
Software Transactional Memory

Nir Shavit�

Tel�Aviv University

Dan Touitou

Tel�Aviv University

Abstract

As we learn from the literature� �exibility in choosing synchronization operations greatly sim�
pli�es the task of designing highly concurrent programs� Unfortunately� existing hardware is in�
�exible and is at best on the level of a Load Linked�Store Conditional operation on a single word�
Building on the hardware based transactional synchronization methodology of Herlihy and Moss�
we o�er software transactional memory �STM	� a novel software method for supporting �exible
transactional programming of synchronization operations� STM is non�blocking� and can be imple�
mented on existing machines using only a Load Linked�Store Conditional operation� We use STM
to provide a general highly concurrent method for translating sequential object implementations to
non�blocking ones based on implementing a k�word compare
swap STM�transaction� Empirical
evidence collected on simulated multiprocessor architectures shows that the our method always
outperforms all the non�blocking translation methods in the style of Barnes� and outperforms Her�
lihy�s translation method for su�ciently large numbers of processors� The key to the e�ciency
of our software�transactional approach is that unlike Barnes style methods� it is not based on a
costly
recursive helping� policy�

�Contact Author� E�mail� shanir�theory�lcs�mit�edu
yA preliminary version of this paper appeared in the ��th ACM Symposium on the Principles of Distributed

Computing� Ottowa� Ontario� Canada� ����

�

� Introduction

A major obstacle on the way to making multiprocessor machines widely acceptable is the di�culty
of programmers in designing highly concurrent programs and data structures� Given the growing
realization that unpredictable delay is an increasingly serious problem in modern multiprocessor
architectures� we argue that conventional techniques for implementing concurrent objects by means
of critical sections are unsuitable� since they limit parallelism� increase contention for memory
and interconnect� and make the system vulnerable to timing anomalies and processor failures�
The key to highly concurrent programming is to decrease the number and size of critical sections
a multiprocessor program uses �possibly eliminating critical sections altogether� by constructing
classes of implementations that are non�blocking ��� 	
� 	��� As we learn from the literature�

exibility in choosing the synchronization operations greatly simpli�es the task of designing non�
blocking concurrent programs� Examples are the non�blocking data�structures of Massalin and
Pu ���� which use a Compare�Swap on two words� Anderson�s ��� parallel path compression on
lists which uses a special Splice operation� the counting networks of ��� which use combination of
Fetch�Complement and Fetch�Inc� Israeli and Rappoport�s Heap ���� which can be implemented
using a three�word Compare�Swap� and many more� Unfortunately� most of the current or soon
to be developed architectures support operations on the level of a Load Linked�Store Conditional
operation for a single word� making most of these highly concurrent algorithms impractical in the
near future�

Bershad ��� suggested to overcome the problem of providing e�cient programming primitives on
existing machines by employing operating system support� Herlihy and Moss �	�� have proposed an
ingenious hardware solution� transactional memory� By adding a specialized associative cache and
making several minor changes to the cache consistency protocols� they are able to support a
exible
transactional language for writing synchronization operations� Any synchronization operation can
be written as a transaction and executed using an optimistic algorithm built into the consistency
protocol� Unfortunately though� this solution is blocking�

This paper proposes to adopt the transactional approach� but not its hardware based implemen�
tation� We introduce software transactional memory �STM�� a novel design that supports
exible
transactional programming of synchronization operations in software� Though we cannot aim for
the same overall performance� our software transactional memory has clear advantages in terms of
applicability to todays machines� portability among machines� and resiliency in the face of timing
anomalies and processor failures�

We focus on implementations of a software transactional memory that support static transactions�
that is� transactions which access a pre�determined sequence of locations� This class includes most
of the known and proposed synchronization primitives in the literature�

	

��� STM in a nutshell

In a non�faulty environment� the way to ensure the atomicity of the operations is usually based on
locking or acquiring exclusively ownerships on the memory locations accessed by an operation Op�
If a transaction cannot capture an ownerships it fails� and releases the ownerships already acquired�
Otherwise� it succeeds in executing Op and frees the ownerships acquired� To guarantee liveness�
one must �rst eliminate deadlocks� which for static transactions is done by acquiring the ownerships
needed in some increasing order� In order to continue ensuring liveness in a faulty environment�
we must make certain that every transaction completes even if the process which executes it has
been delayed� swapped out� or crashed� This is achieved by a �helping� methodology� forcing other
transactions which are trying to capture the same location to help the owner of this location to
complete its own transaction� The key feature in the transactional approach is that in order to
free a location one need only help its single owner transaction� Moreover� one can e�ectively avoid
the overhead of coordination among several transactions attempting to help release a location by
employing a �reactive� helping policy which we call non�redundant�helping�

��� Sequential�to�Non�Blocking Translation

One can use STM to provide a general highly concurrent method for translating sequential object
implementations into non�blocking ones based on the caching approach of �
� ���� The approach is
straightforward� use transactional memory to to implement any collection of changes to a shared
object� performing them as an atomic k�word Compare�Swap transaction �see Figure �� on the
desired locations� The non�blocking STM implementation guarantees that some transaction will
always succeed�

Herlihy� in �	
� �referred to in the sequel as Herlihy�s method�� was the �rst to o�er a general
transformation of sequential objects into non�blocking concurrent ones� According to his method�
ology� updating a data structure is done by �rst copying it into a new allocated block of memory�
making the changes on the new version and tentatively switching the pointer to the new data struc�
ture� all that with the help of Load Linked�Store Conditional atomic operations� Unfortunately�
Herlihy�s method does not provide a suitable solution for large data structures and like the stan�
dard approach of locking the whole object� does not support concurrent updating� Alemany and
Felten ��� and LaMarca ���� suggested to improve the e�ciency of this general method at the price
of loosing portability� by using operating system support making a set of strong assumptions on
system behavior�

To overcome the limitations of Herlihy�s method � Barnes� in �
�� introduced his caching method�
that avoids copying the whole object and allows concurrent disjoint updating� A similar approach
was independently proposed by Turek� Shasha� and Prakash ����� According to Barnes� a process
�rst �simulates� the execution of the updating in its private memory� i�e reading a location for the

�

�rst time is done from the shared memory but writing is done into the private memory� Then�
the process uses an non�blocking k�word Read�Modify�Write atomic operation which checks if the
values contained in the memory are equivalent to the the value read in the cache update� If this
is the case� the operation stores the new values in the memory� Otherwise� the process restarts
from the beginning� Barnes suggested to implement the k�word Read�Modify�Write by locking in
ascending order of their key� the locations involved in the update executing the operation and�
after executing the operation needed� releasing the locks� The key to achieving the non�blocking
resilient behavior in the caching approach of �
� ��� is the cooperative method� whenever a process
needs a location already locked by another process it helps the locking process to complete its own
operation� and this is done recursively along the dependency chain� Though Barnes and Turek�
Shasha� and Prakash are vague on speci�c implementation details� a recent paper by Israeli and
Rappoport ��	� gives� using the cooperative method� a clean and streamlined implementation of
a non�blocking k�word Compare�Swap using Load Linked�Store Conditional � However� as our
empirical results suggest� both the general method and its speci�c implementation have two major
drawbacks which are overcome by our STM based translation method�

� The cooperative method has a recursive structure of �helping� which frequently causes processes
to help other processes which access a disjoint part of the data structure�

� Unlike STM�s transactional k�word Compare�Swap operations which mostly fail on the
transaction level and are thus not �helped�� a high percentage of cooperative k�word Com�
pare�Swap operations fail but generate contention since they are nevertheless helped by other
processes�

Take for example a process P which executes a ��word Compare�Swap on locations a and b�
Assume that some other process Q already owns b� According to the cooperative method� P
�rst helps Q complete its operation and only then acquires b and continues on its own operation�
However� in many cases P �s Compare�Swap will not change the memory since Q changed b after
P already read it� and P will have to retry� All the processes waiting for location a will have to
�rst help P � then Q� and again P � when in any case P �s operation will likely fail� Moreover� after
P has acquired b� all the processes requesting b will also redundantly help to P �

On the other hand� if P executes the ��word Compare�Swap as an STM transaction� P will fail
to acquire b� help Q� release a and restart� The processes waiting for a will have to help only P �
The processes waiting for b will not have to help P � Finally� if Q hasn�t changed b� P will most
likely �nd the value of b in its own cache�

�

��� Empirical Results

To make sequential�to�non�blocking translation methods acceptable� one needs to reduce the perfor�
mance overhead one has to pay when the system is stable �non�faulty�� We present �see Section ��
the �rst experimental comparison of the performance under stable conditions of the translation
techniques cited above� We use the well accepted Proteus Parallel Hardware Simulator ��� ���

We found that on a simulated Alewife �	� cache�coherent distributed shared�memory machine�
as the potential for concurrency in accessing the object grows� the STM non�blocking translation
method outperforms both Herlihy�s method and the cooperative method� Unfortunately� our ex�
periments show that in general STM and other non�blocking techniques are inferior to standard
non�resilient lock�based methods such as queue�locks ����� Results for a shared bus architecture
were similar in
avor�

In summary� STM o�ers a novel software package of
exible coordination�operation for the design
of highly concurrent shared objects� which ensures resiliency in faulty runs and improved perfor�
mance in non�faulty ones� The following section introduces STM� In Section � we describe our
implementation and and provide a sketch of the correctness proof� Finally� in Section � we present
our empirical performance evaluation�

� Transactional Memory

We begin by presenting software transactional memory � a variant of the transactional memory of
�	��� A transaction is a �nite sequence of local and shared memory machine instructions�

Read�transactional � reads the value of a shared location into a local register�

Write�transactional � stores the contents of a local register into a shared location�

The data set of a transaction is the set of shared locations accessed by the Read transactional and
Write transactional instructions� Any transaction may either fail� or complete successfully� in which
case its changes are visible atomically to other processes� For example� dequeuing a value from the
head of a doubly linked list as in Figure 	 may be performed as a transaction� If the transaction
terminates successfully it returns the dequeued item or an Empty value�

A k�word Compare�Swap transaction as in Figure � is a transaction which gets as parameters
the data set� its size and two vectors Old and New of the data set�s size� A successful k�word
Compare�Swap transaction checks whether the values stored in the memory are equivalent to old�
In that case� the transaction stores the New values into the memory and returns a C�S�Success
value� otherwise it returns C�S�Failure�

�

Dequeue�	
BeginTransaction

DeletedItem
 Read�transactional�Head	
if DeletedItem
 Null

ReturnedValue
 Empty
else

Write�transactional�Head�DeletedItem��Next	
if DeletedItem��Next
 Null

Write�transactional�Tail�Null	
ReturnedValue
 DeletedItem��Value

EndTransaction
end Dequeue

Figure 	� A Non Static Transaction

k word C�S�Size�DataSet���Old���New��	
BeginTransaction

for i
� to Size do
if Read�transactional�DataSet�i��	 �
 Old�i�

ReturnedValue
 C
S�Failure
ExitTransaction

for i
� to Size do
Write�transactional �DataSet�i��New�i�	

ReturnedValue
 C
S�Success
EndTransaction

end k word C
S

Figure �� A Static Transaction

A software transactional memory �STM�� is a shared object which behaves like a memory that
supports multiple changes to its addresses by means of transactions� A transaction is a thread
of control that applies a �nite sequence of primitive operations to memory� The basic correctness
requirement for a STM implementation is linearizability �	��� every concurrent history is �equiva�
lent� to some legal sequential history which which is consistent with the real�time order induced
by the concurrent history�

�

A static transaction is a special form of transaction in which the data set is known in advance�
and can thus be thought of as an atomic procedure which gets as parameters the data set and
a deterministic transition function which determines the new values to be stored in the data set�
This procedure updates the memory and returns the previous value stored� This paper we will
focus on implementations of a transactional memory that supports static transactions� a class that
includes most of the known and proposed synchronization operations in the literature� The k�word
Compare�Swap transaction in Figure � is an example of a static transaction� while the Dequeue
procedure in Figure 	 is not�

An STM implementation is wait�free if any process which repeatedly executes the transaction
terminates successfully after a �nite number of attempts� It is non�blocking if the repeated execution
of some transaction by a process implies that some process �not necessarily the same one and
with a possibly di�erent transaction� will terminate successfully after a �nite number of attempts
in the whole system� An STM implementation is swap tolerant� if it is non�blocking under the
assumption that a process cannot be swapped out in�nitely many times� The hardware implemented
transactions of �	�� could in theory repeatedly fail forever� if processes try to write two locations in
di�erent order �as when updating a doubly linked list�� However� if used only for static transactions�
their implementation can be made swap�tolerant �but not non�blocking� since a single process which
is repeatedly swapped during the execution of a transaction will never terminates successfully��

��� The System Model

Our computation model follows Herlihy and Wing �	�� and can also be cast in terms of the I�O
automata model of Lynch and Tuttle ����� A concurrent system consists of a collection of pro�
cesses� Processes communicate through shared data structures called objects� Each object has a
set of primitive operations that provide the only means to manipulate that object� Each process
is a sequential thread of control �	�� which applies a sequence of operations to objects by issuing
an invocation and receiving the associated response� A history is a sequence of invocations and
responses of some system execution� Each history induces a �real�time� order of operations ���
where an operation A precedes another operation B if A�s response occurs before B�s invocation�
Two operations are concurrent if they are unrelated by the real�time order� A sequential history
is a history in which each invocation is followed immediately by its corresponding response� The
sequential speci�cation of an object is the set of legal sequential histories associated with it� The
basic correctness requirement for a concurrent implementation is linearizability �	��� every con�
current history is �equivalent� to some legal sequential history which which is consistent with the
partial real�time order induced by the concurrent history� In a linearizable implementation� opera�
tions appear to take e�ect atomically at some point between their invocation and response� In our
model� every shared memory location L of a multiprocessor machine�s memory is formally modeled
as an object which provides every processor i � 	 � � �n four types of possible operations� with the

following sequential speci�cation�

Writei�L� v� writes the value v to location L�

Readi�L�i reads location L and returns its value v�

Load Linkedi�L� reads location L and returns its value v� Marks location L as �read by i��

Store Conditionali�L� v� if location L is marked as �read by i�� the operation writes the value v to
L� erases all existing marks by other processors on L and returns a success status� Otherwise
returns a failure status�

The a more detailed formal speci�cation of these operation can be found in �	�� 	
��

��� A Sequential Speci�cation of STM

The following is the sequential speci�cation of STM� Let L � N be a set of locations� A memory
state is a function s � L �� V which returns for each location of L a value from some set V � Let S
be the set of all possible memory states� A transition function t � S �� S� is a computable function
which gets as a parameter a state and returns a new state� Given a subset ds � L� we say that
a transition function t is ds dependent� if the following conditions hold� �a� for every state s and
every location l� if l �� ds then s�l� � t�s��l� �b� if s� and s� are two states s�t� for every l � ds�
s��l� � s��l�� then for every l � ds t�s���l� � t�s���l��

Given a set L of locations� a Static Transactional Memory over L is a concurrent object which
provides every process i with a Tran i�DataSet� f� r� status	 operation� Its has as input DataSet
� a subset of L� and f � a transition function which is DataSet dependent� It returns a function
r � DataSet �� V and a boolean value status� We omit the subscript of a Tran operation when the
id of the processor performing the operation is unimportant�

Let h � o�o�o� � � � be a �nite or in�nite sequential history where oi is the ith operation executed�
For every �nite pre�x hm � o�o�o� � � �om of h� we de�ne the terminating state of hm� TS�hm� in the
following inductive way� If m � � then TS�hm� � e where e is the function e�l� � � for every l � L�
If m � � then assume w�l�o�g� that om � Tran�DS� f� r� status� and let hm�� � o�o�o� � � � om��� If
status � success then TS�hm� � f�TS�hm���� otherwise TS�hm� � TS�hm���

We can now proceed to de�ne the sequential speci�cation of the static transactional memory�
Given a function f � A �� B and A� � A� we de�ne the restriction of f on A� �denoted f � A�� to
be the function f � � A� �� B s�t� 	a � A�f ��a� � f�a�� We require that a correct implementation of
an STM object meet the following sequential speci�cation�

�

OldValues

status
version
description
size

OldValues

status
version
description
size

OldValues

status
version
description
size

Ownerships

Memory

. . . .

Rec Rec Rec
1 2 n

Figure �� STM implementation� shared data structures

De�nition ��� The set of sequential histories� such that for each �nite or in�nite history h �
o�o�o� � � �� it is the case that for all k� if ok � Tran�DataSet� f� r� status� and status � success
then r � TS�o�o�o� � � � ok��� � DataSet

� A Non�Blocking Implementation of STM

We implement a non�blocking static STM of size M using the following data structures �See
Figure ���

� Memory�M �� a vector which contains the data stored in the transactional memory�

� Ownerships �M �� a vector which determines for any cell in Memory� which transaction owns it�

Each process i keeps in the shared memory a record� pointed to by Reci� that will be used to store
information on the current transaction it initiated� It has the following �elds� Size which contains
the size of the data set� Add �� � a vector which contains the data set addresses in increasing order�
OldValues �� a vector whose cells are initialized to Null at the beginning of every transaction� In
case of a successful transaction this vector will contain the former values stored in the involved

�

StartTransaction�DataSet	
Initialize�Reci�DataSet	
Reci ��stable
 True
Transaction�Reci�Reci ��version�True	
Reci ��stable
 False
Reci ��version��
if Reci��status
 Success then

return �Success�Reci��OldValues	
else

return Failure

Figure �� StartTransaction

locations� The other �elds are used in order to synchronize between the owner of the record and
the processes which may eventually help its transactions� Version is an integer� initially �� which
determines the instance number of the transaction� This �eld is incremented every time the process
terminates a transaction�

A process i initiates the execution of a transaction by calling the Transaction routine of Figure ��
Transaction �rst initializes the process�s record and then declares the record as stable� ensuring that
any processors helping the transaction complete will read a consistent description of the transaction�
After executing the transaction the process checks if the transaction has succeeded� and if so returns
the content of the vector OldValues�

The procedure Transaction �Figure ��� gets as parameters Rec� the record�s address of the trans�
action executed� and a boolean value IsInitiator� indicating whether Transaction was called by the
initiating process or by a helping process� The parameter version contains the instance number
of the record executed� This parameter is not used when the routine is called by the initiating
process since the version �eld will never change during the call� Transaction� �rst tries to acquire
ownership on the data set�s locations by calling AquireOwnership� If it fails to do so then upon
returning from AquireOwnership� the status �eld will be set to �Failure�failadd	� If the status �eld
doesn�t have a value yet� the process sets it to �Success��	� In case of success the process writes
the old values into the transaction�s record� calculates the new values to be stored� writes them
to the memory and releases the ownerships� Otherwise� the status �eld contains the location that
caused the failure� The process �rst releases the ownerships that it already owns and� in the case
that it is not a helping process� it helps the transaction which owns the failing location� Helping is
performed only if the helped transaction�s record is in a stable state�

�The use of this unbounded �eld can be avoided if an additional Validate operation is available ���� ����

�

Transaction�rec�version�IsInitiator	
AcquireOwnerships�rec�version	
�status�failadd	
 LL�rec��status	
if status
 Null then

if �version �
 rec��version	 then return
SC�rec��status��Success��		

�status�failadd	
 LL�rec��status	
if status
 Success then

AgreeOldValues�rec�version	
NewValues
 CalcNewValues�rec��OldValues	
UpdateMemory�rec�version�NewValues	
ReleaseOwnerships�rec�version	

else
ReleaseOwnerships�rec�version	
if IsInitiator then

failtran
 Ownerships�failadd�
if failtran
 Nobody then

return
else

failversion
 failtran��version
if failtran��stable

Transaction�failtran�failversion�False	

Figure �� Transaction

	�

AcquireOwnerships�rec�version	
transize
 rec��size
for j
 � to size do

while true do
location
 rec��add�j�
if LL�rec��status	 �
 Null then return
owner
 LL �Ownerships�rec��Add�j��	
if rec��version �
 version return
if owner
 rec then exit while loop
if owner
 Nobody then

if SC�rec��status� �Null � �	 	 then
if SC�Ownerships�location��rec	 then

exit while loop
else

if SC�rec��status� �Failure�j	 	 then
return

ReleaseOwnerships�rec�version	
size
 rec��size
for j
 � to size do

location
 rec��Add�j�
if LL�Ownerships�location�	
 rec then

if rec��version �
 version then return
SC�Ownerships�location��Nobody	

AgreeOldValues�rec�version	
size
 rec��size
for j
 � to size do

location
 rec��Add�j�
if LL�rec��OldValues�location�	 �
 Null then

if rec��version �
 version then return
SC�rec��OldValues�location��Memory�location�	

UpdateMemory�rec�version�newvalues	
size
 rec��size
for j
 � to size do

location
 rec��Add�j�
oldvalue
 LL�Memory�location�	
if rec��AllWritten then return
if version �
 rec��version then return
if oldvalue�
 newvalues�j� then

SC�Memory�location��newvalues�j�	
if �not LL�rec��AllWritten		 then

if version �
 rec��version then return
SC�rec��AllWritten�True	

Figure
� Ownerships and Memory access		

Since AcquireOwnerships of Figure
 may be called either by the initiator or by the helping pro�
cesses we must ensure that �	� all processes will try to acquire ownership on the same locations �this
is done by checking the version between the Load Linked and the Store Conditional instructions�
��� from the moment that the status of the transaction becomes �xed� no additional ownerships are
allowed for that transaction� The second property is essential for proving not only atomicity but
also the non�blocking property� Any process which reads a free location will have before acquiring
ownership on it� to con�rm that the transaction status is still undecided� This is done by writing
�with Store Conditional � �Null��	 in the status �eld� This prevents any process which read the
location in the past while it was owned by a di�erent transaction� to set the status to Failure�

When writing the new values to the UpdateMemory as in Figure
� the processes synchronize in
order to prevent a slow process from updating the memory after the ownerships have been released�
To do so every process sets the AllWritten �eld to be True� after updating the memory and before
releasing the ownerships�

� Correctness Proof

Given a run �we freely interchange between run and history� of the STM implementation� the nth
transaction execution of process i is marked as T �i� n�� The transaction record for T �i� n� is denoted
as Ri� and by de�nition only process i updates Ri� It is thus clear that the number n in T �i� n� is
equal to the content of Ri
�version during T �i� n��s execution� The executing processes of T �i� n�
consist of process i� called the initiator� and the helping processes� those executing Transaction
with parameters �Ri�n�False��

The following are the de�nitions of the register operations� where the superscript of an operation
marks the id of the process which executed it� and the subscript marks the transaction instance
that the process executes� Sometimes� when subscript and superscript are not needed we will omit
them�

W i
T �variable�value� Process i performs a Write operation on variable with value while executing
transaction T �

Ri
T�variable�value� Process i performs a Read operation on variable which returns value while
executing transaction T �

LLi
T �variable�value� Process i deforms is a Load Linked operation on variable which returns value
while executing T �

SCi
T�variable�value� Process i performs a successful Store Conditional operation on variable with
value while executing T �

	�

Ri
T���variable�� is a short form for Ri

T �variable�value� � ��value� for some predicate ��

Clearly� any implementation of transactional memory which is based on an ownerships policy
only� without helping� will satisfy the linearizability requirement� if a single process is able to lock
all the needed memory locations it will be able to update the memory atomically� Consequently�
in order to prove the linerizability of our implementation� we will have mainly to show that the
fact that many processes may execute the same transaction will behave as if they were a single
process running alone� In the following proof we will �rst show that all the executing processes of a
transaction perform the same transaction that the initiator intended� Then� we will prove that all
the executing processes agree on the �nal status of the transaction� Finally� we will demonstrate
that the executing process of a successful transaction will update the memory correctly�

The non�blocking property of the implementation will be established by showing �rst that no
executing process will ever be able to acquire an ownership after the transaction has failed� and
then showing that since locations are acquired in increasing order� some transaction will eventually
succeed�

��� Linearizability

We �rst show� that although process i uses the same record for all its transactions and may even�
tually change it while some executing process reads its content� all the executing processes of a
transaction read a consistent description of what is is supposed to do�

Claim ��� Given an execution r of the STM implementation� the helping processes of a transaction
T �i� n� in r read the same data set vector which was stored by i
 Any executing process of T �i� n�
which read a di�erent data set will not update any of the the shared data structures

Proof� Assume by way of contradiction that there is a helping process j of T �i� n� which read
a di�erent description of the transaction� That means that for some location a from T �i� n��s
description� Rj

T �i�n��a� x� and W
i
T �i�n��a� y� but x �� y� By the algorithm� only process i updates the

description �elds in Reci and it does it only once per transaction� Assume �rst thatW i
T �i�n��a� y��

Rj

T �i�n��a� x�� Since x �� y� there is some write operation W i
T �i�n���a� x� s�t�

W i
T �i�n��a� y�� W i

T �i�n���a� x�� Rj

T �i�n��a� x�

where n� � n� Since

W i
T �i�n��Reci
�version� n� 	�� W i

T �i�n���a� x�� Rj

T �i�n��a� x�

	�

and all the helping processes of T �n� i� compare between n and Reci
 �version before executing
a SC operation� j will not� from this point on� update any shared data structure� Assume that
Rj

T �i�n��a� x�� W i
T �i�n��a� y�� By the algorithm �lines 	���� in the Transaction procedure��

Rj

T �i�n��Reci
�version� n�� Rj

T �i�n��Reci
�stable� true�� Rj

T �i�n��a� x��

and in that case

W i
T �i�n����Reci
�version� n�� W i

T �i�n��Reci
�stable� true�� W j

T �i�n��a� y�

which is a contradiction to the description of the StartTransaction procedure�

Next we show that all the executing processes of a transaction agree on its terminating status�

Claim ��� Assume that i and j are two executing processes of some transaction T �i� n�
 If i and
j read di�erent values of the terminating status �line
 in Transaction procedure	� at least one of
them will henceforth not update the shared data structures

Proof� Assume by way of contradiction that

Rk
T �i�n��Reci
�status�Failure� and Rj

T �i�n��Reci
�status� Success��

and assume w�l�o�g� that

Rk
T �i�n��Reci
�status�Failure�� Rj

T �i�n��Reci
�status� Success��

In that case� there is some process z such that

Rk
T �i�n��Reci
�status�Failure�� LLk�Reci
�status�Null��

SCk�Reci
�status� Success�� Rj

T �i�n��Reci
�status� Success��

Since i is the only process which initializes Reci
�status� it follows that

Rk
T �i�n��Reci
�status�Failure� � W z�Reci
�status�Null��

SCz�Reci
�status� Success�� Rj

T �i�n��Reci
�status� Success��

By the algorithm

Rk
T �i�n��Reci
�version� n�� Rk

T �i�n��Reci
�stable� true�� Rk
T �i�n��Reci
�status�Failure�

and
W i�Reci
�version� n� 	�� W i�Reci
�status�Null�

we may therefore conclude that process j will not update the shared data structures anymore after
executing Rj

T �i�n��Reci
�status� Success��

	�

Thanks to Claim ���� we can now de�ne a transaction as successful if its terminating status is
Success and failing otherwise� From the algorithm and Claim ��� it is clear that executing processes
of failing transactions will never change the Memory data structure�

Claim ��� Every successful transaction has�

a only one executing process which writes Success as the terminating status of the transaction

b only one executing process who sets the AllWritten �eld to true

Proof� Assume that during a successful transaction T �i� n�� one of those �elds� f was updated
by two executing processes k and j� Both have executed

RT �i�n��Reci
�version� n�� LLT �i�n��f�Null� � RT �i�n��Reci
�version� n�

� W �Reci
�stable� True�� LL�f�Null�� SCT �i�n��f� v��

Assume w�l�o�g� that SCk
T �i�n��f� v� � SCj

T �i�n��f� v�� By the speci�cation of the
Load Linked�Store Conditional operation�

LLk
T �i�n��f�Null� � �SCk

T �i�n��f� v�� LLj

T �i�n��f�Null�� SCj

T �i�n��f� v�

But since only process i writes Null into �eld f � it follows that

W i�Reci
�stable� False�� W i�Reci
�version� n�� W i
T �i�n��f�Null��

Process j thus read Reci
�stable as false and therefore should not have helped T �i� n��

For any successful transaction T �i� n� let SU�n� i� be the SC operation which has set T �i� n��s
status to Success and let AW �n� i� be the SC operation which has set the AllWritten �eld to True�
By the above claims those operations are well de�ned� The following lemma shows that successful
transactions access the memory atomically�

Lemma ��� For every n and every process i� if T �i� n� is a successful transaction� then�

a between SU�n� i� and AW �n� i� all the entries in the Ownerships vector from T �i� n��s data set
contain Reci� and

b at W i
T �i�n��Reci
�version� n� 	� no entry contains Reci

	�

Proof� The proof is by joint induction on n� Assume that the properties hold for n� � n and let
us prove them for n�

To prove a� consider j� the process which executed SU�n� i�� By the algorithm� j has performed

Rj�Reci
�version� n�� �jTran�i�n��Ownerships�x��� Reci� � � � �

� �jTran�i�n��Ownerships�xl�� Reci�� SU�n� i�

where � is either a SC or R operation� and x� � � � xl are Tran�i� n��s data set locations� Assume
that for some location xr at SU�n� i�� Ownerships �xj � di�er from those of Reci� By the algorithm
this may happen only if

