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Abstract 

In [A&3], Abrahamson presented a solution to the 
randomized consensus problem of Chor, Israeli 
and Li [CIL87], without assuming the existence of 
an atomic coin flip operation. This elegant algo- 
rithm uses unbounded memory, and has expected 
exponential running time. In [AH89], Aspens and 
Herlihy provide a breakthrough polynomial-time 
algorithm. However, it too is based on the use 
of unbounded memory. In this paper, we present 
a solution to the randomized consensus problem, 
that is bounded in space and runs in polynomial 
expected time. 

1 Introduction 

The Consensus Problem in shared memory en- 
vironment is that of providing an algorithm, by 
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which n processes, running asynchronously and 
communicating via shared memory, can agree on 
a value. Loosely speaking, the algorithm should 
have the following properties: 

1. 

2. 

3. 

Consistency : No two processes decide on dif- 
ferent values; 

Validity: If all processes have the same ini- 
tial value, then processes decide on that 
value. 

W&-freeness : Each process is guaranteed 
to decide after a finite number of steps, in- 
dependently of other processes. 

In a shared memory in which only atomic read 
and write operations are allowed there is no de- 
terministic solution to the problem. This result 
was directly proved by [AG88, CIL87, LA871 and 
implicitly can be deduced from [DDS87, FLP85]. 
Herlihy [H88] presents a comprehensive study of 
the problem, and of its implications on the con- 
struction of many synchronization primitives. 

A randomized solution to the consensus prob- 
lem is one in which, rather than being guaranteed, 
it is only ezpecled that the number of steps until 
a process decides is finite, that is, property (3) 
above is replaced by: 

3. Finite expected waiting: The expected num- 
ber of steps until a process decides is finite. 

Such an algorithm, provides a basis for construct- 
ing novel universal synchronization primitives, 
such as the fetch and cons of [H88], or the sticky 
bits of [P89]. 
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Chor, Israeli, and Li [CIL87] were the first to 
provide a time-efficient randomized solution to 
the problem, using bounded size memory. Their 
solution was based on the availability of a pow- 
erful atomic coin flip operation. In [A88], Abrai 
hamson presented a first solution not assuming 
the existence of such an operation. However, 
this elegant algorithm uses unbounded memory, 
and has exponential expected running time. The 
question was thus raised: 

Does there exist an algorithm that is 
polynomial in running time and bounded 
in memory size? 

An exponential time algorithm can be derived 
from that of [A881 (see [ADS89]) using a transfor- 
mation based on the concurrent time stamp sys- 
tem techniques of [DS89]. Aspens and Herlihy 
(in [AH88]) p rovide a breakthrough algorithm 
that runs in polynomial expected time. Unfor- 
tunately, it is based on the use of unbounded size 
memory in a “stronger” way than in [A88]. Since 
for reasons presented in the sequel, there seems to 
be no transformation of [AH881 to a bounded pro 
tocol using concurrent time stamping techniques, 
the above question remained unanswered. 

In this paper, we present a solution to the 
randomized consensus problem that both runs 
in polynomial expected time and is bounded in 
memory size. 

The main reason for the simplicity in providing 
an exponential time randomized consensus algo 
rithm using bounded space, is that all one need 
provide are actually the properties of consistency 
and non-triviality. The wait-freeness, i.e. expo- 
nential expected running time, is (though hard 
to analyze) just the result of the exponentially 
small probability that processes flipping indepen- 
dent coins, will come up with the same value. To 
provide the former two properties, one need only 
create a locking mechanism that will provide ex- 
clusion, before allowing processes to decide on 
a value. Such unbounded locking mechanisms 
are based on time stamping concurrent lock set- 
ting events, a process that has been shown to be 
modularly replaceable using bounded concurrent 
time-stamp systems. 

In order to obtain an algorithm that runs in 
expected polynomial time, as [AH88], one must 

limit the ability of the adversary to create non- 
decision scenarios while processes try to lock for 
values. A way of doing this is by basing a pro- 
cess’ decision to attempt to Iock for a value, on a 
function of more than just one independent local 
coin toss, preferably on many coin tosses by all 
processes. This exact idea is abstracted into the 
notion of creating a shared global coin [CMS85]. 
Since attempts to lock for a value based on the 
shared coin could still fail (because as shown in 
[AH88], one cannot create a perfect coin) re- 
peated global coin tosses are needed. When im- 
plementing multiple coin tosses, one must re- 
member that processes run at different paces, so 
one should take care to a. prevent mixups be- 
tween locations in memory used for new and old 
coins, and b. provide independence among shared 
coin flips (this means preventing processes in old 
coin toss phases, from causing attempts of pro- 
cesses in later coin tosses to fail). The algorithm 
uses an unbounded strip of coins, where for each 
toss a separate set of memory locations is al- 
located; this allows to distinguish between coin 
tosses, and thus to meet the above requirements. 

Summing the above, in achieving polynomial 
expected time, unboundedness is used, not to or- 
der any two specific coin flipping events by the 
relative times in which they occurred (a prop- 
erty provided by concurrent time stamping), but 
by how many coin flipping events is one process 
trailing behind the other. 

In [AH88], in addition to the above use of un- 
bounded memory, the weak shared coin flip con- 
struction requires that each coin location in the 
unbounded strip be in itself unbounded. Finally, 
their use of a random walk to create the shared 
coin is based on a snapshot view of memory. The 
implementation of this snapshot operation also 
uses unbounded counters. 

The main contribution of our paper is an im- 
plementation that achieves the properties of the 
coin strip using bounded memory. It is based on 
a technique for maintaining a “shrunken” version 
of the strip, effectively pulling together processes 
that opened a gap between one another. In addi- 
tion, it is shown how to perform the random walk 
using only bounded coin locations. Finally, our 
algorithm is based on the availability of a mem- 
ory primitive, on which a snapshot scan can be 
performed. We show how to implement such a 
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primitive boundedly. 

The rest of the paper is organized as follows. 
In Section 2 a scannable memory primitive is de- 
fined and constructed. In Section 3 a bounded 
memory implementation of a weak shared coin 
is presented. In Section 4 the implementation of 
the coin strip is presented. We introduce a to- 
ken game capturing the properties of the strip. 
A shrunken version of the game is shown to pro- 
vide the same properties, and is then translated 
into a game on a weighted graph. Finally, a con- 
current implementation of the game on the graph 
is presented. Section 5 shows how bounded size 
strips of coins can be manipulated based on the 
concurrent graph game. All the unbounded con- 
structs of the [AH@] type algorithm presented in 
Section 5, are then replaced by the bounded ones, 
providing the desired solution. In Section 6, an 
outline of the correctness proof of the algorithm 
is presented. Due to lack of space, some of the 
proofs are .omitted. 

2 Snapshot Scanning 

2.1 Definitions 

A Scannable Memory V.is an abstract data type 
shared among n concurrent and completely asyn- 
chronous processes. There are two operations 
that any process can execute on V, a write oper- 
ation and a scan operation. As discussed below, 
it is not assumed that these operations are nec- 
essarily waitfree [H88, AG88]. 

Assume that each process’ program consists, 
among other, of the above two operations, whose 
execution generates a sequence of elementary op- 
eration executions, totally ordered by the pre- 
cedes relation (of [L86a, LSSc] denoted “ - “>. 
The following 

is an example of such a sequence by process i, 
where Wpl denotes process i’s J$” execution of a i 
write ,operation, and SpJ .the kc* execution of a 
scan operation (the superscript [Jc] is used for no- 
tation, and is not visible to the processes), One 

should bear in mind that the asynchronous na- 
ture of the operations allows situations where 
a scan overlaps many consecutive write opera- 
tions of other processes. Also, several consecutive 
scans could possibly be overlapped by a single 
write operation, 

Let --* be the can ujBecS relation of [L86a, 
L86c]. A global time model’ of operation exe- 
cutions is assumed (see [L86a, BSS]). The follow- 
ing definition attempts to capture the notion that 
a possible effect of one operation on the shared 
memory (such as the writing of a value), existed 
at a point in global time where the other was 
being executed. 

Definition 2.1. A write operation execution 

wi[“l potentially coexists with another operation 

execution Or (0 stands for either a scan or 

write) if Wi ‘I --* Of1 and there does not exist 

0 w,(“‘l such that Wf“] - W,[“‘] - Of”. 

With each write 
valve &“I written I 
operation returns 
{p . . ., ,,~nly 

operation execution Wp’, a 
into V is associated. A scan 
a view, a set of values 6 = 

The following requirement is made to sssure that 
the snapshot view v’ returned by ,.S’f’ is a mean- 
ingful one, namely, returning the values of write 
events immediately before or concurrent with the 
scan, and not just any possible set of values. 

Pl regularity: For any value uy’ in U of Sj[“‘, 

Wpl potentially coexisted with Sri. 

The above eliminates uninteresting trivial so- 
lutions and introduces a measure of liveness into 
the system. More importantly, it implies that 
the behavior of the scannable memory is as if 
it consists of disjoint registers, one per process, 
which the designated process can write, and all 
can read. This is very different from the behav- 
ior of multi reader multi writer atomic registers, 
where the latest write of any process erases the 
values written by others. 

‘Implying that for any two operation executions, 
a - b orb --* a. 

21nitializetion and safety are similar to Azioms BO-3 
for single-writer atomic registers [L86b] 

283 



Though a scan as above is sufficient for many 
applications, one is interested in a scan that re- 
turns an “instantaneous” view of memory, that 
is, having the following stronger property: 

P2 snapshot: For any two values VP’ and vi*] 

inCofSf1, Wfil potentially coexisted wih 
WFI, or Wi[“’ potentially coexisted with 

W,[(il, or both. 

Though PI-2 return values that could have been 
returned by an instantaneous scan, they do not 
imply that scan operations of all processes are 
serializable. Moreover, they do not imply that 
later scans will obtain later snapshot views. The 
following property is therefore added, to formal- 
ize, together with PI-2, the idea that all scans 
are serializable. 

P3 scan seriulizability: Let Si[“] and S,[“” be any 

pair of scans. Let ui[o’] and y!nZ1, i E (l..n}, 
denote the corresponding values returned by 
the two scans. Then either for every i E 
(l..n}, oi 5 u:, or for every i E (l..n}, o: < 
aj. 

For the purposes of the applications in this pa- 
per, it is not required that both scan and wtite 
operations be waitfree [H88, AG88]. Since every 
process’ execution sequence will be an alternating 
sequence of scan followed by write, it will actu- 
ally suffice that in any infinite system execution, 
there exists a new write operation infinitely of- 
ten. In the full paper, a formal treatment of this 
property is provided. 

2.2 Bounded Implementation of 
Scannable Memory 

The implementation is based on the use of 
single-writer-multi-reader and two-writer-two- 
reader atomic registers. The scannable mem- 
ory V will consist of n single-writer-multi-reader 
atomic registers Vi, i E {l..n}, each Vi written 
by process i and read by all. In addition, for ev- 
ery pair of processes i and j, a pair of two-writer- 
two-reader atomic registers Aij and Aji are main- 
tained 3. Bounded constructions of such registers 

3To save in the complexity of constructingmulti writer 
registers, the UTPJWS technique of [DGSSS] can be used. 

from weaker primitives are shown in [B187, L86b, 
IL88 BP87, N87, SAG87, LV88, DS89]. Register 
Aij is used by i to inform j that it has updated 
vi, and by j to mark that it has read K. To 
simplify the proofs (and only for this purpose), 
an alternating bit field is assumed to be added 
to each register &, such that two values written 
in consecutive writes by the same process, always 
differ. 

The main idea behind the implementation of 
the scan and write operations is as follows. A 
value of 1 in register Aji denotes an “arrow” 
pointing from j to i, a value of 0 denotes an arrow 
from i to j. To scan the memory, a process i will 
direct all arrows Aji towards other processes, per- 
form a collecting of values followed by a collecting 
of arrows, and repeat these two collections again. 
If the values have not changed and no arrow has 
been redirected towards it, process i has collected 
a snapshot in its second read of every register. ’ 
To write a value, a process j directs the arrows 
Aji towards any possibly-scanning process, noti- 
fying that it has started a write, then writes the 
value. The following are the write and scan pro- 
cedures of a process i, where we use the notation 
j E (l..n} - (i} to denote that indexing is per- 
formed in some arbitrary order. 

procedure write (value); 
begin 

for j E {l..n} - (i} do Aij := 1 od; 

K := value; 
end write; 

Assume that a process, during the execution of 
the scan operation, has seen no arrows redirected, 
and both values being the same. It can thus de- 
duce that no process whose corresponding value it 
returns, could have performed its following write, 
completely before any of the other writes whose 
values it returns. The reason is that if that were 
the case, the writing process would have turned 
the arrow and the scan would have gone through 
another round. 

function scan 
begin 

‘The two phases of value-collecting are also used to 
simplify the proofs. 
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L: for j E {l..n} - {i} do Aji := 0 od; 
for j E {l..n} - {i} do Vlb] := l$ od; 
for j E (l..n) - {i} do VZL] := Vj od; 
for j E {l..n} - {i} do Alj] := Aji od; 
if (3j)(Ab] = 1 V Vlfj] # VZ/,j]) 

then goto L fi; 
return V2; 

end scan; 

Though the write operation is waitfree, the scan 
operation is of course not, because scans may re- 
peatedly be forced to return to line L. However, 
scans do not wait for other scans, and the above 
can only happen on account of repeated execution 
of new write operations by some process. Thus, it 
can be proven that the implementation provides 
the type of progress described in the previous sec- 
tion. 

The following is the main core of the proofs of 
properties Pi-3. The notation rIpI for ex- 
ample, will denote the first read in scan operation 
execution S,l” of register Kj- 

Lemma 2.1. Fur any value VP’ in 5 of SF’, 

W,tl potentially coexisted with Sr’. 

Proof Assume by way of contradiction that the 
claim does not hold. There must thus exist some 
value up1 in 5 of Sj[b], such that +4J’,‘“1 --+ Sj[*l) 

or (3Wb’l)(W[a] - W.[“‘] - SFbl). By the I i 

assumption of global time, 

plies Sj[“l - W,t”l, 

’ 7(Wp1 t--b Si[“l) im- 

which by atomic register ax- 

iom B4 of [LSGc], it cannot be that up1 was re- 
turned. Thus, the second condition must hold, 
which by the scan algorithm implies 

wi[“‘(vi) - wE”“(lq - r23vi) 

where vi[“’ was returned in r2j[6’(l4), a contradic- 
tion to atomic register axiom B4 of [L86c]. n 

This implies Pl, the following proves P2 is met. 

Lemma 2.2. For any two values VP’ and vF1 in 

‘zi *f sp , Wpl potentially coexisted with WY’ or 

WjIbl potentially coexisted with Wi[“] or both. 

Proof Assume by way of contradiction that the 
claim does not hold. There must thus exist two 
values v.[“] and v lb1 in ‘zi of SF1 , such that neither 

WFI, ,h Wkl ’ , potentially coexisted with the 
other. W.l.o.i, it must be that 

(+Q’I)(WPl -c wy --c wp’). I I 

By the scan algorithm wf’(Ajk) -+ rf’(K). 

Since viral and not vp’l ‘was returned in r!](K), 

ftv;) - t$‘l(&). Because Wi[a’] - Wj[b’ , 
must 

of”’ + wF’(Ajk) ---c wp(Q). AISO,tk’ 

cause vF1 was returned in rFI(Vj), it is must be 

the case that w!*‘(Q) - r!“(Q). Again by the 

scan algorithm: t#$) - rf’(Ajh). From the 
above, by the transitivity of - , it follows that 

wF’(Ajk) ---c w/‘(Ajk) _ Ti”‘(Ajk). 

Since in wj[“‘(Ajk) a value of 0 was written, this 
ICI value must have been read in rk (Aja), a contra- 

diction to the termination condition of the scan 
algorithm. n 

Using similar arguments the next two lemmas 
prove P.9. The following lemma establishes that 
in the two reads of any scan operation execution, 
the value written in the exact same write is re- 
turned. 

Lemma 2.3. In an~ylscan operation execution 

$1, for any value vi* in $4, $1 1 was read in 

both ~11~ and ~2!*. 

Proof Assume by way of contradiction that the 
above does not hold. Since the values read in 
r$l and r2F1 must be the same, and two con- 
secutive writes have different toggle bit values, it 
must be that for up”’ and v,[“l returned in rlkl 
and r2t1 respectively, there must exist a write 

operation execution W,[o’] such that 

@“I - W (4 - I,@4 
i i 

In a manner similar to that of the former proof, 
by the ordering of reads of Ail: and K, it must be 
that 

wFl(Aik) + rlk lC’( IQ 

- wi[“‘(lq 4 wi[“l(Aik) 
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- w?‘(K) - r2F1(K) - rj=](A;k). 

This implies that the value of 0 written in 
wp](A. ) Ik must have been read in rt[“](A+k), a con- 
tradiction to the scans termination condition. n 

Lemma 2.4. LeZ S,[e’ and $‘I be any pair of 

scans. Let vi[oil and vp:l,,i E {l..n}, denote the 
corresponding values returned by the two scans. 
Then either for every i E {1.-n}, ai < a:, or for 
every i E (l..n}, ai < ai. 

Proof Assume by way of contradiction that the 
claim does not hold. There myst thus ex,ist valu:s 
$1 and v !*I in 5~~I and v Ia J and vr I in E[C 1 
such that A < a’ and) b > b’.’ 

Lemma 2.3 implies that the value returned in 
both reads of a scan operation execution is of the 
same write operation. In the scan operation exe- 

VI cution of y, Since in rl, VI (Vi), Vi was returned, 

wf”“(&) - rlF”(K). Since in r2:‘](&), VP] 

was not returned, r2, ‘“‘](vj) - W/~(V)). By tie 
order of reads in a scan it thus follows that 

up”(vi) - #I(&) 

- T2F”(Vj) - tU~‘(Vj)s 

By similar arguments, regarding the scan opers- 
tion execution of 2, 

Wf’(Vj) - rlk’(Vj) 

- T2JqIq - Wir”‘J(Vj). 

By transitivity, the combination of these two se- 
quences of operation executions contradicts the 
antisymmetry property of the partial order - . 
a 

3 A Bounded Implementation of a 
Shared Coin 

The implementation of the weak shared coin is 
based on the random walk technique of [AH88]. 
For lack of space we explain only the modification 
allowing to bound the size of the counters used to 
implement the coin. The main idea of the modi- 
fication used is rather straightforward. The coin 
implemented by the random walk is weak, that 

is, involves a small probability that processes will 
disagree on the coin’s outcome. Thus, one can al- 
low a process to always decide heads in case its 
counter overflows, as long as the probability of 
this event can be absorbed into the probability 
of processes disagreeing on the outcome. 

Let E =< Cl , . . . , c, > be an array of coun- 
ters implementing a shared coin. Each counter 
ci has values in the range {-(m + l)..(m + l)}, 
written by its corresponding process i. Let 
walk-value (i?) = Ci’==,” ci. The following are thus 
the functions of process i, for determining if the 
random walk has led to a coin value, and for per- 
forming a step in the random walk by process i. 

function coin-value(E); 
begin 

1: if ci 4 {-mm} then 
return heads fi; 

2: if walk-value(E) > 6 . n then 
return heads 

3: elseif walk-value(E) < -6. n then 
return tails 

4: else return undecided fi fi; 
end coin-v&e; 

procedure walk-step; 
begin 

if jiip = heads then ci := ci + 1 
else Ci := Ci - 1 fi; 

end walkAtep; 

Lemma 3.1 (Aspnes and Herlihy). The 
probability that two processes will disagree on the 
coins outcome is (6 - 1)/(2S). 

Lemma 3.2 (Aspnes and Herlihy). The 
ezpected number of steps until the coin is decided 
is (6 + 1)G2. 

Look at a random walk starting from 0 with 
barriers at b and -b, consisting of the steps: 

&,~a,... bi E (--l,+l} for all i. 

The following is a bound on the probability that 
after m steps, none of the barriers was crossed. 
Define 

Sm =Prob I?&, <_b I 1 i=l 

Clearly, the desired probability is bounded from 
above by Sm. Thus, 
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Lemma 3.3. Let 7n = (f(b)b)‘, for some func- 
tion f, then there exists a constant C, such that 
Sm 5 $$ (proof ommited). 

Based on the above, one can prove that by 
choosing m to be large enough, the probability 
that the adversary can force processes to disagree 
because of the deterministic choice of heads in 
case of counter overflow, is negligible, as formal- 
ized by the following lemma: 

Lemma 3.4. There exists a constant C such that 
the probability that in the random walk generated 
by a sequence of executions of the algorithm on a 
given coin E, 

Prob [\cil 2 m] 5 
C.6.n 

fi’ 

4 The Rounds Strip 

In this section a method is shown for replacing 
the unbounded strip of round locations required 
by the algorithm of [AHM], by a bounded con- 
struct. The important observation is that this 
algorithm utilizes the rounds strip in a very re- 
stricted way. Informally 

Observation 1. There exists a constant K such 
that at any poinl in the computation: 

I. The actions performed by any process are 
not aflected by values of processes that are 
strictly more than K rounds behind it. 

2. If a process performs round r, and cannot 
decide, then there is a disagreement about 
the value of the shared coin of round r - K. 
This implies that when this process proceeds 
to round r + 1, it can withdraw its contri- 
bution to the coin of round r - K, without 
aflecting the performance of the algorithm. 

Thus, a complete picture of the rounds in which 
processors are located is not necessary; rather, it 
suffices to maintain a “compressed” description of 
the distances between these round numbers, and 
to save processes’ contributions to the K latest 
coins that were flipped. The following subsec- 
tions present the data structure used to maintain 
these distances concurrently. 

In the next subsection, a simple game is pre- 
sented in order to make precise the notion of 
“compression” mentioned above. Then, in Sec- 
tion 4.2, we show how to store and play this game 
using a directed weighted graph. In order to sim- 
plify the presentation this game is sequential. In 
Section 4.3, a data structure that implements the 
game on the graph is defined, as well as the pro- 
cedures for playing the game on this graph con- 
currently. 

The main problem is how to maintain the rele- 
vant values using bounded space, given that pro- 
cesses are asynchronous. For example, it could 
be that process will start flipping a coin in a 
round r when round r is maximal, and during its 
coin flipping other processes will move to higher 
rounds, that are an unbounded number of coin 
flips ahead. 

4.1 The Game 

Imagine the changes to the processes’ round num- 
bers as a game played on the natural numbers 
(viewed as an infinite ordered set of points): 

Each processor controls a token, placed at a 
specific point, initially 0. Denote by pi the loca- 
tion of i’s token. Each processor can perform the 
step move-tokeni that places its token at place 
ri + 1. The game is a (possibly infinite) sequence 
of the form move,tokeni,, move-tokeni, . . . 

At any stage of the game, the collection of 
tokens’ positions forms a multi-set of integers, 
S= {rl , . . . , r,,}. Let a be the ordering permuta- 
tion of S, i.e., S = (rx(l) 5 ~~(2) < . . . _< r,cn)}. 
Let K be some fixed constant. We now intr+ 
duce two transformations, that, when applied to 
the set S, produce a “compressed” representation 
of it, without losing important information. 

Shrinking. One is interested in the exact dis- 
tance between two token if and only if, the dis- 
tance between them is less than K. The goal 
of the first transformation is to “shrink” gaps of 
length strictly larger than K, to be of size K. 
Informally, shrink&S) is a new set S’, in which 
r*(,.,) remams’in its current position, while any 
two consecutive tokens (r%(i) and r,(i+l)) that 
are more than K apart, become K apart, while 

287 



the distance between tokens that are less than K 
apart, remain unchanged. 

Formally, let S = (~~(1) _< . . . 5 r,~,,}. Let 
9UPi = ‘m(i) - Tr(i+l), for 1 5 i < n, and define 
shrinks = {r&1) _< . . . < r&,,}, (for some 
parameter K) inductively as follows: 

(1) C(l) = PI(l). 

(2) Assume we have defined r:.:(i), then 

+i+l) = 
I 

'i(i) +K if gapi > K 

'L(i) + QaPi otherwise 

Intuitively, any “gap” in the sequence, whose 
length is strictly larger than K, is “shrunk” to be 
of length exactly K. 

The shrunken token game is conducted by ex- 
ecuting a shrinkK on the set of token places 
after each move,tokeni, step, before the next 
move-tokeni,,, step. 

Norma&q+ It is easy to see that after apply- 
ing shrinkK to any set S, the distance between 
the maximal element and the minimal element is 
at most K-n. To compress the values even further 
they are normalized, so that all values remain in 
a bounded range. 

The ordering permutation of S’ = shrink&S) 
is still ?r. The transformation normalizeK(S’) 
maps each element ri E S’ to (ri - r,(,)) + Ken. 
That is, the maximal token(s) is positioned at 
K * n, and the rest of the tokens are move be- 
hind it while maintaining the distances between 
tokens. Notice that for any set S, all the val- 
ues in normaZire~(shrink~(S)) are in the range 
[O..K+n]. 

The normalized shrunken game, is conducted 
by applying shrinkK and then nOrmdi%eK to 
the set of token places after each move-tokeni, 
step, before the next move-token;,+, step. 

An important property preserved by the nor- 
malized shrunken game is: 

Non-Passive Shrinking. For any two token 
positions ri and rj in a state of the game, 
s.t. 0 < ri - rj < K, if for later token posi- 
tions, 2 and ri, we have r:-rj = (ri-rj)-1, 
then there is a move-tokeni between the two 
states. 

4.2 Representation as a Finite Graph 

Given a state S of the above game, we define 
its distance graph G(S), as follows: G is a di- 
rected weighted graph with nodes V = {1.-n}, 
corresponding to tokens, one per process, edges 
E = {(i, j) 1 rj < ri} indicating relative order of 
token locations, and weights w(i, j), defined for 
any (i, j) E E as 

u(i,j) = ;- rj if ri - rj 5 K 
otherwise. 

The following properties of the distance graph G, 
are implied from the definition of the normalized 
shrunken token game: 

1. For any i and j in V, at least one of (i, j) or 
(j, i) is in E; both edges are in E if and only 
if the weight of both is 0. 

2. There is no positive cycle, that is, a cycle 
including an edge (i, j) with w(i, j) > 0. 

3. 

4. 

Let P(i, j) be the set of all directed simple 
paths from i to j. For every path ‘p E P(i, j), 
let W(cp) = CCu,vjEV w(zL, v). It follows from 
the above properties that 0 5 W(p) 5 K-n. 

For any two directed paths ‘p1 and cpz E 
P(i,j), either W(cp,) = W((P~), or there ex- 
ists an edge (u,v) E ‘p1 such that W(U,U) = 
K. 

5. For any i and j, such that P(i, j) # 8, define 

dist(i, j) = $-&Tj) ww>)~~ 

and define ma%-paths (i, j) to be 

{P E P(i, j> I W(P) = didi, dl 

Then W(p) = rj - ri for every ‘p E 
maz-paths (i, j). 

Let inc (i, G) be defined as the following trans- . . 

. 

formation of graph G for a given t: 

foralljfiinvdo 
if (j, i) E G and 

(3k)((j, i) E maqaths(k, i)) then 
4, i) := w(j, i) - 1 fi; 

if(i,j) E G and 
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0 <w(i, j) < K then 

w(i, i) := to&j) + 1 fi; 
ifw(j,i) < 0 then 

od; 

Claim 4.1. For a state S’ reached from state 5’ 
by Q token-moue of i in token game A, G(Y) = 
inc (i, G(S)). 

4.3 Implementation of the Graph 

Property (1) of the distance graph implies that 
the weights of all (undirected) edges suffice to 
induce the directed graph structure. The weights 
are maintained in a collection of ei[l..n] of edge 
counters, one per each (undirected) edge (ei[d is 
not used). Each pair ei b] and ej[i] of counters 
in the range (0..3.K-l}, represents two pointers 
(of i and j, respectively) to a cycle of size 3.K. 
By incrementing the counter, a process moves its 
pointer a in clockwise direction (all arithmetics 
in this subsection is module 3.K). 

Assume ei [j] - cj [q 5 ei [d - ei b] then the edge 
is (i, j), and w(i, j) = ei b] - ej [Cl, and vice versa. 
Thus, given two edge counters eib] and ej[CJ, the 
existence of a given directed edge is determined 
by the rule 

(Cj) E G if (eibl - ejIzl) 1 (ej[2) - eliI> 

and the weight w(i, j) of the edge (i, j) is (ci [i] - 
cj[i]). Note that if eib] = ej[i], then we have 
both edges, (i, j) and (j, i) with both weights 
equal to 0. To keep the weight w(i, j) in the range 
{O..K}, a process i does not increment cib] un- 
less it is the trailing pointer, or it leads by less 
than K. 

Let make-graph be the procedure that, given 
the collection of all edge counters, creates a graph 
representation, as described above. The following 
procedure is thus the (possibly concurrent) imple- 
mentation of one increment move on the graph G. 

function inc-graph(el[l..n]..e,[l..n]); 
begin 

G := make-graph(el[l..n]..e,[l..n]); 
for j := 1 to n skip i do 

if ((j, i) E G and 

(3E)((j, i) E max+aths(k, i))) or 
((i, j) E G and w(i, j) < K) then 

eilil := eib] + 1 mod 3K 
fi; 

od; 
end; 

5 The Algorithm 

Baaed on Observation 1 (Section d), if a pro- 
cess advanced K rounds ahead of another, it can 
erase its contribution to the trailing process’ coin. 
A trailing process performing next-coin-value us- 
ing that location will possibly see that process’ 
counter as 0, but this can only cause it to perform 
an additional expected O(n2) steps (by Lemma 
3.2), before advancing to the next round5. 

The round field of any value wi consists of two 
fields: coin and edge-counters. The coin field 
is an array of coin counters Ci[&]j(Y E {0.X}, 
with an added current-coin pointer in the range 
{0..K}6. These counters are used to maintain 
the local parts of coins corresponding to the lat- 
est K rounds executed by process i. The counter 
to be used for the next coin of process i is d& 
termined by the function next (current-co&), re- 
turning current,coini mod (K + 1). The edge 
counters field is an array of n edge counters as de- 
scribed in Subsection 4.3. Initially all the above 
are 0. The following is thus the bounded imple- 
mentation of the coin flipping and round incre- 
menting operations for process i. 

function next-coin-vaZue(round); 
begin 

G := make_graph(et[l..n]..e,[l..n]); 
E[i] := coi~[next(current,coi~)]; 
for j := 1 tonskip ido 

if (j, i) E G and w(j, i) < K then 
qj] := COifZj[(CU?YT?Zt-COinj- 

w(j, i) + 1) mod (K + l)] 
else Eli] := 0 fi od; 

return coin-value (15); 
end; 

5Several modifications that will improve the expected 
running time here and elsewhere in the algorithm are pos- 
sible, but are not introduced for the sake of simplicity. 

‘In the procedures below, all fields are first written 
to a local variable, on which the write operation of the 
scannable memory is then performed. 
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procedure jTip,~ezLcooin( round); 
begin 

wakstep (coin;[nezt (current-coin;)]); 
end; 

function inc(round); 
begin 

current,co+ := next (cumnicoin i); 
coin j[next (current-coin i)] := 0; 
inc,grapli(el[l..n] ,.., e,[l..nJ); 

end; 

In the above procedure, note that a process 
prepares, when advancing to a new round, the 
coin counter for flipping the coin in the next 
round. 

We assume that processors start with binary 
initial values; however, the protocol can be ex- 
tended to handle arbitrary initial values. Let K 
be 2, the following is thus the consensus algo- 
rithm for processor i, with initial value vi. Pro- 
cess i is a leader if for all j # i, (i, j) is in G, that 
is having ri equal to or dominating all other rj. 
Process i agrees with process j, if both prefer the 
same value v # 1. 

write([pref: vi, round: inc(round)]) 
repeat forever 
1: scan; 
2: if all who disagree 

trail by K and I’m a leader 
then decide (prefi; 

3: elseif leaders agree then 
4: write([pref: v, round: inc(round)]) 
5: elseif pref# I then 
6: write([pref: 1, round: round) 

elseif next,coin,uaJue(round) = 
undecided then 

7: wtite (bref: I, 
round: flip-next-coin (round)]) 

else 
8: write (Ipref: next-coin-value (round), 

round: inc (round)]) 
fifififi; 

end; 

6 Proof of Correctness 

The following section outlines the proofs that the 
algorithm has the properties of consistency, va- 

lidity, and that it terminates in polynomial ex- 
pected time. To simplify the proofs, the notion 
of a virtual global round is introduced, support- 
ing the illusion that a process has an unbounded 
and monotonically non-decreasing round num- 
ber, and that a unique shared coin is azsociated 
with each round. 

6.1 Virtual Global Rounds 

The serializability property (PS) of scan opera- 
tion executions, implies that there is some linear 
ordering on the scan operation executions per- 
formed by all processes. Throughout the proof, 
let SjOl denote the ath scan in this ordering, if 
the ath scan is performed by process j, denote it 
by S!“‘. One scan operation execution is said 
to bef later than another, if it is greater in this 
ordering. In the consensus protocol processes al- 
ternate between performing write and scan oper- 
ations. This implies that between any two scans, 
Sf”) and S+‘+ll, th ere is at most one write by 
any process. Denote by war{“} the value of any 
variable var that was read by Si”)* 

With each process i, in the ath scan, a 
vi&al global round is associated, denoted by ’ 
round(i, S(“l). The definition is by induction on 
the ordering among scan operation executions. 

Base case. For all i, round(i, S(l)) = 0. 

Inductive step. Given round(i, S[“-‘I), let 

ma2 = maxicfl..n) round(i, Sf”-l)), 

old-leaders (SfaB1}) = 
(j 1 round(i,Sf”‘l)) = muz}, 

and 
new-leaders (Sfa)) = 

(j 1 j E old-leaders (S io-1}) and 
ej[l..n] fo1($ # cj[l..n] f”-l)(j)}, 

Based on the above definitions, define 
round(i, Sf”l) as follows. If new-leaders (S fal) # 
0, let j* E new-leaders (S I al) and define 

round(i, S Cal) = 
max+l i E new-Zeaders (S la,) 
ma++1 - dist(i, j*) otherwise. 
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In case the set new,leaders(S(a)) = 0, let j* E 
old-leaders (SIa)) and define 

round& S’“)) = maz - dist(i, j’). 

The above definition is simply that if one of the 
leaders in the former scan operation execution 
moved, all new processes are ordered relative to 
it, and otherwise they are ordered relative to the 
old leaders. Note that though the virtual global 
round of a process might change even without 
its performing an inc operation, it can only in- 
crease, that is, the virtual global round is a non- 
decreasing function. 

In the following subsections, a round means a 
virtual global round unless otherwise stated. A 
process p is said to be in round r, starting from 
the first scan operation execution in which it was 
returned as being in r (determined by applying 
the above definition), and in all later scan oper- 
ation executions until it is returned as being in a 
round P’ > r. A round is said to be among the K 
largest (for some constant K) starting from the 
earliest scan operation execution in which some 
process is in this round and no other process is 
in a round greater by K, and until the first later 
scan operation execution for which there is a pro- 
cess in a round greater by K. 

6.2 Consistency and Validity 

Though we have attempted to maintain the gen- 
eral structure of the correctness and complex- 
ity proofs for the unbounded implementation of 
[AH88], by introducing virtual global rounds, the 
differences between our rounds strip implementa- 
tion and the infinite rounds strip used in [AH88], 
force us to modify some of the statements, and 
to change most of the proofs. 

For simplicity, it is assumed that there are only 
two possible input values, where c denotes the 
value different from u, for v E (0, 1). A process 
p prefers v in round r, if for some scan St51 it is 
the case that round(p, S{“l) = F, and prefja) = 
v. We have 

Lemma 6.1. If process p prefers v in round r 
and prefers G in round F’ > F, then some process 
q # p preferred ii in round F" 2 r. 

Proof (Sketch) By the algorithm, a process 
changes its preference only by executing inc. Let 
Si” be the scan performed by p before exe- 
cuting this inc. This can occur only if some 
other process, say q, had prefstal = 6, and 
that in the graph returned in S,(=}, q has non- 
negative distance from p- Since rounds are 
monotonically non-decreasing, it is the case that 
round(q S,‘“)) > round(p,Sp(“)) and the claim 
follows. ’ - n 

The above lemma and the code of the algo- 
rithm implies the following two lemmas. 

Lemma 6.2. If no process prefers B at round r 
when round r is among the 2 largest rounds, then 
no process prefers ti at any round r’ > F. 

Lemma 6.3. If no process prefers tr at round r 
when round r is among the 2 largest rounds, then 
no process is busy in any round F' > r. 

Lemma 6.4. If every process that completed 
round r, when round F was among the 2 largest 
rounds, preferred v in round r, then every non- 
fat&y process decides v by round F + 1. 

Lemma 6.4 implies validity, since if all pro- 
cesses start with the same input value they all 
prefer this value in round 1. Hence all processes 
will halt at round 2. 

Lemma 6.5. If any process decides in round F, 
then no process will ever be in a round larger than 
r+2. 

The above lemma implies that all processes will 
execute round r when it is among the 2 largest 
rounds. We use this fact to prove that the algo- 
rithm has the consistency property. 

Lemma 6.6. If some process decides in round r 
then all processes will decide on the same value 
by round F + 1. 

6.3 Expected Running Time 

A process is said to have selected its preference 
for round F deterministically, if it executed the 
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corresponding inc in line 6. Similarly, a proces- 
sor is said to have selected its preference for round 
r randomly, if it executed the corresponding inc 
in line 10. The following lemma assures that ah 
processors that select their preference determin- 
istically, select the same value. 

Lemma 6.7. If processes p and q determin- 
istically selected v and v’, respectively, as their 
preferences for round r, when r was among the 2 
largest rounds, then v = G. 

Hence, one may talk about the deterministic 
value preferred in a certain round. The next 
lemma shows that the scheduler is forced to de- 
cide on the deterministic value of a round before 
any process starts flipping a coin for that round. 

Lemma 6.8. If p recess p is deterministic in 
round r, and process q is randomized in round 
r, then p wrote its preference for round r before 
q started to perform flip-next-coin. 

This lemma implies that decisions in different 
rounds are independent events. Thus, the prob- 
ability of deciding in any round is that of a se- 
quence of independent Bernoulli trials, with suc- 
cess probability e, for some constant e > 0 (this 
follows from Lemmas 3.1 and 3.4). Hence the 
expected number of rounds executed before the 
algorithm terminates is constant. As each shared 
coin is flipped in polynomial expected number of 
steps (Lemma 3.2), the algorithm terminates in 
a polynomial expected number of steps. 
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