
Elimination Trees and the Construction of Pools and

Stacks
�

Nir Shavit�

MIT and

Tel�Aviv University

Dan Touitou

Tel�Aviv University

February ��� ����

Abstract

Shared pools and stacks are two coordination structures with a history of applications rang�

ing from simple producer�consumer bu�ers to job�schedulers and procedure stacks� This paper

introduces elimination trees� a novel form of di�racting trees that o�er pool and stack imple�

mentations with superior response �on average constant� under high loads� while guaranteeing

logarithmic time 	deterministic
 termination under sparse request patterns�

�A preliminary version of this paper appeared in the proceedings of the �th Annual Symposium on Parallel

Algorithms and Architectures �SPAA�� Contact Author� E�mail�shanir�theory�lcs�mit�edu

�

� Introduction

As multiprocessing breaks away from its traditional number crunching role� we are likely to see a

growing need for highly distributed and parallel coordination structures� A real�time application

such as a system of sensors and actuators will require fast response under both sparse and intense

activity levels �typical examples could be a radar tracking system or a tra�c �ow controller�� Shared

pools o	er a potential solution to such coordination problems� with a history of applications ranging

from simple producer
consumer bu	ers to job�schedulers �� and procedure stacks ���� A pool ���

�also called a pile ���� global pool �� or a producer
consumer bu	er� is a concurrent data�type

which supports the abstract operations� enqueue�e� � adds element e to the pool� and dequeue �

deletes and returns some element e from the pool� A stack is a pool with a last�in��rst�out �LIFO�

ordering on enqueue and dequeue operations�

Since the formal introduction of the problem and its �rst solution by Manber ���� the literature

has o	ered us a variety of possible pool implementations� On the one hand there are queue�lock

based solutions such as of Anderson �� and Mellor�Crummey and Scott ���� which o	er good

performance under sparse access patterns� but scale poorly since they o	er little or no potential for

parallelism in high load situations� On the other hand� there are a variety of that �load�balanced

local pools� based algorithms like Manber�s search tree structure ��� and the simple and e	ective

randomized work�pile and job�stealing techniques as designed by Kotz and Ellis ���� Rudolph�

Slivkin�Allaluf� and Upfal ���� L�uling and B� Monien ���� and Blumofe and Leiserson ��� These

algorithms o	er good expected response time under high loads� but very poor performance as access

patterns become sparse �their expected response time becomes linear in n � the number of processors

in the system � as opposed to that of a �deterministic� queue�lock based pool that is linear in the

number of participating processors�� This linear behaviour under sparse access patterns holds also

for Manber�s tree based deterministic job�stealing method ����

Shavit and Zemach�s di�racting trees ��� have recently been proposed as a reasonable middle�

of�the�road solution to the problem� They guarantee termination within O�logw� time �where

w �� n� under sparse access patterns� and rather surprisingly manage to maintain similar average

response time under heavy loads�

��� Elimination Trees

This paper introduces elimination trees� a novel form of di	racting trees that o	ers pool imple�

mentations with the same O�logw� termination guarantee under sparse patterns� but with far

superior response �on average constant� under high loads� Our empirical results show that unlike

di	racting trees� and in spite of the fact that elimination trees o	er a �deterministic� guarantee

�

X = D3, E2, E1, E0

y0 = E0

y1 = E1

y2 = E2 D3

y3 =

0

E0

head of imagined
stack after D3
deleted E2

E1

1

1

bottombalancer's 0-wire

balancer's 1-wire

Figure �� A sequential execution on a Stack�� elimination tree

of coordination�� they scale like the �randomized� methods ��� ��� ��� ��� providing improved

response time as the load on them increases�

In a manner similar to di	racting trees� elimination trees are constructed from simple one�input

two�output computing elements called elimination balancers that are connected to one another by

wires to form a balanced binary tree with a single root input wire and multiple leaf output wires�

While di	racting trees route tokens� elimination trees route both tokens and anti�tokens� These

arrive on the balancer�s input wire at arbitrary times� and are output on its output wires� The

balancer acts as a toggle mechanism� sending tokens and anti�tokens left and right in a balanced

manner� For example� to create a pool implementation that has stack�like behavior� the balancer

can consist of a single bit� with the rule that tokens toggle the bit and go to the � or � output

wire according to its old value� while anti�tokens toggle the bit and go left or right according to its

new value� Now� imagine that stack array entries are placed at the leaves of the tree� and think of

tokens as enqueue ��push�� requests and anti�tokens as dequeue ��pop�� requests� Figure � shows

a width four tree after � enqueues and a dequeue have completed� The reader is urged to try this

sequence with toggles initially �� The state of the balancers after the sequence is such that if next

a token will enter it will see � and then � and end up on wire y�� while if the next to enter is

an anti�token it will get a � and then a � and end up on wire y�� �nding the value to be deleted�

In fact� our tree construction is a novel form of a counting network �� based counter� that allows

decrement �anti�token� operations in addition to standard increment �token� operations�

However� this simple approach is bound to fail since the toggle bit at root of the tree will be a hot�

spot ���� �� and a sequential bottleneck that is no better than a centralized stack implementation�

The problem is overcome by placing a di�racting prism ��� structure in front of the toggle bit

inside every balancer� Pairs of tokens attempt to �collide� on independent locations in the prism�

�They guarantee that a dequeue operation on a non�empty queue will always succeed�

�

di	racting in a coordinated manner one to the ��wire and one to the ��wire� thus leaving the

balancer without ever having to toggle the shared bit� This is not a problem since in any case after

both toggled it� the bit would return to its initial state� This bit will only be accessed by processors

that did not succeed in colliding� and they will toggle it and be directed as before�

Our �rst observation is that the stack behavior will not be violated if pairs of anti�tokens� not

only tokens� are di	racted� The second� more important fact� is that it will continue to work if

collisions among a token and an anti�token result in the �elimination� of the pair� without requiring

them to continue traversing the tree� In other words� a token and anti�token that meet on a prism

location in a balancer can exchange enqueue
dequeue information and complete their operation

without having to continue through logw balancers� In fact� our empirical tests show that under

high loads� most tokens and anti�tokens are eliminated within two levels� Of course� the tree

structure is needed since one could still have long sequences of enqueues only�

We compared the performance of elimination trees to other known methods using the Proteus

Parallel Hardware Simulator �� in a shared memory architecture similar to the Alewife machine of

Agarwal et al� ��� We �rst compared under high loads a variety of methods that can be used to

implement a stack�like pool and are known to perform well under sparse access patterns� We found

that elimination trees scale substantially better than all of these methods including queue�locks

���� Combining trees ���� and Di	racting Trees ����

We then compared Elimination trees to the load�balanced local pools techniques ���� ��� ���

��� � which cannot be used to implement a stack�like pool and theoretically provide only linear

performance under sparse access patterns� We found that in many high load situations elimination

trees are inferior to these methods �as explained in the sequel� we chose for the comparison a

representative technique� the randomized technique of Rudolph� Slivkin� and Upfal ����� especially

for job distribution applications where a typical processor is the dequeuer of its latest enqueue

�though in many cases not by much�� However� our empirical evidence suggests that elimination

trees provide up to a factor of �� better response time than randomized methods under sparse

loads� Finally� we present evidence that our new elimination balancer design o	ers a more scalable

di	racting balancer construction even in cases where no collisions are possible�

� Pools

We begin with our pool speci�cation and implementations� later showing how to modify them to

create stack�like pools�

A pool ����also called a pile ���� centralized �pool� �� or a producer
consumer bu	er� is a

concurrent data�type which maintains a multiset of values by supporting the abstract operations�

enqueue�e� � adds element e to the multiset� and dequeue � deletes and returns some element e

�

from the multiset� For simplicity� assume that all enqueued elements e are unique� that is� multiset

is simply a set� A pool is a relaxation of a �rst�in��rst�out queue� apart from the queue�s basic

safety properties� no causal order is imposed on the enqueued and dequeued values� However� it is

required that�

P� an enqueue operation always succeeds� and

P� a dequeue operation succeeds if the pool is non�empty� that is� for every execution in which

the number of enqueue operations is greater or equal to the number of dequeue operations�

all the dequeue operations succeed�

A successful operation is one that is guaranteed to return an answer within �nite �in our construc�

tion� bounded� time� Note that the randomized decentralized techniques of ��� ��� ��� �� implement

a weaker �probabilistic� pool de�nition� where condition P� is replaced by a probabilistic guarantee

that dequeue operations succeed�

��� Elimination Trees

Our pool implementation is based on the abstract notion of an elimination tree� a special form of

the di	racting tree data structures introduced by Shavit and Zemach in ���� Our formal model

follows that of Aspnes� Herlihy� and Shavit �� I
O�automata of Lynch and Tuttle ����

An elimination balancer is a routing element with one input wire x and two output wires y�

and y�� Tokens and anti�tokens arrive on the balancer�s input wire at arbitrary times� and are

output on its output wires� Every token carries a value� Whenever a token �meets� an anti�token

in a balancer� it passes the value to the anti�token and both token and anti�token are eliminated

and never output from the balancer� More formally� a pool balancer is a shared object that allows

processors to execute TokenTraverse�TokenType� v� operations which have as input the token�s

type� TOKEN or ANTI�TOKEN� and its input value v �which is non�empty in case of a TOKEN type

traversal�� Each such operation returns � or �� depending on which of the output wires y� and

y� the token should proceed� or the pair �ELIMINATED�v� meaning that the token �or anti�token�

was eliminated and that the value v was exchanged� We slightly abuse our notation and denote

by x and �x the number of tokens and anti�tokens ever received� and by yi and �yi� i � f�� �g� the

number of tokens and anti�tokens ever output on the ith output wire� The pool balancer object

must guarantee�

Quiescence Given a �nite number of input tokens and anti�tokens� the balancer will reach a

quiescent state� that is� a state in which all the tokens and anti�tokens traversal operation

executions have completed�

�

Pairing In any quiescent state� there exists a perfect matching between eliminated tokens and

eliminated anti�tokens� such that the value returned by an eliminated anti�token is matched

with the value carried by its corresponding eliminated token�

Pool Balancing In any quiescent state� if x � �x then for every output wire i � f�� �g� yi � �yi�

Let Pool�w be a binary tree of elimination balancers with a root input wire x and w designated

output wires� y�� y�� ��� yw��� constructed inductively by connecting the outputs of an elimination

balancer to two Pool�w�� trees� From the quiescence property of the balancers� given a �nite

number of input tokens and anti tokens� Pool�w will reach a quiescence state in which all the

tokens and anti tokens are either eliminated or have exited through one of Pool�w output� We

extend pool balancing to trees in the natural way claiming that�

Lemma ��� The outputs y�� ��� yw�� of Pool�w satisfy the pool balancing property in any quiescent

state�

Proof� The proof is by induction on w� When w � � this follows directly from the balancer

de�nition� Assume the claim for Pool�w�� and let us prove it for Pool�w� If the number of

tokens entering the root balancer of Pool�w is greater or equal to the number of anti�tokens� then�

by de�nition this property is kept on the output wires of the root balancer� and by the induction

hypothesis holds for the output wires of both Pool�w�� trees�

On a shared memory multiprocessor� one can implement an elimination tree as a shared data

structure� where balancers are records� and wires are pointers from one record to another� Each

of the machine�s asynchronous processors can run a program that repeatedly traverses the data

structure from the root input pointer to some output pointer� each time shepherding a new �token�

or �anti�token� through the network �see Figure ��� Constructing a pool object from a Pool�w

tree is straightforward� each tree output wire is connected to a sequentially accessed �local� pool�

a simple queue protected by a Mellor�Crummey and Scott MCS�queue�lock ��� will do� The MCS�

queue�lock has the property of being �fair�� and so every access request to the queue will be granted

within a bounded number of operations� A process performs an enqueue operation by shepherding

a token �carrying� the value the down the tree� If the token reaches the output wire� the associated

value is enqueued in the local pool connected to that wire� The dequeue operation is similarly

implemented by carrying an anti�token through the network� If this anti�token collides with a

token in a balancer� the dequeuing process returns the token�s value� Otherwise it exits on a wire

and performs a dequeue operation on the anti�token�s local pool� Naturally if the local pool is empty

the dequeuing process waits until the pool is �lled and then access it� The elimination tree is thus a

load�balanced coordination medium among a distributed collection of pools� It di	ers from elegant

�

�������
�������
�������
�������
�������

prism1

prismk

0/1

0/1

tokentoggle

anti-tokentoggle

eliminating
collision

diffracting
collision

prism2

y0

y1

x

Pool collision balancer

�������
�������
�������
�������
�������

prism1

prismk

0/1

toggle

eliminating
collision

diffracting
collision

prism2

y1

x

Stack collision balancer

y0

Toggled anti-token
traces path
of token

Figure �� The structure of Pool and Stack elimination balancers

randomized constructions of ��� ��� ��� �� in its deterministic dequeue termination guarantee and

in performance� While work in an individual balancer is relatively high� each enqueue or dequeue

request passes at most logw balancers both under high and under low loads�

Theorem ��� The elimination tree based pool construction is a correct pool implementation�

Proof� The basic safety properties of the pool are satis�ed thanks to the perfect matching between

eliminated tokens� By the quiescence property of the balancers all the tokens and anti�tokens will

eventually reach the exits of the elimination tree� Since the MCS�queue�locks controlling access to

the local pools are fair� all the enqueue operations will succeed in adding their value to the local

pools within some bounded number of operations and property P� will be satis�ed� Now� if the

number of dequeue operations is greater than the number of enqueue operations� by Lemma ���

this will eventually be the case at each of the each of the local pools at the leaves� In that case no

dequeue operation will never have to wait inde�nitely at a leaf� This satis�es property P��

��� Pool Elimination Balancers

The scalable performance of our pool constructions depends on providing an e�cient implementa�

tion of an elimination balancer�

Di	racting balancers were introduced in ���� Our shared memory construction of a di	racting

elimination balancer� apart from providing a mechanism for token
anti�token elimination� also

improves on the performance of the original di	racting balancer design� While a regular di	racting

balancer ��� is constructed from a single prism array and a toggle bit� the elimination balancer we

use in our pool construction �see lefthand side of Figure �� has a sequence of prism arrays and two