�jTran�i�n��Ownerships�xr�� Reci� � SCk�Ownerships�xr��Null��

Therefore� there is some process k executing release ownerships during Tran�i� n�� for n� � n� More
precisely� the following sequence of operations has occured�

LLk
Tran�i�n���Ownerships�xr�� Reci� � Rk

Tran�i�n���Reci
�version� n
��� W i�Reci
�version� n�

� Rj�Reci
�version� n�� SCk
Tran�i�n���Ownerships�xr��Null��

By the induction hypothesis on property b� at W i�Reci
�version� n�� Ownerships�xr � di�ers from
Reci and therefore the SCk

Tran�i�n���Ownerships�xr��Null� should have failed� A contradiction�

To prove b� note that from the algorithm it follows that process i has executed

�iTran�i�n��Reci
�status� Success�� �iTran�i�n��Ownerships�x���Null�� � � �

� �j
Tran�i�n��Ownerships�xl��Null�� W i

T �i�n��Reci
�version� n� 	��

Assume by way of contradiction that at W i
T �i�n��Reci
�version� n� 	� for some location xr where

Ownerships �xr� � Reci� By the induction hypothesis on property b� xr belongs to Trani�s data set�
Let k be the processor that has written Reci on Ownerships�xr �� By the algorithm� k performed

LLk�Reci
�status�Null� � LLk�Ownerships �xr��Null�� SCk�Reci
�status�Null��

�iTran�i�n��Reci
�status� Success� � SCk�Ownerships�xr�� Reci��

By property a� at the point of exeuting SCTran�i�n��Reci
�status� Success�� Ownerships�xj� � Reci
and therefore SCk�Ownerships�xr��Null� should have failed� a contradiction�

The following corollary will be useful when proving the non blocking property of the implemen�
tation� The proof is similar to the proof of part b in Lemma ���

	

Corollary ��	 Let T �i� n� be a failing transaction then at the point of executing W i
T �i�n��Reci

�version� n� 	�� no entry contains Reci

We can now complete the proof of linearizability� We de�ne the execution state of the imple�
mentation at any point of the execution to be the function F s�t� F �x� � Memory�x� for every
x � L�

Lemma ��
 Let T �i� n� be a successful transaction� and let F	 and F� be the execution states of
SU�i� n� and AW �i� n� respectively
 The following properties hold�

a At AW �i� n�� Reci
�old values � F	 � DataSet�i�n�

b If F	 and F� are the execution states of SU�i� n� and AW �i� n� respectively then F� �
DataSet�i�n� � f�i�n��F	� � DataSet�i�n�� where f�i�n� is the transition function of T �i� n�

c After AW �i� n� no process executing T�i�n� will update Memory

Proof� The proof is by joint induction on the length of the execution�

To prove a� let F	 be the execution state at SU�i� n�� Assume by way of contradiction that
for some location x � DataSeti�n� Reci
 �old values�x� �� F	�x�� That means that Memory�x�
was changed between SU�i� n� and the point in the execution in which Reci
 �old values�x� was
set� Since� by the algorithm� all the executing processes of T �n� i� update Reci
�old values before
updating the Memory� Memory�x� was altered by an executing process of some other successful
transaction T �i�� n��� By Lemma ���� AW �i�� n��
 SU�i� n� and therefore by the induction hypoth�
esis on property c� we have a contradiction�

To prove b� assume by way of contradiction that at AW �i� n� there is some location xr �
DataSeti�n s�t Memory�xr � �� f�i�n��F	��xr�� Let j be the process which has executed AW �i� n��
By the algorithm� as a part of the UpdateMemory procedure� j performed either

Rj

T �i�n��Memory�xr�� f�i�n��F	��xr��� AW �i� n�

or

Rj

T �i�n��Memory�xr� �� f�i�n��F	��xr��� SCj

T �i�n��Memory�xr�f�i�n��F	��xr��� AW �i� n��

Therefore� there is some process k which performed SCk on Memory�xr � with a value di�erent
then f�i�n��F	��xr� after Rj�xr� �� and before AW �i� n�� Assume w�l�o�g� that k is executing the
transaction Tran�i�� n��� If i � i� then clearly n� � n and by the induction hypothesis on property c�
k�s writing should have failed� Therefore i� �� i� If AW �i�� n�� � SCk then AW �i�� n�� � AW �i� n�

	�

and using the induction hypothesis on property c we again have a contradiction� Therefore SCk �
AW �i�� n��� In that case we have a contradiction to Lemma ��� since at SCk� Ownerships�xr� is
supposed to contain both Reci and Reci��

To prove c� assume by way of contradiction that some executing process j of T �i� n� updated a
location xr in memory after AW �i� n�� Process j performed the following sequence of operations�

LLj

Tran�i�n��Memory�xr�� val�� Rj

Tran�i�j��Reci
�AllWritten� False��

Rj

Tran�i�j��Reci
�version� n�� SCj

Tran�i�n��Memory�xr�� f�i�n��F	��xr��

where
val �� f�i�n��F	��xr� and therefore LLj

Tran�i�n��Memory�xr�� val�� AW �i� n��

By property a� at AW �i� n��Memory�xr� contains f�i�n��F	��xr� and therefore
SCj

Tran�i�n��Memory�xr�� f�i�n��F	��xr�� should have failed�

In order to prove that the implementation is linearizable� let us �rst consider executions of
the STM implementation which contain successful transactions only� Let HS� be one of those
executions and let AW	 � AW� � AW� � � � be the sequential subsequence of all the AW events
that occured during HS� Since an AW event occurs only once for every successful transaction� let
H be the sequence

TAW��DataSet�� f�� ov�� success	 TAW��DataSet�� f�� ov�� success	 TAW��DataSet�� f�� ov�� success	 � � �

of transaction executions induced by the AW events� where for every TAWn the triple
�DataSetn� fn� ovn� success� represents the content of the DataSet� F� old values� and status �elds
respectively in TAWn

�s records at AWn� By Lemma ��
� it is a simple exercise to show by induction
that H is a legal sequential history according to De�nition ��	� Since failing transactions do not
cause any change to Memory� we may conclude that�

Theorem ��� The implementation is linearizable

��� Non�blocking

We denote the executing process which wrote Failure to Reci
�status of a transaction T �i� n� as
its failing process� In order to prove the non�blocking property of the implementation� The failing
location of T �i� n� is the location that the failing process has failed to acquire�

Claim ��� Given a failing transaction T �i� n�� all the executing process of T �i� n� will never acquire
a location which is higher or equal to the failing location of T �i� n�

	�

Proof� Assume by way of contradiction that some executing process of T �i� n� acquired a location�
higher or equal to T �i� n��s failing location� Since the process saw all the smaller locations captured
for T �i� n�� let j be executing process of T �i� n� that captured the failing location xr of T �i� n�� By
the algorithm� j performed the following sequence of operations�

LLj

T �i�n��Reci
�status�Null� � LLj

T �i�n��Ownerships�xr�� Nobody��

SCj

T �i�n��Reci
�status�Null�� SCj

T �i�n��Ownerships�xr�� Reci��

The failing process of T �i� n�� k has performed the following sequence of operations�

LLk
T �i�n��Reci
�status�Null� � LLk

T �i�n��Ownerships�xr�� other�

� SCk
T �i�n��Reci
�status�Failure��

where other is neither Null nor Reci� Assume that

SCk
T �i�n��Reci
�status�Failure�� SCj

T �i�n��Ownerships�xr�� Reci��

In that case

SCj

T �i�n��Reci
�status�Null�� LLk
T �i�n��Reci
�status�Null��

LLk
T �i�n��Ownerships�xr�� other�� SCk

T �i�n��Reci
�status�Failure�

and consequently k
must have seen Ownerships�xr� already owned by i or the SCj

T �i�n��Ownerships�xr�� Reci� should

have failed� Therefore SCj

T �i�n��Ownerships�xr�� Reci� � SCk
T �i�n��Reci
�status�Failure�� Now� if

SCj

T �i�n��Ownerships�xr�� Reci� � LLk
T �i�n��Ownerships�xr�� other� we have a contradiction since

a process executing T �i� n� never releases an ownerships before the status was set and processes
executing T �i� n��� n� � n will see that the Reci
�version has changed� For that reason�

LLk
T �i�n��Ownerships�xr�� other�� SCk

T �i�n��Reci
�status�Failure�

� SCj

T �i�n��Ownerships�xr�� Reci��

In that case

LLk
T �i�n��Reci
�status�Null�� LLk

T �i�n��Ownerships�xr�� other��

LLj

T �i�n��Ownerships�xr�� Nobody�� SCj

T �i�n��Reci
�status�Null�

� SCj

T �i�n��Ownerships�xr�� Reci�

and SCk
T �i�n��Reci
�status�Failure� must have failed� a contradiction�

	�

Theorem ��
 The implementation is non�blocking

Proof� Assume by way of contradiction that there is an in�nite schedule in which no transaction
terminates successfully� Assume that the number of failing transaction is �nite� This happens only
if from some point on� in the computation� all the processes are �stuck� in the AcquireOwnerships
routine� In this case there are several processes which try to get ownership on the same location for
the same transaction� But in that case at least one process will succeed or will fail the transaction�
a contradiction� It must thus be the case that the number of failing transactions is in�nite� In
that case� there is at least one location which is a failing address in�nitely often� Consider A�
the highest of those addresses� Since the initiator of the transaction tries to help the transaction
which has failed him before retrying� and since by Corollary ��� all acquired locations are released
before helping� it follows that there are in�nitely many transactions which have acquired ownership
on A but have failed� By Claim ��� those transactions have failed on addresses higher than A� a
contradiction to the fact that A is the highest failed location�

To avoid major overheads when no Failures occur� any algorithm based on the helping paradigm
must avoid as much as possible �redundant helping�� In the STM implementation given above�
redundant helping occurs when a failing transaction �helps� another non�faulty process� Such
helping will only increase contention and consequently� will cause the helped process to release the
ownerships later then it would have released if not helped� In our algorithm� a process increases or
decreases the interval between helps as a function of the �redundant helps� it discovered�

� An Empirical Evaluation of Translation Methods

��� Methodology

We compared the performance of STM and other software methods on
� processor bus and network
architectures using the Proteus simulator developed by Brewer� Dellarocas� Colbrook and Weihl
���� Proteus simulates parallel code by multiplexing several parallel threads on a single CPU� Each
thread runs on its own virtual CPU with accompanying local memory� cache and communications
hardware� keeping track of how much time is spent using each component� In order to facilitate
fast simulations� Proteus does not do complete hardware simulations� Instead� operations which
are local �do not interact with the parallel environment� are run uninterrupted on the simulating
machine�s CPU and memory� The amount of time used for local calculations is added to the
time spent performing �simulated� globally visible operations to derive each thread�s notion of the
current time� Proteus makes sure a thread can only see global events within the scope of its local
time�

��

In the simulated bus architecture processors communicate with shared memory modules through
a common bus� Uniform shared�memory access is assumed� that is� access of any memory module
from any processor takes the same amount of time which is � cycles �ignoring delays due to bus
contention�� Each processor has a cache with ���� lines of � bytes and the cache coherence is
maintained using Goodman�s �	�� �snoopy� cache�coherence protocol�

The simulated network architecture is similar to that of the Alewife cache�coherent distributed�
memory machine currently under development at MIT �	�� Each node of the machines Torus
shaped communication grid consists of a processor� cache memory� a router� and a portion of the
globally�addressable memory� The cost of switching or wiring in the Alewife architecture was 	
cycle�packet� As for the bus architecture� each processor has a cache with ���� lines of � bytes�
The cache coherence is provided using a using a version of Chaiken�s �	�� directory�based cache�
coherence protocol�

The current version of Proteus does not support Load Linked�Store Conditional instructions�
Instead we used a slightly modi�ed version that supports a
��bit Compare�Swap operation
where �� bits serve as a time stamp� Naturally this operation is less e�cient than the theoret�
ical Load Linked�Store Conditional proposed in �
� 	
� ��� �which we could have built directly into
Proteus�� since a failing Compare�Swap will cost a memory access while a failing Store Conditional
wont� However� we believe the
��bit Compare�Swap is closer to the real world then the theoretical
Load Linked�Store Conditional since existing implementations of Load Linked�Store Conditional
as on Alpha �	�� or PowerPC �	�� do not allow access to the shared memory between the Load Linked
and the Store Conditional operations� On existing machines the
� bits Compare�Swap may be im�
plemented by using the a
� bits Load Linked�Store Conditional as on the Alpha or using Bershad�s
lock�free methodology� ����

We used four synthetic benchmarks for evaluating various methods for implementing shared data
structures� The methods vary in the size of the data structure and the amount of parallelism�

Counting Each of n processes increments a shared counter 	�����n times� In this benchmark
updates are short� change the whole object state� and have no built in parallelism�

Resource Allocation A resource allocation scenario �	��� a few processes share a set of resources
and from time to time a process tries to atomically acquire a subset of size s of those resources�
This is the typical behavior of a well designed distributed data structure� For lack of space
we show only the benchmark which has n processes atomically increment �����n times with
s � �� ��
 locations chosen uniformly at random from a vector of length
�� The benchmark
captures the behavior of highly concurrent queue and counter implementations as in ��
� ����

�The non�blocking property will be achieved only if the number of spurious failures is �nite�

�	

Priority Queue A shared priority queue on a heap of size n� We used a variant of a sequential
heap implementation �		�� In this benchmark each of the n processes consequently enqueues
a random value in a heap and dequeues the greatest value from it �����n times� The heap is
initially empty and its maximal size is n� This is probably the most trying benchmark since
there is no potential for concurrency and the size of the data structure increases with n�

Doubly Linked Queue An implementation of a queue as a doubly linked list in an array� The
�rst two cells of the array contain the head and the tail of the list� Every item in the list
is a couple of cells in the array� which represent the index of the previous and next element
respectively� Each process enqueues a new item by updating tail to contain the new item�s
index and dequeues an item by updating the head to contain the index of the next item in
the list� Each process executes �����n couples of enqueue�dequeue operations on a queue
of initial size n� This benchmark supports limited parallelism since when the queue is not
empty� enqueues�dequeues update the tail�head of the queue without interfering each other�
For a high number of processes� the size of the updated locations in each enqueue�dequeue is
relatively small compared to the object size�

We implemented the k�word Compare�Swap transaction �given in Figure �� as specialization of
the general STM scheme given above� The simpli�cation is that processes do not have to agree on
the value stored in the data set before the transaction started� only on a boolean value which says
if the value is equal to old�� or not�

We used the above benchmarks to compare STM to the two nonblocking software translation
methods described earlier and a blocking MCS queue�lock ���� based solution �the data structure is
accessed in a mutually exclusive manner�� The non�blocking methods include Herlihy�s Method and
Israeli and Rappoport�s k�word Compare�Swap based implementation of the cooperative method�
All the non�blocking methods use exponential backo� ��� to reduce contention�

��� Results

The data to be presented leads us to conclude that there are three factors di�erentiating among
the performance of the four methods�

	� Potential parallelism� Both locking and Herlihy�s method do not exploit potential parallelism
and only one process at a time is allowed to update the data structure� The software�
transactional and the cooperative methods allow concurrent processes to access disjoint parts
of the data structure�

�� The price of a failing update� In Herlihy�s non�blocking method� the number of memory ac�
cesses of a failing update in is at least the size of the object �reading the object and copying

��

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

Figure �� Counting Benchmark

it to the private copy� and reading and writing to the pointer�� Fortunately� the nature of the
cache coherence protocols is such that almost all accesses performed when the process updates
its private copy are local� In both caching methods� the price of a failure is a least the number
locations accessed during the cached execution�

�� The amount of helping by other processes � Helping exists only in the software�transactional
and the cooperative methods� In the cooperative implementation� k�word Compare�Swap�
including failing ones� are helped not only by the k�word Compare�Swap operations that
access the same locations concurrently� but also by all the operations that are in turn helping
them and so on��� In the STM method� an k�word Compare�Swap is helped only by operations
that need the same locations� Moreover� and this is a crucial performance factor� in STM
most of the unsuccessful updates terminate as failing transactions� not as failing k�word
Compare�Swap� and when a transaction fails on the �rst location� it is not helped�

The results for the counting benchmark are given in Figure �� The horizontal axis shows the
number of processors and the vertical axis shows the throughput achieved� This benchmark is cruel
to the caching based methods� since the amount of updated memory is equivalent to the size of the
object and there is no potential for parallelism� On the bus architecture� locking and Herlihy�s
method give signi�cantly higher throughput than the caching methods�

��

��� Resource Allocation Benchmark

The results of the resource allocation benchmark are shown in Figure �� We measured the
potential for parallelism as a percentage of the atomic s�word�increments that succeeded on �rst
attempt� When s � � this percentage varies between �����! at 	� processors down to �����! at

� processors� For s � � the potential for parallelism is �����! at � processors down to 	
! at
�
processors� and when s �
 it varies between �����! at 	� processors to ��	�! at
� processors�
In general� as the number of processors increases� local work can be performed concurrently� and
thus the performance of the STM improves� Beyond a certain number of processors� the potential
for parallelism declines� causing a growing number of k�word Compare�Swap con
icts� and the
throughput degrades� This is the reason for the relatively low throughput of the STM method for
small numbers of processors and the concave form of STM graphs� As one can see� when s � � on
the bus or when s � �� � on Alewife architecture� the STM method outperforms even the queue�lock
method�

A priority queue is a data structure that does not allow concurrency� and as the number of
processors increases� the number of locations accessed increases too� Still� the number of accessed
locations is smaller than the size of the object� Therefore� the STM performs better than Herlihy�s
method in most concurrency level�

Figure 	� contains the doubly linked queue results� There is more concurrency in accessing the
object than in the counter benchmark� though it is limited� at most two processes may concurrently
update the queue� Herlihy�s method performs poorly because the penalty paid for a failed update
grows linearly with queue size� usually twice the number of the processes� In the STM method�
the low granularity of the two�word Compare�Swap transactions implies that the price of a failure
remains constant in all concurrency levels� though local work is still higher than the Test�and�Test�
and�Set�

��� A comparison of non�blocking methods only

Every theoretical method can be improved in many ways when implemented in practice� In order
to get a fair comparison between the non�blocking methods one should use them in their purest
form� Therefore� we compare the performance of all the non�blocking methods without backo� �in
all the methods� and without the non�redundant�helping policy �in STM�� We also compare the
cooperative k�word Compare�Swap with STM for a speci�c implementation which explicitly needs
such a software supported operation� We chose Israeli and Rappoport�s algorithm for a concurrent
priority queue ����� since it is based on recursive helping� Therefore� whenever a process during
the execution of a k�word Compare�Swap helps another remote disjoint process� it should give an
advantage to Israeli and Rappoport method� Our implementation is slightly di�erent since it uses

��

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

��P
��� ��P
��� ��P
��� �Two locations� ��P
��� ��P
��� ��P
���

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

��P
��� ��P
��� ��P
��� �Four locations� ��P
��� ��P
��� ��P
���

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

��P
��� ��P
��� ��P
�� �Six locations� ��P
��� ��P
��� ��P
���

Figure �� Resource Allocation Benchmark

��

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

Figure �� Priority Queue Benchmark

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method
QUEUE spin lock

Figure 	�� Doubly Linked Queue Benchmark

a ��word Compare�Swap operation instead of a ��word Store�Conditional operation ��

We ran the same benchmark as for the regular priority queue� The results of the concurrent
priority queue benchmark are given in Figure 	�� In spite of the advantage that the inherent
structure of the algorithm should give to Israeli and Rappoport method� STM provides the highest
throughput� As in the counter and the sequential priority queue benchmarks� the reason for this is

�In fact� using ��word Compare
Swap simpli�es the implementation since it avoids freezing ���� nodes

�

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method

Figure 		� non�blocking comparison� Counting Benchmark

the high number of failing k�word Compare�Swap operations in Israeli and Rappoport method�
up to ��� times the number of successful k�word Compare�Swap � Every theoretical method can
be improved in many ways when implemented in practice�

In general� the result we got were that STM method outperforms Barnes method in all circum�
stances and� except from the counter benchmark STM outperforms Herlihy�s method too� The
results of the counter benchmark are shown in Figure 		� As in the previous tests Herlihy�s method
performs better than caching methods on both architectures� In Bus architecture Herlihy�s method
is from ���	 times faster than STM on 	� processors� down to 	��� time faster than STM on
�
processors� On Alewife architecture� Herlihy�s method is from ���� times faster than STM on 	�
processors� down to ���� times faster than STM on
� processors� STM is from 	��� faster than
Israeli and Rappoport method on Bus architecture up to ���� time faster than Israeli and Rap�
poport method on
� processors� On Alewife architecture� STM is from 	��� times up to ��
 time
faster than Israeli and Rappoport method� This degradation in the performance of Israeli and
Rappoport method is due to the high number of failing k�word Compare�Swap � up to ��� �"�
times the number of successful k�word Compare�Swap while in STM the number of failing k�word
Compare�Swap is at most ���
 times the number of successful k�word Compare�Swap � Most of
the transactions in STM terminate ad failing transactions and are not helped since they failed in
acquiring the �rst �and last� location needed� In the priority queue benchmark� on a simulated bus
architecture� Herlihy�s method is from ���
 times faster than STM� down to ��� times slower than
STM� On the Alewife architecture� Herlihy�s method has a throughput that is ���	 times higher
than STM throughput� down to 	�	 times lower than in the STM method� The results of the doubly
linked queue are in Figure 	�� On the Bus architecture� our STM method is up to ���� faster than

