoing “forward” pointers (see
Figure 1). The number of forward pointers a node has is referred to as the level or height
of the node. The i-th pointer of a node points to the next element in the list whose height
is at least i. The list is sorted and so a node points to elements ordered after it. The
level of the node is chosen randomly when it is first inserted into the list, using geometric
distribution derived via a pseudo-random number generation algorithm. The key idea in
the design of SkipLists is that this probabilistic choice of height for a node will guarantee
that the number of nodes participating in each level list will be exponentially decreasing
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as one goes up the tree. To find item A, a processor starts with the highest level list,
which should have an expected constant number of items, and searches for two adjacent
items B and C such that B ≤ A ≤ C. The processor then follows the pointer of the
next lower level in item B, again searching an expected constant number of items, and
so on until the lowest level list is traversed and the item is found. Altogether, in a list of
N items, O(log N) levels are traversed, and a constant number of nodes is traversed per
level, making the overall complexity O(log N). Inserting a node into the list would mean
to search for its place in the list and connect all of its levels. Deleting requires finding
the element and disconnecting all of its levels.

In order for the SkipList to be used by a number of processors concurrently some
modifications need to be made. As suggested in [31], locks should be introduced into
the list. It is important to notice that when a processor disconnects the top level of
some node, this does not in any way affect the correctness of the structure, only its
performance. Therefore, processors can insert an element one level at a time from bottom
to top and delete it a level at a time from top to bottom. A node is considered in the
list if its level is at least 1 and considered removed from the list if its level is reduced
to 0. This way only one level of a node needs to be locked at any given time when a
node is inserted or deleted in front of it. The concurrent performance of the list benefits
immensely from this feature. The detailed code for insertion and deletion operations
appears in Section 6. They are performed as follows:

Insertion After randomly picking a level for the node, a processor searches for all the
nodes in the list after which the new node should be inserted; one node for each level of
the new node. The processor then locks the new node so no other processor can attempt
to delete it while it is being inserted. Now the processor acquires the lock on the forward
pointer of the first level node found earlier, and inserts the node at that level. The lock
is then released and the lock of the second level node is now acquired, and so on, until
pointers in all the levels of the node have been inserted.

Deletion To delete an item, a processor searches for the node in the list and remembers
all the nodes immediately preceding it; one node for each level of the node. The processor
then acquires the lock on the node to make sure it is not in the process of being inserted.
In order to delete a node from level i, the processor needs to acquire two locks: one on
the level i pointer of the node before the node, and one on the node’s own level i pointer.
The processor starts from the top level of the node and works its way down, each time
acquiring two locks and removing the node from that level. It is important to note
that one needs to be careful when removing a node from the list, since other processors
might hold pointers to it. Thus, to prevent a node from being deleted prematurely,
the processor deletes first the pointer going into the node, and only then redirects the
forward pointer of the node to point to the node just before it. This way, other processes
that held pointers to the node can still use them and need not be aware that the node
they are using has already been deleted.

The potential advantage of SkipLists, which led us to try and use them as a basis for
a priority queue in place of heaps, is that a processor needs to lock only a small part
of the list at a time in order to insert or delete a node. Assuming that the insertions
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and deletions are distributed more or less evenly throughout the structure, there should
be only a few processors competing for the same lock at any given time, and since the
operation they need to perform after acquiring a lock is very short (setting a pointer),
locks are not highly contended.

3. SKIPLIST BASED PRIORITY QUEUES

This section explains how to create the SkipQueue data structure. The new operation
one needs to add to the basic SkipList structure is a Delete-min operation. When there
are several processors trying to delete the minimal node concurrently, the regular search
methods no longer help. Two or more processes might compete for the same first node
and the losers will be left empty handed. The key to our construction is the fact that the
lowest level of the SkipList is really a regular linked list. The code for our Delete-min
operation can be found in Figure 11.

As depicted in Figure 1, we modify the SkipList nodes so that each has a deleted
flag, which is set to false when the node is first inserted into the list. When a processor
wants to find the minimal node it starts traversing the bottom level of the SkipQueue
until it finds a node whose flag is not yet set. It sets a flag marking that this node
is logically deleted. What’s left now is just to remove the node from the list. Since a
processor already knows which node to remove, it uses the standard Delete operation
of the SkipList. One is assured that no two processors will ever delete the same node
since only one could have set its deleted flag. Processors use a register-to-memory SWAP
operation to set the deleted flag. This allows any number of processors to search for
a minimal node concurrently, competing for the first available node. The first processor
to successfully SWAP false to true in the deleted flag of a node gets to delete that key,
and the other processors move on down the list to try and find the next available node.

Though the above implementation should suffice in practice, we added a simple time-
stamping mechanism to the code in order to assure a stronger ordering property among
deleted values: each deleting processor returns the minimal node among those inserted
completely before it began. As we prove in Section 4.2, the mechanism allows a processor
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Fig. 1. The basic SkipQueue structure
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to recognize and ignore nodes that were inserted cuncurrently with it. It works as follows.
After a node is completely inserted into the SkipQueue, it acquires a time-stamp. A
deleting processor notes the time at which it starts its search through the lower level of
the SkipQueue, and only looks at nodes whose time-stamp is smaller then the time at
which it started its traversal, effectively ignoring nodes inserted during its traversal.

Starvation in the SkipQueue is theoretically possible but highly unlikely. A processor
traversing the bottom of the list might always be beaten to the next available node by
another processor. But the further down the list a processor is, the smaller the number
of competitors it will encounter, so its chances of finding a yet-to-be-deleted node grows
as it advances. In the worst case, it might reach the end of the list and return an
EMPTY message. The fact that nodes are physically deleted from the list as a processor
traverses the lowest level does not cause a problem, due to the order of pointer switches.
A processor that is in the vicinity of a node that is being deleted, will not traverse it at
all.

One more issue that requires attention is garbage collection. Unlike systems with built
in garbage collection such as Lisp [41] and the JavaTM programming language [14], our
benchmarking system requires explicit garbage collection. Following Pugh’s suggestion
in [31], we note that it is safe to free the memory used by a particular node only after
all the processors that were in the structure when the node was deleted, have already
exited the structure. To be able to ascertain when such a condition is met, we again use a
time-stamping mechanism. Each processor registers the time it has entered the structure
in a special place in shared memory, and whenever a node is deleted, it is stamped with
its deletion time. In the benchmarks in this paper, we assigned a dedicated processor
to do all the garbage collection. Whenever a node is deleted, the node is put at the
end of the garbage list of the deleting processor. The dedicated processor determines
the time-stamp of the oldest processor in the list and then visits the garbage lists of all
the processors. The processor looks at the deletion time of the first node of every list,
and if it is earlier than the time-stamp of the oldest processor in the structure, it frees
its memory. The dedicated processor will repeat this procedure as long as the structure
exists. Clearly, if one desires, this garbage collection task can be split/shared among
processors.

4. CORRECTNESS

We begin with a short formalization of a computation model which will serve as the basis
of our proof. We then provide a specification and correctness proof.

4.1 The Computation Model

Our computation model follows [19]. A concurrent system consists of a collection of n
processors. Processors communicate through shared data structures called objects. Each
object has a set of primitive operations that provide the only means to manipulate that
object. Each processor P is a sequential thread of control [19] which applies a sequence
of operations to objects by issuing an invocation and receiving the associated response.
A history is a sequence of invocations and responses of some system execution. Each
history induces a “real-time” order of operations where an operation A precedes another



Skiplist-Based Concurrent Priority Queues · 7

operation B if A’s response occurs before B’s invocation. Two operations are concurrent
if they are unrelated by the real-time order. A sequential history is a history in which
each invocation is followed immediately by its corresponding response. A serialization
[19] of a collection of operations in a given history is a total ordering of those operations
consistent with the real-time order induced by the concurrent history. In other words,
serialized operations appear to take effect atomically at some point between their invo-
cation and response. For the purposes of our proof, every shared memory location L
of a multiprocessor machine memory allows every processor Pi to perform one of the
following set of atomic operations (see [20; 21] for details):

. READi(L) reads location L and returns its value.

. WRITEi(L, v) writes the value v to location L.

. SWAPi(L, v) writes the value v to location L and returns the value of L prior to this
write.

We note that even though our algorithms use other abstract operations such as lock
and unlock, these are all details of the implementation of the Insert and Delete oper-
ations on the SkipList, which are not necessary for our proof. The READ operation can
be applied to the machine’s shared clock location, in which case the clock’s value at the
time of the read is returned.

4.2 Specification and Proof

A priority queue object is a concurrent shared object which allows each processor Pi

where 0 ≤ i ≤ n − 1 to perform two types of operations on the object: Inserti(r)
and Delete Mini(). The insert operation has input r from the range of values. The
Delete Mini() operation returns a value or EMPTY. Without loss of generality, we will
assume that all inserted and deleted values are unique.

We require that a correct implementation of a priority queue meet the following spec-
ification.

Definition 1. For every Delete Min operation in a finite or infinite history H, let
I be the set of values inserted by Insert operations preceeding it in H. There exists a
serialization of all Delete Min operations in H, such that for each operation, if D is the
set of values deleted by Delete Min operations serialized before it, the value returned by
the Delete Min is the minimal element of I − D, or EMPTY if I − D = ∅.

Lemma 1. The SkipQueue data structure meets Definition 1.

Proof. For any history H , let the serialization order on Delete Min operations be
defined as follows.

—Order each successful Delete Min at the successful SWAP(node1->deleted, TRUE) of
the deleted mark into a node, that is, the operation in which it completed its “logical”
deletion (Line 5 of Figure 11).

—Order each unsuccessful Delete Min, that is, one that returned EMPTY since it did not
have a successful SWAP(node1->deleted, TRUE) in H , at its response point (its return
instruction).
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—Order each uncompleted Delete Min, that is, one that was invoked but did not have a
response or a successful SWAP(node1->deleted, TRUE) in H , at its invocation point
(its first instruction).

The above is a serialization order since each Delete Min operation is ordered between
its invocation and response.

Each unsuccessful Delete Min did not perform a successful SWAP(node1->deleted, TRUE)
in H , so there is no returned value and we are done. It remains to be shown that each
Delete Min operation returned EMPTY only if I − D = ∅ and otherwise returned the
minimum element x in I −D. We abuse notation and henceforth denote this operation,
whether it returned x or EMPTY, as Delete Minx.

We assume correct behaviour of the SkipList structure in SkipQueue based on Pugh’s
Concurrent Skiplist correctness proof in [31]. It follows from Definition 1 and the cor-
rectness of the SkipList, that every Insert operation with a value in I must have added
a node with its respective input value to the lowest level of the SkipQueue prior to the
invocation of Delete Minx. Moreover, the Insert’s last executed instruction, which
is a write of node1->timeStamp, must have preceded the Delete Minx’s first instruc-
tion, which is a read of time. It follows that node1->timeStamp < time, so all nodes
containing values in I will pass the Delete Minx operation’s test in Line 4 of Figure 11.
Delete Minx traverses the lowest level list, marking and deleting the first unmarked

element x it reads in the list, or EMPTY if none is found. In order to prove that either
I − D = ∅ or x is the minimal element in I − D, consider all other elements y in I that
were not returned by Delete Minx. If y was not returned, it must be due to one of the
following three situations:

(1) The element y was added to the list at a node preceding x (for a success-
ful Delete minx) or preceding the end of the list (for an unsuccessful one), yet
Delete Min(x) never read the pointer leading to the node containing y. It follows
that the node must have been removed from the lowest level of the skiplist by some
Delete miny operation. The marking of the node by Delete miny must have pre-
ceded the removal of the pointer to it at the lowest level of the SkipList, and since
the pointer was not read, its removal, in turn, must have preceded the successful
marking by Delete Minx. Thus, Delete miny must have preceded Delete Minx,
and so y is in D, and not in I − D.

(2) The element y was added to the list at a node preceding x (for a successful
Delete minx) or following the end of the list (for an unsuccessful one), yet y was
not deleted. Since the pointer to the node1 containing y was read, it must be
that the Delete minx failed on the SWAP(node1->deleted, TRUE) operation in Line
5 of Figure 11. This could happen only if some other Delete miny performed a
succesful SWAP(node1->deleted, TRUE) before the SWAP attempt by Delete minx

(recall that in our model, SWAP operations are atomic and thus totally ordered)
and so delete miny preceded delete minx in the serialization order. Thus, y is in
D, and not in I − D.

(3) The element y was added to the list but at a node following (reachable from)
the node containing the returned value x of a successful Delete minx. Since by
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the correctness of the SkipList structure, elements in the SkipList are ordered in
ascending order, this item y is greater than x, and so cannot be the minimum of
I − D. Note that this cannot happen in case of an unsuccessful Delete minx since
all reachable nodes upto the end of the list are traversed.

It follows that there is no unreturned y in I −D if EMPTY was returned, and no y < x in
I − D if x was returned.

We now examine the liveness properties of the SkipQueue algorithm. The proof that
the Insert operation is terminating follows from [31] assuming that the locks used in the
implementation are all fair. The marking part of the Delete Min operation (the logical
deletion part) is not guaranteed to terminate, but is non-blocking: a processor does not
complete only if other processors repeatedly succeed in performing successful delete min
operations. Moreover, as explained in section 3, the further down the lower level of the
SkipQueue that a deleting process advances, the better are its chances of finding a free
element to delete. The second part of the Delete Min operation (the removal from the
list) is guaranteed to terminate as shown by [31].

5. PERFORMANCE RESULTS

To evaluate the performance of SkipQueues on large scale machines, we used a sim-
ulated 256 processor ccNUMA multiprocessor architecture similar to the MIT Alewife
machine [1] of Agarwal et al. The simulation was conducted using the well accepted
Proteus2 multiprocessor simulator of Brewer et al. [6; 7]. Proteus simulates parallel code
by multiplexing several parallel threads on a single CPU. Each thread runs on its own
virtual CPU with accompanying local memory, cache and communications hardware,
keeping track of how much time is spent using each component. In order to facilitate
fast simulations, Proteus does not support complete simulation of the hardware. In-
stead, operations which are local (i.e. do not interact with the parallel environment) are
executed uninterruptedly on the simulating machine’s CPU and memory. The amount
of time used for local calculations is added to the time spent performing (simulated)
globally visible operations to derive each thread’s notion of the current time. Proteus
makes sure a thread can only see global events within the scope of its local time. Since
actual machine instructions are counted for local operations, the quality of the code used
to implement algorithms under Proteus can play an important part in determining the
running time of the entire application.

Our benchmarking methodology was a variation of commonly used synthetic bench-
mark of [17; 39], in which processors alternate between performing some small amount
of local work and accessing a priority queue. We used a short work period of 100 cycles
between invocations, testing the data structures at high load levels. We chose not to
present low load (long work period) benchmarks since they offer no surprises. As Fig-
ure 2 shows, as the work period is increased (lowering the load) the latency of operations
goes down because of the lowered chances of concurrent access to shared locks in the
data structure.

2Version 3.00, dated February 18, 1993.
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Work Amount Delete min latency Insert latency

100 190710 65699
1000 181442 45629
2000 149139 44904
3000 125111 32372
4000 107603 25823
5000 110975 36174
6000 69579 26462

Fig. 2. Insert and Delete Min latency with different amounts of work with 256 processes and 1000
initial elements.

Processors accessing the data structure randomly chose whether to Insert a random
priority item or apply a Delete-min operation. The priorities of inserted items were
chosen uniformly at random, attempting to capture the most common priority queue
access patterns.3

In each experiment, we measured latency, the amount of time (in machine cycles) it
takes for an average Insert operation and an average Delete-min operation as well
as the average time it takes to access the object. We also varied the initial size of the
priority queue and the ratio of Insert operations to Delete-min operations.

Our benchmarks compared three data structures, all of which support insertion and
deletion of arbitrary priorities.

Heap This is the priority queue implementation of Hunt et al. [17]. We choose this
algorithm as representative of the class of heap based priority queue algorithms [3; 4; 8;
9; 10; 16; 17; 22; 23; 24; 26; 29; 34; 35; 36; 37; 43] since it was shown [17] to perform
better than others under various Insert/Delete-min benchmarks. In this algorithm,
there is a single lock that protects a variable holding the size of the array-based heap.
All processors must acquire it in order to begin their operations, but it is not held for the
duration of the operation. Rather, the heap’s size is updated, then a lock on either the
first or last element of the heap is acquired and then the first lock is released. In order to
increase parallelism, insertions traverse the heap bottom-up, which reduces contention
for the top-most nodes and avoids the need for a full height traversal in most cases.
Deletions proceed top-down. Insertions also employ a novel bit-reversal technique that
allows a series of insertion operations to proceed up the heap independently without
getting in each other’s way. As many as O(N) operations can proceed in parallel on a
heap of size N . The implementation is based on the code from the authors’ FTP site,
optimized for Proteus.

FunnelList This is a priority queue based on a simple sorted linked-list structure.
Exclusive access to the list is controlled by a combining-funnel data structure [39], in
order to increase parallelism and reduce contention. Combining-funnels are adaptive
variants of combining trees [13; 15]. A funnel consists of a series of combining layers

3Though worst case adversarial insertion sequences can be devised for each of the tested data structures,
we do not present such scenarios here. For most of these scenarios, the chance that they occur is relatively
low (see [31] for a discussion for the case of SkipLists).
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through which processors’ requests are funneled in an attempt to combine. Processors
that want to perform an operation on the list, be it Insert or Delete-min, enter the
funnel and try to combine with other processors’ requests. Every group of processors
that combine requests is represented by one processor which exits the funnel and acquires
a lock on the list. If the intent is insertion, the lucky processor traverses the list inserting
the items of the processors it represents into their place in the list. If Delete-min is
the operation, the representative processor cuts off as many items as it needs from the
beginning of the list and distributes them to the processors it has combined with. The
width and depth of the funnel adapt to the concurrency level on-the-fly.

SkipQueue This is the concurrent SkipList based priority queue described in Section 2.
We note that the final design presented in Section 2 and used here is the result of
experimentation with a series of different designs based on a concurrent skip-list. We
tried using a funnel to regulate access of deleting processors at the bottom level of the
SkipList. This funnel performed well in low contention but caused too much overhead
when the concurrency level increased to 64 processors and more. In the end, we concluded
that letting processors compete for the smallest element gives the best results, even when
contention reaches 256 processors. In our experiments we assumed an upper bound on
the maximal number N of items in the priority queue, making the maximal level of an
element in the list be log N . We note that there are more advanced methods known to set
the maximal level, but we concluded that for the presented benchmarks, the performance
gain is not significant enough to warrant more than this simple method [31].

5.1 Small Structure Benchmark

In our first benchmark we initialized all structures to contain 50 random elements. We
then performed 70000 operations with an equal chance for Insert or Delete-min, and
measured the average latency for both Inserts and Delete-mins, as well as an overall
average latency. Figure 3 shows the results for this small structure benchmark. The two
graphs at the top are the results for the whole concurrency range of up to 256 processors,
with Delete-min operations on the left and Insert operations on the right. Below each
graph is a closeup showing only a part of the scale.

As one can see, the structures maintain their size: about 100 elements throughout the
experiment. When concurrency is low (less than 16 processors), the FunnelList performs
the best since it has the simplest implementation and the adaptive funnel structure is
still very small so it does not incur latency penalties. But as concurrency increases, the
size of the funnel increases and the delays in traversing and combining in the funnel
become a more dominant factor. The ability of the SkipQueue to distribute the load and
the relatively small amount of coordination done per operation becomes dominant, and
its performance becomes superior to the other structures. Looking just at the insertion
latency, SkipQueues do better than FunnelLists with as little as 8 processors, and the
difference grows to a fourfold difference at 256 processors. The Heap structure is slower
than SkipQueues throughout the concurrency range, and by 256 processors it is 10 times
slower.

The picture is somewhat different when we compare Delete-min latencies. This is
the weak point of the SkipQueues, because there could potentially be heavy reading at
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Fig. 3. The small structure benchmark.

the lowest level of the list, which creates contention and slows things down. We can
see that SkipQueues become better than FunnelLists only when concurrency rises above
16 processors, and as we increase the concurrency beyond that, the gap increases only
slightly. SkipQueues still perform deletions significantly better than Heaps, almost 3
times better at 256 processors.

5.2 Large Structure Benchmark

Our second experiment measured the performance of the three priority queue implemen-
tations when the data structure contains a large amount of elements: about 1000 items
at all times. Figure 4 shows the results of the large structure benchmark. As before, the
results for Delete-min operations on the left and for Insert operations on the right.

The large size of the data structure exposes the inadequacy of the FunnelList structure
whose latency per operation is linear in the number of items in the funnel-protected
linked-list. The other two algorithms have logarithmic dependency on the number of
items and are thus only slightly influenced by the increase in the structure size. They
are only 5 percent slower while the structure is initially 20 times larger. With 256
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Fig. 4. The large structure benchmark.

processors, SkipQueues are 2.5 times faster on deletions and as much as 6.5 times faster
in performing insertions.

5.3 Large Structure Benchmark With 70 Percent Deletions

In the third experiment we varied the ratio of insertions to deletions in favor of the
deletions, by biasing the coin flip so that the simulation would choose to do a Delete-min
operation 70 percent of the time. We started out with 27000 initial items in each structure
and performed a total of 60000 operations on each. In this benchmark, the size of the
structure decreases gradually throughout the simulation until it reaches a size of about
3000 elements at the end. We excluded FunnelLists from this benchmark since the
results of the Large Structure Benchmark show that they perform miserably when the
structure is large. Figure 5 shows the results of the large structure benchmark. As
before, Delete-min operations are on the left and Insert operations on the right.

As can be seen, SkipQueues are up to 2.5 times faster than Heaps in performing
deletions at 256 processors. Deletion latency increased in both SkipQueues and Heaps
because of the larger number of deleting processors. On the other hand insertion time for
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Fig. 5. The large structure benchmark with 70 percent deletions.

SkipQueues improved a little since there where less processors trying to Insert at the
same time, but insertion in the heap structure suffered from the extra contention at the
root area caused by the increased number of deletes. Heaps can handle insertions much
better than they handle deletions. Insertions are distributed across the wide (bottom)
part of the heap, while deletions are concentrated at the root. Therefore extra insertions
would be spread out and have little impact, but extra deletions would also slow down
inserting processors which happen to get close to the root of the heap. Overall the
extra deletions slowed down both SkipQueues and Heaps but their effect on heaps was
markedly worse.

In conclusion, The FunnelList is the most effective method when concurrency is low (up
to 16 processors) and the size of the structure is small, but deteriorates in performance as
soon as the structure becomes too large. The SkipQueue scales significantly better than
the Heap algorithm throughout the concurrency range, and outperforms the FunnelList
at concurrency levels of more than 16 processors.
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Fig. 6. SkipQueue vs. Relaxed SkipQueue for small structure.

5.4 Relaxed SkipQueue

We now examine the effect of removing the order-preserving time-stamp mechanism from
the Insert and Delete min operations. In other words, Insert operations will not need
to mark items with a time-stamp, and Delete min operations will not need to test the
time-stamp of items they are about to delete.

With the order-preserving mechanism removed, one gets a new relaxed SkipQueue
specification that allows a Delete Min to return items inserted concurrently with it.
Formally, for any Delete Min operation d, we define a set I, as before, to include all
elements whose Insert operations preceded d. We define a set D to include all elements
returned by Delete min operations that preceded or were concurrent with d. We also
define a set IC to include all elements inserted by Insert operations that were concurrent
with d. The Delete Min operation d is guaranteed to return an item from min(I −D) or
a smaller item from IC . In other words, if an item smaller than the minimum of I − D
is found among concurrently inserted entries, this item will be returned.

We tested the relaxed SkipQueue under the above three benchmarks. As seen in
Figures 6, 7, and 8, both versions of the SkipQueue behave more or less the same up to
a concurrency level of 32 processors. When concurrency is higher than 32, the relaxed
versions performs deletions faster than the regular version: up to twice as fast in the
best case. We also notice though, that there is a matching slowdown of the relaxed
SkipQueues in performing insertions in these high concurrency levels.

We believe the slower Inserts are actually a side effect of the faster Delete Mins.
Bearing in mind that processes choose at random (a flip of a virtual coin) whether to
insert or delete, when processes complete their deletions faster (as in the case of the
realxed SkipQueues), there are more of them at each given moment trying to perform
an insert. There is thus more contention on the locks of the list and the latency of the
Inserts increases.
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Fig. 7. SkipQueue vs. Relaxed SkipQueue for large structure.
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Fig. 8. SkipQueue vs. Relaxed SkipQueue for large with 70 percent deletion.

6. PSEUDO CODE FOR THE PRIORITY QUEUES

This section describes the code of our SkipQueues in detail. Our implementation is based
on the SkipList implementation in [31]. The code for the auxiliary procedures and for
the Insert is identical, and our changes are in the Delete Min procedure which uses
the Delete operation for SkipLists provided in [31]. We note that for compatibility with
earlier C-based SkipList implementations, the interface of the actual implemented code
differs slightly from the specification of Section 4.2. An inserted item in the Insert
procedure is actually a pair of key and value), where comparisons are done on the key
and the value is just the stored item. The Insert procedure returns a success code. The
Delete min operation returns the deleted item’s value in a designated memory location,
and returns a notification of success or a possible EMPTY SkipQueue.

Figure 9 describes the auxiliary procedures we use. The getLock procedure is used
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node_t * getLock(node_t * node1, key_t key, int level)

{

1 node2 = node1->next[level]

2 while (node2->key < key) { // Look for the node with the largest

3 node1 = node2 // key smaller than the key we’re

4 node2 = node1->next[level] // searching for.

5 }

6 lock(node1, level) // Lock the node.

7 node2 = node1->next[level]

8 while (node2->key < key) { // Something changed before locking.

9 unlock(node1, level) // Unlock node.

10 node1 = node2 // Get the next node in the queue.

11 lock(node1, level) // Lock it.

12 node2 = node1->next[level]

13 }

14 return node1

}

int randomLevel()

{

1 int l = 1

2 while (random() < p)

3 l++

4 if (l > queue->maxLevel)

5 return queue->maxLevel

6 else

7 return l

}

Fig. 9. Code for auxiliary procedures. getLock is used to lock the node with the largest key smaller
than key. randomLevel picks the maximal level of newly created node.

by a processor to acquire a lock on the node which has the largest key which is smaller
than the key it is searching for. The node is assumed to be somewhere in front of (i.e.
reachable from) the node a processor currently holds, and so it attempts to lock only a
certain level of the node. In lines 1–6, a processor searchs for the node and gets a lock on
a specified level. It then makes sure (lines 7–13) that no new node with a key closer to its
search key was inserted while it was locking. If one was inserted, the processor moves the
lock to this new node and checks again. In our benchmarks, processors used semaphores
provided by the Proteus simulator to implement locks (in the code of SkipQueue and
FunnelList). More efficient lock implementations are known in the literature.

The randomLevel procedure calculates the maximal level for a newly created node.
It does so (lines 1–3) by tossing a coin and incrementing a counter as long as the toss
was successful. With the first failure the tossing ceases. This provides a geometric
distribution of the results. In lines 4–8 a processor checks that the result is not bigger
than the maximal allowed value. It then returns the maximal value.

Figure 10 describes the Insert procedure. To insert a value with a given key, a
processor first searches and saves an array containing all the “preceding” nodes, ones
after which the new node would be inserted at each level (lines 1–9). It then acquires a
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int Insert(key_t key, value_t value)

{

1 node1 = queue->Head // Search from the queue head

2 for (i = queue->maxLevel; i > 0; i--) { // search all levels.

3 node2 = node1->next[i]

4 while (node2->key > key) { // Find the place at this

5 node1 = node2 // level in which to

6 node2 = node2->next[i] // Insert the new node.

7 }

8 savedNodes[i] = node1 // Save the location that was found.

9 }

10 node1 = getLock(node1, key, 1)

11 node2 = node1->next[i]

12 if (node2->key == key) {

13 node2->value = value;

14 unlock(node1, 1)

15 return UPDATED

16 }

17 level = randomLevel() // Generate the level of the new node.

18 newNode = CreateNode(level, key, value)

19 newNode->timeStamp = MAX_TIME; // Initialize the time stamp.

20 lock(newNode, NODE) // Lock the entire node.

21 for (i = 1; i <= level; i++) {

22 if (i != 1) // level 1 is already locked

23 node1 = getLock(savedNodes[i], key, i)

24 newNode->next[i] = node1->next[i] // insert the new node

25 node1->next[i] = newNode // into the queue.

26 unlock(node1, i)

27 }

28 unlock(newNode, NODE) // Release the lock on entire node.

29 newNode->timeStamp = getTime(); // Set the time stamp.

30 return INSERTED // The insertion was successful.

}

Fig. 10. Code for inserting a node into the queue.

lock on the first level preceding node. If the key searched for already exists in the queue,
then this locking prevents the node from being deleted by another processor while the
inserting processors are trying to update it (line 10). If the key is already in the queue,
the inserting processor just updates the node’s value and returns. Otherwise, it calulates
a new maximal level and creates a new node to be inserted into the SkipQueue (lines
12-18). It locks the new node to prevent it from getting deleted while the insertion is in
progress. Then, in lines 20–25, the processor goes from bottom to top through all the
levels at which the new node should be connected and connects it into the queue. At
every level, the processor first acquires a lock on the node, then makes the connection,
and finally releases the lock. All that is left now is for the processor to release the lock
on the new node (line 26).

The code for Delete Min operation appears in Figure 11. A processor starts at the
bottom level of the head node and advances through the bottom list until an unmarked
node is found (lines 1–7). It uses a register-to-memory swap operation (denoted SWAP
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in the code) to check if a node is unmarked, while marking it at the same time. If
no unmarked node was found, it returns. Otherwise, it notes the key of the node it
marked and sets out to delete it from the queue (lines 8–13). The processor searches
for the location of the node at all the levels in which it appears. It saves pointers to
the preceding nodes in each level (lines 15–22). Then, the processor makes sure it has
a pointer to the node it wants to delete, and attempts to lock it in order to make sure
that it is already completely inserted (lines 23–26). The processor now proceeds to the
top level of the node and gets a lock on both its preceding node at this level and on its
own top level. The processor removes the node at the top level, releases the locks, and
moves on to perform the same series of operations on all lower levels (lines 27–34). Once
this sequence is complete, the node is no longer reachable from the SkipQueue, and the
processor releases the lock and adds the node to its garbage list (lines 35-36).

Sun, Sun Microsystems, the Sun logo, Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
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int Delete_Min(value_t * value))

{

1 time = getTime(); // Mark the time at which the search starts.

2 node1 = queue->head->next[1] // Start search at start of first level.

3 while (node1 != queue->tail) { // Search until end of queue.

4 if (node1->timeStamp < time) { // Ignore all nodes that were

// inserted after search began.

5 marked = SWAP(node1->deleted, TRUE) // Swap the flag value.

6 if (marked == FALSE) // An unmarked node was found,

7 break // so end the search.

8 node1 = node1->next[1] // Move to next node.

9 }

10 }

11 if (node1 != queue->tail) { // We found an unmarked node

12 *value = node1->value // save its value

13 key = node1->key // and its key. 11 } 12 else

14 return EMPTY // No node was found in the queue.

15 node1 = queue->head // Start the search from the head.

16 for (i = queue->maxLevel; i > 0; i--) // Search all levels.

17 node2 = node1->next[i]

18 while (node2->key > key) { // Find the place at this

19 node1 = node2 // level in which the node

20 node2 = node2->next[i] // with the key is located.

21 }

22 savedNodes[i] = node1 // Save the location that was found.

23 }

24 node2 = node1

25 while (node2->key != key) // Make sure we have a pointer

26 node2 = node2->next[1] // to the node with the key.

27 lock(node2, NODE) // Lock the entire node to be deleted.

28 for (i = node2->level; i > 0; i--) {

29 node1 = getLock(savedNodes[i], key, i) // Lock this level on

30 lock(node2, i) // the node to be deleted and node before it.

31 node1->next[i] = node2->next[i] // Remove the node from the

32 node2->next[i] = node1 // queue.

33 unlock(node2, i) // Release the locks on this level at

34 unlock(node1, i) // the deleted node and node before it.

35 }

36 unlock(node2, NODE) // Release the lock on entire node.

37 PutOnGarbageList(node2) // Put the node on the garbage list.

38 return DELETE // Delete was successful.

}

Fig. 11. Code for deleting the smallest node from the queue.