�

toggle bits� one for tokens and one for anti�tokens�� Each of the toggle bit locations is protected by

an MCS�queue�lock ���� A process shepherding a token or anti�token through the balancer decides

on which wire to exit according to the value of the respective token or anti�token toggle bit� �

to the left and � to the right� toggling the bit as it leaves� The toggle bits e	ectively balance the

number of tokens �resp� anti�tokens� on the two output wires� so that there is in any quiescent state

at most one token �resp� anti�token� more on the � output wire than on the � wire� The reader

can easily convince herself that this su�ces to guarantee the pool�balancing property� However�

if many tokens were to attempt to access the same toggle bit concurrently� the bit would quickly

become a hot spot� The solution presented in ��� is to add a prism array in front of each toggle

bit� Before accessing the bit� the process shepherding the token selects a location l in the prism

uniformly at random� hoping to �collide� with another token which selected l� If a collision occurs�

then the tokens �agree� among themselves that one should be �di	racted� left and the other right

�the exact mechanism is described in the sequel�� without having to access the otherwise congested

toggle bit� If such a di�racting collision does not occur� the process toggles the bit as above and

leaves accordingly� As proved in ���� the combination of di	racted tokens and toggling tokens

behaves exactly as if all tokens toggled the bit� because if any two di	racted tokens were to access

the bit instead� after they both toggled it the bit state would anyhow return to its initial state�

The same kind of prism could be constructed for anti�tokens�

The key to our new constructions is the observation that for data structures which have comple�

mentary operations �such as enqueues and dequeues�� one can can gain a substantial performance

bene�t from having a joined prism for both tokens and anti�tokens� In addition to toggling and

di	racting of tokens and anti�tokens� if a collision between a token and anti�token occurs in the

shared prism� they can be �eliminated� �exchanging the complementary information among them�

selves� without having to continue down the tree� We call this an eliminating collision� Unlike

with di	racting collisions� if the eliminating collision had not occurred� each of the token and anti�

token toggle bits would have changed� Nevertheless� the combination of toggling� di	racting and

elimination preserves the pool�elimination balancer�s correctness properties� which by Lemma ���

guarantees pool�balancing�

The size of �number of locations in� the prism array has critical in�uence on the e�ciency of the

node� If it is too high� tokens will miss each other� lowering the number of successful eliminations�

and causing contention on the toggle bits� If it is too low� to many processes will collide on the same

prism entry� creating a hot�spot� We typically found the optimal performance was when the prism

width at a balancer on a given level is the same as the width of the subtree below it �this conforms

with recent projections based on steady�state analysis ����� Moreover� unlike the single prism array

of ���� we found it more e	ective to pass a token through a series of prisms of decreasing size� thus

�The two separate toggle locations are an artifact of the pool�balancing property� In our stack construction in

Section � the elimination balancer uses a single toggle bit for both tokens and anti�tokens�

�

root � global ptr to root of elimination tree

procedure enqueue�v�value��

b�� root

while not leaf�b�

r ��TokenTraverse�TOKEN�v� on balancer b�

case r of

ELIMINATED� return�

� � b �� left child of b�

	 � b �� right child of b�

endcase

endwhile

enqueue
local
pool�b�e�

function dequeue��� value�

b�� root

while not leaf�b�

r��TokenTraverse�ANTITOKEN�EMPTY� on balancer b�

case r of

�ELIMINATED�v� � return v�

� � b �� left child of b�

	 � b �� right child of b�

endcase

endwhile

return dequeue
local
pool�b��

Figure �� Tree traversal code

increasing the chances of a collision� This way� at high contention levels most of the collisions will

occur on the larger prisms while at low levels they happen on the smaller ones�

Figure � gives the code for traversing an elimination balancer� Note that for algorithmic sim�

plicity we omitted input values and the code for their exchange� and have deferred a discussion of

this issue to Section ����

Apart from reading and writing memory� our implementation uses a hardware

� register to memory swap�addr�val� operation� and a

� compare and swap�addr�old�new�� an operation which checks if the value at address addr

is equal to old� and if so� replaces it with new� returning TRUE and otherwise FALSE�

�

Location� shared array	��NUMPROCS��

Function TokenTraverse�b� ptr to bal� mytype� TokenType�

returns �ptr to bal or ELIMINATED��

Locationmypid� �� �b�mytype��

�� Part 	 � attempt to collide with another token on k prism levels ��

for i��	 to k do

place �� random�	�size
i��

him �� register
to
memory
swap�Prism
iplace��mypid��

if not
empty�him� then

�his
b�his
type� �� Locationhim��

if his
b � b then

if compare
and
swap�Locationmypid���b�mytype�� ���EMPTY�� then

if my
type � his
type then

if compare
and
swap�Locationhim���b�his
type�����DIFFRACTED�� then

	� return b��OutputWire	�

else Locationmypid� �� �b�mytype��

else if compare
and
swap�Locationhim���b�his
type�����ELIMINATED�� then

�� return ELIMINATED�

else Locationmypid� �� �b�mytype��

else if Locationmypid�� ���DIFFRACTED� return �b��OutputWire���

else return ELIMINATED

repeat b��Spin times �� wait in hope of being collided with ��

if Locationmypid� � ���DIFFRACTED� then return b��OutputWire���

if Locationmypid� � ���ELIMINATED� then return ELIMINATED�

�� Part � access toggle the bits ��

AquireLock�b��Locksmytype���

if compare
and
swap�Locationmypid���b�my
type�� ���EMPTY�� then

i�� b��Togglesmytype��

b��Togglesmytype� �� Not�i��

ReleaseLock�b��Locksmytype���

�� return b��OutputWirei��

else ReleaseLock�b��Locksmytype���

if Locationmypid�� ���DIFFRACTED� return �b��OutputWire���

else return ELIMINATED

Figure �� Traversing an eliminating balancer

Our implementation also uses standard AquireLock and ReleaseLock procedures to enter and exit

the MCS�queue�lock ����

�

Initially� processor p announces the arrival of its token at node b� by writing b and its token

type to Location�p� It then chooses a location in the Prism� array uniformly at random �note that

randomization here is used only to load�balance processors over the prism� and could be eliminated

in many cases without a signi�cant performance penalty� and swaps its own PID for the one written

there� If it read a PID of an existing processor q �i�e� not empty�him��� p attempts to collide with

q� This collision is accomplished by �rst executing a �his b�his type	
� Location�him read

operation to determine the type of token being collided with� and then performing two compare�

and�swap operations on the Location array� The �rst clears p�s entry� assuring no other processor

will collide with it during it collision attempt �this eliminates race conditions�� The second attempts

to mark q�s entry as �collided with p�� notifying q of the collision type� DIFFRACTED or ELIMINATED�

If both compare�and�swap operations succeed� the collision is successful� and p decides based on

collision type to either di	ract through the right output wire or to be eliminated� If the �rst

compare�and�swap fails� it follows that some other processor r has already managed to collide with

p� In that case p di	racts through the left output wire or is eliminated� depending on the type of

the processor that collided with it� If the �rst succeeds but the second fails� then the processor

with whom p was trying to collide is no longer at balancer b� in which case p resets its Location

entry to contain the balancer name and its token type� and having failed to �collide with� another

processor� spins on Location�p waiting for another processor to �collide with it�� If after spin

time units no collision occurs� p restarts the whole process at the next level Prism� and so on� If p

has traversed all the prism levels without colliding� it acquires the lock on the toggle bit� clears its

element� toggles the bit and releases the lock� If p�s element could not be erased� it follows that p

has been collided with� in which case p releases the lock without changing the bit and di	racts or

is eliminated accordingly�

��� Correctness Proof of Pool Balancer Implementation

Clearly if no di	ractions and no eliminations occur during an execution� by the code all the tokens

would access the toggle bits and the balancing property will easily be satis�ed� Hence� in order

to prove the correctness of our implementation we should focus on showing that eliminating and

di	racting tokens are paired o	 correctly� For example� we must show that a scenario in which

token T� di	racts with token T� and in which T� is not aware of it and still toggles the bit� will

never happen� As a �rst step� let us assume that every token in a given execution has a unique

virtual ID Tp� and let the subscript p denote the PID of the process shepherding the token� We use

the ��� notation throughout the paper to denote an unspeci�ed value� In the following lemma we

show that if some process p reads Location�q��b��	� then process q is currently shepherding a

token through balancer b�

��

Lemma ��� For every process p� if Location�p��b��	 then p is executing TokenTraverse on

balancer b�

Proof� Initially Location�p� �� From the algorithm it is clear that only p can write a value

di	erent than � as a balancer name in Location�p� Since p always writes � into Location�p �a

successful compare and swap� before completing TokenTraverse� the claim follows�

We now de�ne a token Tp traversing a balancer b as a di�racting token if p has executed Line � in

the algorithm and thus �leaves on output wire ��� Since for every di	racting token Tp� p executed

a successful compare and swap�Location�him��b��	����DIFFRACTED	� we know by Lemma ���

that at the same time process him was shepherding some token Thim through b� We designate Thim�

which �leaves on output wire �� as di�racted by Tp� We also de�ne a token Tp as an eliminating

token if p executed Line �� In a similar way as for di	racting tokens we designate the token Thim

as eliminated by Tp� Finally we de�ne a token Tp as a toggling token if p has executed Line � in the

algorithm� From the �ow control of the algorithm it is clear than a token cannot be both toggling

and eliminating� or toggling and di	racting� or eliminating and di	racting�

In the next two lemmas we show that tokens are paired o	 correctly during elimination and

di	raction�

Lemma ��� Every token traversing a balancer b can be di�racted or eliminated by at most one

other token�

Proof� By way of contradiction� Assume that a token Tp� while traversing b has been eliminated

or di	racted by two other tokens Tq and Tr� In that case� both q and r have successfully executed

compare and swap�Location�p��b��	�����	�� It follows that p must have written �b��	 in

Location�p at least twice during the execution of the TokenTraverse carrying Tp through b� But

in that case compare and swap�Location�p��b��	����EMPTY	� was successfully executed by p

before writing �b��	 on Location�p for the second time� A contradiction�

Lemma ��� A toggling� eliminating� or di�racting token Tp cannot be eliminated or di�racted by

some other token Tq�

Proof� Follows since q executes Lines ���� or �� or writes �b��	 on Location�q� only after

executing a successful compare and swap�Location�q��b��	����EMPTY	�� no other process will

be able to execute a successful compare and swap�Location�q��b��	����EMPTY	��

We now prove that�

��

Theorem ��	 The pool balancer implementation given in Figure � satis�es the pool balancing

property�

Proof� Given any execution of the pool implementation� let d� and �d� be the number of di	racting

�leaving on wire �� tokens and anti�tokens respectively and let d� and �d� be the number of di	racted

�leaving on wire �� tokens and anti�tokens� We designate by e the number of eliminated and

eliminating tokens and by �e the number of eliminating and eliminated anti�tokens� Finally let t

and �t be the number of toggling tokens and anti�tokens respectively�

By Lemma ��� x � d� d� e t and �x � �d� �d� �e �t� By Lemma ���� �e � e� d� � d� and
�d� � �d�� Now� if x � �x then t d� d� � x� e � �x� �e � �t �d� �d�� Consequently

d
t d� d�

�
e � d

�t �d� �d�
�

e�

and since d� � d� and �d� � �d� then d t
�
e d� � d �t

�
e �d�� Therefore y� � �y�� Using the same

arguments� one can show that b t
�
c d� � b �t

�
c �d� and therefore y� � �y��

��� Exchanging Values in Eliminating Collisions

The purpose of the eliminating collisions is to allow enqueuers and dequeuers to exchange values and

to leave the pool� The algorithm in Figure � can be easily modi�ed to handle value exchanges� every

process writes and reads from Location�mypid a triplet �b�mytype�value	 instead of just the pair

�b�mytype	� To eliminate an anti�token� a token writes ���ELIMINATED�value	 in the anti�token�s

Location� Note that it knows this is an anti�token following the preliminary �his b�his type	

� Location�him read operation� In this way the eliminated anti�token will �nd this value and

return it� On the other hand� an eliminating anti�token returns the value it has read from the

eliminated token�s Location entry� Since� the triplets stored in Location are written and updated

atomically� only minor modi�cations are needed in the correctness proof� we just have to show that

an eliminating �or eliminated� anti�token returns the value carried by the token it has eliminated

�or was eliminated by�� The proof of this lemma is identical to the proof of Lemma ����

Lemma ��
 For every process p� if Location�p��b�TOKEN�v	 then p is shepherding a token

carrying value v on balancer b�

We have shown in Lemmas ��� and ��� that eliminated tokens and anti�tokens are paired o	

correctly� We prove now that eliminated or eliminating anti�tokens exchange values in a proper

way�

Lemma ��� Every eliminated anti�token returns the value carried by the token that has eliminated

it� Every eliminating anti�token returns the value carried by the token it has eliminated�

��

Proof� Assume that Tp is an eliminated anti�token� Let Tq be the token which eliminated Tp� By

the modi�ed algorithm compare and swap�Location�p��b�ANTI�TOKEN�NULL	����ELIMINATED�v	�

was successfully executed by q� where v is the value carried by Tq� Since only p can change the

content of Location�p� and it could not� it must have returned v�

Assume that Tq is an eliminating anti�token which returned a value v and let Tp be the token it

eliminated� Process q executed compare and swap�Location�p��b�TOKEN�v	����ELIMINATED�NULL	�

successfully� and therefore by Lemma ���� v must be the value carried by Tp�

��� Performance of the Elimination Tree Based Pool

We evaluated the performance of our elimination tree based pool construction relative to other

known methods by running a collection of benchmarks on a simulated ��� processor distributed�

shared�memory machine similar to the MIT Alewife machine �� of Agarwal et� al� The presented

results hopefully exemplify the potential in using elimination trees� but in no way claim to be a

comprehensive study of their performance�

Our simulations were performed using Proteus a multiprocessor simulator developed by Brewer�

Dellarocas� Colbrook and Weihl ��� Proteus simulates parallel code by multiplexing several par�

allel threads on a single CPU� Each thread runs on its own virtual CPU with accompanying local

memory� cache and communications hardware� keeping track of how much time is spent using each

component� In order to facilitate fast simulations� Proteus does not complete cycle per cycle hard�

ware simulations� Instead� local operations �that do not interact with the parallel environment� are

run uninterrupted on the simulating machine�s CPU� The amount of time used for local calculations

is added to the time spent performing simulated globally visible operations to derive each thread�s

notion of the current time� Proteus makes sure a thread can only see global events within the scope

of its local time�

Our simulated Alewife like machine has ��� processors� each at a node of a Torus shaped

communication grid� Each node also contains a cache memory� a router� and a portion of the

globally�addressable memory� The cost of switching or wiring in the Alewife architecture is �

cycle
packet� Each processor has a cache with ���� lines of � bytes� The cache coherence is

provided using a using a version of Chaiken�s directory�based cache�coherence protocol ���

����� The Produce�Consume Benchmark

We begin by comparing under various loads deterministic pool constructions which are known to

guarantee good enqueue
dequeue time when the load is low �sparse access patterns�� These methods

are also the ones that can be modi�ed to provide stack�like pool behaviour� In the produce�consume

��

Pool� array	��N� of elements� � initially set to NULL �� N must be chosen optimally

headcounter� tailcounter�integer� � initially set to �

Procedure Enqueue�el�elements�� Function Dequeue�� returns elements�

i�� fetch
and
increment�headcounter�� i�� fetch
and
increment�tailcounter��

repeat repeat

flag�� compare
and
swap�Pooli��NULL�el�� repeat el �� Pooli� until el �� NULL�

until flag� TRUE� flag �� compare
and
swap�Pooli��el�NULL�

until flag� TRUE�

return el�

Figure �� A pool based on a cyclic array and shared counters�

benchmark each processor alternately enqueues a new element in the pool� dequeues a value from

the pool and then waits a random number of cycles between � and Workload �see Figure ���

repeat

produce�val��

val �� consume�

w �� random����Workload��

wait w cycles�

until 	��� cycles elapsed

Figure �� Produce�Consume Benchmark�

We ran this benchmark varying the number of processors participating in the simulation dur�

ing ��� cycles� measuring� latency� the average amount of time spent per produce and consume

operation� and throughput� the number of produce and consume operations executed during ���

cycles�

In preliminary tests we found that the most e�cient pool implementations are attained when

using shared counting to load balance and control access to a shared array �see Figure ���

We thus realized the centralized pool in the style of ��� given in Figure �� where the headcounter

and tailcounter are implemented using two counters of the following type�

MCS The MCS�queue�lock of ���� whose response time is linear in the number of concurrent

requests� Each processor locks the shared counter� increments it� and then unlocks it�

The code was taken directly from the article� and implemented using atomic operations�

register to memory swap and compare and swap operations�

��

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50 100 150 200 250 300

O
pe

ra
tio

n
P

er
 1

0^
6

cy
cl

es

Processors

Throughput

Etree-32
MCS

Ctree-n
Dtree-32

0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300

A
ve

. L
at

en
cy

 p
er

 o
pe

ra
tio

n

Processors

Latency

Etree-32
MCS

Ctree-n
Dtree-32

Figure �� Produce�Consume� Throughput and Latency with Workload� �

CTree A Fetch	Inc using an optimal width software combining tree following the protocol of

Goodman et al� ���� modi�ed according to ���� The tree�s response time is logarithmic in

the maximal number of processors� Optimal width means that when n processors participate

in the simulation� a tree of width n�� will be used ����

DTree A Di	racting Tree of width ��� using the optimized parameters of ���� whose response

time is logarithmic in w � �� which is smaller than the maximal number of processors� The

prism sizes were ������� and � for levels �� � � � � � respectively� The spin is equal to ���������

and � for balancers at depths ��������� and � respectively�

and compared it to�

ETree A Pool��� elimination tree based pool� whose response time is logarithmic in w � ��

which is smaller than the maximal number of processors� This size was chosen based on

empirical testing� The root node and its children contain two prisms of size �� and � for the

root and �� and � its children� The nodes at depths ��� and � have a single prism of size ����

and � respectively� The spin is equal to ��������� and � for balancers at depths ��������� and

� respectively�

��

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300

O
pe

ra
tio

ns
 P

er
 1

0^
6

cy
cl

es

Processors

Throughput

Etree-32
MCS

Ctree-n
Dtree-32

0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300

A
ve

. L
at

en
cy

 p
er

 O
pe

ra
tio

n

Processors

Latency

Etree-32
MCS

Ctree-n
Dtree-32

Workload� 	���

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250 300

O
pe

ra
tio

ns
 P

er
 1

0^
6

cy
cl

es

Processors

Throughput

Etree-32
MCS

Ctree-n
Dtree-32

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300

A
ve

. L
at

en
cy

 p
er

 O
pe

ra
tio

n

Processors

Latency

Etree-32
MCS

Ctree-n
Dtree-32

Workload� 	����

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250 300

O
pe

ra
tio

ns
 P

er
 1

0^
6

cy
cl

es

Processors

Throughput

Etree-32
MCS

Ctree-n
Dtree-32

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300

A
ve

. L
at

en
cy

 p
er

 O
pe

ra
tio

n

Processors

Latency

Etree-32
MCS

Ctree-n
Dtree-32

Workload� 	�����

Figure �� Produce�Consume� Throughput and Latency with Workload 	 �

From Figure � we learn that under high loads di	racting and elimination trees provide the most

scalable high load performance� However� as observed by Shavit and Zemach ���� as the level of

��

concurrency increases� while the di	racting tree manages only to keep the average latency constant�

the average latency in the elimination tree continues to decrease due to the increased numbers of

successful eliminating collisions taking place on the top levels of tree� The e	ect on the throughput

is an up to ��� times increase in requests that are answered by the elimination tree� The fraction

of eliminated tokens at the root varies between ����! when only �� processors are participating

and up to ����! for ��� processors� In fact� as can be seen from Table �� most enqueue
dequeue

requests never reach the lower level balancers� and the expected number of balancers traversed

�including the pool at the leaf� for �� processors is ���� nodes �����! of the request access the leaf

pools� and for ��� processors ����� �only ����! of the request eventually access the pools at the

leaves�� As seen in Figure �� at such high levels of concurrency the elimination tree is almost as

fast as the MCS�queue�lock is when there are just a few processes�

In Figure � we compared the various methods as access patterns become more sparse� The

MCS lock outperforms all others when the number of processes is small� and unlike in the high

load case of Figure �� even with a high number of processes the elimination tree cannot match

its low latencies because of the low levels of elimination on the root balancer� As the chances of

combining� di	raction and elimination drop� the depth of the structures comes more into play� For

��� processes the optimal combining tree requires � logn � �� node traversals �up and down the

tree�� while the optimal width �� di	racting and elimination trees have depth � and thus require far

fewer operations� It follows that the elimination and di	racting tree performance graphs converge�

and at su�ciently high levels of concurrency remain far better than the combining tree�

����� Counting Benchmark

Our new multi�layered prism approach is slightly more costly but scales better than the original

single prism construction of Shavit and Zemach ���� since it increases the likelihood of successful

collisions� This conforms with the steady�state modeling of di	racting trees by Shavit� Upfal�

and Zemach ���� As can be seen from Figure �� when running a benchmark of fetch	increment

operations where no eliminating collisions can occur� the Dtree��� and Dtree��� with original

�� procs �� procs

level � ����� �����

level � ��� �����

level � ��� ����

level � ���� �����

level � �� ����

Table �� Fraction of Tokens Eliminated Per Tree Level

��

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300

O
pe

ra
tio

n
P

er
 1

0^
6

cy
cl

es

Processors

Throughput

Dtree-32+MulPri
MCS

Ctree-n
Dtree-32
Dtree-64

repeat

fetch
and
inc���

until 	��� cycles elapsed

Figure �� Counting Benchmark

single Prism balancers outperform a Dtree��� with our new multi�layered balancers in almost all

the levels of concurrency which could be incurred in the ��� processor produce�consume benchmark