��

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method

Figure 	�� non�blocking comparison� Priority Queue Benchmark

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method

Figure 	�� non�blocking comparison� Doubly Linked Queue Benchmark

Israeli and Rappoport method and up to �� times faster than Herlihy�s method� When simulating
Alewife architecture� our method had a 	��� times higher throughput than Herlihy�s method and
���� higher throughput than Israeli and Rappoport method� In the resource allocation benchmark
too �Figure 	�� STM outperforms other methods� On Bus simulations� STM is between 	�	�	���
times faster than Israeli and Rappoport method on 	� processors� and 	�
 times faster on
� proces�
sors� On Alewife simulations� STM is 	����	��� times faster than Israeli and Rappoport method on
	� processors up to 	�
	�	�
� time faster on
� processors� Note� that in this benchmark� the factor

��

that e�ect Israeli and Rappoport performance is not the number of failing k�word Compare�Swaps�
which is relatively low� but more the remote redundant help that processors execute�

The results of the concurrent priority queue benchmark are given in Figure 	�� Though the
advantage that the inherent structure of the algorithm should give to Isreali and Rappoport method�
STM give here also the highest throughput� As in the counter and the sequential priority queue
benchmarks� the reason for this� is the high number of failing k�word Compare�Swap operations in
Israeli and Rappoport method� up to ��� times the number of successful k�word Compare�Swaps�

� Conclusions

Our paper introduces a non�blocking software version of Herlihy and Moss� transactional memory
approach� There are many possible directions in which it can be extended� One issue is to design
better non�blocking translation engines� possibly by limiting STM�s expressability to a smaller set
of implementable transactions� Another interesting question is what performance guarantees one
can get with a less robust STM software package� possibly programmed on the machines� message
passing level� Finally� the ability to add an STM component to existing software based virtual
shared memory systems� raises theoretical questions on the computational power of a programming
abstraction based on having a variety of �operations� that can be applied to memory locations� vs�
the traditional approach of thinking of synchronization operations as �objects��

Acknowledgments

We wish to thank Greg Barnes and Maurice Herlihy for their many helpful comments�

References

�	� A� Agarwal et al� The MIT Alewife Machine� A Large�Scale Distributed�Memory Multiproces�
sor� In Proceedings of Workshop on Scalable Shared Memory Multiprocessors� Kluwer Academic
Publishers� 	��	� An extended version of this paper has been submitted for publication� and
appears as MIT�LCS Memo TM����� 	��	�

��� R� J� Anderson� Primitives for Asynchronous List Compression� Proceeding of the �th ACM
Symposium on Parallel Algorithms and Architectures� pages 	������� 	����

��

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

Herlihy’s method

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Herlihy’s method

� �Two locations� �

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

� �Four locations� �

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

� �Six locations� �

Figure 	�� non�blocking comparison� Resource Allocation Benchmark
��

50

100

150

200

250

300

350

400

450

500

550

600

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Coordinated method

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Coordinated method

Figure 	�� non�blocking comparison� Israeli � Rappoport Priority Queue

��� T�E� Anderson� The performance of spin lock alternatives for shared memory multiprocessors�
In IEEE Transaction on Parallel and Distributed Systems� 	�	��
�	
� January 	����

��� J� Alemany� E�W� Felten Performance Issues in Non�Blocking Synchronization on Shared�
Memory Multiprocessors� In Proceedings of ��th ACM Symposium on Principles of Distributed
Computation� Pages ������� August 	����

��� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting Networks� Journal of the ACM� Vol� �	�
No� � �September 	����� pp� 	����	����

�
� G� Barnes A Method for Implementing Lock�Free Shared Data Structures In Proceedings of
the �th ACM Symposium on Parallel Algorithms and Architectures 	����

��� B�N Bershad� Practical consideration for lock�free concurrent objects� Technical Report� CMU�
CS��	�	��� Carnegie Mellon University� September 	��	�

��� E�A� Brewer C�N� Dellarocas� A� Colbrook� and W� E� Weihl� Proteus� A High�Performance
Parallel�Architecture Simulator� MIT�LCS�TR��	
� September 	����

��� E�A� Brewer C�N� Dellarocas� Proteus� User Documentation�

�	�� K� Chandy and J� Misra� The Drinking Philosophers Problem� In ACM Transaction on
Programming Languages and Systems�
����
���
�
� October 	����

�		� T�H� Cormen� C�E� Leiserson and R�L� Rivest� Introduction to algorithms� MIT Press�

�	

�	�� David Chaiken� Cache Coherence Protocols for Large�Scale Multiprocessors� S�M� thesis�
Massachusetts Institute of Technology� Laboratory for Computer Science Technical Report
MIT�LCS�TR����� September 	����

�	�� DEC� Alpha system reference manual�

�	�� M� Herlihy and J�M� Wing� Linearizability� A correctness condition for concurrent objects� In
ACM Transaction on Programming Languages and Systems� 	����� pages �
������ July 	����

�	�� M� Herlihy� Wait�Free Synchronization� In ACM Transaction on Programming Languages and
Systems� 	��	�� pages 	���	��� January 	��	�

�	
� M� Herlihy� A methodology for implementing highly concurrent data objects� ACM Transac�
tions on Programming Languages and Systems� 	����� �������� November 	����

�	�� M� Herlihy and J�E B� Moss� Transactional Memory� Architectural Support for Lock�Free
Data Structures� In ��th Annual Symposium on Computer Architecture� pages �������� May
	����

�	�� J� R� Goodman� Using cache�memory to reduce processor�memory tra�c� In Proceeding of the
��th International Symposium on Computer Architectures� 	��	�� pages 	���	�	� June 	����

�	�� IBM� Power PC� Reference manual�

���� A� Israeli and L� Rappoport� E�cient Wait Free Implementation of a Concurrent Priority
Queue� In WDAG ����
 Lecture Notes in Computer Science ���� Springer Verlag� pages �����

��	� A� Israeli and L� Rappoport� Disjoint�Access�Parallel Implementations of Strong Shared Mem�
ory Proc
 of the ��th ACM Symposium on Principles of Distributed Computing pages �����
��

���� A� LaMarca� A Performance Evaluation of Lock�Free Synchronization Protocols� Proc
 of the
��th ACM Symposium on Principles of Distributed Computing� pages ��������

���� N� Lynch and M� Tuttle� Hierachical Correctness Proofs for Distributed Algorithm� In Pro�
ceedings of
th ACM Symposium on Principles of Distributed Computation� Pages �������
August 	���� Full version available as MIT Technical Report MIT�LCS�TR�����

���� H� Massalin and C� Pu� A lock�free multiprocessor OS kernel� Technical Report CUCS������	�
Columbia University� Mars 	��	�

���� J�M� Mellor�Crummey and M�L� Scott Synchronization without Contention� In Proceedings
of the �th International Conference on Architecture Support for Programming Languages and
Operating Systems� April 	��	�

��

��
� L� Rudolph� M� Slivkin� and E� Upfal� A Simple Load Balancing Scheme for Task Allocation
in Parallel Machines� In Proceedings of the �rd ACM Symposium on Parallel Algorithms and
Architectures� pages �������� July 	��	�

���� N� Shavit and A� Zemach� Di�racting Trees� In Proceedings of the Annual Symposium on
Parallel Algorithms and Architectures �SPAA	� June 	����

���� J� Turek D� Shasha and S� Prakash� Locking without blocking� Making Lock Based Concurrent
Data Structure Algorithms Non�blocking� In Proceedings of the ���� Principle of Database
Systems pages ��������

���� D� Touitou� Lock�Free Programming� A Thesis Proposal� Tel Aviv University April 	����

��

