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ABSTRACT
This paper shows for the first time that elimination, a scaling
technique formerly applied only to counters and LIFO struc-
tures, can be applied to FIFO data structures, specifically,
to linearizable FIFO queues. We show how to transform
existing nonscalable FIFO queue implementations into scal-
able implementations using the elimination technique, while
preserving lock-freedom and linearizablity.

We apply our transformation to the FIFO queue algo-
rithm of Michael and Scott, which is included in the JavaTM

Concurrency Package. Empirical evaluation on a state-of-
the-art CMT multiprocessor chip shows that by using elim-
ination as a backoff technique for the Michael and Scott
queue algorithm, we can achieve comparable performance
at low loads, and improved scalability as load increases.
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E.1 [Data]: Data Structures

General Terms
Algorithms, Design, Theory, Verification

Keywords
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1. INTRODUCTION
Elimination is a parallelization technique that has shown

promise in designing scalable shared counters [2, 20] and
Last-In-First-Out (LIFO) structures such as pools and
stacks [7, 20]. This paper shows the first example of applying
elimination to First-In-First-Out (FIFO) structures, specif-
ically, to one of the most fundamental and widely studied
concurrent data structures in the literature: the concurrent
FIFO queue [6, 9, 10, 12, 14, 17, 18, 19, 22, 23, 24, 25].
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1.1 Scalability of Concurrent Queues
The state of the art in concurrent FIFO queues employs

data structures that support lock-free Enqueue and Dequeue
operations with the usual FIFO queue semantics [15]. The
most widely known concurrent FIFO queue implementation
is the lock-free FIFO queue due to Michael and Scott [15]
(henceforth MS-queue), which is included as part of the
JavaTMConcurrency Package [13]. On shared-memory mul-
tiprocessors, this queue improves on all previous algorithms
and even outperforms lock-based queues [15].1 Its key fea-
ture is that concurrent accesses to the head and tail of the
queue do not interfere with each other as long as the queue is
non-empty. A recent paper by Ladan-Mozes and Shavit [11]
introduced an optimistic queue that improves on the perfor-
mance of the MS-queue in various situations by reducing the
number of expensive compare-and-swap (CAS) operations
performed. Unfortunately, like all previous FIFO queue al-
gorithms, these state-of-the-art algorithms do not scale. In
all previous FIFO queue algorithms, all concurrent Enqueue
and Dequeue operations synchronize on a small number of
memory locations, such as a head or tail variable, and/or
a common memory location such as the next empty array
element. Such algorithms can only allow one Enqueue and
one Dequeue operation to complete in parallel, and therefore
cannot scale to large numbers of concurrent operations.

We show how existing nonscalable queue implementations
— including both of the above state-of-the-art queues — can
be modified to support scalable FIFO elimination; this yields
the first scalable non-blocking FIFO queue algorithms.

1.2 Elimination
Elimination is a technique introduced by Shavit and

Touitou [20] to achieve scalability in shared pool and counter
implementations [2, 20]. A recent paper by Hendler et. al [7]
showed how elimination can be used as a backoff technique
that achieves scalability for LIFO stacks while preserving
linearizability. (Linearizability [9] is a standard correctness
condition for shared data structures; it is defined in the next
section.) The introduction of elimination into the backoff
mechanism serves the dual purpose of allowing operations
to complete in parallel and reducing contention for the un-
derlying stack data structure.

1Parallel queue algorithms based on blocking combining ap-
proaches [5, 4] achieve good throughput for hundreds of pro-
cessors, but are not competitive when concurrency is low
[21]. This paper focuses on algorithms that are competi-
tive with existing algorithms when concurrency is low, but
achieve increasing throughput with increasing concurrency.
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Figure 1: An Elimination Queue consisting of an
MS-queue augmented with an elimination array
shown during the execution depicted in Figure 2.
Four Enqueues are attempted concurrently. The En-
queues of 2 and 3 fail and thus try to eliminate on
random locations in the elimination array. Then two
concurrent Dequeues are started. One succeeds and
returns 1, the other fails, backs-off, and successfully
eliminates on the array with the Enqueue of 2, which
is now properly “aged.”

Elimination works by allowing opposing operations such
as pushes and pops to exchange values in a pairwise dis-
tributed fashion without synchronizing on a centralized data
structure. This technique is straightforward in LIFO or-
dered structures. As noticed by Shavit and Touitou [20]: a
stack’s state remains the same after a push followed by a
pop are performed. This means that if pairs of pushes and
pops can meet and pair up in separate random locations of
an “elimination array”, then the threads can exchange values
without having to access a centralized stack structure. How-
ever, this approach seemingly contradicts the very essence of
FIFO ordering in a queue: a Dequeue operation must take
the oldest value currently waiting in the queue. It appar-
ently cannot eliminate with a concurrent Enqueue.

We show that, despite this inherent difficulty, any FIFO
queue implementation that can support additional
NumDeqs and NumEnqs operations (explained later), can
be transformed into a scalable elimination queue, while pre-
serving lock-freedom and linearizablity. It is easy to modify
MS-queue and optimistic-queue to support these operations.

1.3 FIFO Elimination
How can elimination be achieved with a FIFO queue? Our

key observation is that the FIFO order of Enqueue and De-
queue does not prohibit elimination, it only restricts it to
particular combinations of operations. Specifically, a De-
queue operation can eliminate an Enqueue if the values in-
serted by all Enqueues preceding that Enqueue have already
been Dequeued. Thus, if an Enqueue operation has “aged” to
the point where the values of all Enqueues preceding it have
been Dequeued, it can eliminate with a concurrent Dequeue
operation. In this case, we “pretend” that the eliminated
Enqueue completed successfully earlier, and that, because
of the aging, its value is now at the head of the queue, and
can therefore now be dequeued.

A variety of FIFO queue implementations can be based
on this technique. In general, it is preferable to access the
underlying (central) queue data structure directly under low
load, because elimination partners are harder to find; and to

attempt to eliminate under high load, because elimination
partners will be easier to find, and excessive contention for
the central queue will result in nonscalable performance.

One intuitively appealing way to use elimination is to
incorporate it into the backoff mechanism for the central
queue. It is well known that backoff techniques are neces-
sary to alleviate the poor scalability of existing FIFO queue
algorithms under high load. If an operation uses time that
would otherwise be spent backing off to successfully elimi-
nate, then the eliminated operations finish sooner, and also
reduce contention on the central queue, because they do not
have to retry after backing off. We describe our technique
using this approach, and later discuss some potential disad-
vantages of this approach and some alternatives.

Our implementation uses a single “elimination array” to
support a backoff scheme on a shared lock-free queue. We
started with MS-queue, and modified the queue so that pro-
cesses can query it to determine how many Enqueue and
Dequeue operations have succeeded in the past, and this in-
formation is used to determine when an Enqueue operation
has been properly “aged”, and can therefore be eliminated.
Figure 1 shows an example execution. Enqueue and De-
queue operations that fail to complete on the central queue
due to interference from concurrent operations back off to
the array to try to achieve elimination between a Dequeue
operation and a sufficiently aged Enqueue operation. If the
elimination is successful, they exchange values; otherwise,
they again attempt to access the central queue. We have
proved that this structure is linearizable; we present a de-
tailed overview of our proof in Section 3.

Because our algorithm works as a backoff scheme, it can
deliver the same performance as the simple queue at low
loads. However, unlike the simple queue, its throughput in-
creases as load increases because (1) the number of success-
ful eliminations grows, allowing many operations to com-
plete in parallel, and (2) contention on the shared queue
is reduced beyond levels achievable by the best exponential
backoff schemes [1] since many backed off operations are
eliminated in the array.

1.4 Performance
Recent initiatives by leading processor manufacturers

make it clear that the next generation of high-performance
computer chips will be chip-multi-threaded (CMT). CMTs
have multiple cores with multiple computation strands on
a single chip. Effective data structures for multiprocessor
chips should achieve scalability through parallelism, while
imposing low overhead when concurrency is low.

We compared an elimination-backoff version of the MS-
queue with the original MS-queue on a Sun Niagara-based
system. Niagara is a CMT multiprocessor chip with 8 com-
puting cores and 4 interleaved strands per core. Our empiri-
cal results show that our new elimination-backoff MS-queue
performs comparably with MS-queue at low levels of con-
currency, and then increasingly outperforms MS-queue as
the number of threads increases. We believe that the par-
allelism afforded by the elimination technique will enable
FIFO queues to scale to very large systems, while the MS-
queue algorithm clearly will not.

2. THE NEW ALGORITHM
Our scalable FIFO queue algorithm is based on ideas sim-

ilar to those of Hendler et. al. [7]. However, elimination for
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Figure 2: Example execution illustrating lineariz-
ability of elimination queue. Time progresses from
left to right.

a FIFO queue is substantially more difficult than for a stack,
because we cannot simply eliminate any Enqueue-Dequeue
pair. The reason is that, while a push followed by a pop
on a stack has no net effect on the stack, the same is not
true for a FIFO queue. For example, if a queue contains a
single value 1, then after an Enqueue of 2 and a Dequeue,
the queue contains 2, regardless of the order of these oper-
ations. Thus, because the queue changes, we cannot simply
eliminate the Enqueue and Dequeue. Note that if the queue
were empty, we could eliminate an Enqueue-Dequeue pair,
because in this case the queue is unchanged by an Enqueue
immediately followed by a Dequeue. Our algorithm exploits
this observation, but also goes further, allowing elimination
of Enqueue-Dequeue pairs even when the queue is not empty.

To understand why it is acceptable in some cases to elim-
inate Enqueue-Dequeue pairs even when the queue is not
empty, one must understand the linearizability correctness
condition [9], which requires that we can order all opera-
tions in such a way that the operations in this order respect
the FIFO queue semantics, but also so that no process can
detect that the operations did not actually occur in this or-
der. If one operation completes before another begins, then
we must order them in this order. Otherwise, if the two are
concurrent, we are free to order them however we wish.

Key to our approach is the observation that we really want
to use elimination when the load on the queue is high. In
such cases, if an Enqueue operation is unsuccessful in an
attempt to access the queue, it will generally backoff be-
fore retrying. If in the meantime all values that were in the
queue when the Enqueue began are dequeued, then we can
“pretend” that the Enqueue did succeed in adding its value
to the tail of the queue earlier, and that it now has reached
the head and can be dequeued by an eliminating Dequeue.
Thus, we use time spent backing off to “age” the unsuc-
cessful Enqueue operations so that they become “ripe” for
elimination. Because this time has passed, we ensure that
the Enqueue operation is concurrent with Enqueue opera-
tions that succeed on the central queue, and this allows us
to order the Enqueue before some of them, even though it
never succeeds on the central queue. The key is to ensure
that Enqueues are eliminated only after sufficient aging.

To understand how the aging process works, consider the
execution of Figure 2 on the queue structure shown in Fig-
ure 1. Figure 2 describes the time intervals of the operations
depicted in Figure 1, starting from an empty queue. As can

be seen, in this execution, first 1 is enqueued into an empty
queue, then concurrent Enqueue attempts of 2, 3 and 4 be-
gin. The Enqueue of 4 succeeds in adding 4 to the queue,
but causes the attempts to enqueue 2 and 3 to fail, so they
back off; the queue now contains 1 followed by 4. At this
point two Dequeues are started. The first successfully takes
the value 1 from the queue, causing the second to fail, which
therefore backs off. After 1 is dequeued, the backed-off De-
queue can eliminate with the Enqueue of 2 even though the
head of the queue at this point contains 4. This is because
the Enqueue of 2 has waited long enough so that all values
enqueued completely before it, namely 1, are no longer in
the queue. We can thus order the Enqueue of 2 after the
Enqueue of 1 and before the Enqueue of 4, even though no
process has yet dequeued 4 from the central queue.

