Software Transactional Memory

Nir Shavit* Dan Touitou
Tel-Aviv University Tel-Aviv University

Abstract

As we learn from the literature, flexibility in choosing synchronization operations greatly sim-
plifies the task of designing highly concurrent programs. Unfortunately, existing hardware is in-
flexible and is at best on the level of a Load_Linked/Store_Conditional operation on a single word.
Building on the hardware based transactional synchronization methodology of Herlihy and Moss,
we offer software transactional memory (STM), a novel software method for supporting flexible
transactional programming of synchronization operations. STM is non-blocking, and can be imple-
mented on existing machines using only a Load_Linked/Store_Conditional operation. We use STM
to provide a general highly concurrent method for translating sequential object implementations to
non-blocking ones based on implementing a k-word compare&swap STM-transaction. Empirical
evidence collected on simulated multiprocessor architectures shows that the our method always
outperforms all the non-blocking translation methods in the style of Barnes, and outperforms Her-
lihy’s translation method for sufficiently large numbers of processors. The key to the efficiency
of our software-transactional approach is that unlike Barnes style methods, 1t is not based on a
costly “recursive helping” policy.

*Contact Author: E-mail: shanir@theory.lcs.mit.edun
TA preliminary version of this paper appeared in the 14th ACM Symposium on the Principles of Distributed
Computing, Ottowa, Ontario, Canada, 1995

1 Introduction

A major obstacle on the way to making multiprocessor machines widely acceptable is the difficulty
of programmers in designing highly concurrent programs and data structures. Given the growing
realization that unpredictable delay is an increasingly serious problem in modern multiprocessor
architectures, we argue that conventional techniques for implementing concurrent objects by means
of critical sections are unsuitable, since they limit parallelism, increase contention for memory
and interconnect, and make the system vulnerable to timing anomalies and processor failures.
The key to highly concurrent programming is to decrease the number and size of critical sections
a multiprocessor program uses (possibly eliminating critical sections altogether) by constructing
classes of implementations that are non-blocking [7, 16, 15]. As we learn from the literature,
flexibility in choosing the synchronization operations greatly simplifies the task of designing non-
blocking concurrent programs. Examples are the non-blocking data-structures of Massalin and
Pu [24] which use a Compareé&Swap on two words, Anderson’s [2] parallel path compression on
lists which uses a special Splice operation, the counting networks of [5] which use combination of
Fetch&Complement and FetchéInc, Israeli and Rappoport’s Heap [20] which can be implemented
using a three-word Compare&Swap, and many more. Unfortunately, most of the current or soon
to be developed architectures support operations on the level of a Load_Linked/Store_Conditional
operation for a single word, making most of these highly concurrent algorithms impractical in the
near future.

Bershad [7] suggested to overcome the problem of providing efficient programming primitives on
existing machines by employing operating system support. Herlihy and Moss [17] have proposed an
ingenious hardware solution: transactional memory. By adding a specialized associative cache and
making several minor changes to the cache consistency protocols, they are able to support a flexible
transactional language for writing synchronization operations. Any synchronization operation can
be written as a transaction and executed using an optimistic algorithm built into the consistency
protocol. Unfortunately though, this solution is blocking.

This paper proposes to adopt the transactional approach, but not its hardware based implemen-
tation. We introduce software transactional memory (STM), a novel design that supports flexible
transactional programming of synchronization operations in software. Though we cannot aim for
the same overall performance, our software transactional memory has clear advantages in terms of
applicability to todays machines, portability among machines, and resiliency in the face of timing
anomalies and processor failures.

We focus on implementations of a software transactional memory that support static transactions,
that is, transactions which access a pre-determined sequence of locations. This class includes most
of the known and proposed synchronization primitives in the literature.

1.1 STM in a nutshell

In a non-faulty environment, the way to ensure the atomicity of the operations is usually based on
locking or acquiring exclusively ownerships on the memory locations accessed by an operation Op.
If a transaction cannot capture an ownerships it fails, and releases the ownerships already acquired.
Otherwise, it succeeds in executing Op and frees the ownerships acquired. To guarantee liveness,
one must first eliminate deadlocks, which for static transactions is done by acquiring the ownerships
needed in some increasing order. In order to continue ensuring liveness in a faulty environment,
we must make certain that every transaction completes even if the process which executes it has
been delayed, swapped out, or crashed. This is achieved by a “helping” methodology, forcing other
transactions which are trying to capture the same location to help the owner of this location to
complete its own transaction. The key feature in the transactional approach is that in order to
free a location one need only help its single owner transaction. Moreover, one can effectively avoid
the overhead of coordination among several transactions attempting to help release a location by
employing a “reactive” helping policy which we call non-redundant-helping.

1.2 Sequential-to-Non-Blocking Translation

One can use STM to provide a general highly concurrent method for translating sequential object
implementations into non-blocking ones based on the caching approach of [6, 28]. The approach is
straightforward: use transactional memory to to implement any collection of changes to a shared
object, performing them as an atomic k-word Compare&Swap transaction (see Figure 2) on the
desired locations. The non-blocking STM implementation guarantees that some transaction will
always succeed.

Herlihy, in [16] (referred to in the sequel as Herlihy’s method), was the first to offer a general
transformation of sequential objects into non-blocking concurrent ones. According to his method-
ology, updating a data structure is done by first copying it into a new allocated block of memory,
making the changes on the new version and tentatively switching the pointer to the new data struc-
ture, all that with the help of Load_Linked/Store_Conditional atomic operations. Unfortunately,
Herlihy’s method does not provide a suitable solution for large data structures and like the stan-
dard approach of locking the whole object, does not support concurrent updating. Alemany and
Felten [4] and LaMarca [22] suggested to improve the efficiency of this general method at the price
of loosing portability, by using operating system support making a set of strong assumptions on
system behavior.

To overcome the limitations of Herlihy’s method, Barnes, in [6], introduced his caching method,
that avoids copying the whole object and allows concurrent disjoint updating. A similar approach
was independently proposed by Turek, Shasha, and Prakash [28]. According to Barnes, a process
first “simulates” the execution of the updating in its private memory, i.e reading a location for the

first time is done from the shared memory but writing is done into the private memory. Then,
the process uses an non-blocking k-word Read-Modify- Write atomic operation which checks if the
values contained in the memory are equivalent to the the value read in the cache update. If this
is the case, the operation stores the new values in the memory. Otherwise, the process restarts
from the beginning. Barnes suggested to implement the k-word Read-Modify-Write by locking in
ascending order of their key, the locations involved in the update executing the operation and,
after executing the operation needed, releasing the locks. The key to achieving the non-blocking
resilient behavior in the caching approach of [6, 28] is the cooperative method: whenever a process
needs a location already locked by another process it helps the locking process to complete its own
operation, and this is done recursively along the dependency chain. Though Barnes and Turek,
Shasha, and Prakash are vague on specific implementation details, a recent paper by Israeli and
Rappoport [21] gives, using the cooperative method, a clean and streamlined implementation of
a non-blocking k-word Compare&Swap using Load_Linked/Store_Conditional. However, as our
empirical results suggest, both the general method and its specific implementation have two major
drawbacks which are overcome by our STM based translation method:

o The cooperative method has a recursive structure of “helping” which frequently causes processes
to help other processes which access a disjoint part of the data structure.

e Unlike STM’s transactional k-word Compare&Swap operations which mostly fail on the
transaction level and are thus not “helped,” a high percentage of cooperative k-word Com-
pare&Swap operations fail but generate contention since they are nevertheless helped by other
processes.

Take for example a process P which executes a 2-word Compare&Swap on locations a and b.
Assume that some other process () already owns b. According to the cooperative method, P
first helps () complete its operation and only then acquires b and continues on its own operation.
However, in many cases P’s Compare&Swap will not change the memory since @) changed b after
P already read it, and P will have to retry. All the processes waiting for location a will have to
first help P, then @), and again P, when in any case P’s operation will likely fail. Moreover, after
P has acquired b, all the processes requesting b will also redundantly help to P.

On the other hand, if P executes the 2-word Compare&Swap as an STM transaction, P will fail
to acquire b, help @), release a and restart. The processes waiting for ¢ will have to help only P.
The processes waiting for b will not have to help P. Finally, if ¢) hasn’t changed b, P will most
likely find the value of b in its own cache.

1.3 Empirical Results

To make sequential-to-non-blocking translation methods acceptable, one needs to reduce the perfor-
mance overhead one has to pay when the system is stable (non-faulty). We present (see Section 5)
the first experimental comparison of the performance under stable conditions of the translation
techniques cited above. We use the well accepted Proteus Parallel Hardware Simulator [8, 9].

We found that on a simulated Alewife [1] cache-coherent distributed shared-memory machine,
as the potential for concurrency in accessing the object grows, the STM non-blocking translation
method outperforms both Herlihy’s method and the cooperative method. Unfortunately, our ex-
periments show that in general STM and other non-blocking techniques are inferior to standard
non-resilient lock-based methods such as queue-locks [25]. Results for a shared bus architecture
were similar in flavor.

In summary, STM offers a novel software package of flexible coordination-operation for the design
of highly concurrent shared objects, which ensures resiliency in faulty runs and improved perfor-
mance in non-faulty ones. The following section introduces STM. In Section 3 we describe our
implementation and and provide a sketch of the correctness proof. Finally, in Section 5 we present
our empirical performance evaluation.

2 Transactional Memory

We begin by presenting software transactional memory, a variant of the transactional memory of
[17]. A transaction is a finite sequence of local and shared memory machine instructions:

Read-transactional — reads the value of a shared location into a local register.

Write-transactional — stores the contents of a local register into a shared location.

The data set of a transaction is the set of shared locations accessed by the Read_transactional and
Write_transactional instructions. Any transaction may either fail, or complete successfully, in which
case its changes are visible atomically to other processes. For example, dequeuing a value from the
head of a doubly linked list as in Figure 1 may be performed as a transaction. If the transaction
terminates successfully it returns the dequeued item or an Fmpty value.

A k-word Compare&Swap transaction as in Figure 2 is a transaction which gets as parameters
the data set, its size and two vectors Old and New of the data set’s size. A successful k-word
Compare&Swap transaction checks whether the values stored in the memory are equivalent to old.
In that case, the transaction stores the New values into the memory and returns a Cé&S-Success
value, otherwise it returns Cé&S-Failure.

Dequeue()
BeginTransaction
Deletedltem = Read-transactional(Head)
if DeletedItem = Null
ReturnedValue = Empty
else
Write-transactional(Head,DeletedItem].Next)
if DeletedItem.Next = Null
Write-transactional(Tail,Null)
ReturnedValue = DeletedltemT.Value
EndTransaction
end Dequeue

Figure 1: A Non Static Transaction

k_word_C€5(Size,DataSet[],Old[],New][])
BeginTransaction
for i=1 to Size do
if Read-transactional(DataSet[i]]) # Old[i]
ReturnedValue = C&S-Failure
ExitTransaction
for i=1 to Size do
Write-transactional (DataSet[i],New[i])
ReturnedValue = C&S-Success
EndTransaction
end k_word_C&S

Figure 2: A Static Transaction

A software transactional memory (STM), is a shared object which behaves like a memory that
supports multiple changes to its addresses by means of transactions. A transaction is a thread
of control that applies a finite sequence of primitive operations to memory. The basic correctness
requirement for a STM implementation is linearizability [14]: every concurrent history is ”equiva-
lent” to some legal sequential history which which is consistent with the real-time order induced

by the concurrent history.

A static transaction is a special form of transaction in which the data set is known in advance,
and can thus be thought of as an atomic procedure which gets as parameters the data set and
a deterministic transition function which determines the new values to be stored in the data set.
This procedure updates the memory and returns the previous value stored. This paper we will
focus on implementations of a transactional memory that supports static transactions, a class that
includes most of the known and proposed synchronization operations in the literature. The k-word
Compare&Swap transaction in Figure 2 is an example of a static transaction, while the Dequeue
procedure in Figure 1 is not.

An STM implementation is wait-free if any process which repeatedly executes the transaction
terminates successfully after a finite number of attempts. It is non-blockingif the repeated execution
of some transaction by a process implies that some process (not necessarily the same one and
with a possibly different transaction) will terminate successfully after a finite number of attempts
in the whole system. An STM implementation is swap tolerant, if it is non-blocking under the
assumption that a process cannot be swapped out infinitely many times. The hardware implemented
transactions of [17] could in theory repeatedly fail forever, if processes try to write two locations in
different order (as when updating a doubly linked list). However, if used only for static transactions,
their implementation can be made swap-tolerant (but not non-blocking, since a single process which
is repeatedly swapped during the execution of a transaction will never terminates successfully).

2.1 The System Model

Our computation model follows Herlihy and Wing [14] and can also be cast in terms of the I/0O
automata model of Lynch and Tuttle [23]. A concurrent system consists of a collection of pro-
cesses. Processes communicate through shared data structures called objects. Each object has a
set of primitive operations that provide the only means to manipulate that object. Fach process
is a sequential thread of control [14] which applies a sequence of operations to objects by issuing
an invocation and receiving the associated response. A history is a sequence of invocations and
responses of some system execution. Fach history induces a “real-time” order of operations (—)
where an operation A precedes another operation B if A’s response occurs before B’s invocation.
Two operations are concurrent if they are unrelated by the real-time order. A sequential history
is a history in which each invocation is followed immediately by its corresponding response. The
sequential specification of an object is the set of legal sequential histories associated with it. The
basic correctness requirement for a concurrent implementation is linearizability [14]: every con-
current history is "equivalent” to some legal sequential history which which is consistent with the
partial real-time order induced by the concurrent history. In a linearizable implementation, opera-
tions appear to take effect atomically at some point between their invocation and response. In our
model, every shared memory location L of a multiprocessor machine’s memory is formally modeled
as an object which provides every processor ¢ = 1...n four types of possible operations, with the

following sequential specification:

Write'(L,v) writes the value v to location L.
Read'(L); reads location L and returns its value v.
Load_Linked' (L) reads location L and returns its value v. Marks location L as “read by i.”

Store_Condz'tz'onali(L, v)if location L is marked as “read by 7,” the operation writes the value v to
L, erases all existing marks by other processors on L and returns a success status. Otherwise
returns a failure status.

The a more detailed formal specification of these operation can be found in [15, 16].

2.2 A Sequential Specification of STM

The following is the sequential specification of STM. Let L. C N be a set of locations. A memory
state is a function s : L — V which returns for each location of L a value from some set V. Let 5
be the set of all possible memory states. A transition function t : S — 5, is a computable function
which gets as a parameter a state and returns a new state. Given a subset ds C L, we say that
a transition function ¢ is ds dependent, if the following conditions hold: (a) for every state s and
every location [, if [€ ds then s(l) = t(s)(I) (b) if s; and s, are two states s.t. for every [€ ds,
s1(1) = s5(1), then for every [€ ds t(s)(1) = t(s5)(1).

Given a set L of locations, a Static Transactional Memory over L is a concurrent object which
provides every process ¢ with a Tran_i(DataSet, f, r, status) operation. Its has as input DataSet
— a subset of L, and f — a transition function which is DataSet dependent. It returns a function
r: DataSet — V and a boolean value status. We omit the subscript of a T'ran operation when the
id of the processor performing the operation is unimportant.

Let h = 010005 ... be a finite or infinite sequential history where o; is the ¢th operation executed.
For every finite prefix h™ = 010505 .. .0, of h, we define the terminating state of K™, T'S(h™) in the
following inductive way: If m = 0 then T'S(h™) = e where € is the function e(l) =) for every [€ L.
If m > 0 then assume w.l.o.g. that o,, = Tran(DJ9, f,r, status) and let A"~ = 010505...0,,_,. If
status = success then T'S(h™) = f(TS(h™~ 1)) otherwise T.S(h™) = TS(h™™1)

We can now proceed to define the sequential specification of the static transactional memory.
Given a function f: A — B and A’ C A, we define the restriction of f on A’ (denoted f {} A’) to
be the function f': A" — B s.t. Va € A'f'(a) = f(a). We require that a correct implementation of
an STM object meet the following sequential specification:

M emory

Ownerships
status _ status _ status
version - version - verson E—
description——— description—— description———
size E— size E— size
OldVvalues OldVvalues Oldvalues
Rec | Rec, Rec |

Figure 3: STM implementation: shared data structures

Definition 2.1 The set of sequential histories, such that for each finite or infinite history h —
010903 ..., it is the case that for all k, if o, = Tran(DataSet, f,r, status) and status = success
then r = T'5(010503 . ..0p_1) I DataSet.