�on average each Dtree��� has ��� or so concurrent enqueues�� However� unlike our the multi�

layered balancer constructions� they do not continue to scale well at higher levels of concurrency�

����� Response Time Benchmark

We compared elimination trees to the randomized method of Rudolph� Silvkin�Allalouf� and Upfal

�RSU� ���� which we chose as a representative of the class of load�balanced local pools methods�

which also include the randomized methods of Kotz and Ellis ��� �RSU is a re�nement of this

method�� of L�uling and B� Monien ��� �this method is a re�nement of RSU�� and the job�stealing

method of Blumofe and Leiserson ��� We also did not compare to Manber�s deterministic method

��� as Kotz and Ellis ��� have shown empirically that the randomized methods tend to give better

overall performance� One should keep in mind that there are various situations in which any one

��

of these techniques outperforms all the others and vice versa�

The RSU scheme is surprisingly simple�

RSU A processor enqueues tasks in its private task queue� Before dequeuing a task� every processor

�ips a coin and executes a load balancing procedure with probability ��l where l is the size of

its private task queue� Load balancing is achieved by �rst choosing a random processor and

then moving tasks from the longer task queue to the smaller so as to equalize their sizes�

We note that under high loads� and especially in applications such as job�distribution where

each process performs both enqueues and dequeues� these methods are by far superior to elimination

trees and all other presented methods� �The ���queens benchmark in the lefthand side of Figures ��

and �� is a lesser example of RSU�s performance� Initially one processor� generates �� tasks of depth

� simultaneously� Each one of n processor repeatedly dequeues a task and if the task�s depth is

smaller than � it waits work � ���� cycles and enqueue �� new tasks of depth increased by one��

However� as we know from theoretical analysis� their drawback is the rather poor "�n� expected

latency when there are sparse access patterns by producers and consumers that are trying to pass

information from one to the other� as could happen say� in an application coordinating sensors and

actuators�

The righthand side of Figures �� and �� show the results of an experiment attempting to evaluate

�in a synthetic setting of course� how much this actually hampers performance� by measuring the

average latency incurred by a dequeue operation trying to �nd an element to return� We do so

by running a ��� processor machine in which n�� processors are enqueuers and n�� are dequeuers

where n varies between � and ���� Each one of the enqueuing processors repeatedly enqueues an

element in the pool and waits until the element has been dequeued by some dequeuing process�

Each time we measured the time elapsed between the beginning of the benchmark until ����

elements were dequeued� and normalized by the number of dequeue operations per process� Note

that because of the way it is constructed� there is no real pipelining of enqueue operations� and

this benchmark does not generate the high work�load of the produce�consume benchmark for large

numbers of participants�

As can be seen� RSU does indeed have a drawback since it is almost ��� times slower than the

queue�lock and �� times slower than an elimination tree for sparse access patterns� This is mostly

due to the fact that the elimination tree even without eliminating collisions will direct tokens and

anti�tokens to the same local piles within O�logw� steps� RSU reaches a crossover point when

about a quarter of all local piles are being enqueued into� In summary� elimination trees seem to

o	er a reasonable middle�of�the�way response time over all ranges of concurrency�

��

0

200000

400000

600000

800000

1e+06

1.2e+06

0 50 100 150 200 250 300

T
im

e
E

la
ps

ed

n

10-queens

Etree-32
MCS

Ctree-256
RSU

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 50 100 150 200 250 300

E
la

ps
ed

 T
im

e
(N

or
m

al
iz

ed
)

n

Etree-32
MCS

Ctree-256
RSU

Figure ��� ���Queens and Response Time Graphs

Initialization producer�

produce one instance with depth�� repeat

repeat produce�val��

instance � consume��� wait until the element is consumed�

wait ���� cycles� until a total of ���� elements are consumed

if instance�s depth � � then consumer�

produce 	� instances with depth greater by 	 repeat

until all instances have been consumed consume��

until a total of ���� elements are consumed

Figure ��� ���Queens and Response Time Benchmarks

� Stack�like Pools

Many applications in the literature that bene�t by keeping elements in LIFO order would perform

just as well if LIFO would be kept among all but a small fraction of operations� LIFO�based

scheduling will not only eliminate in many cases excessive task creation� but it will also prevent

��

processors from attempting to dequeue and execute a task which depends on the results of other

tasks ���� Blumofe and Leiserson �� provide a scheduler based on a randomized distributed pool

having stack�like behavior on the level of local pools� We present here a construction of a pool that

globally behaves like a stack� Our construction is based on the use of an elimination tree to create

a single counter that can be both incremented and decremented concurrently� and can thus serve

as high bandwidth pointer to the head of the stack�

��� Increment�Decrement Counting Trees

We de�ne a new type of balancer� the gap elimination balancer� that allows both tokens and

anti�tokens as inputs� and balances the �di	erence� between them �the surplus of tokens over anti�

tokens� on its output wires� We use gap elimination balancers to construct counting trees that allow

both increments and decrements� It has recently been shown by two independent teams� Busch

and Mavronicolas �� and Aiello� Herlihy� Shavit� and Touitou �� that the increment
decrement

properties we describe hold for counting networks in general� not only for trees�

A gap elimination balancer is a elimination balancer that in addition to the Quiescence and

Pairing property must satisfy the additional requirement that�

Gap Step Property In any quiescent state � � �y� � �y��� �y� � �y�� � ��

In other words� any surplus of tokens over anti�tokens on the balancers output wires is distributed

so that there is a gap of no more than one token on wire � relative to wire � in any quiescent state�

Clearly� the gap step property implies the pool balancing property on the balancer�s output wires�

Claim ��� Every gap elimination balancer satis�es the pool balancing property�

We design IncDecCounter�w as a counting tree ��� �a special case of the structure with regu�

lar token routing balancers replaced by token
anti�token routing gap elimination balancers�� For w a

power of two� IncDecCounter��k is just a root gap balancer connecting to two IncDecCounter�k

trees with the output wires y�� y�� � � � � yk�� of the tree hanging from wire ��� re�designated as the

even output wires y�� y�� � � � � y�k�� of IncDecCounter��k� and the wires of the tree extending

from the root�s ��� output wire re�designated as the odd output wires y�� y�� � � � � y�k���

Lemma ��� The IncDecCounter�w tree constructed from gap elimination balancers has the gap

step property on its output wires� that is� in any quiescent state

� � �yi � �yi�� �yj � �yj� � �

for any i � j�

��

Proof� We use that fact that the layout of the IncDecCounter is identical to that of a counting�

tree ���� in order to show that if for some execution the IncDecCounter reaches a quiescent state

which does not satis�es the gap step property� then there is an execution of the counting tree in

which the step property is violated too� This is a contradiction to Theorem ��� of ���� Let T g be

an IncDecCounter constructed from gap balancers g� and let T b be the isomorphic counting tree

which is the result of replacing every gap balancer g in IncDecCounter by a regular balancer b�

Given an execution history hg of T g� for every gap balancer g� let hgx be the gap between tokens

and anti�tokens on g�s input wire x� and let hg
�
and hg

�
be the gap at each of g�s output wires y�

and y�� De�ne hbx� h
b
�
� and hb

�
for hb of T b analogously�

Assume that for some execution history hg of T g � the gap step property is violated in a quiescent

state� Assume �rst that the total di	erence between the number of tokens and anti�token accessing

T g is some non�negative number G� Let hb be an execution of T b in which G tokens access the tree

T b� By a simple inductive argument using on the depth of the trees� one can show that for every gap

balancer g in T g and its matching balancer b in T b� the following holds� hgx � hbx � hg
�
�b

�
�hg

�
� hb

�
�

Consequently� it follows that�

Claim ��� If for some execution history hg of T g� where G is non�negative� the gap step property

is violated in a quiescent state� then it is violated also for the matching history hb of T b�

Assume now that for hg � the di	erence G between the total number of tokens and anti�tokens

is negative� Let k be the smallest number such that �d � k G � � where d is the depth of the

tree� Let h�g be an execution of T g � in which after the completion of hg � �d � k tokens were pushed

through T g � Using a simple inductive argument on the depth of the tree� one can show that for

every node g of depth d� in T g� hgx k � �d�d
�

� h�gx� Therefore� since k tokens will have been

equally added to all the exits of T g� the gap step property will be violated in h�g too� Since in h�g�

the gap at the entrance of the tree is non�negative� the claim follows by applying Claim ����

A Stack�like Pool is constructed� as with the pool data structure� by placing sequentially accessed

�local stacks� at the leaves of a IncDecCounter�w tree� The following theorem is a corollary of

Theorem ��� and Claim ����

Theorem ��� The stack�like pool construction is a correct pool implementation�

The next theorem� which explicates the the LIFOish behaviour of stack�like pool is a direct

corollary from from step property of Lemma ���� and is left to the interested reader�

Theorem ��� In any sequential execution the stack�like pool provides a last�in��rst�out order on

enqueues and dequeues�

��

In Section ��� we present empirical evidence that suggests that even though the stack�like pool

is not linearizable ��� to a sequential stack� it is linearizable in executions without severe timing

anomalies� hence our use of the term �stack�like��

��� Implementing the Gap Elimination Balancer

One can modify the pool elimination balancer construction from the former section so that it

satis�es the gap step property� This is done by replacing Part � of the code in Figure � with the

following�

AquireLock�b�	Lock��

if compare�and�swap�Location�mypid��b�my�type	� ���EMPTY	� then

i
� b�	INCDECtoggle�

b�	INCDECtoggle
� Not�i��

ReleaseLock�b�	Tokens�mytype��

return b�	OutputWire�i�

else

ReleaseLock�b�	Lock��

if Location�mypid� ���DIFFRACTED	 return �b�	OutputWire���

else return ELIMINATED

Instead of accessing two di	erent toggle bits� both tokens and anti�tokens use the same toggle bit

INCDECtoggle� If a token does not collide in the prisms� it toggles INCDECtoggle and chooses an

output wire according to the old value of the bit� An anti�token similarly toggles INCDECtoggle� but

it chooses an output wire according to the new value of INCDECtoggle �using machine language

notation� tokens perform a fetch�complement and anti�tokens a complement�fetch�� On an

intuitive level� this combination causes an anti�token to �trace� the last inserted token�

��� Correctness Proof of Gap Balancer Implementation

In order to prove the correctness of our gap balancer implementation we �rst show that all the

tokens that have accessed the toggle bit satisfy the gap step property� As before� let ti and �ti be

the number of toggling tokens and anti�tokens exiting the balancer on wire i�

Lemma ��	 In any quiescent state � � �t� � �t��� �t� � �t�� � ��

Proof� The proof is by induction on the length of the history h of accesses to the toggle bit�

If history h contains only token transitions or only anti�token transitions then the property holds

��

trivially� If h consists of transitions of both token types� there must be at least one token transition

� and one anti�token access �� which followed one other in the history� Let us de�ne h� to be the

history h without � and �� � Since following � and �� the INCDECtoggle bit returns to the same state

it was before these transitions accessed it� h� is a possible history of the access to INCDECtoggle

and by induction hypothesis satis�es the step property� Now� since both � and �� leave on the same

output wire� h also satis�es the balancing property�

Since the elimination protocols are identical in both the pool and gap elimination balancer

implementations� the proof of the following � lemmas are identical to the proofs of Lemmas �������

and ��� respectively� and are therefore omitted�

Lemma ��
 For every process p� if in a given state Location�p��b��	� then p is executing

TokenTraverse on balancer b�

Lemma ��� Every token traversing a balancer b can be di�racted or eliminated by at most one

other token�

Lemma �� A toggling� eliminating� or di�racting token Tp cannot be eliminated or di�racted by

some other token Tq�

We can now conclude the correctness proof of our gap balancer implementation�

Theorem ���� The gap eliminating balancer implementation satis�es the gap step property�

Proof� Using the same notations as in the correctness proof of the pool balancer� we know from

Lemmas ������� and ��� that �e � e� d� � d� and �d� � �d�� Therefore �t� � �t�� � �t� � �t�� �

��t� d�� � ��t� �d��� � ��t� d�� � �t� �d��� Since� y� � t� d��y� � t� d�� �y� � �t� �d� and

�y� � �t� �d� we may conclude that � � �y� � �y��� �y� � �y�� � ��

��� Performance of the Stack�like Pool

We tested the performance of the stack�like pool for the produce�consume benchmark from Sec�

tion �� We implemented a IncDecCounter��� with prism sizes and spin times as in the Pool����

In Figure �� we present the result of a comparision between an IncDecCounter��� based stack�

like pool and a Pool��� in the producer�consumer benchmark under high load Workload � �� As

can be seen� though tokens are accessing a shared toggle bit instead of two separate ones� high

elimination rates on the prisms allow the e�ciency of the stack�like pool to fall from that of the

Pool��� only slightly�

��

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50 100 150 200 250 300

O
pe

ra
tio

ns
 P

er
 1

0^
6

cy
cl

es

Processors

Throughput

Epool
Estack

1600

1800

2000

2200

2400

2600

2800

3000

0 50 100 150 200 250 300

O
pe

ra
tio

ns
 P

er
 1

0^
6

cy
cl

es

Processors

Latency

Epool
Estack

Figure ��� Comparison between a Pool and a Stack�like Pool

��� Almost Linearizability

Herlihy and Wing�s Linearizability ��� is a consistency condition that speci�es the allowable con�

current behaviours of an object by way of a mapping to a sequentially speci�ed object whose

behaviours are easy to state� A linearization mapping exists if one can pick a point within the

execution interval of every concurrent operation so that the collection of operations executed se�

quentially according to the order among these points� meets the sequential object speci�cation� We

present some empirical eveidence that suggests that even though the stack�like pool is not always

linearizable to a sequential stack� it behaves very much like one�

Given a stack�like pool implementation� let E�e� and D�e� respectively denote an enqueue

operation of e and a dequeue operation returning e� Let � be the real time order between the

operations �OP� � OP� i	 OP� has terminated before OP� has started�� We say that the operation

D�x� in an execution e is not linearizable if there are E�y�� E�x� such that E�x�� E�y�� D�x�

and either D�y� does not exist in e or D�y� exists in e and E�x� � E�y� � D�x� � D�y�� A

stack�like pool implementation is linearizable ��� if it ensures that every execution does not contain

a dequeue operation that is not linearizable �

Our elimination tree based IncDecCounter�w is easily shown not to be linearizable to a

sequential counter with increments and decrements� However� we present in Figure �� empirical

evidence suggesting that scenarios in which the linearizabilty of our stack�like pool is violated

require extreme timing anomalies that one might argue are not likely to occur frequently� We ran

the producer�consumer benchmark where each processor� after traversing a balancer node� waits a

random number of cycles between � and W � �� ����� ������ ������ until ���� dequeue operations

are executed� The graph presented plots the fraction �!� of dequeue operations that are not

linearizable� Note that for tightly synchronized executions �w � ��� our stack�like implementation

��

0

2

4

6

8

10

12

0 50 100 150 200 250 300

P
er

ce
nt

Processors

w=0
w=1000

w=10000
w=100000

Figure ��� Produce�Consume� Percentage of Dequeue operations that are not linearizable�

is linearizable to a stack at almost all levels of concurrency�

� Conclusions and Further Research

Our paper introduces the notion of �anti�tokens� to allow decrement operations on a counting�tree

���� Two independent research teams� Busch and Mavronicolas �� and Aiello� Herlihy� Shavit� and

Touitou ��� have recently extended our proofs to show that counting networks �� in general� not

only trees� work with anti�tokens �Busch and Mavronicolas �� show this also for multi�balancers

��� ��� that is� balancers with multiple inputs and output wires��

In summary� elimination trees represent a new class of concurrent algorithms that we hope

will prove an e	ective alternative to existing solutions for produce
consume coordination prob�

lems� This paper presents shared memory implementations of elimination trees� and uses them for

constructing pools and and stack�like pools�

There is clearly room for experimentation on real machines and networks� Given the hardware

fetch�and�complement operation to be added to the Alewife machine�s Sparcle chip�s set of colored

load
store operations ���� one will be able to implement a shared memory elimination�tree in

a wait�free manner� that is� without any locks� Our plan is to test such �hardware supported�

elimination�tree performance� We also plan to develop better measures and methods for setting

the tree parameters such as prism size and balancer spin� and are currently developing message

passing versions of our algorithms�

��

� Acknoledgements

We would like to thank Yehuda Afek� Bill Aiello� Maurice Herlihy� and Asaph Zemach for their

many helpful comments�

References

�� E� Aharonson and H� Attiya� Counting networks with arbitrary fan out� In Proceedings of

the �rd Symposium on Discrete Algorithms� Orlando� Florida� January ����� Also� Technical

Report ���� The Technion� June �����

�� T�E� Anderson� The Performance of Spin Lock Alternatives for Shared�Memory Multiproces�

sors� IEEE Transactions on Parallel and Distributed Systems� ���������� January �����

�� A� Agarwal et al� The MIT Alewife Machine� A Large�Scale Distributed�Memory Multiproces�

sor� In Proceedings of Workshop on Scalable Shared Memory Multiprocessors� Kluwer Academic

Publishers� ����� An extended version of this paper has been submitted for publication� and

appears as MIT
LCS Memo TM����� �����

�� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting Networks� Journal of the ACM� Vol� ���

No� � �September ������ pp� ����������

�� W� Aiello� M� Herlihy� N� Shavit and D� Touitou� Inc
Dec Counting Networks� Manuscript�

December �����

�� C� Busch and M� Mavronicolas� The Strength of Counting Networks� Proceedings of the ��th

Annual ACM Symposium on Principles of Distributed Computing� to appear� May �����

�� R�D� Blumofe� and C�E� Leiserson� Sheduling Multithreaded Computations by Work Stealing�

In Proceeding of the ��th Symposium on Foundations of Computer Science� pages ��������

November �����

�� E�A� Brewer� C�N� Dellarocas� A� Colbrook and W�E� Weihl� Proteus� A High�Performance

Parallel�Architecture Simulator� MIT Technical Report
MIT
LCS
TR����� September �����

�� D� Chaiken� Cache Coherence Protocols for Large�Scale Multiprocessors� S�M� thesis�

Massachusetts Institute of Technology� Laboratory for Computer Science Technical Report

MIT
LCS
TR����� September �����

��

��� J�R� Goodman� M�K� Vernon� and P�J� Woest� E�cient Synchronization Primitives for Large�

Scale Cache�Coherent multiprocessors� In Proceedings of the �rd ASPLOS� pages ������ ACM�

April �����

��� M� Herlihy� B�H� Lim and N� Shavit� Low Contention Load Balancing on Large Scale Mul�

tiprocessors� Proceedings of the �rd Annual ASM Symposium on Parallel Algorithms and

Architectures� July ����� San Diego� CA� Full version available as a DEC TR�

��� M� Herlihy and J�M� Wing� Linearizability� A correctness condition for concurrent objects� In

ACM Transaction on Programming Languages and Systems� ������ pages �������� July �����

��� D� Kotz and C� S� Ellis� Evaluation of Concurrent Pools� In Proceedings of the International

Conference on Distributed Computing Systems� pages �������� June �����

��� E�W� Felten� A� LaMarca� R� Ladner� Building Counting Networks from Larger Balancers�

University of Washington T�R� #���������

��� J�M� Mellor�Crummey and M�L� Scott Synchronization without Contention� In Proceedings

of the �th International Conference on Architecture Support for Programming Languages and

Operating Systems� April �����

��� Udi Manber� On maintaining dynamic information in a concurrent environment SIAM J�

Computing ����� pages ���������� November �����

��� G�H� P�ster and A� Norton� $Hot Spot� contention and combining in multistage interconnection

networks� IEEE Transactions on Computers� C���������������� November �����

��� D� Gawlick� Processing �hot spots� in high performance systems� In Proceedings COMPCON����

�����

��� J� Kubiatowicz� Personal communication �February ������

��� N�A� Lynch and M�R� Tuttle� Hierarchical Correctness Proofs for Distributed Algorithms�

In Sixth ACM SIGACT�SIGOPS Symposium on Principles of Distributed Computing� August

����� pp� �������� Full version available as MIT Technical Report MIT
LCS
TR�����

��� R� L�uling� and B� Monien� A Dynamic Distributed Load Balancing Algorithm with Provable

Good Performance� In Proceedings of the �rd ACM Symposium on Parallel Algorithms and

Architectures� pages �������� June �����

��� L� Rudolph� M� Slivkin� and E� Upfal� A Simple Load Balancing Scheme for Task Allocation

in Parallel Machines� In Proceedings of the �rd ACM Symposium on Parallel Algorithms and

Architectures� pages �������� July �����

��

��� N� Shavit� and D� Touitou� Elimination Trees and the Construction of Pools and Stack� In

Proceedings of the �th Annual Symposium on Parallel Algorithms and Architectures �SPAA��

pages ������ July �����

��� N� Shavit and A� Zemach� Di	racting Trees� In Proceedings of the Annual Symposium on

Parallel Algorithms and Architectures �SPAA�� June �����

��� N� Shavit� E� Upfal� and A� Zemach� A Steady�State Analysis of Di	racting Trees� Unpublised

manuscript� Tel�Aviv University� October �����

��� K� Taura� S� Matsuoka� and A� Yonezawa� An E�cient Implementation Scheme of Concurrent

Object�Oriented Languages on Stock Multicomputers� In Proceedings of the �th Symposium

on Principles and Practice of Parallel Programming� pages �������� May �����

��

