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Abstract

An atomic snapshot memory is an implementation of a multiple�location shared memory
that can be atomically read in its entirety without preventing concurrent writing� The
design of wait�free implementations of atomic snapshot memories has been the subject
of extensive theoretical research in recent years� This paper introduces the coordinated�

collect algorithm� a novel wait�free atomic snapshot construction which we believe is a
�rst step in taking snapshots from theory to practice� Unlike previous algorithms� it uses
currently available multiprocessor synchronization operations to provide an algorithm that
has only O��� update complexity and O�n� scan complexity� with very small constants� We
evaluated the performance of known snapshot algorithms for a collection of benchmarks on
a simulated distributed shared�memory multiprocessor� Our empirical evidence suggests
that coordinated�collect will outperform all known wait�free� lock�free� and locking snapshot
algorithms in terms of overall throughput and latency�
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� Introduction

An atomic snapshot memory ��� �� is an implementation of a multiple�location shared memory
that can be atomically read in its entirety� The ability to collect such an instantaneous view
is a powerful tool for designing concurrent data structures� as it greatly reduces the need to
argue about inconsistent views of memory� Snapshots have been widely used in theoretical work
�	� 
� 	
� 	�� 	�� 

� 
��� and o
er a yet untapped potential for practical use in applications such
as check�pointing� generating concurrent backups� or interactive debugging of multiprocessor
programs� Snapshots can also serve as building blocks of state�of�the�art fault�tolerant real�
time applications such as a multiprocessor server of a radar tracking system� where multiple
sensors generate updates concurrently with multiple requests for consistent system states� The
design of asymptotically e�cient implementations of an atomic snapshot memory has been the
subject of extensive and highly creative research in recent years ��� �� �� 		� 	�� 	�� 
	� ����

An atomic snapshot memory is an abstract data type equivalent to a memory partitioned
into n segments� one for each processor� There are two types of operations on the object� a
scan and an update� In an update operation� a processor writes the contents of its associ�
ated segment� while in a scan� it obtains an instantaneous �global picture� of all n segments�
Snapshots should be fault�tolerant and non�interfering� That is� applications �for example�
programs being check�pointed� on the system should have minimal disruption or loss of per�
formance as a result of ongoing snapshots� and in the extreme should continue to run even
in the face of severe timing anomalies� An atomic snapshot implementation is wait�free if the
execution of any implemented scan or update operation completes within a bounded number
of machine instructions independently of the pace of other processors �
��� Fault�tolerance
and non�interference are the major advantages of wait�free methods over standard lock�based
implementations�

This paper takes a practical look at the question of providing wait�free implementations
of atomic snapshots on multiprocessor architectures� A snapshot implementation that is to be
practical should have the following properties�

� The complexity of performing an update operation should be within a small constant of
that of a simple �write� to memory� since the typical user does not want to sacri�ce the
speed of updating memory to support e�cient snapshots�

� Register sizes and hardware synchronization primitives should conform with ones avail�
able on multiprocessor architectures�

� Memory contention should be minimized by distributing and load�balancing work� oth�
erwise good asymptotic complexity will not result in good performance�

��� Coordinated Collecting

The main contribution of this paper is in introducing the coordinated�collect algorithm� a novel
atomic snapshot construction which we believe is a �rst step in taking snapshots from theory

	



to practice� It uses Load�linked�Store�conditional operations �	�� 
�� �
� to provide a multi�
scanner algorithm� that uses real�world registers �each containing at most O�	� values� where
a value is typically at least the size of a processor identi�er� with only O�	� update complexity
�in fact� at most four operations�� O�n� scan complexity� and O�n�� space complexity�

Though one might think that the use of strong primitives like Load�linked�Store�conditional
would allow us to readily modify the elegant snapshot algorithms in the literature ��� �� �� 		�
	�� 	�� 
	� to achieve similar complexity� it turns out that this is not the case �see the summary
in Table 	�� These multi�scanner snapshot protocols have an algorithmic structure in which
each updater and�or scanner collects a view of memory in its register� and then processors try
to agree which of the views to return� This leads to a situation where� even with the added
power of a Load�linked�Store�conditional operation to speed up the view�agreement process�
the complexity of an update remains an unacceptable ��n�� and the registers used in the
algorithms are required to hold simultaneously ��n� values�

Our presentation begins with the introduction of a new single�scanner protocol � � a greatly
simpli�ed version of the innovative single�scanner protocol of Kirousis� Spirakis� and Tsigas
����� We build the coordinated�collect multi�scanner algorithm based upon our single�scanner
protocol� The algorithm has updaters perform the same O�	� sequence of operations as in our
single�scanner algorithm� but uses a novel collection methodology to allow multiple scanners
to return coherent views of memory� Instead of deciding on one of many collected views as
in previous algorithms� coordinated�collect has all the active scanners distribute the work and
�help� each other to collect values from the n registers into a pre�agreed shared view area� This
allows us to achieve an O�n� scan complexity without increasing the update complexity� The
helping process is tailored to maintain low contention by load�balancing processors over the
shared view locations�

��� A Comparison of Atomic Snapshot Algorithms

The second contribution of this paper� in Section �� is a comparison of the performance of sev�
eral single and multi�scanner algorithm snapshot techniques� including our own� on a simulated
distributed shared�memory multiprocessor using the well accepted Proteus Parallel Hardware
Simulator �	�� 	�� of Brewer et� al� Our choice of algorithms for simulation was driven not
only by their asymptotic complexity� but also by the feasibility of implementing them on mul�
tiprocessor machines�

The �rst two compared methods are an algorithm that blocks updates during a scan and
a lock�free algorithm that never blocks updates but does not guarantee scan termination in
the face of repeated updating� Of the known wait�free methods� we chose to implement the
unbounded�register versions of the algorithms of Afek et� al� ��� and Attiya and Rachman
�	��� and the consensus based algorithm of Chandra and Dwork �	��� The �rst two algorithms

�A multi�scanner algorithm is one in which concurrent scan operations by di�erent processors are allowed�
�The version we present uses unbounded time stamps ��
�bits or more will su�ce in practice� but can be

easily bounded using a sequential time�stamp system ���� ����






Snapshot Primitive Update Scan Register Space
Algorithm Used Complexity Complexity Size Complexity

Lock free r	w register O��� � O��� O�n�
Block update r	w register � O�n� O��� O�n�

Anderson ��� r	w register O�
n� O�
n� O��� O�n�logn�
Aspnes�Herlihy �
� r	w register O�n�� O�n�� O�n� O�n��
Afek et al� ��� Unbounded r	w register O�n�� O�n�� O�n� O�n�

Bounded r	w register O�n�� O�n�� O�n� O�n��
Kirousis et al� ��
� One scanner r	w register O��� O�n� O��� O�n�
Dwork et al� ���� Weak snapshot r	w register O�n� O�n� O�n� O�n��
Chandra Dwork ��
� LL	SC O�n� O�n� O�n� �

Attiya� Herlihy Version � T�S O�nlog�n� O�nlog�n� O�n� �

Rachman ���
 Version 
 dyn� T�S O�n� O�n� O�n� �

Attiya�Rachman ���� Unbounded r	w register O�nlogn� O�nlogn� O�n�� �

Coordinated Collect LL	SC O��� O�n� O��� O�n��

Table 	� A Comparison of Atomic Snapshot Algorithms

use n�valued read�write registers to have processors agree among collected views� and the
last uses n�valued registers and an agreement mechanism which we implemented using the
powerful Load�linked�Store�conditional operation� We did not implement the intricate test�set
based algorithms of Attiya� Herlihy� and Rachman �		� which achieve asymptotically e�cient
agreement among views using an unbounded number of test�set registers� Transforming them
into bounded algorithms would introduce a substantial overhead in space and in memory
contention� making them inferior to the Load�linked�Store�conditional based agreement scheme
which we tested� Given that the above algorithms assume the availability of atomic n�value
registers� we tested them both under the �unrealistic� assumption that such operations are
available in hardware� and under the �more realistic� one that each n�valued read operation
takes at least n local operations� We found that their performance was only slightly improved
by assuming n�valued registers were available in hardware�

We found that our single�scanner and multi�scanner coordinated�collect algorithms out�
perform all known algorithms both in throughput and latency� Surprisingly� their update
throughput is as good as that of the lock�free method which lets updates succeed at the price
of very low scan throughput �� The scan throughput of our algorithms remains consistently
high as the number of processors increases� even though the size of the collected views grows
linearly� However� it has an associated overhead and generates a certain level of contention
which prevents it from reaching the throughput of the blocking algorithm �one which blocks
all updates during a scan��

In summary� we believe our work is an example of using current multiprocessor synchroniza�

�In the lock�free algorithm� the scanner repeatedly collects the contents of the registers� If it reads the
contents of the registers twice� and no register has been changed� it returns the collected values as a result�
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tion operations to develop snapshot algorithms that are more �realistic� in terms of register size
and the complexity of update operations� Our hope is that this and future improvements in the
performance of this important building block will help in advancing wait�free data structures
from theory to practice�

The paper is structured as follows� Section 
 presents the model� In Section � we present
our single�scanner algorithm� Section � presents our multi�scanner algorithm� The proofs of
both algorithms can be found in Section �� Finally� Section � presents a performance analysis
of the algorithms�

� Snapshots and the Shared Memory Model

Our computation model follows �	
� 	�� 
��� A concurrent system consists of a collection of n
processors� Processors communicate through shared data structures called objects� Each object
has a set of primitive operations that provide the only means to manipulate that object� Each
processor P is a sequential thread of control �
�� which applies a sequence of operations to
objects by issuing an invocation and receiving the associated response� A history is a sequence
of invocations and responses of some system execution� Each history induces a �real�time�
order of operations where an operation A precedes another operation B if A�s response occurs
before B�s invocation� Two operations are concurrent if they are unrelated by the real�time
order� A sequential history is a history in which each invocation is followed immediately by its
corresponding response� The sequential speci�cation of an object is the set of legal sequential
histories associated with it� The basic correctness requirement for a concurrent implementation
is linearizability �
��� every concurrent history is �equivalent� to some legal sequential history
which is consistent with the real�time order induced by the concurrent history� In a lineariz�
able implementation� operations appear to take e
ect atomically at some point between their
invocation and response� In our model every shared memory location L of a multiprocessor
machine memory is a linearizable implementation of an object which provides every processor
Pi with the following set of sequentially speci�ed operations �see �
�� 
�� for details��

Readi�L� reads location L and returns its value�

Load�linked i�L� reads location L and returns its value� Marks L as read by Pi�

Store�conditional i�L� v� if location L is marked as read by Pi� the operation writes the value
v to L� erases all existing marks on L and returns a success status� Otherwise it returns
a failure status�

Writei�L� v� writes the value v to location L� Erases all existing marks on L�

Since the Load�linked and Store�conditional operations on some machines have a di
erent
semantics than those described above� we discuss in Section � how one can implement them
using existing synchronization primitives�
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��� Atomic Snapshots

An atomic snapshot object is a concurrent shared object which allows each processor Pi where
� � i � n� 	 to perform two types of operations on the object� Updatei�r� and Scani� Each
Updatei operation has input r from some given range of values� Each Scani returns a vector
view����n� 	� of n values�

We require that a correct implementation of an atomic snapshot object meet the following
sequential speci�cation�

De�nition ��� In every �nite or in�nite sequential history h � o�o�o� � � �� if ok � Scani

where Scani returns view ����n � 	�� then for all j such that � � j � n� the last Updatej�r�
operation �last meaning with highest subscript	 in the subsequence o� � � � ok��� has r � view �j�

If o� � � � ok�� does not contain any Updatej�r� operations then view �j� � empty


In terms of our implementation� proving correctness amounts to showing that each possible
concurrent history of the object�s execution �lls the following conditions�

P� The induced real�time order on the implemented Scan and Update operation executions
can be extended to a total order� such that

P� the totally ordered history is legal� that is� meets the sequential speci�cation�

We also require the implementation to be wait�free� requiring the execution of any Scan or
Update operation to complete within a bounded number of machine instructions �
���

� The Single�scanner Algorithm

The following algorithm is a greatly simpli�ed variant of the Kirousis� Spirakis� and Tsigas
single�scanner snapshot algorithm ����� The latter algorithm is based on the innovative idea
of letting the scanner change� in each scan� the memory location where updaters write their
values� This allows updaters to keep writing to memory without disrupting an ongoing scan
operation�s attempt to collect a snapshot view� However� the price paid in ���� is a rather
complicated scheme to eliminate the need to search back through an unbounded number of
possible locations in which updates were recorded� The key to our algorithm� presented below�
is a simple pragmatic structure that eliminates the need for such a search with almost no
overhead and achieves optimal asymptotic time complexity� O�n� for a scan and O�	� for an
update� Moreover� as can be seen from the code in Figure 	� the constants involved are very
small� The algorithm uses a sequential time�stamp system �
��� a mechanism for maintaining
order among events using sequence numbers� In practice� implementing the �unbounded�
sequence numbers we use in the algorithm requires a register curr seq of �� bits or more �which
on current multiprocessors will take hundreds of years before it over�ows� though one can
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readily replace it by a more theoretical bounded sequential time�stamp system �
�� 
�� ��� �one
that never over�ows� to achieve a simple bounded read�write register single�scanner protocol�

The algorithm is designed to allow carrying the update operation structure without change
over to the case of multiple scanners� The code for scan and update operations appears in
Figure 	�

Shared data structures�

curr�seq� integer�

type value� integer or Empty or Null�

Register� record � val� value	 seq�integer 
�

memory� array ����n��
 of record � high�Register	low�Register 
�

shared data structures initialization�

for all k
���n��

memory�k
�high 
 memory�k
�low 
 �Empty	 �
�

curr�seq 
 ��

Scan��

variables

view� array ����n��
 of value�

high�r� register� j� integer�

begin

curr�seq �
 curr�seq���

for j �
 � to n��

high�r �
 memory�j
�high�

if �high�r�seq � curr�seq�

view�j
 �
 high�r�val

else

view�j
 �
 memory�j
�low�val�

return view�

end� �Scan�

Update�val� �for processor Pi�

variables

seq � integer� high�r� register�

begin

seq �
 curr�seq�

high�r �
 memory�i
�high�

if �seq �� high�r�seq�

memory�i
�low �
 high�r�

memory�i
�high �
 �val	seq


end� �Update�

Figure 	� The Single�scanner algorithm code

The algorithm uses a shared array memory����n��� of records� each having a high and a
low �eld� and a shared variable curr seq which holds a current time�stamp �sequence number��
The basic idea is to let the single�scanner set a new time�stamp as its �rst step and then collect
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updaters� values� while the �rst operation in each update is to read this time�stamp�

The scanner classi�es the collected updaters� values according to its newly created time�
stamp� and returns only those values that were written by update operations which did not
read its time�stamp� These updates must have started and performed the read of curr seq

before the scan� and so all their associated values could have existed in memory at the point in
the execution when the increment of the time�stamp was performed �note that the fact that
the values could have existed implies linearizability �
���� To guarantee that such a value is
found for each updater� even if scanning is concurrent with updating we keep� in an additional
memory location �the low �eld�� the latest value updated with a time�stamp preceding that of
the current�latest scan� Therefore� in case an updater �sees� a scan which has started after its
last update operation it modi�es the low and high �elds of its update location� First it updates
the low �eld to hold its previous update value which should be available for concurrent scans�
and then the high �eld to hold the new update value�

To prove the correctness of this construction we must show that each possible history
of this algorithm is equivalent to a legal history�
��� A detailed formal correctness proof
of the algorithm follows from that of the coordinated�collect algorithm and is presented in
Section �� In a nutshell� given a concurrent history of the single�scanner algorithm� we order
every Scan operation S and Update operation U in the following way� If U reads curr seq

after S increments it� then U is ordered after S� If U reads curr seq before S increments it�
then if S reads memory�i��high before U writes into it� U is ordered after S otherwise U is
ordered before S� Two update operations� U� and U� are ordered as follows� if there exists
a Scan operation S� such that U� is ordered before S and U� is ordered after S� then U� is
ordered after U�� Otherwise U� and U� are ordered according to the order of their respective
read operations on curr seq�

U1 U2

update high/low

Read(curr_seq,old)

Write(curr_seq,new)

read high/low

Scan

Figure 
� Ordering updates and scans

Clearly� this total order extends the partial order induced by the concurrent history� The
only case for which this is not immediate is for two update operations U� and U� that are
totally ordered in the concurrent history� Assume without loss of generality that U� precedes
U�� and let us see why they are consistently ordered with respect to scan operations� As
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depicted in Figure 
� if U� is ordered in the total order before some scan operation S� then U�

must have read the content of curr seq before S incremented it� This implies that U� updated
its registers in the memory array before S incremented curr seq and therefore before S read
the memory array� Therefore� we order U� before S�

� The Coordinated�Collect algorithm

To achieve an O�	� update complexity� we build the multi�scanner algorithm around our single�
scanner algorithm� As in the single�scanner algorithm� we keep a memory array and a curr seq

time�stamp� and have updaters perform the sequence of operations in Figure 	� We begin our
multi�scanner design by noticing that a solution based on simply incrementing the curr seq

in every scan will force updaters to maintain a set of O�n� last�updated values �one for each
ongoing scan�� This will a
ect not only the update complexity but the scan complexity as well�
On the other hand� incrementing the curr seq only once for a collection of concurrent scans�
will lead to a situation where updaters can switch values of high�low memory locations in
the middle of a scan� Establishing an order among concurrent scans will thus not be possible�
Take for example an execution in which two update operations U� and U� on locations i
and j respectively� are executed concurrently with two scan operations S� ans S�� Assume
that both U� and U� have read curr seq before it was incremented� In that case we may
have a concurrent history in which S� read memory�i��high before U� wrote in it and read
memory�j��high after U� wrote in it� while S� read memory�i��high after U� wrote in it and
read memory�j��high before U� wrote in it� Consequently� S� should have collected the value
written by U� but not the value written by U�� and S� should have collected the value written
by U� but not the value written by U�� This creates a situation in which S� and S� cannot be
ordered consistently� In short� to make our e�cient single�scanner algorithm work for multiple
scanners� we must ensure that there are no concurrent scans�

Since we cannot prevent scans from actually taking place concurrently� our approach is
to have them emulate a sequence of virtual scan operations whose execution intervals do
not overlap� These sequential virtual scans together with the regular single�scanner updates
form executions� In these executions the values collected are identical to the values collected
by the scanner in the single�scanner algorithm� The key to our multi�scanner construction
is to guarantee that each of the concurrent scan operations completely overlaps at least one
virtual scan and returns its value� The total linearization order on concurrent scan and update
operations is de�ned by �rst ordering the updates relative to the virtual scans and then ordering
each of the concurrent scans according to the order of its overlapped virtual scan� that is� as
if it occured at some point within the virtual scan interval�

To create the sequence of non�overlapping virtual scans� we let all scanners that execute
concurrently share a special variable curr index that points to a pre�chosen view� an array
of n locations in which the current virtual scan�s snapshot �view� of memory will be collected�
Scanners start a new virtual scan operation only after the current one completes� To provide
wait�free behavior� each scanner must guarantee that the view is collected even if all other
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scanners that share it have halted� This means that �in the worst case� it must execute the
collection code of the single�scanner scan operation for all memory locations� Scanners working
concurrently on the same view might still read di
erent values from memory� and so we must
make sure that only one snapshot view is actually written to the shared view array� We do
so using a Load�linked and Store�conditional operation to guarantee that each view location
is written by only one of the concurrent scanners� The reason for using a Load�linked and
Store�conditional operation as opposed to a simple write is that otherwise� delayed update
operations that started before the current virtual scan may cause concurrent scanners to over�
write view locations� In such cases� delayed scanners may overwrite �and return� some already
collected �and returned� snapshot� Similarly� scanners running independently would eventually
return snapshot results that cannot be ordered consistently�

V

B

View that contains U and 
does not contain V

View that must contain V

U

A

Figure �� Returning an incorrect view

Having constructed a mechanism that ensures that each scanner will collect a snapshot
view� we turn to guaranteeing that it can return a virtual scan operation that it completely
overlaps� The problem is similar to that noticed by Afek� Attiya� Dolev� Gafni� Merritt� and
Shavit in ���� If the view returned by scanner A was collected by another concurrent scanner
B� the values U that are returned by A might be incorrect� As depicted in Figure � The
reason is that there may be updates V completely after the updates U and completely before
A�s scan� that are �missed� by returning the values in U � The solution is to use a variant of
the double collect technique ���� namely� participate in two virtual scans and return the view
collected in the later one� A scanner participates in a virtual scan collection only after getting
a shared view pointed to by curr index and verifying that it is still not fully collected with
snapshot values� Since by de�nition virtual scans are never concurrent� the second of them is
completely within the scan interval�

However� there can still be a situation in which a scanner in�nitely often fails to have access
to the view pointed to by curr index and also fails to participate in virtual scans of two chosen
views pointed by curr index� This may happen if it is delayed between the agreement on the
current view and the view collection� and meanwhile� all other scanners complete the collecting
process using the chosen view� We overcome this problem by adding an array A����n�	� indexed
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by curr index � The ith entry of A is used by scanner Pi to post its proposed view� The new
role of curr index is to cycle among the A entries� As we prove below� every scanner is ensured
to have its proposed view �its entry in A� chosen within n virtual scan rounds� This means that
if a scanner fails to participate in a virtual scan n times� its own view must have been chosen
as some virtual scan�s returned view at some earlier point� hence it is �lled with snapshot
collected values�

We now turn our attention to the possibility of having delayed scanners� ones that have not
completed reading the view of the virtual scan they decided to collect� If we had unbounded
space available� we could simply never re�use a view area� and a delayed scanner could partic�
ipate in a virtual scan and collect the contents of the shared view at its own pace� However�
we observe that any view space that has been �lled must be kept for no more than n virtual
scan rounds before it can be recycled and used in a new scan� The reason is that after n
rounds� every potentially delayed processor will have its own proposed view �lled� Therefore�
each processor can initially allocate two di
erent view spaces that will be alternately proposed
in its A entry� Each time it has to propose a view� the processor will pick its last unused view�
invalidate it for delayed processors� reinitialize its �elds� and write the view address in its A
entry� Then it will attempt to set its proposed view for the next virtual scan by advancing
the curr index pointer and setting it to point to this view� Concurrent scans will be able to
agree on one of their proposed views by using Load�linked�Store�conditional operations to set
curr index � Having set curr index � all scanners will try to participate in the collection of
the view� If a scanner is successful twice� it will return the view�s contents�

The following section provides a more detailed description of the algorithm�s code� The
multi�scanner algorithm�s pseudo�code for a scan operation appears in Figures ���� while the
code of the update operation is exactly as in the single�scanner case of Figure 	�

��� Implementation Details

As mentioned earlier� the algorithm uses an array A����n � 	� of indexes in views� an array
of views� The shared variable curr index contains a value �eld and a state �eld� The
value �eld is an index into A and the state �eld indicates whether the view speci�ed by
A�curr index�value� is subject to an ongoing collection process �which we call a fill�� If
not� the curr index should be advanced �i�e� advance�� Each view space contains� an array
regs�� � � � n � 	� in which a virtual scan�s snapshot �view� of memory will be collected� a
sequence �eld on which processors will dump the content of curr seq� and a version �eld
which contains an integer representing the number of times this view was proposed� A processor
invalidates a view for a delayed processor by incrementing the version �eld of the view by
one�

The algorithm executes as follows� A scanner repeatedly tries to participate in collecting
a view until it has taken part in two view collections or until a view it has proposed after the
beginning of the current scan operation is �lled for the second time� Note that the algorithm
uses a �ag first to ensure that the scanner will not return its own view after the �rst �ll �line
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��� The Null value is stored in the scanner A�s entry at either the initialization of the snapshot
object or after the scanner�s proposed view has been �lled�

In detail� a scanner �rst checks whether no view is currently proposed in its entry �line 
��
If this is the case� then if the last proposed view was �lled after the scan began� the scanner
terminates and returns the content of its own view as the result �line ��� Otherwise the scanner
proposes a new recycled view �lines ����� The scanner then reads the contents of curr index

and the next view to be �lled according to curr index �lines 	��		�� If the view was not
�lled� the scanner tries to participate in an ongoing view collection� This can be done only
if the collecting process has not terminated yet �line 	��� In this case the scanner calls the
Help fill procedure �line 	��� Otherwise� the scanner changes the index status to advance

�line 	��� If there is no ongoing collection performed on the view pointed to by the curr index

� the scanner increments curr index and sets its status to�

� fill if there is some proposed view in the next index �line 	��� and to

� advance �line 	�� otherwise�

A scanner participating in a coordinated collection on some view �procedure Help fill in
Figure ��� �rst reads the content of the version �eld of the view �line 

�� Since the owner of
the view has to increment the version �eld before initializing the view� the scanner will be able
to check before each coordinated step that the view was not invalidated by its owner� This
prevents a delayed scanner from collecting a view after it was reinitialized and proposed again
by its owner� After reading the version �line 

�� the scanner veri�es that the curr index has
not changed �line 
��� If curr index has changed� the view is already �lled and the processor
exits the procedure�

As in the single�scanner algorithm there is a time�stamp which is incremented at the be�
ginning of each view collection� The time�stamp is incremented in the following way� the
scanners �rst agree on the content of curr seq by writing its previous value to the �lled view
�line 
��� then they update curr seq according to the value stored in the view �line 
��� In
this way we ensure that curr seq is incremented only once� In the view collection �lines 
��
�	� scanners agree on the contents of the read register by writing only to �Empty� registers
�using Load�linked and Store�conditional �� Finally� the scanners complete the view collection
by writing a Null value in the entry in A indexed to by curr index�lines �
�����

� Correctness Proof

By the locality property of linearizeable objects �
�� it is a valid proof technique to ig�
nore any speci�c implementation details of operations like Read� Write� Load�linked and
Store�conditional � and to assume that these operations occur as atomic actions sometime within
their corresponding operation interval� We may therefore assume that an execution of the co�
ordinated collect algorithm is in fact a �possibly in�nite� sequence of events r � e�� e�� � � �

where each event is one of the form�

		



type value� integer or Empty or Null�

index� integer or Null�

Register� record �val� value� seq� integer
�

View � record �version� integer� sequence� index� regs� array����n��
 of value
�

Ind � record �value� integer� state� �fill	 advance�
�

shared data structures�

A� array ����n��
 of index�

curr�index� Ind�

curr�seq� integer�

memory� array ����n��
 of record �high�Register� low�Register
�

views � array �����n��
 of View�

shared data structures initialization�

for all k 
 ���n��

A�k
 
 Null�

memory�k
�high 
 memory�k
�low 
 �Empty	 �
�

curr�index 
 ��	advance
� curr�seq 
 ��

private data structures

current�view� ��	 ���

result� array ����n��
 of value�

fill�count� integer�

private data structure initialization

current�view 
 ��

Figure �� Data types and Variables of the Coordinated Collect Algorithm

W i�var�val� Processor i performs a Write operation on variable var with value val�

Ri�var�value� Processor i performs a Read operation on variable var which returns value val�

LLi�var�val� Processor i performs a Load�linked operation on variable var which returns value
val�

SCi�var�value�success� Processor i performs a successful Store�conditional operation on vari�
able var with value val�

SCi�var�value�failure� Processor i performs a unsuccessful Store�conditional operation on vari�
able var with value val�

Sometimes we use the notation Ri�variable�� �variable�� or LLi�variable�� �variable�� for
some predicate �� as a short form forRi�variable�value� or LLi�variable�value� and � �value��true�
In other words� Ri�variable��� variable�� means that processor i reads the content of variable
and gets a value that that satis�es �� When the subscripts are clear from the context or
unimportant we will at times omit them� For every execution r � e�� e� � � � we refer to the

	




Scan��

variables

helped�view	 k� integer�

index� Ind�

first � boolean�

�� first �
 True� fill�count �
 ��

forever do

�� if �A�i
 
 Null�

�� if first

index �
 curr�index�

�� if ��index�value mod n� �� i� or �index�state �� fill�

�� first �
 False�

�� current�view 
 ��current�view�

�� Init���i � current�view��

�� A�i
 �
 ��i � current�view� �Propose the view�

�� else

return views���i � current�view
�regs�

��� index �
 LL�curr�index��

k �
 index�value mod n�

��� helped�view �
 A�k
�

��� if �index�state 
 fill� �If a collection process is in progress�

��� if �helped�view �� Null�

��� if �help�fill�helped�view	 index� 
 SUCC and fill�count 
 ��

return result�

else �The view has been filled already�

��� SC�curr�index	�index�value	advance
��

else

��� if �A��index�value��� mod n
 �� Null� �If there is a proposed view in the next entry�

��� SC�curr�index	�index�value��	fill
�� �Advance and begin a collection process�

else

��� SC�curr�index	�index�value��	advance
�� �Advance to the next Entry�

Init�x� integer�

��� views�x
�version �
 views�x
�version � ��

��� views�x
�sequence �
 Null�

for k �
 � to n��

��� views�x
�regs�k
 �
 Null�

Figure �� Scan by processor i in the Coordinated�Collect algorithm
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Help�fill�x� integer	 index� Ind�

��� version �
 views�x
�version�

��� if �curr�index �� index�

return Fail�

�If the collection process is still active�

��� if �LL�views�x
�sequence� 
 Null�

if �version �� views�x
�version�

return FAIL�

else

SC�views�x
�sequence	curr�seq����

��� seq 
 views�x
�sequence�

if �LL�curr�seq� 
 seq���

if �version �� views�x
�version�

return FAIL�

else

SC�curr�seq	seq��

��� for j �
 � to n�� do

�For each updated shared register follow the single collect method�

��� high�r �
 memory�j
�high�

��� if �LL�views�x
�regs�j
� 
 Null�

if �version �� views�x
�version�

return FAIL�

else

��� if �high�r�seq � views�x
�sequence�

��� SC�views�x
�regs�j
	high�r�value��

else

��� SC�views�x
�regs�j
	memory�j
�low�value��

��� if �LL�A�index�value mod n
� 
 x�

��� if �curr�index 
 index�

SC�A�index�value mod n
	Null��

��� fill�count �
 fill�count���

��� if �fill�count � ��

return SUCC�

for j �
 � to n�� do �Copy the shared view registers into private space�

result�j
 �
 views�x
�regs�j
�

if �views�x
�version �� version�

return FAIL�

else

return SUCC�

Figure �� Help �ll by processor i in the Coordinated�Collect algorithm
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content of every shared memory location loc after every event e as Content�r� e� loc�� subject
to the speci�cation of the primitives used� We use � to replace a value unimportant in a given
context� We use SCi�var�value� as a shorthand for SCi�var�value�success�

De�nition ��� For every execution r� the real�time order of events in r �denoted as 
��	
is the total order such that for two events ei and ej in r� ei � ej i� i � j
 The real�time

order of subsequences is the partial order
seq
� such that for two subsequence s � ej� � � � ejl and

s� � ej�
�
� � � ej�

l�
� s

seq
� s� i� ejl � ej�

�



For simplicity we usually write s� s� instead of s
seq
� s��

Let Updatei�v� be a call to the procedure Update by processor i with input v� Then
given an execution r� we denote by U i�v�� the sequence of events in r performed by i during
Updatei�v�� Similarly� given Scani�view�� � � � n�	�� a call to procedure Scan by i that returned
view�� � � � n�	�� let Si�view�� � � � n�	�� be the subsequence of events in r performed by i during
Scani�view�� � � � n� 	���

In order to prove the linearizability of our algorithm we have to show that for every ex�
ecution� we can provide a total ordering � between the calls to Update and Scan� which is
consistent with the partial order between the event subsequences created by the calls� and to
show that this total order induces a legal history� Informally� the proof will be structured as
follows� We �rst show that although many processes may execute a scan operation concur�
rently� there is at most one �scaning process� in progress at any moment� We then attribute
to every such �virtual� scan a vector view�� � � � n� 	� as its returned value� Our next step is
to show that one can linearize the sequence of virtual scans and the sequences of updates to
create a legal history� To complete the proof we show that every �actual� scan operation can
be matched with a returned view of a �virtual� scan that is contained within its execution
interval�

The following two claims hold directly from the algorithm and the speci�cation of the
Load�linked and Store�conditional operations�

Claim ��� Let r be an execution of the coordinated collect algorithm
 Then each of the value
transitions of the curr index variable in r� can be categorized as having one of the following
forms�

�
 �value�fill� to �value�advance�

�
 �value�advance� to �value���fill�

�
 �value�advance� to �value���advance�

Claim ��� Let r be an execution of the coordinated collect algorithm
 Then each of the value
transitions of the curr seq variable in r has the form� x to x 	


	�



De�nition ��� For every execution and every value x� if SC�curr index� �x � fill�� and SC��
curr index� �x � advance�� are contained in that execution� we de�ne the �lling interval of x
denoted Ix� as the �unique	 subsequence in the execution starting with a SC�curr index��
�x � fill�� and ending with SC�curr index� �x � advance�� if SC�curr index� �x � advance�� ex�
ists
 We call such �lling intervals closed
 If SC�curr index� �x � advance�� does not exist� Ix
extends to the end of the execution
 In that case we say that Ix is an open �lling interval

Sometimes we use the term interval as shorthand for �lling interval


An execution may thus contain many closed intervals and its last interval can be either closed
or open� Note that from our de�nition� an execution is not �covered� by intervals� rather� they
are scattered throughout it�

De�nition ��� Given an interval Ix� we denote SC�curr index� �x � fill�� �the starting event
of Ix	 by Startx
 If Ix is a closed interval we denote SC�curr index� �x � advance�� �the ending
event of Ix	 by Endx


From the above de�nitions and Claim ��	 we can deduce�

Claim ��� If two intervals Ix and Iy are included in an execution r� then Ix and Iy do not
overlap� and if x � y then Ix � Iy


In the following lemma� we show that during an interval Ix there is only one view on which
scanners may potentially operate�

Lemma ��� For every execution r and every interval Ix contained in r� the following proper�
ties are satis�ed�

	a
 Content�r�Startx� A�xmodn�� �� Null


	b
 During Ix� the content of A�xmodn� changes at most once� and to Null
 If Ix is a closed
interval then A�xmodn� is updated to Null during Ix


Proof� We show that the properties hold for every interval Ix contained in the execution by
induction on x� Assume that the properties hold for all the intervals Iy where y � x� and let
us prove that they hold for Ix�

Proof of �a�� Assume by way of contradiction that the property does not hold� By the algorithm
the sequence of operations executed by processor p which has set curr index to �x�fill� is
the following�

LLp�curr index� �x � � � advance��� Rp�A�xmodn�� A�xmodn� �� Null�

� SCp�curr index� �x � fill���

	�



In that case� there is some processor q that updated A�xmodn� to Null after Rp�A�xmodn���
A�xmodn� �� Null� and before SCp�curr index� �x � fill��� Since by the algorithm� A�xmodn�
is set to Null only by processes executing procedure Help fill the sequence of events executed
by q must be�

LLq�A�ymodn�� ��� Rq�curr index� index�� SCq�A�ymodn�� Null�

for some y s�t� y mod n � x mod n� Since SCq�A�ymodn�� Null� � Startx and since q has
read curr index before Startx� by Claim ��	� y � x� Now� since q has executed lines 	��	
 in
Scan before calling Help fill� index � �y�fill�� Therefore� the only possible interleaving
between p and q�s events is�

LLq�A�ymodn�� ��� Rq�curr index� �y � fill��

� LLp�curr index� �x � � � advance��� Rp�A�xmodn� �� Null�� SCq�A�ymodn�� Null��

Clearly� Iy is a closed interval� and Content�r�Endy�A�ymodn� � � Null� by the induction
hypothesis on property �b�� Since by Claim ��	 Endy � LLp�curr index� �x � � � advance���
it follows by the speci�cation of the Store�conditional operation� that SCq�A�ymodn�� Null�
should have failed� a contradiction�

Proof of �b�� We show that �	� during Ix no processor ever writes in A�xmodn� a value that
di
ers from Null� and �
� if Ix is a closed interval there is some processor which updates
A�xmodn� to Null before SC�curr index� �x � advance��� To prove �	�� assume by way of
contradiction that some processor writes a non�Null value in A�xmodn� during Ix� Since the
only processor which may write into A�xmodn� a value which di
ers from Null is processor
o � x mod n� o has executed�

Ro�A�o�� Null��

Ro�curr index� curr index�value mod n �� o � curr index�state �� fill��W o�A�o�� V ��

for some view V �� Let p be the processor which set curr index to �x�fill�� By the algorithm�
p must have read a non�Null value in A�o� before setting curr index �line 	��� Since we assume
that W o�A�o�� V �� occurs within the Ix interval� and since only processor o wrote non�Null
values into A�xmodn� � it follows that

Ro�A�o�� Null�� Rp�A�o�� A�o� �� Null��W o�A�o�� V ��

cannot occur� and the only possible ordering between p�s and o�s events is�

LLp�curr index� �x � � � advance��� Rp�A�o�� A�o� �� Null�� Ro�A�o�� Null��

Ro�curr index� curr index�value mod n �� o � curr index�state �� fill��

� SCp�curr index� �x � fill���W o�A�o�� V ���

Therefore� there is some processor q which executed�

LLp�curr index� �x � � � advance��� SCq�A�o�� Null�� SCp�curr index� �x � fill���

	�



Since by the algorithm q must be a processor executing Help fill� it follows that q executed
�lines �
�����

LLq�A�ymodn�� A�ymodn� �� Null�� Rq�curr index� �y � fill��� SCq�A�ymodn�� Null�

where �y � x�	 �y mod n � o�� Finally� since Ix is a closed interval� by the induction hypothe�
sis on property�b�� A�o� was set to Null after LLq�A�ymodn�� A�ymodn� �� Null� and before
SCq�A�ymodn�� Null�� we conclude that SCq�A�ymodn�� Null� should have failed� a contra�
diction� To prove part �
�� let u be the processor performed SC�curr index� �x � advance���
By Claim ��	 and by the algorithm �lines 	�� 	��� u executed�

Startx � LLu�curr index� �x � fill��� Ru�A�xmodn�� Null�� SCu�curr index� �x � advance���

By this equation and since by property �a� at Startx� A�xmodn� �� Null� the claim holds�

De�nition ��� An interval Ix during which A�xmodn� changes to Null� is a completed in�
terval


Clearly� by Lemma ��� any closed interval is a completed interval�

De�nition ��� For every completed interval Ix� we denote by Donex the event in Ix� in which
by the previous lemma� A�xmodn� changes to Null
 For a given execution r and a processor
o� we denote all the intervals Ix s
t
 x mod n � o as o�s intervals
 We also denote all the write
events performed by o during the calls to procedure Init as o�s initialization events


Clearly Donex �Endx� since by Lemma ��� A�xmodn� changes to Null during Ix�

Lemma ��� Let r be an execution
 If e is an event in r of the form SC�A�o�� Null�� then e is
contained in one of o�s intervals


Proof� Consider p� the processor that performed e� By the algorithm p executed �lines
	���
�����

Rp�curr index� �x � fill��� LLp�A�xmodn�� A�xmodn� �� Null�

� Rp�curr index� �x � fill��� e

where x mod n � o� By Claim ��	 Startx � Rp�curr index� �x � fill��� Ix is either open� in
which case it extends to the end of the execution� or it is closed� and then by Lemma ����
at Endx A�xmodn� � Null� It follows that e � Endx� otherwise SC�A�o�� Null� would have
failed�

Lemma ��� Given an execution r and a processor o� no initialization event of o is contained
in any of o�s intervals


	�



Proof� Assume by way of contradiction that some initialization event e of processor o is
contained in one of o�s intervals Ix� Since the Init procedure is called only at line � of the
algorithm� o executed �lines 
����

Ro�A�o�� Null�� Ro�curr index� curr index�value mod n �� o�curr index�state �� fill�� e

By the assumption Startx � e� Since by the de�nition of o�s intervals x mod n � o� and since
only processor o may write non�Null values into A�o� �line ��� by the �rst part of Lemma ����
Startx � Ro�A�o�� Null�� In such case� by Claim ��	 and De�nition ��
�

Ro�curr index� curr index�value mod n �� o � curr index�state �� fill�

may occur only after Endx� a contradiction�

Following Lemma ���� for every interval Ix�

De�nition ��� Let Ix�s view be de�ned to be the only non�Null value which was in A�xmodn�
during Ix


De�nition ��
 By Lemma �
� the value contained in view�V ��version where V �Ix�s view	�
remains unchanged during Ix
 This value is Ix�s version and we denote it as verx


De�nition ��� Given an interval Ix and a processor p� we say that p is a helping processor of
Ix� if p traverses line �� in the Help fill procedure� with parameter index equal to �x � fill�

All the events performed by helping processors of Ix� while executing the Help fill procedure
with parameter index equal to �x � fill�� are the helping events of Ix


A helping processor operates on view V with version ver if it executes Help fill with
parameter x� V and reads ver at line ��


Lemma ��
 Every helping processor of Ix while running Help fill with index �x � fill� will
operate on Ix�s view with version verx


Proof� Every helping processor p of Ix performed the following sequence of operations during
the Scan �lines 	� and 		� and Help fill �lines 

 and 
���

LLp�curr index� �x � fill��� Rp�A�xmodn�� V ��

Rp�views�V ��version� ver�� Rp�curr index� �x � fill���

for some version ver and view V �� Null� By Claim ��	 this whole sequence occured within
Ix� Therefore� by Lemma ��� and De�nitions ��� and ���� V and ver are Ix�s view and version
respectively�

	�



In the next lemma we show that every completed interval has at least one helping processor�

Lemma ��� Given a completed interval Ix� let p be the processor that executed Donex
 Then
p is a helping processor of Ix and Donex is one of Ix�s helping events


Proof� By the algorithm� p executed

Rp�curr index� �y � fill��� Rp�A�ymodn�� V �� LLp�A�ymodn�� A�ymodn� �� Null�

� Rp�curr index� �y � fill��� SCp�A�ymodn�� Null�

for some V �� Null where y mod n � x mod n� By Lemma ��	� y � x� If y � x then Iy must
be a closed interval and by Lemma ��� at SC�curr index� �y � advance��� A�ymodn� � Null

and SCp�A�ymodn�� Null� must have failed� Therefore we may deduce that y � x�

De�nition ��� A virtual �ll execution on a view V is a sequence of the form�

LLinit�curr seq� seq�� SCinit��curr seq� seq 	��

coordinated �ll�V	

for some value seq� where coordinated �ll�V � � fs�� � � � � sn��g� and where each si is a sequence
of events of one of the forms�

Rki�memory�i��high� vali�� LLki�views�V ��regs�i�� Null�

� SCki�views�V ��regs�i�� vali�value�

where vali�seq � seq  	 or

Rki�memory�i��high� high� � Rki�memory�i��low� vali�� LLki�views�V ��regs�i�� Null�

� SCki�views�V ��regs�i�� vali�value�

where high�seq � seq  	
 Denote the vector val��value� val��value� � � � valn���value as the
result of the virtual �ll execution
 Denote init� init� and k� � � � kn�� as the participating pro�
cessors of the virtual �ll execution


De�nition ���� Given a completed interval Ix� let SeqAgreex be the �rst helping event of Ix
in the execution� that was performed after line �� in the Help fill procedure �see Figure �	

Let NewSeqx be the �rst helping event of Ix in the execution� that was performed after line ��
in the Help fill procedure
 From this de�nition and by Lemma �
�� such events exist and

Startx � SeqAgreex � NewSeqx � Donex


�



Notice that in the above de�nition we use the notation SCinit� even though it may be the same
process init that performed the operation� We did this in order to avoid the need to prove
that the same processor performed both operations�

We now proceed to show that every completed interval contains a virtual �ll execution�

Lemma ��� For every execution r� if Ix is a completed interval contained in r and V is Ix�s
view� then the following properties hold�

	c
 Content�r�Startx� l� � Null for every location l in views�V ��regs or views�V ��sequence


	d
 Content�r�SeqAgreex� views�V ��sequence� � Content�r�Startx� curr seq�  	 and no
helping event of Ix updates views�V ��sequence after SeqAgreex


	e
 Content�r�NewSeqx� curr seq� � Content�r�Startx� curr seq� 	 and none of the helping
events of Ix update curr seq after NewSeqx


	f
 Content�r�Donex� views�V ��regs�i�� �� Null for all i � � � � � n� 	� and no helping event
of Ix updates views�V��regs�i� after Done


At this point we remind the reader that an execution may contain at most one open interval�
and that this interval extends up to the end of the execution�

Proof� By induction on x� Assume that properties �c� through �f� are satis�ed for all the
intervals Iy y � x and let us show that they hold for Ix�

Proof of �c�� By Lemma ��� and De�nition ���� Content�r� Startx� A�xmodn�� � V � Let
o � x mod n� By the algorithm� processor o initialized all the �elds in views�V � before
writing V in A�omodn�� By Lemma ��� the initialization events did not occur during any of
o�s intervals� Since by the induction hypothesis� the helping processors of previous intervals
do not update the views outside the intervals� and since views�V ��regs can be modi�ed only
by helping or initialization events� views�V � remains unchanged until Startx�

Proof of �d�� Consider processor p which executed SeqAgreex� By the algorithm� p either read
views�V ��sequence as �� Null or tried to update it� However� since by property �c� at Startx
views�V ��sequence � Null� and since by the induction hypothesis it will remain so until one
of the helping processors of Ix updates it� there is one helping processor of Ix that executed
LL�views�V ��sequence� Null�� R�curr seq� seq�� SC�views�V ��sequence� seq 	� before
SeqAgreex� By the induction hypothesis� curr seq is updated only by the helping processors
of Ix during Ix� and therefore it will remain unchanged at least until SeqAgreex� Therefore

Content�r�SeqAgreex� views�V ��sequence� � Content�r�Startx� curr seq�  	�

Assume by way of contradiction that some helping processor q updated views�V ��sequence
after SeqAgreex� By the algorithm q executed�

LLq�views�V ��sequence� Null�� Rq�views�V ��version� ver�


	



� SCq�views�V ��sequence� ��

where by Lemma ���� ver � verx� Clearly SeqAgreex � LL�views�V ��sequence� Null�� oth�
erwise SC�views�V ��sequence� �� would have failed by the �rst part of property �d�� That
means� that view�V ��sequence was reinitialized by o � x mod n after SeqAgreex� By the al�
gorithm� o also incremented views�V ��version before initializing views�V ��sequence� In that
case Rq�views�V ��version� verx� could not have occured� a contradiction�

Proof of �e�� We �rst show that one of the helping processors updated curr seq beforeNewSeqx�
Let p� be the processor that executed NewSeqx� Assume that p

� did not update curr seq

before NewSeqx� By the algorithm �line 
� in the Help fill procedure� this may happen
for one of the three following reasons� �	� p� read a value in curr seq that di
ered from
views�V ��sequence� 	� or �
� p� read a value in views�V ��version that di
ers from the con�
tent of its private variable version� or ��� p� failed in the SC�curr seq� seq� operation�

Case �	�� by property �d�� views�V ��sequence remained unchanged at least until Donex�
Therefore curr seq was updated after SeqAgreex� By the induction hypothesis� during Ix
curr seq can be updated only by Ix�s helping processors� Case �
�� could not happen since
p� is the processor that executed NewSeqx� and since by Lemma ��� the version �eld stays
unchanged during intervals� Case ���� if the Store�conditional operation failed that means that
curr seq was updated following the Load�linked operation on curr seq� and by the induction
hypothesis� curr seq could be updated only by one of the helping processors of Ix�

Let q be the helping processor that updated curr seq� According to the algorithm�
this processor performed R�views�V ��sequence� seq� � SC�curr seq� seq�� after SeqAgreex
and before NewSeqx� Therefore� by the previous property Content�r�NewSeq x� curr seq��
� Content�r�Startx� curr seq�  	�

Assume that some helping processor q� of Ix updated curr seq after NewSeqx� Processor
q� must have executed

R�views�V ��sequence� seq��� LL�curr seq� seq� � 	��

R�views�V ��version� verx�� SC�curr seq� seq���

By Claim ��
 this could have happened only if V was reinitialized and reused after NewSeqx�
However in that case views�V ��versionmust have been incremented and we get a contradiction
since R�views�V ��version� verx� could not have occured�

Proof of �f�� Consider p��� the processor that executed Donex� By the algorithm� p
�� has either

read views�V ��regs�i� as �� Null or tried to update it� However� since by property �c� at
Startx� views�V ��regs�i� � Null� and since by the induction hypothesis it remained so until
one of the helping processors of Ix updated it� there is a helping processor of Ix that updated
views�V ��regs�i� before Donex�

The proof that none of the helping processors of Ix will update views�V ��regs�i� from this
point on continues as for property �d� above� assume by way of contradiction that some helping







processor q updated views�V ��reg�i� for some � �� i �� n� 	 after Donex� By the algorithm
q executed�

LLq�views�V ��reg�i�� Null�� Rq�views�V ��version� ver�

� SCq�views�V ��reg�i�� v�

for some value v where by Lemma ���� ver � verx� ClearlyDonex � LL�views�V ��reg�i�� Null��
otherwise SC�views�V ��reg�i�� v� would have failed by the �rst part of property �f�� That
means� that view�V ��reg�i� was reinitialized by o � x mod n after Donex� By the algorithm�
o also incremented views�V ��version before initializing views�V ��sequence� In that case
Rq�views�V ��version� verx� could not have occurred� a contradiction�

Corollary ���� Given an execution r and an event e in r of the form SC�l� val� where l is
one of the �elds in view�V ��regs or view�V ��sequence for some view V � or curr seq then
if e is contained in some interval Ix� e is one of the helping events of Ix


Note that we do not care about the case where e is not contained in an interval since as
we will see later� in this case it cannot be included in the view returned by a scan�

Proof� According to the algorithm a processor may perfom e only while helping some interval
Iy �lines 
�� 
�� �� and �	�� where �y � fill� is the value read by the processor in line 	� of the
algorithm� If y �� x� then by Claim ��	 y � x and by Lemma ����f�� we have a contradiction�
Therefore x � y and by the De�nition ���� e is a helping event of Ix�

Corollary ���� Given a completed interval Ix� curr seq� views�V ��sequence and all the
�elds of views�V ��reg where V is Ix�s view� are updated during Ix exactly once and by the
helping processors of Ix


Proof� According to Corollary ��	� we may assume that only helping events of Ix update
those �elds during Ix� By Lemma ��� �c� d and f�� views�V ��sequence and all the �elds of
views�V ��reg change from a Null to a non�Null value during Ix� By the algorithm �lines 
��

�� 
�� and 
�� the transitions of the values stored in views�V ��sequence and all the �elds
of views�V ��reg are of the form Null to non�Null� Since by Lemma ���� those �elds could
not be initialized during Ix� they will be updated exactly once� According to Lemma ��� �e��
curr seq is updated at least once during Ix� Since by the algorithm �line 
�� all changes on
curr seq are of the form x to x 	� it follows that curr seq will be updated exactly once�

Lemma ���� Every completed interval Ix contains exactly one virtual �ll execution on Ix�s
view


Proof� Given a completed interval Ix� let V be Ix�s view� By Corollary ��		 curr seq�
views�V ��sequence and all the �elds of views�V ��reg� are updated during Ix exactly once
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and by the helping processors of Ix� According to De�nition ���� we construct a virtual �ll
execution in the following way� choose init to be the helping processor of Ix that updated
views�V ��sequence� Choose init� to be the helping processor that updated curr seq� Clearly
by Lemma ��� �d and f�� init and init� performed LLinit�curr seq� seq� and SCinit��curr seq� seq 
	� for some value seq respectively� Now� for every i � � � � � n� 	� choose ki to be the helping
processor that updated views�V ��regs�i�� By Lemma ��� all those processors read seq  	 in
views�V ��sequence while executing line 
� in the algorithm� For that reason and according
to lines 
�� �� and �	 in the algorithm� for every i � � � � � n� 	� ki has performed

Rki�memory�i��high� vali�� LLki�views�V ��regs�i�� Null�

� SCki�views�V ��regs�i�� vali�value�

where vali�seq � seq  	 or

Rki�memory�i��high� high� � Rki�memory�i��low� vali�� LLki�views�V ��regs�i�� Null�

� SCki�views�V ��regs�i�� vali�value�

where high�seq � seq  	� Therefore Ix contains at least one virtual �ll execution� Now� by
Corollary ��	�� during Ix� any SC

p�l� val� event where l is one of the sequence or reg �elds of
a view� must be one of the helping events of Ix� Consequently� by Lemma ���� any such event
operates on V � By Corollary ��		� Ix contains at least one virtual �ll execution�

De�nition ���� Given a completed interval Ix we denote the virtual �ll execution that oc�
curred during Ix as VFx


Corollary ���� Given a completed interval Ix� let V be Ix�s view and let v�� v�� � � � � vn�� be
the results of VFx �see De�nition �
�	� then for every � � i � n� 	�

Content�r�Donex�views�V ��regs�i�	� vi�

Proof� Follows directly from the construction of VFx in Lemma ��	
� Lemma ��� and Corol�
lary ��	��

As all the intervals during the execution are totally ordered by �� so are the virtual �lling
executions�

De�nition ���� Given a sequence of events S� we denote by OPS�var�val	 the event �assuming
that it exists and that it is unique	 of the the form OP�var�val	 that occurs in S


For example� for a virtual �ll executionVFx� SCVFx
�curr seq� �� represents the SC�curr seq� ��

event contained in VFx� We now proceed to prove that our algorithm meets property P� �see
Section 
�	�� First we show that there exists a linearization order between the update sequences
and the virtual �ll sequences� Informally� an update operation will be linearized before the
�rst virtual �ll which �sees� this update�
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De�nition ���� The linearization order of update and virtual �ll sequences denoted by ���
abides by the following rules�

�
 VFx � VFx� i� VFx � VFx�


�
 U i � VFx i�
RU i�curr seq� ��� SCVFx

�curr seq� ��

and

WU i�memory�i��high� ��� RVFx
�memory�i��high� ��

�
 U i � U j i�

RU i�curr seq� ��� RUj �curr seq� ��

and there is no VFx� such that�

U j � VFx and VFx � U i

Lemma ���� The linearization order ��� between update and virtual �ll sequences is consis�
tent with the real time order �


Proof� We must show that all the following hold�

	� If VFx � VFx� then VFx � VFx� �


� If U i � VFx then U
i � VFx�

�� If VFx � U i then VFx � U i�

�� If U i � U j then U i � U j �

Cases 	�
� and � follow immediately from De�nition ��	�� To prove Case �� assume by
way of contradiction that for two updates U i and U j� U i � U j but U j � U i� By Def�
inition ��	�� this may happen only if there is some VFx such that U

j � VFx � U i� In
that case� according to the same de�nition U j � VFx implies that RUj �curr seq� �� �
SCVFx

�curr seq� ��� Since� by the hypothesis� U i � U j � it follows that RU i�curr seq� �� �
RUj �curr seq� �� and therefore RU i�curr seq� �� � SCVFx

�curr seq� ��� Therefore� since
VFx � U i� RVFx

�memory�i��high� ��� WU i�memory�i ��high� ��� In that case� SCVFx
�curr seq� ���

WU i�memory�i��high� �� and therefore SCVFx
�curr seq� ��� RUj �curr seq� �� and consequently

VFx � U j which is a contradiction�

De�nition ���� A helping processor of Ix completes the helping for Ix when it reaches line
�� in the Help fill procedure with index�value� x
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Lemma ���� If a helping processor p of Ix completes the helping of Ix� then Ix is a completed
interval and p completes the helping after Donex


Proof� Assume by way of contradiction that p completes the helping of Ix and either Ix is
an interval that is not completed or p completes before Donex� In both cases� p reached line
�� in Help fill without updating A�xmodn� to Null� By Lemma ���� this may happen only
if while executing lines �
 and ��� p has either �	� read a value in A�xmodn� that di
ers
from Ix�s view� or �
� read a value in curr index that di
ers from �x�fill�� or ��� failed
in the SCp�A�xmodn�� Null�� By line 	� of the algorithm for a helping processor to execute
Help fill with parameter index �x�fill�� it must have read in line 	� the value of �x�fill�
into curr index� By Claim ��	� p may read a value in curr index that di
ers from �x�fill�
only after Endx� and consequently after Donex� This precludes Case �
�� By Lemma ����
during Ix A�xmodn� contains one and only one value that di
ers from Null� Therefore� if
a helping processor p has read some value di
erent from Ix�s view� the value read by p must
be Null� implying case �	� cannot hold� Therefore� p failed to update A�xmodn� in the
SCp�A�xmodn�� Null� operation� However� this may occur only if the content of A�xmodn�
was changed before SCp�A�xmodn�� Null�� Since by Lemma ���� A�xmodn� was changed to
Null� we have a contradiction�

Lemma ���� The value returned by a scan operation is the result of a virtual �ll which occurs
within the scan execution interval


Proof� Assume that processor p performed a Scan�view��� � � n�	�� operation� By the algo�
rithm� p returned either �	� the contents of one of its views �line � in the Scan procedure� or
�
� a copy of a view it helped to �ll �line 	� in the Scan procedure�� We will show that in both
cases the claim holds�

Case �	�� Processor p must have executed

Rp�A�p�� Null�� W p�A�p�� V �� Rp�A�p�� Null�

where V is one of p�s views� In that case� there is an event e � SC�A�p�� Null�� such that
W �A�p�� V �� e� Rp�A�p�� Null�� By Lemma ���� e occurred within one of p�s intervals� let�s
say Ix� which is obviously a completed interval� In that case� since only p writes non�Null
values into A�p� � by Lemma ��� at Startx� A�p� �� Null� and therefore W �A�p�� V �� Startx �
Donex � R�A�p�� Null� and V is Ix�s view� Finally� by Lemma ���� at Donex� views�V �
contained the result of VFx� Since p is the owner of the view and only p may change non�Null
values� the view will remain unchanged between Donex and p�s read� implying the claim�

Case �
�� By the algorithm �lines �� an �� in procedure Help fill� this situation occurred
after p helped two intervals� say Ix and Ix� � By Lemma ��	�� both intervals are completed
and p completed helping Ix and I �x after Donex and Donex� respectively� Since at Donex
A�xmodn� � Null and since p must have performed R�A�xmodn� �� Null� before helping Ix�
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we may conclude that x �� x�� Therefore� p helped in two di
erent intervals� It follows from the
sequence of events in the construction of a virtual �ll in the proof of Lemma ��	
� that VFx�

occured before Donex� and therefore VFx� occurred within the scan interval� By Lemma ����
processor p operated on Ix� �s view with Ix� �s version value�

Assume by way of contradiction� that the result of VFx� di
ers from the vector collected
by p� According to Lemma ��	� and Corollary ��	�� this may happen only if one of the
locations in views�V ��regs was updated after Donex and before p read it� In that case� by
Corollary ��	� there is some interval I

��

x � where x
��
mod n � x� mod n and I �x and I

��

x have the
same view� Now� notice that processor o � x� mod n �rst increases the version �eld before
reinitializing and reusing a view� and p executed Rp�views�V ��version� verx� after copying
views�V ��regs� It follows that by the algorithm p should have returned a FAIL value and
could not have returned the content of result � a contradiction�

Let the linearization order of a scan operation with respect to update operations be that of
the virtual �ll execution whose result is returned by the scan� By Lemma ��	� and Lemma ��	�
it follows that�

Lemma ���
 The coordinated�collect multi�scanner algorithm meets property P�


We now proceed to prove that our algorithm meets property P�� Given an execution r let
r� be the same sequence of events as r� preceded by the update sequences

U��Empty�� U��Empty� � � � Un���Empty��

These operations do not change the shared memory and do not a
ect the local state of the
processors� and r� is a possible execution of the algorithm� Thus if r� is linearizable so is r�
We henceforth assume executions have the form r�� with �ghost� sequences at their beginning�
This assumption simpli�es the proof of property P� since it ensures that every scan operation
has at least one update operation execution ordered before it�

Lemma ���� Let VFx be a virtual �lling operation execution with result view�� � � � n� 	�
 For
every i � � � � � n � 	� if view�i� � x� the the last update operation on register i� U i�val� which
is linearized before VFx� satis�es val � x


Proof� Consider the last U i�val� operation linearized before VFx and assume by way of
contradiction that val �� view�i�� According to the de�nition of the linearization order � �see
De�nition ��	��

RU i�curr seq� seq�� SCVFx
�curr seq� new�

and

WU i�memory�i��high� �val� seq��� RVFx
�memory�i��high� �val�� seq����
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Now� if �val�� seq�� � �val� seq�� by De�nition ��� VFx contains an event SC�views�V ��regs�i�� val�
and consequently view�i� � val� a contradiction� Therefore memory�i��high must have been
updated before RVFx

�memory�i��high� �val�� seq���� Consider U �i the update operation that wrote
�val�� seq�� into memory�i��high� Since we assumed that U i is the last update operation lin�
earized before VFx� it follows that VFx � U �i� According to De�nition ��	�� either U �i read
curr seq before it was updated by VFx� or U

�i wrote to memory�i��high after VFx read it�
Since we assume that U �i wrote to memory�i��high before it was read by VFx� U

�i must con�
tain RU �

i
�curr seq� new� and consequently seq� �new� In that case� by De�nition ���� VFx

contains�

RVFx
�memory�i��high� �val�� seq���� RVFx

�memory�i��low� �seq��� val����� SC�view�V ��regs�i�� val���

implying that the value collected for entry i during VFx was the value stored in i�s low register�
We will show now that �seq��� val��� � �val� seq���

By the code of the Update procedure� U �i contains

RU �
i
�curr seq� new�� RU �

i
�memory�i��high� �val� seq���

WU �
i
�memory�i��low� �val� seq���WU �

i
�memory�i��high� �val�� new���

Since
WU �

i
�memory�i��high� �val�� new��� RVFx

�memory�i��high� �val�� seq����

it follows that

WU �
i
�memory�i��low� �val� seq��� RVFx

�memory�i��high� �val�� seq���

� RVFx
�memory�i��low� �val��� seq�����

By the Update algorithm� any update operation U �
i that occurs after U

�i and that read
curr seq before the end of VFx will not modify memory�i��low� and therefore the claim
holds�

From Lemma ��	� and Lemma ��	� we have�

Lemma ���� The coordinated�collect multi�scanner algorithm meets property P�


We now proceed to prove that the coordinated�collect is wait free� We �rst make a distinc�
tion between the various situations that may cause a processor to exit the Help �ll procedure
without being able to return a scan result� We say that that a non�participating failure oc�
curred whenever a processor does not enter the Help fill procedure after reading curr index

�lines �� through �� in Scan procedure�� or after it returns from Help fill with a Fail status
before participating in the collect process �line 
� in Help fill�� Otherwise� when a proces�
sor returns a Fail value from Help fill� we say that a participating failure has occurred�
The reader can easily convince herself that every non�participating failure takes O�	� machine
instructions� while every participating failure takes O�n� machine instructions�
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Lemma ���� During a scan operation� the number of non�participating failures a processor
may su�er from is at most O�n� and the number of participating failures it may su�er from is
at most O�	�


Proof� Assume that some processor p starts to execute Scan� We �rst show that after
O�	� non�participating failures A�p� �� Null� If at the beginning of the execution A�p� �
Null� then we are done� Thus� assume that at the beginning of the execution A�p� � Null�
By the algorithm �line � in Figure �� p will not be able to post a new view in A�p� only if
curr index�value mod n � i and curr index�state � fill holds� However� by property
a in Lemma ���� after one non�participating failure� this condition will not hold anymore
at least until A�p� �� Null� Proving the �rst part of the claim is easy� Every time that a
non�participating failure occurs� curr index is advanced� and so a processor is ensured that
after most O�n� non�participating failures curr index points to its entry in A� Therefore�
by Lemma ���� its entry in A must contain Null before the next advance of curr index �
Consequently� the scanner will exit and return its own view� Assume nowthat a participating
failure occurred during processor p�s scan operation� Processor p executed�

Rp�curr index� �x � fill��� Rp�A�xmodn�� V �� Rp�views�V ��version� ver�

� Rp�curr index� �x � fill���

Rp�views�V ��version� views�V ��version �� ver�

for some values x� ver and some view V � By the algorithm� only processor o � x mod n may
update views�V ��version� and that only during the call to init function at line �� Since every
processor proposes its two views alternately �line � in the algorithm�� in order to use view V

twice o must have executed �lines 
����

Ro�A�o�� Null��W o�views�V ��version� ver��W o�A�o�� V �� Ro�A�o�� Null�

� Ro�curr index� curr index�value mod n �� o � curr index�state �� fill�

�W o�views�V ���version� ��� W o�A�o�� V ��� Ro�A�o�� Null�

�W o�views�V ��version� ver  	�

where V and V � are processor o�s views� Since pmust have executed Rp�curr index� �x � fill���
Rp�A�xmodn�� V � � Rp�curr index� �x � fill�� we may deduce that Rp�A�xmodn�� V � �
Endx� Therefore� the interval between Rp�A�xmodn�� V � and

Rp�views�V ��version� views�V ��version �� verp�

overlaps at least a part of Ix and Ix�n� But since between two virtual �lls on views from the
same announce entry �i�e� same processor� curr index must have been advanced at least once
over the entire announce array� p�s view should have been �lled during this interval�

The following theorem is a direct corollary from Lemma ��
��
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Theorem ���� In the coordinated�collect algorithm an Update operation takes O�	� machine
instructions and a Scan takes O�n� machine instructions


A similar but simpler proof can establish the correctness of the single�scanner algorithm�
On an intuitive level� since there is only a single scanner� by de�nition every scan operation
contains a trivial virtual �ll operation� and all virtual �ll operations are serialized� Correctness
will follow from Lemmas ��	� and ��	� by viewing every Store�conditional as a trivial write
operation� Wait�freedom will follow trivially from the code in Figure 	� We leave this to the
interested reader�

Corollary ���� The single�scanner algorithm of Figure � is a wait�free implementation of a
single�scanner atomic snapshot object


� Performance Evaluation of Snapshot Algorithms

We compared a collection of snapshot algorithms on a ���processor simulated Alewife cache�
coherent distributed�memory machine ��� developed by Agrawal� et� al� using the Proteus
simulator developed by Brewer� Dellarocas� Colbrook and Weihl�	���� Proteus simulates paral�
lel code by multiplexing several parallel threads on a single CPU� Each thread runs on its own
virtual CPU with accompanying local memory� cache and communications hardware� keeping
track of how much time is spent using each component� In order to facilitate fast simulations�
Proteus does not support complete simulation of the hardware� Instead� operations which
are local �i�e� do not interact with the parallel environment� are executed uninterruptedly on
the simulating machine�s CPU and memory� The amount of time used for local calculations
is added to the time spent performing �simulated� globally visible operations to derive each
thread�s notion of the current time� Proteus makes sure a thread can only see global events
within the scope of its local time� Since actual machine instructions are counted for local
operations� the quality of the code used to implement algorithms under Proteus can play an
important part in determining the running time of the entire application� Though the simula�
tor allows the user to determine the relative weight of local operations� we used the simulator�s
default costs which are derived from the Alewife machine�

In our simulations each processor had a cache with 
��� lines of � bytes and a memory access
cost of � cycles� The cost of switching or wiring in the Alewife architecture was 	 cycle�packet�
The current version of Proteus does not support Load�linked�Store�conditional instructions�
Instead we used a slightly modi�ed version that supports a ���bit Compare�and�Swap opera�
tion where �
 bits serve as a time stamp� Naturally this operation is less e�cient than the
theoretically accepted Load�linked�Store�conditional �
�� �which we could have built directly
into Proteus�� since a failing Compare�and�Swap will cost a memory access while a failing
Store�conditional will not� However� we believe the ���bit Compare�and�Swap is closer to the
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real world than the theoretical Load�linked�Store�conditional since existing implementations
of Load�linked�Store�conditional as on Alpha �	�� or PowerPC �
�� do not allow shared mem�
ory locations to be accessed between the Load�linked and the Store�conditional operations�
On existing machines� the �� bit compare�and�swap may be implemented by using a �� bit
Load�linked�Store�conditional as on the Alpha �����

For each scan and update implementation we measured�

Throughput The total number of completed operations by all the processors in the system
runni ng for 	�� cycles�

Latency The average amount of time between the start and the end of an operation for all
the processors in the system�

We present the results of evaluating the algorithms in executions where each scanner�updater
processor executes scan�update operations repeatedly �Figure ��� Between any two operations�
a processor waits for an amount of time chosen uniformly at random in the interval � to
scan wait for a scanner� and � to update wait for an updater� We used the following synthetic
benchmarks�

Checkpoint The system has only one processor which executes scan operations �scanner�
and the other processors execute update operations �updaters�� This benchmark models
the behavior of a �checkpoint� mechanism for collecting consistent backups of a multi�
processor system or for concurrent debugging� The results we present were tested with
MAX TIME equal to 	�� cycles� and scan wait and update wait equal to 	�� cycles�

Concurrent data structure The system has half of the processors execute scans and the
other execute updates� Though this is a somewhat arbitrary choice� we feel it is represen�
tative of possible use of snapshots for concurrent�data�structure design� where multiple
processors update or request an atomic view of the state of the shared object� The pre�
sented results are algorithms tested with MAX TIME equal to 	�� cycles� and scan wait

and update wait equal to 	�� cycles� We ran several other sets of tests� among them ones
with update wait equal to 	�� cycles in order to simulate a �heavy load� of updaters
but choose not to present them since we noted no signi�cant di
erences in the relative
performance of the tested algorithms�

��� The Algorithms

In the checkpoint benchmark� we tested the single�scanner algorithm �denoted Single in the
graphs�� as described in section �� In the concurrent data structure benchmark we tested the
coordinated�collect multi�scanner algorithm �denoted as coordinated��

We compared our algorithms� with the following previously known snapshot algorithms�
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SCANNER�

while �current�time � MAX�TIME� �

repeat random�scan�wait� times

�� do nothing �� �

scan���

�

UPDATER�

while �current�time � MAX�TIME� �

repeat random�update�wait� times

�� do nothing �� �

update�val��

�

Figure �� Benchmarks

A� The unbounded sequence number version of algorithm of the Afek� Attiya� Dolev� Gafni�
Merritt� and Shavit� ���� which has O�n�� scan and update complexity� and uses O�n��
valued registers� Each register in this version consists of data� seq� and n�valued view
components� This algorithm has a bounded space version but we use the unbounded
sequence number one for simplicity and to improve performance� Since we could not
implement O�n� values registers� and since this algorithm�s �ow control is not dependent
on the contents of the n�valued view component of each register� we did not implement
that component of the register�

AR The unbounded space version of the sophisticated Attiya and Rachman algorithm �	���
which has O�nlogn� scan and update complexity and uses registers holding O�n�� values
simultaneously� was simulated� Each register� which participates in the lattice agreement
procedure� contains n vectors� where each vector represents a view of O�n� values� The
algorithm repeatedly creates a single new view vector using �elds from two given view
vectors� Since the vector elements values are not used by the algorithm� we used a bit
for each value instead of the complete n�valued vector�

CD The unbounded space version of the e�cient Chandra and Dwork �	�� algorithm� which
has a scan complexity of O�n� and update complexity of O�n C�n��� where C�n� is the
consensus complexity� We used a Load�linked�Store�conditional primitive to implement
the consensus primitive achieving scan and update complexity of O�n�� However� this
algorithm uses registers holding O�n� value simultaneously and atomic writes to these
multiple locations� For each scanner the algorithm has new and old versions of an O�n�
value view register and an O�	� value time�stamp� The control �ow of the algorithm is
dependent only on the values of the new and old time�stamp components� therefore we
included only these components in our implementation�s registers� without making the
algorithm pay for the added O�n� values that must be stored in other registers�

Lock�free The simple algorithm in which a scanner repeatedly tries to perform a successful

�




double collect� during which no change to memory occurred� and an updater which writes
to its register in a straightforward manner� See details in ����

Block�update The scanner uses a multi�valued semaphore to �block� any updaters from
performing a write to any of the registers� while it collects their values� The updaters use
random backo
 to control contention while �waiting� for the semaphore to be cleared�

Our implementations of AR and CD use unbounded space �unbounded in the strong sense�
i�e an unbounded number of new register locations�� and therefore their performance is guar�
anteed to be better than any of appropriate bounded implementation of the algorithms� Our
benchmarks also make the realistic assumption that the implementation of registers contain�
ing ��k� values requires at least k local steps for each read operation� We avoid making this
assumption for write operations� since a write could involve a change to only few of the n
locations written� In summary� an n�valued read costs n local operations while an n�valued
write costs only O�	� local operations� As will be seen in Section �� we also performed tests
under the unrealistic assumption of availability of an O�	� cost atomic O�n��valued read� with
no signi�cant changes in our conclusions�

��� Checkpoint Benchmark Results

As expected� the checkpoint benchmark results �Figure �� show that the block�update and
lock�free algorithms are at extreme ends with respect to their scan and update throughput ��

The block�update algorithm has the highest scan throughput� Most likely the main reason
for this is that its scan operations are performed without any �interference� from the updaters
�interference is in terms of interconnect contention and cache misses that are known phenomena
when running algorithms that access shared memory modules �
���� It has very low update
throughput� since the updates can be executed only between scan operations� Nevertheless�
there is a performance increase due to having more concurrent update attempts�

The lock�free algorithm has very poor scan throughput because of repeated double collect
failures that increase with the number of updaters� On the other hand its update through�
put scales linearly with the number of updaters� This is clearly due to the small number of
operations necessary to complete an update�

In the A� algorithm� the throughput of the scan and update operations degrade similarly
as the number of processors grows� Failures of its double collects increase with the number of
updaters� increasing both its scan and update latency� �recall that its update procedure includes
a scan�� The AR algorithm� though asymptotically superior to A�� performs substantially
worse than the A� algorithm because of the constant overhead involved in each operation
which is independent of the actual number of processors and also due to the additional cost of
reading O�n���valued registers� The AR algorithm does not manage to complete a single scan

�The scan and update latency results are not presented since they are almost exactly inverse to the scan and
update throughput�
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Figure �� Checkpoint benchmark throughput �Log scale�

when the number of participating processes is greater than 
�� Its update throughput scales
poorly for the same reasons as in A��

The CD algorithm has low update throughput which degrades moderately as the number
of updaters grows� due to the O�n� local work executed in each update operation and the
additional cost of reading O�n� valued registers� Its scan has good throughput for small
numbers� but scales poorly since the increase in the number of updaters adds signi�cantly to
the network contention�

The single�scanner algorithm�s update throughput is nearly the same as that of the lock�
free�s due to the small number �four� of operations constituting an update� It also has a
surprisingly high scan throughput� close to that of the non�interfering scan of the block�update
algorithm� since its scan collects the updated values in a straightforward read sequence with
no additional costs�

In conclusion� the key to an e
ective algorithm under the checkpoint benchmark is sim�
plicity� Minimized coordination and dependency on information gathered and passed from one
processor to another eliminates unnecessary computation and results in small constants and
good performance�
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��� Concurrent Data Structure Benchmark Results

The results of the concurrent data structure benchmark� appear in Figure �� For most of the
tested algorithms these results have much in common with those of the checkpoint benchmark�
We will therefore concentrate on the major di
erences�

The block�update algorithm does not seem to succeed in completing an update for concur�
rency levels of more than 	� processors due to the increased number of scanners which disable
the updaters� progress� The scan throughput of the lock�free algorithm degrades rapidly due
to the increased failure of the double collects as the number of updaters increases� The CD
algorithm starts with a very good scan throughput and some scaling but as the updaters�
�interference� grows it degrades substantially�

The coordinated�collect algorithm maintains consistently high scan throughput and linear
scaling of scan latency �The size of the view collected increases linearly with the number of
processes�� Unlike in the case of the checkpoint benchmark� there is an improved throughput
since in many cases the returned result of several scanners is the same view�

� Some Final Notes

We repeated our exact experiments without the added realistic cost of a multi�valued read�
in an attempt to �nd out the e
ect of assuming the existence of a powerful multi�read oper�
ation on our experimental results� In our tests the CD algorithm �	�� showed no signi�cant
improvement� most likely because the algorithm makes intensive use of atomically writing n
values but little use of the expensive atomic n�value read� As can be seen when comparing
the performance results for the checkpoint benchmark in Figure � and Figure 	�� the A� and
the AR algorithms have higher scan and update throughput and less degradation when the
n operation overhead is eliminated� However� this improvement does not signi�cantly a
ect
their performance with respect to the single�scanner algorithm� which remains substantially
better in terms of scan and update throughput� For the concurrent data structure benchmark
in Figure � and Figure 		� the A� and AR algorithms show improved performance� The scan
throughput of the A� algorithm became better than the coordinated algorithm for small num�
bers of processors because of the structural overhead of the coordinated algorithm is relatively
high� yet degrades as the number of processors grow� A similar improvement in the cost of
updates is not su�cient to overcome the update throughput of the coordinated algorithm�

In conclusion� the cost of register operations is not a major performance factor in snapshot
algorithms� The dominating factor with respect to algorithmic performance is the amount of
cooperation among processors in collecting returned views� and the overhead associated with
doing so�
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Figure 	�� Checkpoint throughput results � no additional cost �Log scale�

	 Conclusions

This paper hopes to start researchers on the road to creating snapshot algorithms that will
have practical appeal� Though the asymptotic complexity of our algorithms is optimal� there
are quite a few directions in which their actual performance can be enhanced�

Enhancements would involve eliminating some of the constant overheads and making the
algorithm�s complexity more closely dependent on the actual number of scanners and updaters
accessing it at a given time� Finally� the current trend towards running multiprocessors appli�
cations in message passing architectures �farms of workstations� raises the interesting question
of an e�cient wait�free message passing implementation of an atomic snapshot object�
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