3 A Non-Blocking Implementation of STM

We implement a non-blocking static STM of size M using the following data structures (See
Figure 3):

e Memory[M], a vector which contains the data stored in the transactional memory.

o Quwnerships|M], a vector which determines for any cell in Memory, which transaction owns it.

Each process ¢ keeps in the shared memory a record, pointed to by Rec;, that will be used to store
information on the current transaction it initiated. It has the following fields: Size which contains
the size of the data set. Add[] — a vector which contains the data set addresses in increasing order.
OldValues[| a vector whose cells are initialized to Null at the beginning of every transaction. In
case of a successful transaction this vector will contain the former values stored in the involved

StartTransaction(DataSet)

Initialize(Rec;,DataSet)
Rec;].stable = True
Transaction(Rec;,Rec; .version, True)
Rec;].stable = False
Rec;].version++
if Rec;].status = Success then

return (Success,Rec;1.0ldValues)
else

return Failure

Figure 4: StartTransaction

locations. The other fields are used in order to synchronize between the owner of the record and
the processes which may eventually help its transactions. Version is an integer, initially 0, which
determines the instance number of the transaction. This field is incremented every time the process
terminates a transaction.

A process ¢ initiates the execution of a transaction by calling the Transaction routine of Figure 4.
Transaction first initializes the process’s record and then declares the record as stable, ensuring that
any processors helping the transaction complete will read a consistent description of the transaction.
After executing the transaction the process checks if the transaction has succeeded, and if so returns
the content of the vector OldValues.

The procedure Transaction (Figure 5), gets as parameters Rec, the record’s address of the trans-
action executed, and a boolean value IsInitiator, indicating whether Transaction was called by the
initiating process or by a helping process. The parameter version contains the instance number
of the record executed® This parameter is not used when the routine is called by the initiating
process since the version field will never change during the call. Transaction, first tries to acquire
ownership on the data set’s locations by calling Aquire Qwnership. 1If it fails to do so then upon
returning from AquireOQwnership, the status field will be set to (Failure,failadd). If the status field
doesn’t have a value yet, the process sets it to (Success,0). In case of success the process writes
the old values into the transaction’s record, calculates the new values to be stored, writes them
to the memory and releases the ownerships. Otherwise, the status field contains the location that
caused the failure. The process first releases the ownerships that it already owns and, in the case
that it is not a helping process, it helps the transaction which owns the failing location. Helping is
performed only if the helped transaction’s record is in a stable state.

!The use of this unbounded field can be avoided if an additional Validate operation is available [20, 21].

Transaction(rec,version,IsInitiator)
Acquire Ownerships(rec,version)
(status,failadd) = LL(rec{.status)
if status = Null then
if (version # rec].version) then return
SC(rect.status,(Success,0))
(status,failadd) = LL(rec{.status)
if status = Success then
AgreeOld Values(rec,version)
NewValues = CalcNewValues(recT.Old Values)
UpdateMemory(rec,version, New Values)
Release Ownerships(rec,version)
else
Release Ownerships(rec,version)
if IsInitiator then
failtran= Ownerships[failadd]
if failtran = Nobody then
return
else
failversion = failtranT.version
if failtranT.stable
Transaction(failtran,failversion,False)

Figure 5: Transaction

10

Acquire Ownerships(rec,version)
transize = recl.size
for j = 1 to size do
while true do
location = recT.add[j]
if LL(recT.status) # Null then return
owner = LL (Ownerships[rec].Add[j]])
if rec].version # version return
if owner = rec then exit while loop
if owner = Nobody then
if SC(recl.status, (Null , 0)) then
if SC(Ownerships[location],rec) then
exit while loop
else
if SC(rec.status, (Failure,j)) then
return

Release Ownerships(rec,version)
size = rec].size
for j = 1 to size do
location= recT.Add[j]
if LL(Ownerships[location]) = rec then
if rec].version # version then return

SC(Ownerships[location],Nobody)

AgreeOld Values(rec,version)
size = rec].size
for j = 1 to size do
location= recT.Add[j]
if LL(rec(.OldValues[location]) # Null then
if rec].version # version then return

SC(rect.OldValues[location], Memory[location])

UpdateMemory(rec,version,newvalues)
size = rec].size
for j = 1 to size do
location= recT.Add[j]
oldvalue= LL(Memory[location])
if rec.AllWritten then return
if version # rec].version then return
if oldvalue# newvalues[j] then
SC(Memory[location],newvalues[j])
if (not LL(rec].AllWritten)) then
if version # rec].version then return

SC(recT.AllWritten, True)

Figure 6: Ownershzj}él and Memory access

Since AcquireOQwnerships of Figure 6 may be called either by the initiator or by the helping pro-
cesses we must ensure that (1) all processes will try to acquire ownership on the same locations (this
is done by checking the version between the Load_Linked and the Store_Conditional instructions)
(2) from the moment that the status of the transaction becomes fixed, no additional ownerships are
allowed for that transaction. The second property is essential for proving not only atomicity but
also the non-blocking property. Any process which reads a free location will have before acquiring
ownership on it, to confirm that the transaction status is still undecided. This is done by writing
(with Store_Conditional) (Null,0) in the status field. This prevents any process which read the
location in the past while it was owned by a different transaction, to set the status to Failure.

When writing the new values to the UpdateMemory as in Figure 6, the processes synchronize in
order to prevent a slow process from updating the memory after the ownerships have been released.
To do so every process sets the AllWritten field to be True, after updating the memory and before
releasing the ownerships.

4 Correctness Proof

Given a run (we freely interchange between run and history) of the STM implementation, the nth
transaction execution of process ¢ is marked as T'(7,n). The transaction record for 7'(¢, n) is denoted
as R;, and by definition only process 7 updates R;. It is thus clear that the number n in T'(¢,n) is
equal to the content of R;|.version during 7'(¢,n)’s execution. The executing processes of T'(i,n)
consist of process ¢, called the initiator, and the helping processes, those executing Transaction
with parameters (R;,n,False).

The following are the definitions of the register operations, where the superscript of an operation
marks the id of the process which executed it, and the subscript marks the transaction instance
that the process executes. Sometimes, when subscript and superscript are not needed we will omit
them.

Wi (variable,value) Process i performs a Write operation on variable with value while executing
transaction 7.

Ri.(variable,value) Process i performs a Read operation on wvariable which returns value while
executing transaction 7.

L L (variable,value) Process ¢ deforms is a Load_Linked operation on variable which returns value
while executing 7.

SC(variable,value) Process ¢ performs a successful Store_Conditional operation on variable with
value while executing T.

12

Ri.(®(variable)) is a short form for R%.(variable,value) A ®(value) for some predicate ®.

Clearly, any implementation of transactional memory which is based on an ownerships policy
only, without helping, will satisfy the linearizability requirement: if a single process is able to lock
all the needed memory locations it will be able to update the memory atomically. Consequently,
in order to prove the linerizability of our implementation, we will have mainly to show that the
fact that many processes may execute the same transaction will behave as if they were a single
process running alone. In the following proof we will first show that all the executing processes of a
transaction perform the same transaction that the initiator intended. Then, we will prove that all
the executing processes agree on the final status of the transaction. Finally, we will demonstrate
that the executing process of a successful transaction will update the memory correctly.

The non-blocking property of the implementation will be established by showing first that no
executing process will ever be able to acquire an ownership after the transaction has failed, and
then showing that since locations are acquired in increasing order, some transaction will eventually
succeed.

4.1 Linearizability

We first show, that although process ¢ uses the same record for all its transactions and may even-
tually change it while some executing process reads its content, all the executing processes of a
transaction read a consistent description of what is is supposed to do.

Claim 4.1 Given an execution v of the STM implementation, the helping processes of a transaction
T(i,n) in v read the same data set vector which was stored by i. Any executing process of T(i,n)
which read a different data set will not update any of the the shared data structures.

Proof: Assume by way of contradiction that there is a helping process j of T'(¢,n) which read
a different description of the transaction. That means that for some location a from T'(i,n)’s
description, RJT(iyn)(a, z) and W}'(iyn)(a, y) but # y. By the algorithm, only process i'updates the
description fields in Rec; and it does it only once per transaction. Assume first that Wi, , (a,y) —

R]f(i,n)(av x). Since @ # y, there is some write operation Wi, .(a,2) s.t:

W%(i,n)(a7 y) — %(i,n’)(a7 x) — R]f(i,n)(av x)
where n’ > n. Since

W%(i,n)(ReciT-U€T5i0na n+1)— W%(i,n’)(av) — R]f(i,n)(aa x)

13

and all the helping processes of T'(n,i) compare between n and Rec;|.version before executing
a SC operation, j will not, ;from this point on, update any shared data structure. Assume that
Rpyla,) — Wi) (a, y). By the algorithm (lines 19,20 in the Transaction procedure),

R]'T(iyn)(ReciT.version, n) — R]'T(iyn)(ReciT.stable,true) — R]f(i,n)(av z),
and in that case
W}'(iyn_l)(ReciT.version, n) — W}'(iyn)(ReciT.stable,true) — %(m)(a,)

which is a contradiction to the description of the StartTransaction procedure. [|

Next we show that all the executing processes of a transaction agree on its terminating status.

Claim 4.2 Assume that ¢ and j are two executing processes of some transaction T(i,n). If i and
J read different values of the terminating status (line 6 in Transaction procedure), at least one of
them will henceforth not update the shared data structures.

Proof: Assume by way of contradiction that
Rg(iyn)(ReciT.status, Failure) and R]'T(iyn)(ReciT.status, Success),
and assume w.l.o.g. that
Ré(iyn)(ReciT.status, Failure) — R]'T(iyn)(ReciT.status, Success).
In that case, there is some process z such that
R o (Reci].status, Failure) — LL*(Rec;].status, Null) —
SC*(Rec;].status, Success) — R]'T(iyn)(ReciT.status, Success).
Since 7 is the only process which initializes Rec;|.status, it follows that
R oy (Ree] . status, Failure) — W?*(Rec;].status, Null) —
SC*(Rec;|.status, Success) — R]'T(iyn)(ReciT.status, Success).
By the algorithm
Ré(iyn)(ReciT.version, n) — Rg(iyn)(ReciT.stable,true) — Ré(iyn)(ReciT.status, Failure)

and

Wi(Rec;|.version,n + 1) — W'(Rec;].status, Null)

we may therefore conclude that process 7 will not update the shared data structures anymore after
executing Ry, . (Rec;|.status, Success). |

14

Thanks to Claim 4.2, we can now define a transaction as successful if its terminating status is
Success and failing otherwise. From the algorithm and Claim 4.2 it is clear that executing processes
of failing transactions will never change the Memory data structure.

Claim 4.3 FEvery successful transaction has:

a only one execuling process which writes Success as the terminating status of the transaction

b only one executing process who sets the AllWritten field to true.

Proof: Assume that during a successful transaction T'(i,n), one of those fields, f was updated
by two executing processes k and j. Both have executed

Ry ny(Reci]version,n) — LLpi o) (f, Null) = Ry ny(Rec;].version, n)
— W(Reg¢;].stable, True) — LL(f, Null) = SCrp ny(f,v).

Assume w.l.o.g. that SCh; .\(f,v) — SC%(iyn)(f,v). By the specification of the
Load_Linked/Store_Conditional operation,

LIS o (fs Null) = (SC o (fo0) = Ly o (f, Null) — SCh, (f,0)
But since only process ¢ writes Null into field f, it follows that
Wi(Rec;].stable, False) — W'(Rec;|.version,n) — %(i,n)(f’ Null).

Process j thus read Rec;].stable as false and therefore should not have helped T'(¢, n). [|

For any successful transaction 7'(¢,n) let SU(n,7) be the SC operation which has set T'(¢,n)’s
status to Success and let AW (n, i) be the SC operation which has set the AllWritten field to True.
By the above claims those operations are well defined. The following lemma shows that successful
transactions access the memory atomically.

Lemma 4.4 For every n and every process i, if T'(i¢,n) is a successful transaction, then:

a between SU(n,t) and AW (n,t) all the entries in the Ownerships vector from T(i,n)’s data set
contain Rec;, and

b at Wi, . (Rec;l.version,n+ 1) no entry contains Rec;.

15

Proof: The proof is by joint induction on n. Assume that the properties hold for n’ < n and let
us prove them for n.

To prove a, consider j, the process which executed SU(n,?). By the algorithm, j has performed

R/ (Rec;].version,n) — qﬁijn(iyn)(Ownershz’ps[wl], Rec;) — ...

— (bijn(i’n)(Ownerships[xl], Rec;) — SU(n,1)

where ¢ is either a SC or R operation, and z;...z; are T'ran(i,n)’s data set locations. Assume
that for some location z, at SU(n,t), Ownerships[z;] differ from those of Rec;. By the algorithm
this may happen only if

(bijn(i’n)(Ouwnerships[z,], Rec;) — SC*(Ownerships[z,], Null).

Therefore, there is some process k executing release_ownerships during T'ran(z,n’) for n’ < n. More
precisely, the following sequence of operations has occured:

k
Tran(i,n

LLE

Tran(inn(Ownerships(z,], Rec;) — R y(Recil.version, n') — W'(Rec;].version,n)

— R (Rec;l.version,n) — SCt, .. . (Ownerships[z,], Null).
By the induction hypothesis on property b, at W'(Rec;].version,n), Qwnerships[z,] differs from
Rec; and therefore the SCF., . .n(Ownerships(z,], Null) should have failed. A contradiction.

To prove b, note that from the algorithm it follows that process ¢ has executed

(bgmn(iyn)(ReciT.status, Success) — qﬁgmn(iyn)(Ownershz’ps[wl], Null) — ...
— (bijn(i’n)(Ownerships[xl], Null) — Wi, . (Rec;].version,n +1).
Assume by way of contradiction that at W}(iyn)(ReciT.version, n + 1) for some location z, where

Ownerships|z,] = Rec;. By the induction hypothesis on property b, z, belongs to T'ran;’s data set.
Let k be the processor that has written Rec; on Ownerships|z,]. By the algorithm, k performed

LL*(Rec;|.status, Null) — LL*(Ownerships[z,], Null) — SC*(Rec,].status, Null) —
(bgmn(iyn)(ReciT.status, Success) — SC*(Qwnerships|z,], Rec;).

By property a, at the point of exeuting SCr,qan(in)(Rec;T.status, Success), Ownerships[z;] = Rec;
and therefore SC*(Qwnerships|z,], Null) should have failed, a contradiction. [

The following corollary will be useful when proving the non blocking property of the implemen-
tation. The proof is similar to the proof of part b in Lemma 4.4

16

Corollary 4.5 Let T'(i,n) be a failing transaction then at the point of executing W}'(iyn)(ReciT
wersion,n + 1), no entry contains Rec;.

We can now complete the proof of linearizability. We define the ezxecution state of the imple-
mentation at any point of the execution to be the function F' s.t. F(z) = Memory[z] for every
z € L.

Lemma 4.6 Let T(i,n) be a successful transaction, and let F'1 and F2 be the execution states of
SU(i,n) and AW (i,n) respectively. The following properties hold:

a At AW(i,n), Rec;].old_values = F'1 9} DataSet;).

b If F1 and F2 are the execution states of SU(i,n) and AW (i,n) respectively then F2 1
DataSet(; ny = fiin)(F1) ft DataSet(;), where fi; n is the transition function of T(i,n).

c After AW (i,n) no process executing 1; ,y will update Memory.

Proof: The proof is by joint induction on the length of the execution.

To prove a, let F'1 be the execution state at SU(i,n). Assume by way of contradiction that
for some location € DataSet; ,,, Rec; | .oldwvalues[z] # F1(z). That means that Memory[z]
was changed between SU(¢,n) and the point in the execution in which Rec;|.old_values]z] was
set. Since, by the algorithm, all the executing processes of T'(n,¢) update Rec;|.old_values before
updating the Memory, Memory[z] was altered by an executing process of some other successful
transaction 7'(¢,n’). By Lemma 4.4, AW (7',n') T SU(¢,n) and therefore by the induction hypoth-
esis on property ¢, we have a contradiction.

To prove b, assume by way of contradiction that at AW(i,n) there is some location z, €
DataSet; ,, s.t Memory[x,] # fi;n)(F1)(2,). Let j be the process which has executed AW(i,n).
By the algorithm, as a part of the UpdateMemory procedure, j performed either

Riy; o (Memoryla,), fion(F1)(2,)) — AW (i n)
or
Ry y(Memory(a,] # fis o (F1)(2,)) = SChy; o Memoryla,] fi m(F1)(,)) — AW (i, n).

Therefore, there is some process k which performed SC* on Memory[z,] with a value different
then fi;) (F1)(x,) after R/(x,,*) and before AW (i,n). Assume w.lo.g. that k is executing the
transaction Tran(i',n'). If ¢ = ¢’ then clearly n’ < n and by the induction hypothesis on property c,

k’s writing should have failed. Therefore ¢/ # i. If AW (¢, n') — SC* then AW (i',n’) — AW(i,n)

17

and using the induction hypothesis on property ¢ we again have a contradiction. Therefore SC* —
AW(¢,n’). In that case we have a contradiction to Lemma 4.4 since at SC*, Ownerships[z,] is
supposed to contain both Rec; and Rec;.

To prove ¢, assume by way of contradiction that some executing process j of T'(¢,n) updated a
location z, in memory after AW (7, n). Process j performed the following sequence of operations:

LL']'Tmn(iyn)(Memory[xr], val) — R]'Tf(m(iyj)(ReciT.AllWritten, False) —
R]Tmn(m.)(ReciT.version, n)— SC]Tmn(iyn)(Memory[xr], Jamy(F1)(2,))

where
val # fi;n)(F1)(z,) and therefore LL]'Tmn(iyn)(Memory[xr], val) — AW (i, n).

By property a, at AW (i, n), Memory[,] contains f; »)(F1)(2,) and therefore
SChran(imy(Memory[a,], fi;,n)(F1)(w,)) should have failed. |

In order to prove that the implementation is linearizable, let us first consider executions of
the STM implementation which contain successful transactions only. Let HS, be one of those
executions and let AW1 — AW?2 — AW3... be the sequential subsequence of all the AW events
that occured during HS'. Since an AW event occurs only once for every successful transaction, let
H be the sequence

Taw1(DataSety, f1, 0v1, success) Tawa(DataSets, fa, ove, success) Taws(DataSety, f1, ov1, success) . ..

of transaction executions induced by the AW events, where for every T,w, the triple
(DataSet,,, f,,ov,, success) represents the content of the DataSet, F, old_values, and status fields
respectively in Ty ’s records at AW,,. By Lemma 4.6, it is a simple exercise to show by induction
that H is a legal sequential history according to Definition 2.1. Since failing transactions do not
cause any change to Memory, we may conclude that:

Theorem 4.7 The implementation is linearizable.

4.2 Non-blocking

We denote the executing process which wrote Failure to Rec;].status of a transaction T'(i,n) as
its failing process. In order to prove the non-blocking property of the implementation, The failing
location of T'(i,n) is the location that the failing process has failed to acquire.

Claim 4.8 Given a failing transaction T'(i,n), all the executing process of T(i,n) will never acquire
a location which is higher or equal to the failing location of T(i,n).

18

Proof: Assume by way of contradiction that some executing process of T'(i, n) acquired a location,
higher or equal to T'(¢,n)’s failing location. Since the process saw all the smaller locations captured
for T'(¢,n), let j be executing process of T'(i,n) that captured the failing location z, of T'(¢,n). By
the algorithm, j performed the following sequence of operations:

LL]'T(iyn)(ReciT.status, Null) — LL]'T(iyn)(Ownerships[xr], Nobody) —
SCﬁiyn)(ReciT.status, Null) — SC%(i,n)(OwnW‘Ships[%],Reci)-
The failing process of T'(¢,n), k has performed the following sequence of operations:
LLé(iyn)(ReciT.status, Null) — LLg(iyn)(Ownerships[xr], other)
— SCé(iyn)(ReciT.status, Failure).
where other is neither Null nor Rec;. Assume that
SCé(iyn)(ReciT.status, Failure) — SC%(i,n)(OwnWShiPS[%],ReCi)-
In that case
SCﬁiyn)(ReciT.status, Null) — LLé(iyn)(ReciT.status, Null) —
LL%(i,n)(Owner‘ShipS[xr]v other) — SCé(iyn)(ReciT.status, Failure)

and consequently ' k
must have seen Qwnerships|z,| already owned by i or the SC]T(iyn)(Ownerships[xr], Rec;) should

have failed. Therefore SC&iyn)(Ownerships[wr],Reci) — SCF; py(Ree;] status, Failure). Now, if
SCé(iyn)(Ownerships[xr],Reci) — LL3; . (Ownerships[z,], other) we have a contradiction since
a process executing 7'(¢,n) never releases an ownerships before the status was set and processes
executing T'(7,n"),n’ < n will see that the Rec;|.version has changed. For that reason,

LLITC”(i,n)(Owner‘ShipS[xr]v other) — SCé(iyn)(ReciT.status, Failure)
— SC%(iyn)(Ownerships[xr], Rec;).

In that case

LLg(iyn)(ReciT.status, Null) — LLé(iyn)(Ownerships[xr], other) —
LL]f(i,n)(Own€T5hiP5[?r]a Nobody) — SCﬁiyn)(ReciT.status, Null)
— SC]T(iyn)(Ownerships[xr], Rec;)

and SCﬁ(iyn)(ReciT.status, Failure) must have failed- a contradiction. []

19

Theorem 4.9 The implementation is non-blocking.

Proof: Assume by way of contradiction that there is an infinite schedule in which no transaction
terminates successfully. Assume that the number of failing transaction is finite. This happens only
if from some point on, in the computation, all the processes are “stuck” in the AcquireOwnerships
routine. In this case there are several processes which try to get ownership on the same location for
the same transaction. But in that case at least one process will succeed or will fail the transaction,
a contradiction. It must thus be the case that the number of failing transactions is infinite. In
that case, there is at least one location which is a failing address infinitely often. Consider A,
the highest of those addresses. Since the initiator of the transaction tries to help the transaction
which has failed him before retrying, and since by Corollary 4.5 all acquired locations are released
before helping, it follows that there are infinitely many transactions which have acquired ownership
on A but have failed. By Claim 4.8 those transactions have failed on addresses higher than A, a
contradiction to the fact that A is the highest failed location. [

To avoid major overheads when no Failures occur, any algorithm based on the helping paradigm
must avoid as much as possible “redundant helping.” In the STM implementation given above,
redundant helping occurs when a failing transaction “helps” another non-faulty process. Such
helping will only increase contention and consequently, will cause the helped process to release the
ownerships later then it would have released if not helped. In our algorithm, a process increases or
decreases the interval between helps as a function of the “redundant helps” it discovered.

5 An Empirical Evaluation of Translation Methods

5.1 Methodology

We compared the performance of STM and other software methods on 64 processor bus and network
architectures using the Proteus simulator developed by Brewer, Dellarocas, Colbrook and Weihl
[8]. Proteus simulates parallel code by multiplexing several parallel threads on a single CPU. Each
thread runs on its own virtual CPU with accompanying local memory, cache and communications
hardware, keeping track of how much time is spent using each component. In order to facilitate
fast simulations, Proteus does not do complete hardware simulations. Instead, operations which
are local (do not interact with the parallel environment) are run uninterrupted on the simulating
machine’s CPU and memory. The amount of time used for local calculations is added to the
time spent performing (simulated) globally visible operations to derive each thread’s notion of the
current time. Proteus makes sure a thread can only see global events within the scope of its local
time.

20

In the simulated bus architecture processors communicate with shared memory modules through
a common bus. Uniform shared-memory access is assumed, that is, access of any memory module
from any processor takes the same amount of time which is 4 cycles (ignoring delays due to bus
contention). Each processor has a cache with 2048 lines of 8 bytes and the cache coherence is
maintained using Goodman’s [18] "snoopy” cache-coherence protocol.

The simulated network architecture is similar to that of the Alewife cache-coherent distributed-
memory machine currently under development at MIT [1]. Each node of the machines Torus
shaped communication grid consists of a processor, cache memory, a router, and a portion of the
globally-addressable memory. The cost of switching or wiring in the Alewife architecture was 1
cycle/packet. As for the bus architecture, each processor has a cache with 2048 lines of 8 bytes.
The cache coherence is provided using a using a version of Chaiken’s [12] directory-based cache-
coherence protocol.

The current version of Proteus does not support Load_Linked/Store_Conditional instructions.
Instead we used a slightly modified version that supports a 64-bit Compareé8Swap operation
where 32 bits serve as a time stamp. Naturally this operation is less efficient than the theoret-
ical Load_Linked/Store_Conditional proposed in [6, 16, 20] (which we could have built directly into
Proteus), since a failing CompareéSwap will cost a memory access while a failing Store_Conditional
wont. However, we believe the 64-bit Compare&Swap is closer to the real world then the theoretical
Load_Linked/Store_Conditional since existing implementations of Load_Linked/Store_Conditional
as on Alpha [13] or PowerPC [19] do not allow access to the shared memory between the Load_Linked
and the Store_Conditional operations. On existing machines the 64 bits Compare&Swap may be im-
plemented by using the a 64 bits Load_Linked/Store_Conditional as on the Alpha or using Bershad’s
lock-free methodology? [7].

We used four synthetic benchmarks for evaluating various methods for implementing shared data
structures. The methods vary in the size of the data structure and the amount of parallelism.

Counting Each of n processes increments a shared counter 10000/n times. In this benchmark
updates are short, change the whole object state, and have no built in parallelism.

Resource Allocation A resource allocation scenario [10]: a few processes share a set of resources
and from time to time a process tries to atomically acquire a subset of size s of those resources.
This is the typical behavior of a well designed distributed data structure. For lack of space
we show only the benchmark which has n processes atomically increment 5000/n times with
s = 2,4,6 locations chosen uniformly at random from a vector of length 60. The benchmark
captures the behavior of highly concurrent queue and counter implementations as in [26, 27].

2The non-blocking property will be achieved only if the number of spurious failures is finite.

21

Priority Queue A shared priority queue on a heap of size n. We used a variant of a sequential
heap implementation [11]. In this benchmark each of the n processes consequently enqueues
a random value in a heap and dequeues the greatest value from it 5000/n times. The heap is
initially empty and its maximal size is n. This is probably the most trying benchmark since
there is no potential for concurrency and the size of the data structure increases with n.

Doubly Linked Queue An implementation of a queue as a doubly linked list in an array. The
first two cells of the array contain the head and the tail of the list. Every item in the list
is a couple of cells in the array, which represent the index of the previous and next element
respectively. Fach process enqueues a new item by updating tail to contain the new item’s
index and dequeues an item by updating the head to contain the index of the next item in
the list. Fach process executes 5000/n couples of enqueue/dequeue operations on a queue
of initial size m. This benchmark supports limited parallelism since when the queue is not
empty, enqueues/dequeues update the tail/head of the queue without interfering each other.
For a high number of processes, the size of the updated locations in each enqueue/dequeue is
relatively small compared to the object size.

We implemented the k-word Compare&Swap transaction (given in Figure 2) as specialization of
the general STM scheme given above. The simplification is that processes do not have to agree on
the value stored in the data set before the transaction started, only on a boolean value which says
if the value is equal to old[] or not.

We used the above benchmarks to compare STM to the two nonblocking software translation
methods described earlier and a blocking MCS queue-lock [25] based solution (the data structure is
accessed in a mutually exclusive manner). The non-blocking methods include Herlihy’s Method and
Israeli and Rappoport’s k-word Compare&Swap based implementation of the cooperative method.
All the non-blocking methods use exponential backoff [3] to reduce contention.

5.2 Results

The data to be presented leads us to conclude that there are three factors differentiating among
the performance of the four methods:

1. Potential parallelism: Both locking and Herlihy’s method do not exploit potential parallelism
and only one process at a time is allowed to update the data structure. The software-
transactional and the cooperative methods allow concurrent processes to access disjoint parts
of the data structure.

2. The price of a failing update: In Herlihy’s non-blocking method, the number of memory ac-
cesses of a failing update in is at least the size of the object (reading the object and copying

22

BUS Alewife

12000 m‘: T T T T T 6000 T T T T T T
g STM —~— " STM —~—
L) —xeceeeEoordinated-method =+ L o 3 Coordinated method -+-- |
38 10000 . N Herlihy's method -8-- 3 5000 . *Herliky's method -8,
3 .. QUEUE spin lock -x S QUEUE spinfock -
o 1 o
© 8000 - . © 4000 - g
5 S N
— . —
5 6000 R 5 3000 1
o N Q. [
%] %]
c c
S 4000 | R 2 2000 1
[[
[} S| [}
Q. Q.
© 2000 R © 1000 1
+ el
—
0 L N s e R 4o € 0 1 I B it o s el +
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Processors Processors

Figure 7: Counting Benchmark

it to the private copy, and reading and writing to the pointer). Fortunately, the nature of the
cache coherence protocols is such that almost all accesses performed when the process updates
its private copy are local. In both caching methods, the price of a failure is a least the number
locations accessed during the cached execution.

3. The amount of helping by other processes: Helping exists only in the software-transactional
and the cooperative methods. In the cooperative implementation, k-word Compare&Swap,
including failing ones, are helped not only by the k-word Compare&Swap operations that
access the same locations concurrently, but also by all the operations that are in turn helping
them and so on... In the STM method, an k-word Compare&Swap is helped only by operations
that need the same locations. Moreover, and this is a crucial performance factor, in STM
most of the unsuccessful updates terminate as failing transactions, not as failing k-word
Compare&Swap, and when a transaction fails on the first location, it is not helped.

The results for the counting benchmark are given in Figure 7. The horizontal axis shows the
number of processors and the vertical axis shows the throughput achieved. This benchmark is cruel
to the caching based methods, since the amount of updated memory is equivalent to the size of the
object and there is no potential for parallelism. On the bus architecture, locking and Herlihy’s
method give significantly higher throughput than the caching methods.

23

5.3 Resource Allocation Benchmark

The results of the resource allocation benchmark are shown in Figure 8. We measured the
potential for parallelism as a percentage of the atomic s-word-increments that succeeded on first
attempt. When s = 2 this percentage varies between 73-75% at 10 processors down to 33-34% at
60 processors. For s = 4 the potential for parallelism is 40-44% at 4 processors down to 16% at 60
processors, and when s = 6 it varies between 24-29% at 10 processors to 9-10% at 60 processors.
In general, as the number of processors increases, local work can be performed concurrently, and
thus the performance of the STM improves. Beyond a certain number of processors, the potential
for parallelism declines, causing a growing number of k-word Compare&Swap conflicts, and the
throughput degrades. This is the reason for the relatively low throughput of the STM method for
small numbers of processors and the concave form of STM graphs. As one can see, when s = 2 on
the bus or when s = 2,4 on Alewife architecture, the STM method outperforms even the queue-lock
method.

A priority queue is a data structure that does not allow concurrency, and as the number of
processors increases, the number of locations accessed increases too. Still, the number of accessed
locations is smaller than the size of the object. Therefore, the STM performs better than Herlihy’s
method in most concurrency level.

Figure 10 contains the doubly linked queue results. There is more concurrency in accessing the
object than in the counter benchmark, though it is limited: at most two processes may concurrently
update the queue. Herlihy’s method performs poorly because the penalty paid for a failed update
grows linearly with queue size: usually twice the number of the processes. In the STM method,
the low granularity of the two-word Compare&Swap transactions implies that the price of a failure
remains constant in all concurrency levels, though local work is still higher than the Test-and-Test-
and-Set.

5.4 A comparison of non-blocking methods only

Every theoretical method can be improved in many ways when implemented in practice. In order
to get a fair comparison between the non-blocking methods one should use them in their purest
form. Therefore, we compare the performance of all the non-blocking methods without backoff (in
all the methods) and without the non-redundant-helping policy (in STM). We also compare the
cooperative k-word Compare&Swap with STM for a specific implementation which explicitly needs
such a software supported operation. We chose Israeli and Rappoport’s algorithm for a concurrent
priority queue [20], since it is based on recursive helping. Therefore, whenever a process during
the execution of a k-word Compare&Swap helps another remote disjoint process, it should give an
advantage to Israeli and Rappoport method. Our implementation is slightly different since it uses

24

operations per 10**6 cycles operations per 10**6 cycles

operations per 10**6 cycles

12000

10000

8000

6000

4000

2000

3500

3000

2500

2000

1500

1000

500

2500

2000

1500

1000

500

12000
L g 10000
[S]
>
(&)
L . © 8000
S
N —
L . . 5 6000
% a
. 2
| e N S 4000
e ©
. g
Q.
| 4 S 2000
| oo N Hpeooooo. = I & 0
0 10 20 30 40 50 60
Processors
10P=75% 30P=49% 60P=33% —Two locations—
BUS
S ~ _ : - 2500
3 2000
[S]
B ;. >
(&)
[{)
i . | £ 1500
—
. g
L . 7 @ 1000
e oS
- T 7 ©
I e, | S 500
& ol
A ! R M AR n 0
0 10 20 30 40 50 60
Processors

10P=44% 30P=21% 60P=16%
BUS

—Four locations—

¥ ¥ > < S e

T
+

—x 1200
1100
1000
900
800
700
600
500
400
300
200
100

operations per 10**6 cycles

30 40
Processors

10P=29% 30P=14% 60P=9%

—Six locations—

Alewife

Coordi

method -+-
erlihy’s method -&--
QUEUE spin lock -

10P=24% 30P=14% 60P=10%

Figure 8: Resource Allocation Benchmark

25

N N i
7 "
L T -
| x % * x x x|
RSP G- Hpoooooo- mo B m
10 20 30 40 50 60
Processors
10P=73% 30P=48% 60P=34%
Alewife
T T T
X...
- -l -
X\\L\ % % X X
—
e
- N S -
Ty
B B B R B fal
1 1 1 1 1 1
0 10 20 30 40 50 60
Processors
10P=40% 30P=22% 60P=16%
Alewife
T T T T T T
X
L TN]
L e B
L e i
TP
L T
L . -
B B Brge T o]
1 1 1 1 1 1
0 10 20 30 40 50 60
Processors

1000

4000
3500

%]

3

S 3000

o

£ 2500

o

—

5 2000

o

.é 1500

©

[

Q.

o

500

9000
8000
7000
6000
5000
4000
3000
2000

operations per 10**6 cycles

1000

BUS Alewife
T T T T T T 2500 T T T T T T
.. STM ~— STM ~—
A Coordinated method -+-- " Coordinated method -+--
Herlihy's method -8-- 2 2000 x Herlihy’s method -&--
p QUEUE spin lock -x Q QUEUE spin lock -x
- « :
% % » & 1500 ‘\ o 4
g 3
g2 1000 . o
o} o N
N S B
[}
= S 500 1
o .
B =
1 T ‘fﬂ“"";‘%‘“‘**ﬂ—f-~-w~m 0
10 20 30 40 50 60 10 20 30 40 50 60
Processors Processors
Figure 9: Priority Queue Benchmark
BUS Alewife
S S) 3500 LR ' . '
v == | - STM ——
Coordinated method -+-- » 3000 < “Coordingted method —+--
Herlihy’s method -8-- Q@ Herlihy's method &>
QUEUE spin lock -x S 2500 QUEUE spin lock -x
o
[{e}
¥
S 2000 -
E_ GA‘h"‘9"‘*Ave\\\\\\e//,,//64-44-e
o 1500 g
c
oo 5 i<}
® 1000 g
g
e ° 500 B T .
T T -+ = st -+
. T S v rer retaee et o . . g g i
10 20 30 40 50 60 10 20 30 40 50 60
Processors Processors
Figure 10: Doubly Linked Queue Benchmark

a 3-word Compare& Swap operation instead of a 2-word Store-Conditional operation 3.

We ran the same benchmark as for the regular priority queue. The results of the concurrent
In spite of the advantage that the inherent

priority queue benchmark are given in Figure 15.

structure of the algorithm should give to Israeli and Rappoport method, STM provides the highest
throughput. As in the counter and the sequential priority queue benchmarks, the reason for this is

®In fact, using 3-word Compare&Swap simplifies the implementation since it avoids freezing [20] nodes

26

BUS Alewife

6000 T T T T T T 4000 T T T T T T
ol STM —o— B STM —o—
w5000 L Coordinated method -+ | . 3000 B Coordinated method -+ - |
Q N Herlihy’s method -8-- Q Herlihy’s method -8--
S) S 3000 - -
o 4000 |] 13
£ £ 2500 | B .
5 3000 . 5 2000 | g .
Q [Q
%] [%2]
c c 1500 IO —
S 2000 | g S g
I I
5 S 1000 - -
S 1000 |- . 5y
500 e :
e
0 0 1 1 1 - - +
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Processors Processors

Figure 11: non-blocking comparison: Counting Benchmark

the high number of failing k-word Compare&Swap operations in Israeli and Rappoport method:
up to 2.5 times the number of successful k-word Compare&Swap . Every theoretical method can
be improved in many ways when implemented in practice.

In general, the result we got were that STM method outperforms Barnes method in all circum-
stances and, except from the counter benchmark STM outperforms Herlihy’s method too. The
results of the counter benchmark are shown in Figure 11. As in the previous tests Herlihy’s method
performs better than caching methods on both architectures. In Bus architecture Herlihy’s method
is from 2.91 times faster than STM on 10 processors, down to 1.35 time faster than STM on 60
processors. On Alewife architecture, Herlihy’s method is from 3.38 times faster than STM on 10
processors, down to 2.23 times faster than STM on 60 processors. STM is from 1.97 faster than
Israeli and Rappoport method on Bus architecture up to 8.44 time faster than Israeli and Rap-
poport method on 60 processors. On Alewife architecture, STM is from 1.92 times up to 7.6 time
faster than Israeli and Rappoport method. This degradation in the performance of Israeli and
Rappoport method is due to the high number of failing k-word Compare&Swap : up to 8.4 (!)
times the number of successful k-word Compare&Swap while in STM the number of failing k-word
Compare&Swap is at most 0.26 times the number of successful k-word Compare&Swap . Most of
the transactions in STM terminate ad failing transactions and are not helped since they failed in
acquiring the first (and last) location needed. In the priority queue benchmark, on a simulated bus
architecture, Herlihy’s method is from 2.36 times faster than STM, down to 2.8 times slower than
STM. On the Alewife architecture, Herlihy’s method has a throughput that is 2.41 times higher
than STM throughput, down to 1.1 times lower than in the STM method. The results of the doubly
linked queue are in Figure 13. On the Bus architecture, our STM method is up to 3.37 faster than

27

BUS Alewife

1400 T T T T T T 900 4{ T T T T T
H STM —o— 800 L STM ~<— |
» 1200 | Coordinated method —+-- ~ " Coordinated method —+-
Q Herlihy’s method -8-- Q 700 L B Herlihy’s method -5-- |
o | [3] \
& 1000 [E &
© , © 600 [.
b S .
= sor 1 =S s00f i
g 2 400 "
o 600 i >
S S 300 | .
[400 - 1 [
g g 200 e
© 200 . ° ol]
0 0 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Processors Processors
Figure 12: non-blocking comparison: Priority Queue Benchmark
BUS Alewife
2500 T T T T T T 1600
STM —-—
" Coordinated method -+-- . 1400 | b
@ 2000 Herlihy’s method -8--]
% % 1200 —
[{e} [{e}
£ 1500 | x i £ 1000 - i
— \\ — +.
g \ $ 800 | 4
o N o > N
%) - - (2] < AN
g 1000 \ 2 600 3N 4
T B k5 Y
g § 400 F L -
S 500 . 4 g . _
° B I ° 200 B — -
SR B R
R
0 1 1 IR fRocoooooe B | 0 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Processors Processors

Figure 13: non-blocking comparison: Doubly Linked Queue Benchmark

Israeli and Rappoport method and up to 59 times faster than Herlihy’s method. When simulating
Alewife architecture, our method had a 12.9 times higher throughput than Herlihy’s method and
7.28 higher throughput than Israeli and Rappoport method. In the resource allocation benchmark
too (Figure 14) STM outperforms other methods: On Bus simulations, STM is between 1.1-1.27
times faster than Israeli and Rappoport method on 10 processors, and 1.6 times faster on 60 proces-
sors. On Alewife simulations, STM is 1.09-1.27 times faster than Israeli and Rappoport method on
10 processors up to 1.61-1.68 time faster on 60 processors. Note, that in this benchmark, the factor

28

that effect Israeli and Rappoport performance is not the number of failing k-word Compare&Swaps,
which is relatively low, but more the remote redundant help that processors execute.

The results of the concurrent priority queue benchmark are given in Figure 15. Though the
advantage that the inherent structure of the algorithm should give to Isreali and Rappoport method,
STM give here also the highest throughput. As in the counter and the sequential priority queue
benchmarks, the reason for this, is the high number of failing k-word Compare&Swap operations in
Israeli and Rappoport method: up to 2.5 times the number of successful k-word Compare&Swaps.

6 Conclusions

Our paper introduces a non-blocking software version of Herlihy and Moss’ transactional memory
approach. There are many possible directions in which it can be extended. One issue is to design
better non-blocking translation engines, possibly by limiting STM’s expressability to a smaller set
of implementable transactions. Another interesting question is what performance guarantees one
can get with a less robust STM software package, possibly programmed on the machines’ message
passing level. Finally, the ability to add an STM component to existing software based virtual
shared memory systems, raises theoretical questions on the computational power of a programming
abstraction based on having a variety of “operations” that can be applied to memory locations, vs.
the traditional approach of thinking of synchronization operations as “objects.”

Acknowledgments

We wish to thank Greg Barnes and Maurice Herlihy for their many helpful comments.

References

[1] A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiproces-
sor. In Proceedings of Workshop on Scalable Shared Memory Multiprocessors. Kluwer Academic
Publishers, 1991. An extended version of this paper has been submitted for publication, and
appears as MIT/LCS Memo TM-454, 1991.

[2] R. J. Anderson. Primitives for Asynchronous List Compression. Proceeding of the jth ACM
Symposium on Parallel Algorithms and Architectures, pages 199-208, 1992.

29

operations per 10**6 cycles operations per 10**6 cycles

operations per 10**6 cycles

9000
8000
7000
6000
5000
4000
3000
2000
1000

3000

2500

2000

1500

1000

500

1200

1000

800

600

400

200

T T T T 11000
i STM —o— | 10000
Coordinated method -+-- "
Herlihy's method -8-- | & 9000
S 8000
1 ¢ 7000
S . = 6000
ey i & 5000
] & 4000
[3000
- [
S 2000
7 1000
""" E1 - SR : B, 1 0
30 40 50 60
Processors
—Two locations—
BUS

1 g
30 40
Processors
BUS

: : 2500
T 3 2000
[S]
>
o
T e
L 1500
—
1 9]
o
@ 1000
1 S
g
] 2 s00
Q 7"m 0

—Four locations—

T T 900
800
700
600
500
400
300

operations per 10**6 cycles

200

L L 100

30 40
Processors

—Six locations—

30

Alewife

30 40 50 60
Processors

Alewife

30 40 50 60
Processors

Alewife
T T T T
e i
b
. |
T
B Be-eeeees a-- o

30 40 50 60
Processors

non-blocking comparison: Resource Allocation Benchmark

BUS Alewife

600 T T T T T T 400 T T T T T T
550 |- STM —~— 4 STM ——
Coordinated method -+-- 350 Coordinated method -+-- -
H] 500 : H]
& 450 - b & 300} :
e 400 B e
= * S 250 | g
= 350 | 4 = +
@ @ X
Q 300 | - Q
2 o 200 g .
s 20r T S
s 200} . 8 150 | . 1
& 150 g T
°© T ° 100 | T A
100 e,] -
50 1 1 1 1 1 1 50 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Processors Processors

Figure 15: non-blocking comparison: Israeli & Rappoport Priority Queue
[3] T.E. Anderson. The performance of spin lock alternatives for shared memory multiprocessors.
In IEEFE Transaction on Parallel and Distributed Systems, 1(1):6-16, January 1990.

[4] J. Alemany, E.W. Felten Performance Issues in Non-Blocking Synchronization on Shared-
Memory Multiprocessors. In Proceedings of 11th ACM Symposium on Principles of Distributed
Computation, Pages 125-134 August 1992.

[5] J. Aspnes, M.P. Herlihy, and N. Shavit. Counting Networks. Journal of the ACM, Vol. 41,
No. 5 (September 1994), pp. 1020-1048.

[6] G. Barnes A Method for Implementing Lock-Free Shared Data Structures In Proceedings of
the 5th ACM Symposium on Parallel Algorithms and Architectures 1993.

[7] B.N Bershad. Practical consideration for lock-free concurrent objects. Technical Report, CMU-
(C5-91-183, Carnegie Mellon University. September 1991.

[8] E.A. Brewer C.N. Dellarocas, A. Colbrook, and W. E. Weihl. Proteus: A High-Performance
Parallel-Architecture Simulator. MIT/LCS/TR-516. September 1989.

[9] E.A. Brewer C.N. Dellarocas. Proteus. User Documentation.

[10] K. Chandy and J. Misra. The Drinking Philosophers Problem. In ACM Transaction on
Programming Languages and Systems, 6(4):632-646, October 1984.

[11] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to algorithms. MIT Press.

31

[12] David Chaiken. Cache Coherence Protocols for Large-Scale Multiprocessors. S.M. thesis,
Massachusetts Institute of Technology, Laboratory for Computer Science Technical Report

MIT/LCS/TR-489, September 1990.
[13] DEC. Alpha system reference manual.

[14] M. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects. In
ACM Transaction on Programming Languages and Systems, 12(3), pages 463-492, July 1990.

[15] M. Herlihy. Wait-Free Synchronization. In ACM Transaction on Programming Languages and
Systems, 13(1), pages 124-149, January 1991.

[16] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM Transac-
tions on Programming Languages and Systems, 15(9): 745-770, November 1993.

[17] M. Herlihy and J.E B. Moss. Transactional Memory: Architectural Support for Lock-Free
Data Structures. In 20th Annual Symposium on Computer Architecture, pages 289-300, May
1993.

[18] J. R. Goodman. Using cache-memory to reduce processor-memory traffic. In Proceeding of the
10th International Symposium on Computer Architectures, 13(1), pages 124-131, June 1983.

[19] IBM. Power PC. Reference manual.

[20] A. Israeli and L. Rappoport. Efficient Wait Free Implementation of a Concurrent Priority
Queue. In WDAG 1993. Lecture Notes in Computer Science 725, Springer Verlag, pages 1-17.

[21] A. Israeli and L. Rappoport. Disjoint-Access-Parallel Implementations of Strong Shared Mem-
ory Proc. of the 15th ACM Symposium on Principles of Distributed Computing pages 151-160.

[22] A. LaMarca. A Performance Evaluation of Lock-Free Synchronization Protocols. Proc. of the
18th ACM Symposium on Principles of Distributed Computing, pages 130-140.

[23] N. Lynch and M. Tuttle. Hierachical Correctness Proofs for Distributed Algorithm. In Pro-
ceedings of 6th ACM Symposium on Principles of Distributed Computation, Pages 137-151
August 1987. Full version available as MIT Technical Report MIT/LCS/TR-387.

[24] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report CUCS-005-91.
Columbia University. Mars 1991.

[25] J.M. Mellor-Crummey and M.L. Scott Synchronization without Contention. In Proceedings
of the 4th International Conference on Architecture Support for Programming Languages and
Operating Systems, April 1991.

32

[26] L. Rudolph, M. Slivkin, and E. Upfal. A Simple Load Balancing Scheme for Task Allocation
in Parallel Machines. In Proceedings of the 3rd ACM Symposium on Parallel Algorithms and
Architectures, pages 237245, July 1991.

[27] N. Shavit and A. Zemach. Diffracting Trees. In Proceedings of the Annual Symposium on
Parallel Algorithms and Architectures (SPAA), June 1994.

[28] J. Turek D. Shasha and S. Prakash. Locking without blocking: Making Lock Based Concurrent
Data Structure Algorithms Non-blocking. In Proceedings of the 1992 Principle of Database
Systems pages 212-222.

[29] D. Touitou. Lock-Free Programming: A Thesis Proposal. Tel Aviv University April 1993.

33