2.1 The transformed central queue
How can a Dequeue detect that an Enqueue has aged suf-

ficiently? One approach is to enhance the central queue
with additional operations that allow a Dequeue that wishes
to eliminate with an Enqueue to determine that all items
inserted by Enqueue operations that completed before the
candidate Enqueue operation began have already been de-
queued. We now describe an abstract counting queue, which
supports detection of aging for elimination. Most lock-free
queue implementations (including MS-queue) can be easily
adapted to implement the required semantics.

A counting queue provides EnqueueAttempt and
DequeueAttempt operations, with the same semantics as
Enqueue and Dequeue, except that they can return a special
value “fail” in case of interference from concurrent opera-
tions. It also provides NumDeqs and NumEnqs operations,
which report how many Dequeue and Enqueue operations
respectively have succeeded so far. A straightforward trans-
formation of the MS-queue to provide these operations is
outlined in an appendix.

2.2 The Elimination Queue in Detail
The data structures used in our example code are shown

at the top of Figure 3. The node t type contains a value
to be Enqueued and a serial number. In our presentation,
nodes serve two purposes. First, they are passed to En-
queueAttempt to communicate the value to be enqueued to
the central queue implementation. Depending on the im-
plementation, the central queue may also use the node, and
the node may include other fields not shown here. The other
purpose of the node is for elimination; the value is the value
to be passed from an eliminated Enqueue operation to the
corresponding eliminated Dequeue operation, and the serial
number is used to determine when it is safe to eliminate
an Enqueue-Dequeue pair, as explained in more detail be-
low. A FIFO queue (type queue t) consists of a counting
queue and an elimination array. We assume two “special”
values of type pnode t: “EMPTY” and “DONE”, which can
be distinguished from “real” node pointers. These values
might be values that cannot be node addresses (for example
due to alignment assumptions), or two special nodes can be
allocated for this purpose.

An Enqueue operation begins by determining how many
Enqueue operations have already completed on the central
queue. This information is used to determine when the En-
queue has aged sufficiently to allow elimination with a De-
queue operation. The Enqueue operation then allocates a
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structure node t {value: valtype, seq: uint}
structure ptrctr t {node: pointer to node t, ver: uint}
structure Queue t {Q: counting queue t,

Collisions: array of ptrctr t}

Enqueue(Q: pointer to Queue t, value: valtype)

1: uint seen tail = NumEnqs(Q)
2: pointer to node t node = new node(value)
3: loop
4: if DecideWhetherToAccessQueue() and

EnqueueAttempt(Q, node) then
5: return
6: else
7: if TryToEliminateEnqueue(Q, node,

seen tail) then
8: return
9: end if

10: end if
11: end loop

TryToEliminateEnqueue(Q: pointer to Queue t,
pointer to node t, seen tail: uint):boolean

1: node→seq = seen tail;
2: i = random(collision array size)
3: 〈colnode,ver〉 = Q→Collisions[i]
4: if colnode == EMPTY then
5: if CAS(&Q→Collisions[i], 〈EMPTY,ver〉,

〈node,ver+1〉) then
6: ShortDelay()
7: colnode = Q→Collisions[i].node
8: if (colnode == DONE) or

(not CAS(&Q→Collisions[i], 〈colnode,ver+1〉,
〈EMPTY,ver+1〉)) then

9: Q→Collisions[i] = 〈EMPTY,ver+1〉
10: return true
11: end if
12: end if
13: end if
14: return false

Figure 3: Data structures and Enqueue operation

node initialized with the value to be enqueued, and then
repeatedly attempts either to Enqueue the value using the
central queue, or to find a Dequeue operation with which to
eliminate, depending on guidance from the heuristic imple-
mented by DecideWhetherToAccessQueue. The operation
returns when it succeeds using either approach. The struc-
ture of a Dequeue operation is similar. We defer a detailed
discussion of node management to a full version of the paper.

It remains to describe the elimination mechanism. Try-
ToEliminateEnqueue stores the the number of previous En-
queues on the central queue (recorded earlier) in the thread’s
node, and then attempts to find an empty slot in the elimi-
nation array. It does this by choosing a slot at random, and
then determining if the slot contains EMPTY. If not, the
elimination attempt fails. Otherwise, the thread attempts
to replace the EMPTY value with a pointer to its node us-
ing compare-and-swap (CAS). If this CAS fails, then the
elimination attempt fails. Otherwise, the Enqueue has in-
stalled its node into the elimination array, so it waits for a
short time, hoping that a Dequeue finds the node and elim-
inates. If it does so, it changes the node pointer to DONE,
as explained below. Therefore, the Enqueue operation can
detect elimination by checking to see if the node pointer has

Dequeue(Q: pointer to Queue t,
pvalue: pointer to valtype):boolean

1: loop
2: if DecideWhetherToAccessQueue() then
3: res = DequeueAttempt(Q, pvalue)
4: if res == SUCCESS then
5: return true
6: else if res == QUEUE EMPTY then
7: return false
8: end if
9: else

10: if TryToEliminateDequeue(Q, pvalue) then
11: return true
12: end if
13: end if
14: end loop

TryToEliminateDequeue(Q: pointer to Queue t,
pvalue: pointer to valtype):boolean

1: seen head = NumDeqs(Q)
2: i = random(collision array size)
3: 〈node,ver〉 = Q→Collisions[i]
4: if node /∈ {EMPTY, DONE} then
5: if node→seq ≤ seen head then
6: *pvalue = node→value
7: if CAS(&Q→Collisions[i],〈node,ver〉,

〈DONE,ver〉) then
8: return true
9: end if

10: end if
11: end if
12: return false

Figure 4: Dequeue operation

been changed to DONE. If so, the Enqueue has been elim-
inated, so it can return. Otherwise, the thread uses CAS
to attempt to change its entry in the elimination array back
to EMPTY, so that it can return to the main Enqueue pro-
cedure to retry. If this CAS fails, it can only be because a
Dequeue operation has changed the node to DONE, so again
the Enqueue is successfully eliminated in this case.

When a Dequeue operation attempts to eliminate, it
chooses a slot in the elimination array at random, and checks
to see if there is an Enqueue waiting to eliminate in that slot
(if the node pointer is not DONE or EMPTY, then there is
an elimination attempt in progress by an Enqueue opera-
tion). If not, the attempt to eliminate fails. Otherwise, the
Dequeue attempts to change the node pointer to DONE,
indicating to that Enqueue operation that the elimination
was successful. If it does, it simply returns the value from
the node. However, as explained earlier, it is not always safe
to eliminate with an Enqueue operation. The Dequeue op-
eration that hopes to eliminate must first confirm that the
number of Dequeues performed on the central queue is at
least the number of Enqueues performed before the candi-
date Enqueue operation began. This check is performed by
comparing the number recorded in the node by the Enqueue
to the result of calling NumDeqs on the central queue.

Finally, in order to avoid the ABA problem [15], pointers
in the elimination array are augmented with version num-
bers, which are incremented each time a node is installed
into the elimination array. This avoids the following po-
tential problem. A Dequeue could read a pointer from the
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elimination array and determine that the Enqueue is safe to
eliminate. However, before the Dequeue performs its CAS
to “claim” the value to return, the node could be removed
from the elimination array, recycled, and reused in the elim-
ination array by another Enqueue operation that is not yet
safe to eliminate, and the Dequeue’s CAS could succeed,
thereby causing elimination with the ineligible Enqueue.

2.3 Heuristics for Elimination
Our FIFO elimination technique allows threads to choose

dynamically between accessing the central queue and at-
tempting to eliminate. Our presentation assumes a func-
tion DecideWhetherToAccessQueue, which returns true if
we should attempt the operation on the central queue, and
false if we should try to eliminate. This function can imple-
ment any heuristic choice, and may additionally incorporate
traditional backoff techniques by delaying for some time be-
fore returning. However, the heuristic should always even-
tually attempt to complete on the central queue in order to
ensure lock-freedom. Below we discuss considerations in de-
signing such heuristics, and in seeking elimination partners.

Under high load, elimination is preferable, because us-
ing the nonscalable central queue will result in poor perfor-
mance. Under low load, finding an eligible operation with
which to eliminate may take too long, and the number of
“aged” enqueues is most likely low. Furthermore, because
load is low, accessing the central queue should be fast.

The DecideWhetherToAccessQueue heuristic is in our im-
plementation is designed to use elimination as a backoff
mechanism for the central queue. Thus, every operation
alternates between attempting to complete on the central
queue and attempting to eliminate some number of times.
As the experiments presented in Section 4 show, on a Niag-
ara-based Sun FireTMT200 system, the resulting algorithm
performs comparably at low load and outperforms MS-queue
with backoff at high load because the eliminated operations
relieve contention on the central queue. We expect that
the margin of improvement would continue to increase with
increasingly larger machines. However, to achieve a truly
scalable queue, the following factors must be considered.

First, we must consider the scalability of the elimination
mechanism itself. An important consideration is locality: it
is preferable to eliminate with an operation that is “nearby”
in the machine in order to avoid communication bottlenecks.
In our experiments, local groups of processors shared (logi-
cal) elimination arrays that were allocated in local memory
(in architectures having a notion of memory that is local to
processors), rather than choosing slots at random in a sin-
gle elimination array, as presented in our pseudocode above.
In experiments artificially constructed to allow maximum
elimination and to always avoid the central queue, we have
determined that our elimination mechanism scales up very
well on a 144-core Sun FireTME25K system. However, our
elimination-as-backoff implementation did not exhibit such
good scalability on this machine. We speculate on the rea-
sons for this below, and discuss possible remedies.

If every operation always accesses the central queue be-
fore attempting to eliminate, as it does in an elimination-
as-backoff scheme, then throughput will not scale in large
machines under high load. Ideally, in order to achieve true
scalability, we would like to avoid the need for synchroniz-
ing on the central queue. This can happen only if the cen-
tral queue remains empty (so that NumEnqs and NumDeqs

operations access only cached read-only state of the cen-
tral queue). Therefore, if we wish to achieve scalable per-
formance under high load in arbitrarily large machines, we
must use a heuristic that attempts to make the central queue
empty (for example by favoring elimination for Enqueues
more than for Dequeues until the central queue is empty),
and then causes all operations to eliminate. Of course, in
reality it will not always be possible to achieve this ideal,
but these considerations may be useful in designing effec-
tive heuristics for adapting to high load. We have not had
time to evaluate these ideas but we hope to do so for a full
version of this paper. Based on our experience with the arti-
ficial experiments discussed above, we are optimistic that an
implementation based on these techniques will significantly
outperform MS-queue in larger machines.

A variety of strategies for adapting to load on the elimi-
nation array are possible. For example, backoff on the elimi-
nation array in both time and space can be considered, as in
[7, 21]. In such arrangements, operations attempt to elimi-
nate on a location chosen at random from a sub-range of the
elimination array that grows or shrinks based on perception
of the load. Such approaches can dynamically “spread the
load” over relevant parts of the elimination array so that
operations seeking to eliminate are dense enough to find
each other, but spread out enough that they do not inter-
fere excessively with other elimination attempts. Dynamic
backoff techniques can also be used to control how long an
Enqueue waits in the elimination array for a partner De-
queue operation, etc. We have not explored the space of
possible adaptation techniques in detail; this paper provides
a proof of concept for using elimination to implement scal-
able FIFO queues, but not an exhaustive study of possible
ways to apply the technique.

3. OVERVIEW OF CORRECTNESS PROOF
Linearizability [9] requires that, for every execution of a

set of threads invoking operations on the queue, there ex-
ists some ordering of the set Ops of queue operations in the
execution such that a) the ordering represents a legal FIFO
queue history, and b) the ordering respects the concurrent
partial order of the operations in the execution.

To prove the first part, we first need to specify the set of all
legal FIFO queue histories. Furthermore, in order to reason
about the behavior of the algorithm, we must precisely state
the semantics of the counting queue used in the algorithm.
Our proof uses augmented queue histories which generalize
both FIFO queue and counting queue histories.

Definition 1: An augmented queue history H = 〈OpId, Type,
Val, Ret, Elim?〉2 of length n consists of the following func-
tions:

OpId: 0..n − 1 → Ops

Type: 0..n − 1 → {E, D,ND,NE}
Elim?: 0..n − 1 → boolean
Val: 0..n − 1 → valtype

Ret: 0..n − 1 → {FAIL,EMPTY,OK} ∪
valtype ∪ integer

A history represents information about each of a sequence
of operations, such as its type (Enqueue(Attempt),
2We sometimes refer to the component functions of a history
H by name without explicitly referring to H where this will
not cause confusion.
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Dequeue(Attempt), NumEnqs, or NumDeqs), which high-
level operation it is associated with, whether it is eliminated,
and what parameter and return values it has.

The following definitions express the number of operations
before position j in history H that satisfy predicate P , and
the index in H of the jth operation satisfying P .

Definition 2: For a history H of length n, a predicate P ,
and an integer j, 0 ≤ j ≤ n, #(H, P, j) ≡ |{k|0 ≤ k <
j ∧ P (j)}|.

Definition 3: For a history H of length n, a predicate P ,
and an integer j, 0 ≤ j < n, ndx (H, P, j) ≡ min k|#(H, P, k+
1) = j.

Definition 4: An augmented queue history H is legal if it
satisfies the LEGALAUG?(H) (see Figure 5).

LEGALFIFO? and LEGALCNTQ? (Figure 5) restrict LEGALAUG?
to define legal FIFO and counting queue histories.

Our proof begins with a representation E of an arbitrary
finite and complete3 execution of our algorithm. E con-
tains one event for each low-level atomic action in the algo-
rithm, including invocations and responses of implemented
Enqueue and Dequeue operations, as well as invocations and
responses of counting queue operations invoked by the algo-
rithm. Each event in E is labeled with the high-level En-
queue or Dequeue operation to which it belongs. The par-
tial order ≺E over Ops is defined such that O1 ≺E O2 holds
iff O1 completes before O2 begins in E. Functions TypeE ,
Elim?E , etc. map each high-level operation to its type (E
or D), whether it was eliminated, etc.

Because Q is a linearizable counting queue, there exists
an ordering H0 of the EnqueueAttempt, DequeueAttempt,
NumDeqs, and NumEnqs operations in E such that a)
LEGALCNTQ?(H0) holds, and b) if a counting queue operation
O1 completes before another counting queue operation O2

begins in E, then O1 is ordered before O2 by H0. Note that
LEGALCNTQ?(H0) does not constrain the OpId component of
H0; we set the OpId of each operation in H0 to be the high-
level Enqueue or Dequeue operation to which the counting
queue operation belongs in E. We also choose Elim?H0

so
that it maps all operations to false. Note that each high-
level Enqueue operation in E has one NumEnqs operation
in H0, each noneliminated Enqueue (resp., Dequeue) opera-
tion has exactly one successful EnqueueAttempt (resp., De-
queueAttempt) in H 0, each eliminated Dequeue operation
has at least one NumDeqs operation in H 0, etc.

In the main part of our proof, we inductively construct a
sequence of augmented queue histories Hi, i = 1, 2, ..., where
Hi+1 is produced by adding a pair of eliminated operations
from E into Hi. The final history Hf in this sequence con-
tains all high-level operations.

We show that each Hi we construct in this way is a legal
augmented queue history, and in addition that it satisfies
GOODORDER?(Hi, E) (see Figure 5). This latter property is
used to aid in our induction, and to show that the order of
all high-level operations included in Hi respects the partial
order ≺E (see Conjunct (7) of GOODORDER?).

3A complete execution is one in which every operation in-
vocation has a matching response. Proving linearizability
for all complete executions suffices to prove linearizability
for all histories because any history can be extended to a
complete history.

Finally, we show that we can remove all extraneous count-
ing queue operations, such as NumEnqs and NumDeqs op-
erations, and failed EnqueueAttempt and DequeueAttempt
operations from Hf , and the resulting sequence F , which
contains exactly the set of high-level operations from E, is
a legal FIFO queue history, proving the following theorem.

Theorem 1: Our algorithm is a linearizable implementa-
tion of a FIFO queue.

Below we present some key definitions and properties of
the proof, and describe some interesting aspects of the proof.
LEGALAUG?(H0) follows from the fact that Q is a linearizable
counting queue. It is easy to prove that GOODORDER?(H0, E)
also holds because H0 does not contain any eliminated op-
erations and because Q is linearizable.

To construct Hi+1 from Hi, we choose an eliminated
Enqueue operation—call it O1—that we have not chosen
previously. We then choose two indexes epos(Hi, O1) and
dpos(Hi, O2), which indicate where we will insert the elim-
inated Enqueue operation and its partner Dequeue oper-
ation, respectively, in Hi to get Hi+1. To explain how we
choose these indexes and how we use them to construct Hi+1

from Hi, we present several definitions, and then explain the
intuition behind them.

Definition 5: For an eliminated Enqueue operation O1,
ne(O1, H) is the (unique) value j, 0 ≤ j < length(H) satis-
fying TypeH(j) = NE ∧ OpIdH(j) = O1.

Definition 6: For an eliminated Dequeue operation O1,
lnd(O1, H) is the largest value j, 0 ≤ j < length(H) satis-
fying TypeH(j) = ND ∧ OpIdH(j) = O1.

Definition 7: neepos(H, j) ≡ ndx (H, SE, #(H, SD, j)+1)−
1.

Definition 8: The partner function4 maps each eliminated
Enqueue or Dequeue operation to its elimination partner.

Definition 9: We consider three cases in defining
epos(H, O1) and dpos(H, O1) for an eliminated Enqueue op-
eration O1.

Case 1: pqsize(H, lnd(partner(O1), H)) > 0. In this case,
epos(H, O1) is defined to be neepos(H, lnd(partner(O1), H))
and dpos(H, O1) is defined to be lnd(partner(O1), H).

Case 2: pqsize(H, lnd(partner(O1), H)) ≤ 0 ∧
lnd(partner(O1), H) < ne(O1, H). In this case, epos(H, O1)
and dpos(H, O1) are both defined to be ne(O1, H).

Case 3: pqsize(H, lnd(partner(O1), H)) ≤ 0 ∧
lnd(partner(O1), H) > ne(O1, H). In this case, epos(H, O1)
and dpos(H, O1) are both defined to be lnd(partner(O1), H).

The following shows how Hi+1 is constructed from Hi.

Definition 10: For an eliminated Enqueue operation O1 in
E but not in Hi, let O2 = partner(O1), and define Hi+1 as
follows. For each f ∈ {OpId, Type, Elim?, Val, Ret}:

• if j ∈ [0, epos(Hi, O1)], then fHi+1
(j) = fHi

(j).

• if j ∈ [epos(Hi, O1) + 2, dpos(Hi, O1) + 1], then
fHi+1

(j) = fHi
(j − 1).

• if j ∈ [dpos(Hi, O1)+3, length(Hi)+2), then fHi+1
(j) =

fHi
(j − 2).

4In the full proof, we prove that this function exists.
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SE(H, j) ≡ Type(j) = E ∧ Ret(j) = OK CSE(H, j) ≡ SE(H, j) ∧ ¬Elim?(j)
SD(H, j) ≡ Type(j) = D ∧ Ret(j) ∈ valtype CSD(H, j) ≡ SD(H, j) ∧ ¬Elim?(j)

LEGALAUG?(H) ≡ ∀j, 0 ≤ j < length(H) ::
(1) (Type(j) = E ⇒ Val(j) ∈ valtype ∧ Ret(j) ∈ {FAIL,OK}) ∧
(2) (Type(j) = D ⇒ Ret(j) ∈ {FAIL,EMPTY} ∪ valtype) ∧
(3) (Type(j) = PT ⇒ Ret(j) = #(H, CSE, j)) ∧
(4) (Type(j) = PH ⇒ Ret(j) = #(H, CSD, j)) ∧
(5) (Type(j) = D ∧ Ret(j) = EMPTY ⇒ #(H, SD, j) ≥ #(H, SE, j)) ∧
(6) (Type(j) = D ∧ Ret(j) ∈ valtype ⇒ #(H, SD, j) < #(H, SE, j) ∧ Ret(j) = Val(ndx (H, SE, #(H, SD, j) + 1)))

LEGALCNTQ?(H) ≡ LEGALAUG?(H) ∧ (∀j : 0 ≤ j < length(H) :: Type(j) ∈ {E, D} ⇒ ¬Elim?(j))

LEGALFIFO?(H) ≡ LEGALAUG?(H) ∧ (∀j : 0 ≤ j < length(H) :: Type(j) ∈ {E, D} ∧ Ret(j) 6= FAIL)

pqsize(H, j) ≡ #(H, CSE, j) − #(H, CSD, j) aqsize(H, j) ≡ #(H, SE, j) − #(H, SD, j)

GOODORDER?(H, E) ≡ ∀j : 0 ≤ j < length(H), ∀O1, O2 ∈ Ops ::
(1) pqsize(H, j) ≥ 0 ∧
(2) aqsize(H, j) ≥ 0 ∧
(3) pqsize(H, j) ≤ aqsize(H, j)
(4) (pqsize(H, j) = 0 ⇒ (aqsize(H, j) = 0 ∨ (TypeH(j − 1) = E ∧ Elim?H(j − 1)))) ∧
(5) (TypeE(O1) = E ∧ Elim?E(O1) ∧ pqsize(H, lnd(partner(O1), H)) > 0 ⇒

neepos(H, lnd(partner(O1), H)) ≥ ne(O1, H)) ∧
(6) (O1 ≺E O2 ∧ TypeE(O1) = E ∧ Elim?E(O1) ⇒

(∀k : k ∈ [0, max(ne(O1, H), lnd(partner(O1), H)))] :: OpIdH(k) 6= O2) ∧
(7) (O1 ≺E O2 ∧ OpIdH(j) = O1 ⇒ (∀k : k ∈ [0, j] :: OpIdH(k) 6= O2))

Figure 5: Definitions of legal histories for augmented, counting, and FIFO queues, and additional properties
required for inductive linearizability proof.

For j = epos(Hi, O1)+1, OpIdHi+1
(j) = O1, TypeHi+1

(j) =

E, Elim?Hi+1
(j) = true, ValHi+1

(j) = value enqueued by
O1, and RetHi+1

(j) = OK.
For j = dpos(Hi, O1) + 2, OpIdHi+1

(j) = partner(O1),

TypeHi+1
(j) = D, Elim?Hi+1

(j) = true, and RetHi+1
(j) =

value enqueued by O1.

The intuition behind the above definitions is that we wish
to insert the eliminated Enqueue operation and its partner
Dequeue operation into Hi to produce Hi+1 in such a way
that it is still a legal augmented history, and so that we can
prove that the order of operations in Hi+1 still respects ≺E .

We begin with the last NumDeqs operation of the elimi-
nated Dequeue operation. If Q is empty after that operation
(i.e., the number of noneliminated successful Dequeue oper-
ations before it is the same as the number of noneliminated
successful Enqueue operations before it), then we can infer
from Conjunct (4) of GOODORDER?(Hi, E) that the abstract
queue is also empty at that point (i.e., the number of all
successful Dequeue operations before that point is equal to
the number of all successful Enqueue operations before that
point). Clearly we can insert the eliminated Enqueue oper-
ation immediately followed by the eliminated Dequeue op-
eration at a position at which the abstract queue is empty.
We also have to construct Hi+1 in such a way that we can
later prove that the constructed order respects the partial
order over operations in E. It turns out that if the elim-
inated Enqueue operation’s NumEnqs operation is ordered
after the eliminated Dequeue operation’s NumDeqs opera-
tion, then we would not be able to do so if we inserted the

pair after the Dequeue’s last NumDeqs. However, because
the Enqueue’s NumEnqs operation returns a value that is
at most the value returned by the Dequeue’s last NumD-
eqs operation, we can prove that if the Enqueue’s NumEnqs
operation is ordered after the Dequeue’s NumDeqs opera-
tion, then the counting queue and the abstract queue are
also empty at the Enqueue’s NumEnqs operation, so we can
order the pair there instead (see Case 2 for the above def-
inition), and this allows us to prove the necessary ordering
property.

The most interesting case is the one in which the counting
queue (and therefore the abstract queue) is not empty at
the Dequeue’s last NumDeqs. In this case, we must insert
the eliminated Enqueue operation earlier in the history in
order to maintain a correct FIFO ordering of operations in
the history (see Case 1 above). The definition essentially
says insert the eliminated Enqueue operation immediately
before the (n + 1)-st Enqueue operation in Hi, where n is
the number of successful Dequeue operations before the place
at which we will insert the eliminated Dequeue operation.
This clearly preserves correct FIFO ordering of successful
Enqueue and Dequeue operations.

There are two main challenges. First, we must ensure that
a Dequeue operation that returns EMPTY in Hi still does
so correctly in Hi+1 (i.e., Conjunct (5) of LEGALAUG? is pre-
served). If we insert the eliminated operation pair into Hi in
such a way that an EMPTY -returning Dequeue operation
falls between them, then although Q is still empty immedi-
ately before that operation, the abstract queue would not
be, as we would have inserted a successful Enqueue opera-
tion before it, with the matching Dequeue operation after
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it. We show in our proof that whenever we are using Case
1 of Definition 9, there is no Dequeue operation that re-
turns EMPTY between the inserted Enqueue and Dequeue
operations.

The other challenge is ensuring that we construct the his-
tories Hi in such a way that we can prove that the ordering
of Enqueue and Dequeue operations in Hf respects the par-
tial order over these operations in E (i.e., the construction
of each Hi preserves Conjunct (7) of GOODORDER?).

This is mostly straightforward because we can easily show
how most high-level operations are ordered relative to count-
ing queue operations invoked either by the high-level opera-
tion or by its elimination partner; in the latter case, it is usu-
ally straightforward to relate the ordering of the partner’s
counting queue operation to a counting queue operation of
the high-level operation in question, because of the way the
elimination mechanism forces two eliminating operations to
synchronize with each other on the elimination array.

However, it is significantly more complicated when we use
Case 1 of Definition 9 because the Enqueue operation is not
explicitly ordered near any counting queue operation that
either it or its partner invokes. A key property required to
prove the necessary ordering properties is that an Enqueue
operation eliminated according to Case 1 of Definition 9 is
ordered after its NumEnqs operation. This is nontrivial be-
cause we have insisted that, for scalability, elimination must
be possible when the central queue is empty, which allows
our elimination heurisitics to avoid access to the nonscal-
able central queue under heavy load. Because of this re-
quirement, we cannot show that the Enqueue is ordered af-
ter its NumEnqs operation by a simple counting argument.
Instead, we strengthen our induction in such a way that
we can infer that an Enqueue’s NumEnqs operation is or-
dered before the Enqueue operation itself (see Conjunct (5)
of GOODORDER?).

The most challenging parts of this proof are choosing
where eliminated operations are inserted, and strengthen-
ing the induction appropriately to allow the induction to
go through and to imply that all operations added so far
respect the partial order over operations in E. Most of
the proof consists of reasonably straightforward—though
tedious—counting arguments, usually broken into several
cases depending on where the j under consideration falls
relative to the inserted operations. Generally the cases in
which j is between the inserted operations are the most chal-
lenging, as Hi+1 is identical to Hi up to position epos(i, e),
and for positions after dpos(i, e), we have inserted one
Enqueue and one Dequeue before it, which generally can-
cel each other out, making the counting arguments trivial.

4. PERFORMANCE
The experiments described below were conducted on a

Sun FireTMT200 Niagara-based multiprocessor. Niagara is a
single-chip interleaved multithreaded multiprocessor (CMT)
with eight computing cores, each with four hardware strands.

We implemented our algorithms in the C++ programming
language, compiled by the Sun CC compiler 5.5, using the
flags -xO5 -xarch=v8plusa and run with the SolarisTM10
(SunOSTM5.10) operating system. To reduce variability due
to operating system activity unrelated to our experiments,
each thread was bound to a particular hardware strand. In
order to avoid performance problems due to false cache line
sharing, important data structures (Queue nodes, elimina-

tion slots, etc.) were always allocated in separate cache-line-
sized chunks of memory.

We compared the performance of the MS-Queue algorithm
to an elimination-enabled variation of itself. In both cases,
each thread repeatedly performs either an Enqueue or a De-
queue operation, choosing randomly between the two. For
each operation, the thread first tries to access the shared
MS-queue directly. Upon failure, unlike the MS-Queue al-
gorithm, the elimination-enabled algorithm attempts to find
an elimination partner in the elimination array.

We conducted several experiments to optimize the back-
off heuristics for both algorithms. For the MS-Queue, we
varied min- and max-backoff over wide ranges. Because we
were most interested in scalability under heavy load, our
optimization process selected values that yielded the best
performance for the largest (32-thread) test case without
unduly damaging performance for smaller test cases. (We
have not yet experimented with heuristics that adapt these
parameters to current load.)

For the elimination algorithm, we varied several parame-
ters, including:

elimination-group-size number of threads that share a
set of elimination slots.

elimination-slots-per-group number of elimination slots
shared by each group of elimination-group-size threads.

eliminiation-n-dequeuer-tries number of times a
dequeuer will select and examine a new elimination
slot before going back to access the central queue.

elimination-wait-time how long an enqueuer waits for an
elimination partner (dequeuer) to arrive after putting
its item into an elimination slot.

The best results were achieved with a group size of 16, 4
slots per group, elimination-n-dequeuer-tries set to 3,
and elimination-wait-time set to 30005.

Figure 6 shows the throughput for MS-Queue, with and
without backoff, and for the elimination algorithm, for dif-
ferent numbers of concurrently operating threads. The En-
queue/Dequeue ratio is 30/70 in the left graph and 49.5/51.5
in the right graph. Both graphs contain a fourth line show-
ing the elimination percentage achieved by the elimination
algorithm (to be read using the right-hand y axis).

With small numbers of threads, the performance of all
algorithms is similar, with a slight advantage to the tradi-
tional MS-Queue. Again, we optimized our parameters for
best performance at high load without ruining performance
for smaller numbers of threads. In principle, the heuris-
tic that decides whether to eliminate or to access the cen-
tral queue directly can mimic the MS-queue at low loads,
thereby closing this gap, but we have not yet experimented
with heuristics that attempt to adapt to load.

As the number of threads increase, so too do the number
of eliminations, positively affecting the throughput of the
elimination-enabled algorithm. On an eight-core, 32-strand
test, the elimination queue algorithm beat the throughput
of MS-queue by about a factor of two for the 30/70 test,
and by about 40% for the 49.5/51.5 test. It is not surpris-
ing that the 30/70 test yields better results, since when the

5The elimination-wait-time is expressed as the number of
iterations of a short delay loop.
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Figure 6: Throughput/Elim % graphs. Enqueue/Dequeue ratios are 30/70 (left) and 49.5/51.5 (right).

queue is short, the “aging period” is correspondingly short,
so Enqueues become eligible for elimination more quickly.

These results suggest that the throughput of of the elim-
ination queue will continue to increase with higher levels of
concurrency, while MS-queue clearly will not. Furthermore,
even at the levels of contention in the experiments presented
here, we have several ideas for achieving greater levels of
elimination in the elimination queue, thereby increasing the
improvement of our algorithm over MS-queue. Therefore,
our algorithm is promising for the very large multiprocessor
machines of the future, as well as emerging CMT chips.

5. CONCLUDING REMARKS
We have shown that, with care, the elimination technique

already known to be useful for making stacks, pools and
counters scalable, can also be applied to FIFO queues. Our
preliminary performance results indicate that this technique
improves performance even with relatively small numbers
of concurrent threads and we are optimistic that the im-
provement due to elimination will only increase with larger
numbers of concurrent threads.

Future work includes evaluating different heuristics for de-
ciding whether to access the central queue or to eliminate
in order to effectively adapt to a range of loads.
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APPENDIX

A. TRANSFORMING THE MS-QUEUE
The central queue should be lock-free in the following

sense: if some operation takes a sufficient number of steps,
then some operation completes successfully (an EnqueueAt-
tempt or DequeueAttempt operation is successful if it does
not return “fail”). Furthermore, EnqueueAttempt and De-
queueAttempt should be wait-free: they should complete
(successfully or not) in a bounded number of their own steps.
These requirements prevent livelock on the central queue,
and allow our algorithm to intervene and attempt elimina-
tion if an operation does not succeed on the central queue.

For concreteness, we now briefly explain how we modify
the MS-queue algorithm to implement the required central
queue. We assume that the reader is familiar with the MS-
queue. The EnqueueAttempt and DequeueAttempt opera-

tions are obtained by taking one iteration of the retry loop
in the corresponding operation in the MS-queue algorithm.
Further, in order to facilitate the NumDeqs and NumEnqs
operations, each successful EnqueueAttempt operation asso-
ciates a serial number with the enqueued value, as follows.
Each enqueued node contains a serial number, which is de-
rived by adding one to the value in the node pointed to
by Tail immediately before the new node is installed. It
is straightforward to make this adaptation. Because MS-
queue always contains at least one queue node, even when
it is empty, the serial number of the most recently enqueued
element is always available.

NumDeqs and NumEnqs are also straightforward.
Roughly speaking, NumDeqs reads the Head pointer, and
returns the serial number from the node it points to. (Re-
call that the first node is always a dummy node, so the
serial number in it represents the number of dequeues per-
formed so far.) NumDeqs must also use standard techniques
to detect interference from concurrent operations and retry.
Generally this involves rereading the Head pointer to ensure
that it did not change while the contents of the node were
read.

The NumEnqs operation is similarly straightforward, with
one exception. It reads the Tail pointer and returns the
serial number of the last node in the queue, which repre-
sents the number of Enqueue operations performed previ-
ously. However, recall that in the MS-queue algorithm, the
Tail can sometimes “lag” the end of the queue by one node,
so NumEnqs may have to perform the “helping” in the MS-
queue algorithm in order to be sure that it obtains the serial
number of the most recently enqueued element.

B. SEQUENCE AND VERSION NUMBERS

Bounded serial numbers. While we have explained our
algorithm using unbounded serial numbers, in reality the
serial number must of course be bounded. However, if we
use 64-bit serial numbers, then they will not wrap around
in the lifetime of any realistic system. Because nodes are
not visible to other threads while they are being initialized,
it is easy to implement lock-free serial numbers of arbitrary
length. Bounded timestamps [3] can also be used, if appli-
cable, because we only compare serial numbers.

Bounded version numbers. Similarly, version numbers
used to avoid ABA in the elimination array are bounded
and could in principle cause incorrect behavior. A variety of
techniques for avoiding such behavior in practice are known,
including a) using sufficient bits for the version number that
wraparound cannot cause an error in practice [16], b) using
bounded tags [16], and c) using memory management tech-
niques to ensure that a node is not prematurely recycled in
such a way that it can allow the ABA problem [8].
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