
A Wait�Free Sorting Algorithm

Nir Shavit � Eli Upfal y Asaph Zemach z

May ��� ����

Abstract

Sorting is one of a set of fundamental problems in computer science� In this
paper we present the �rst wait�free algorithm for sorting an input array of size
N using P � N processors to achieve optimal running time� We show two vari�
ants of the algorithm� one deterministic and one randomized and prove that� with
high probability� the latter su�ers no more than O�

p
P � contention when run syn�

chronously� Known sorting algorithms� when made wait�free through previously
established transformation techniques� have complexity O�log�N�� The algorithm
we present here� when run in the CRCW PRAM model� executes with high prob�
ability in optimal O�logN� time when P 	 N � and O�N logN�P � otherwise� The
wait�free property guarantees that the sort will complete despite any delays or fail�
ures incurred by the processors� This is a very desirable property from an operating
systems point of view� since it allows oblivious thread scheduling as well as thread
creation and deletion� without fear of losing the algorithm
s correctness�

� Introduction

Sorting is a basic algorithmic building block and has attracted the attention of many
researchers� In this paper� we present a wait�free algorithm for sorting an array of N
elements in the CRCW PRAM model� With high probability the algorithm runs in
optimal time and has maximum memory contention of O�

p
P �� Herlihy ��	
 de�nes a

wait�free data structure as one on which any operation by any processor is guaranteed to
complete within a bounded number of steps� regardless of the actions or possible failure
of other processors� Contention is the empirically observed phenomenon ��� �
 that
when several processors attempt to access the same memory location �e�g� a variable�
at the same time� a delay occurs� since the hardware can only handle a limited number
of simultaneous requests� Keeping contention low is therefore a high priority in terms
of program performance�

Wait�free algorithms have the appealing property that correct completion of the algo�
rithm is assured despite any problematic scheduling imposed by the system� Greenwald
and Cheriton ���
 note that such algorithms are well suited for implementing operat�
ing system kernels since they free the operating system from many book�keeping tasks�
Consider the case of sorting a large data set in the background of other ongoing com�
putations� Using the wait�free algorithm given here one can begin the sort by spawning
a thread for each idle processor in the machine� If during the execution a processor is
needed elsewhere� one can reap the thread associated with it without fear of leaving the
program�s internal data structures in an inconsistent state� On the other hand if other

�MIT and Tel�Aviv University� Contact Author� shanir�theory�lcs�mit�edu� Work supported by

the following grants� ARPA� F����	��
�C����	� AFOSR�ONR� F�������������� NSF� ���
���CCR

and CCR��
����	�
yComputer Science Department� Brown University�
zTera Computer Company and Tel�Aviv University� Supported by an Eshkol Scholarship from the

Israeli Ministry of Science� Part of this work was done while the author was at MIT�

processors become free� one can spawn more threads to speed up the sorting process�
An interesting special case is when one of the sorting algorithm�s own threads must wait
for some time�consuming operation such as a page fault� One can immediately spawn a
new sorting thread for the same processor and continue working on available elements
of the array� soaking up otherwise wasted cycles� When the page fault is handled� any
such thread can summarily be destroy� From the point of view of the operating system�
wait�free algorithms are desirable since they allow oblivious allocation of processors to
threads� creation of new threads� and destruction of redundant threads as needed� this
leads to better utilization of system resources�

��� Related work

The number of articles dealing with sorting in a parallel environment is too large to allow
mentioning them all� so we will restrict discussion to those that are directly related to
our work� The sorting technique we use is based on Hoare�s serial Quicksort ���
 of which
there have been a number of parallel implementations� For the CRCW PRAM� there
is the algorithm of Martel and Gus�eld ���
� with an O�logN � running time that may
require as much as O�N�� memory� This is improved upon by Chlebus and Vrto �	

to achieve O�logN � time and O�N � space using a method that is very similar to the
one we use here� For EREW PRAMs� Zhang and Rao ���
 present an algorithm with a
running time of O��logP � N�P � logN �� This was later improved upon by Brown and
Xiong ��
 to achieve O��N�P � logN � for the case where P � N� logN � All of these
algorithms work in the PRAM model� making strong use of processor synchronization�
and are not wait�free�

In ��	
 Herlihy also gave a general method for the construction of wait�free ob�
jects ���
� Unfortunately� the algorithm resulting from implementing a �sorting�object�
using this method �or the improvements of Afek et al� on it �
� is ine�cient� Proces�
sors wishing to update the shared object will have to �rst post the changes they are
about to make� If they fail before these changes are completed another processor can
complete them� ensuring the object remains consistent� This can be detrimental to par�
allelism as often only one process performs all pending work� For example� using the
methods of �
� the complexity of a wait�free operation is O�kf log f�� where k is the
number of processors accessing the object concurrently� and f is the complexity of the
update operation� Using any straight�forward sorting algorithm� we can expect k � P
and O�PN logN � cost per operation� which will not yield good performance� Similar
objections apply to Shavit and Touitou�s software implementation ���
 of Herlihy and
Moss� transactional shared memory ���
� while proposed hardware implementations are
limited in size ��
� Some special purpose wait�free data structures have also been intro�
duced� of which the most suitable for sorting are heaps and priority queues� Both data
structures use a scheme for announcing pending operations similar to the one proposed
by Herlihy� and tend to perform at least part of each pending operation in a serial man�
ner� For Barnes� ��
 wait�free heap the complexity is O�Mk logN � for performing M
operations by k threads on a heap with N elements� Israeli and Rappoport�s ��
 pri�
ority queue� besides requiring a non�standard two word Compare�Swap operation also
employs a �helping� method which limits concurrency �this is discussed in ���
�� In any
event� simply providing a wait�free data structure which can order its inputs does not
immediately imply a wait�free solution to the sorting problem� One must still allocate
processors to values� handle duplicate insertions and deletions of the same value� and
make sure values aren�t lost even if the processor assigned to them fails�

Another possible approach comes from research into fault tolerant systems� For a
�xed sized array� an algorithm which sorts in a failure model which allows processors to
fail� and later possibly revive and proceed �in an undetectable manner� would also sort
under wait�free assumptions� It is possible to convert any PRAM algorithm to work in
this failure model� However such transformations are expensive� One might start with

�

an O�logN � sorting algorithm ��� � �
 and apply a transformation technique which
simulates a reliable PRAM on a faulty one� This idea was �rst introduced by Kanellakis
and Shvartsman in ���
� and later improved upon by Kedem et al� ���
� Both of these
results are for the fail�stop model� In the general asynchronous model the results of
Anderson and Woll ��
 and Buss et al� ��
 apply� and would mean an increase in the
complexity of the sort to at least O�log�N �� and cost a multiplicative logN factor in
memory� The method of Martel et al� ���
 would also work� and would increase running
time by only a logN factor� However� it supports only limited asynchrony through the
use of the non�standard FTS instruction�� The above simulations would not be e�cient�
as was noticed by ��
� since they require synchronization at the end of every PRAM step�

A previous result in fault�tolerant sorting is given by Yen et al� ���
� It employs
the Batcher sorting network� giving a complexity of O�log�N �� This result supports
only the fail�stop failure model and requires non�standard hardware components� It is
possible to transform this algorithm into a wait�free sorting algorithm with a complexity
of O�log�N �� but it would require an O�log�N � factor memory increase� There has also
been much study of fault tolerant sorting networks� see for example the articles by Assaf
and Upfal �	
� Ma ���
� and Sun and Gecsei ���
� These papers deal with networks whose
comparator�gates may be faulty but whose connections do not fail� This is akin to a
computation model where processors do not fail� but may sometimes return the wrong
result for a comparison�

Related work has also been done on asynchronous computing models� Cole and Za�
jicek ��
 proposed the APRAM model for designing parallel algorithms to work in an
asynchronous setting� Zhou et al� ���
 present a sorting algorithm for asynchronous ma�
chines that is not wait�free� Neither is the recent sorting algorithm of Gibbons et al� ���

for the QRQW asynchronous PRAM� This sample�sort based algorithm is somewhat
similar to the one we use here in that it uses binary search trees built by a sampling
phase� where we construct binary pivot trees� The main di�erences being that we use
O�N � space as opposed to their O�N logN �� and that our algorithm is guaranteed to
run to completion once it is started� whereas theirs might require a restart phase if
failure is detected during the run� All of these models avoid making any timing as�
sumptions� but they do not allow processor failures� and hence do not produce wait�free
algorithms� These results indicate the need to develop an e�cient sorting algorithm
designed speci�cally for the wait�free case�

��� Contention

Contention is a phenomenon observed in multiprocessors ��� ��
 that occurs when sev�
eral processors attempt to access the same location in memory at the same time� Since
current hardware can only service a constant number memory access operations per
cycle some processors might have their access operations deferred to later cycles� forc�
ing them to wait� On real machines� contention can account for a large portion of a
program�s run time ��
 and ignoring this issue can lead the creation of algorithms that
appear sound but perform poorly� Dwork et al� present the �rst formal complexity
model for contention ���
� In their model� if two or more processors attempt to access
the same memory location concurrently� one will succeed and the others will stall� They
di�erentiate between the contention of an algorithm� de�ned as total number of stalls
which can be induced by an adversary scheduler divided by the number of processors�
and the variable�contention� de�ned as the worst case number of concurrent accesses to
any single variable� They further prove that an adversary scheduler can always cause
the variable�contention of a wait�free algorithm running on P processors to be O�P �� so
we cannot use this measure directly� Much of the subsequent work using formal con�
tention models has dealt with amortized contention of counting networks ��� �� �
 and

�The FTS Fetch�Test�Store instruction is a stronger version of Read�Modify�Write which can read

one location and� based on the value read� modify a di�erent location�

�

is based on the fact that networks have a regular� well de�ned structure� Since there is
no bound on the number of tokens that may pass through a network� measuring amor�
tized contention is a natural choice much in the same way that measuring the amortized
complexity of operations on serial data structures�

We use a similar de�nition which we feel is more suited to an algorithm with well
de�ned start and �nish� We de�ne contention as the maximum number of concurrent
accesses to any single variable that occur with non�negligible probability when the algo�
rithm is run on a CRCW PRAM� This is a natural measure since it makes no assumptions
about how the machine handles concurrent accesses� it simply asks �How many are there
likely to be��

��� Our algorithm

Our parallel Quicksort algorithm is the �rst wait�free algorithm for the sorting problem
to achieve optimal running time of O�N logN�P � or O�logN � in the case where P � N �
These running times are achieved with high probability under the assumption that the
execution is �normal�� that is� all processors participate in the algorithm and incur no
delays� This form of run time analysis was proposed by Attiya et al� ��
� as a way of
capturing the overhead of wait�free algorithms� The idea being that since the common
basis for comparison is the PRAM� which is faultless and synchronous� we should apply
the same standard to other algorithms as a way of measuring any extra work performed
to achieve wait�freedom�

We are able to achieve optimal running time by not using a standard PRAM sorting
algorithm which generally requires O�logN � synchronized steps� As was previously
noted� the cost of simulating O�logN � PRAM steps in a wait�free manner is O�log�N ��
In contrast� our algorithm consists of three phases� each of which requires logarithmic
time� Since wait�freedom is inherently incorporated into the algorithm� the logN cost
of tracking completed work can be made additive �as opposed to multiplicative when
using simulation techniques��

After presenting a simple� deterministic version of the algorithm we turn our at�
tention to the issue of contention and show how randomization can be used to reduce
contention� We �rst present a simple low contention work allocation scheme that when
combined with low contention winner selection and approximate write�all ���
 �actually�
write�most� yields a randomized wait�free sorting algorithm with contention O�

p
P � with

high probability�

� A Wait Free Sorting Algorithm

One of the challenges of writing wait�free code for manipulating a number of objects
concurrently is to make sure that all objects are dealt with� Since processors may
fail� one cannot assume that just because work has been assigned to a processor � it
will indeed complete that job� This situation is modeled by the write�all problem of
Kanellakis and Shvartsman ���
� given an array B of N elements and P fault�prone
processors� devise an algorithm that �lls every element of B with ��� A standard
solution is to assign work to processors using binary trees�

��� Work assignment trees

Work Assignment Trees �WATs� are binary trees that store jobs in the leaves and use
the inner nodes to track progress in subtrees rooted at those nodes� These structures
have been used extensively in the literature �see for example ��� �� ��� ��
�� Our
implementation in Figure follows Algorithm X of Buss et al� in ��
� The second
operand of the routine next element� i� will usually be the leaf of the WAT whose work
the calling processor has just completed� The routine climbs the tree from i until it

�

� function next�element�tree� WAT�N�� i� integer� �

returns integer

� begin

� tree	i
 �� DONE

� repeat

 s �� sibling�i�

� p �� parent�i�

� if tree	s
 � DONE then

� tree	p
 �� DONE

� i �� p

�� if p � ROOT return DONE

�� endif

�� until tree	s
 �� DONE

�� i � s

�� while not leaf�i�

� if tree	 left�child�i�
 �� DONE then

�� i �� left�child�i�

�� else if tree	 right�child�i�
 �� DONE then

�� i �� right�child�i�

�� else

�� return i

�� endif

�� endwhile

�� return i

�� end

Figure � Work�Assignment�Tree algorithm

�nds a node for whom one child is not yet marked DONE� During the climb at a given
node one can determine the status of its parent by examining the status of its sibling�
This is because the current node �in fact� the entire current subtree� is known to be
marked DONE� If the routine reaches the root and marks it DONE it means that all the
leaves have been handled and the special value DONE is returned as an indicator� If a
sibling� s� not marked DONE is found� the routine descends the tree and normally returns
an un�DONE leaf the tree rooted at s� A special case occurs if during the descent the
processor discovers that the information at a node is outdated i�e� even though both
children are DONE the node was not yet marked as completed� In this case the processor
stops its descent and returns that inner node� The routine could have been written to
return to the ascent phase to search for a di�erent leaf� but we found this version makes
the proofs simpler�

Lemma ��� The routine next element is wait�free and completes in O�logN � time�

Proof� The routine contains two loops� the one in line ��� climbs the tree at each
iteration� and so cannot climb more than logN steps before stopping� Similarly the
second loop� in lines ����� descends the tree at each iteration�

Corollary ��� Let S be set of all calls to next element which have completed before
a given call at time t� Let S� denote the set of all initial starting nodes �the second
operand� of the calls in S� The call at time t will return a node of the tree not in S�� or
DONE if S� contains all of the tree�s nodes�

Using Lemma �� and its corollary it is easy to see that the algorithm of Figure �
is wait�free� provided the function func�� is wait�free� If we replace the call to func��

�

procedure wait�free�algorithm

shared variables

work� WAT�N�

processor private variables

i� integer

begin

i �� leaf number N � PID � P � �

repeat

if leaf�i� func�i�

i �� next�element�work� i�

until i � DONE

end

Figure �� A skeleton wait free algorithm

with the operation B�i���� for some array B of size N� we get a solution for the write�all
problem�

Lemma ��� Let P � N � and assume the routine func�� can take no more than K
time steps to complete� Then the skeleton wait�free algorithm of Figure � when run on
a faultless CRCW PRAM completes in O�K � logN � time steps�

Proof� Initially each processor is assigned a di�erent leaf of the WAT� within K time
steps all processors will complete working on their leaf� and all that remains to show is
that it takes logN additional steps for this information to propagate to every node of
the tree� When the last processor completes the leaf it was assigned� all nodes at depth
logN will be marked DONE� though there may be processors who completed their own
leaf early and are still working on other leaves� Within at most K additional time steps
all processors will be in the WAT at depth at most logN and will never be assigned a
leaf again� Let S denote the set of processors at depth logN at the �K�th time step�
Each processor in S examines its node�s sibling� notices that it is DONE� ascends to depth
logN�� and sets the node there to DONE� For every node at depth logN� the following
is true� either there is a processor who has just set its value to DONE� or a processor has
passed through that node previously and set its value to DONE� thus all processors at
level logN � rise to level logN � � in the next time step� The same logic continues to
hold� and at the �K � i�th time step� all processors at level logN � i� raise to level
logN � i� Within logN time steps all processor reach the tree root and leave the tree�

��� The sorting algorithm

We now present in detail our wait�free algorithm for sorting an array A of N elements
using P processors� The algorithm is divided into three phases� tree building� tree
summation and element shu�ing� In the �rst phase we construct a sorted binary tree
whose nodes contain the records of A� For this purpose we attach two child pointers to
each record of A to point to subtrees of smaller and larger nodes� Initially� all pointers
have the distinct value EMPTY� The �rst phase follows the scheme outlined in Figure �
with the routine build tree of Figure � replacing the call to func� First we note the fact
that A�
� being the �rst pivot need not be inserted into the tree �line ��� A processor p
which is inserting record i �rst compares its key to the key of the root element� setting
side to the result of the comparison� We assume that no two keys are the same� which
can easily be accomplished by using an element�s index to break ties� Now p tries to
establish i as the appropriate child of the root node �line ��� After the call either p or
some other processor will have managed to install its records as the child of the root�

�

const

BIG � �

SMALL � �

type Element is

key� any�type

child� array 	BIG� SMALL
 of integer

initialized to EMPTY

size� integer initialized to �

place� integer initialized to �

end

A� array 	���N
 of Element

Figure �� Data structure used for sorting

� procedure build�tree�i� integer�

� processor private variables

� parent�side� integer

� begin

 if i � � return

� parent �� �

� while true

� if A	parent
�key � A	i
�key then

� side �� SMALL

�� else

�� side �� BIG

�� endif

�� compare�and�swap�A	parent
�child	side
�EMPTY� i�

�� if A	parent
�child	side
 � i then

� return

�� else

�� parent �� A	parent
�child	side

�� endif

�� endwhile

�� end

Figure �� Core of phase of the sort� building the Quicksort tree

Since the compare and swap operation will succeed only if the child is EMPTY� p can
re�read the child�s value after the operation to check success� Successful installation of
i �either by p or by some other processor simultaneously working on i� terminates the
routine� If i was not installed� it follows that some other processor� q preceded p in
installing its element� j� as the root�s child� So p must now try to install i as a child
of j� It does so by updating its local parent pointer to j� and going through the loop
again� Eventually� p will install i somewhere in the tree� and go on to the next element�

We make the following observations about the procedure build tree�

� All processors begin the routine with the same value for parent�

�� For a given pair of values of i and parent� the comparison in line � always yields
the same results�

�� For a given pair of values of parent and side the read operation in line � always
returns the same value� which is never EMPTY�

	

�� The sequence of values of the variable parent determines a path along the nodes of
the Quicksort tree� As a direct consequence of facts ��� we get that two processors
with the same value for i would get the same value of parent in each iteration of
the loop in lines 	��� and therefore follow the same path down the tree�

�� From fact � follows that the value of i determines a unique path down the tree
into which insertion attempts �line �� are made� so the same value cannot be suc�
cessfully inserted twice into the tree� Which also means that� for a given processor
and value of i� each iteration of the loop in lines 	�� is done with a di�erent value
of parent�

�� Each time the compare and swap in line � succeeds� it is with a di�erent value for
i� This follows directly from the fact that processors working on the same element
follow the same path down the tree�

Lemma ��� The loop in lines 	
�� will be performed no more than N � times�

Proof� The proof is by the pigeon�hole principle� At each iteration a processor at�
tempts the compare and swap on a di�erent location �fact ��� There are N possible
locations� and only N	� possible di�erent values of i �no processor is assigned i����
Since no value can be encountered twice �facts � and ��� eventually either the compare	

and swap succeeds� or a processor encounters its own value in the tree and exits�

We interpret Lemma ��� to mean that the routine build tree is wait�free and re�
quires no more than O�N � operations to run� This along with Lemma ��� proves that
the entire �rst phase of the algorithm is wait�free and can be completed in O�N �logN �
N �� � O�N�� operations� We now show that it builds the pivot tree correctly�

Lemma ��� When the rst processor completes the rst phase of the algorithm the tree
dened by the child pointers will be a sorted binary tree containing all the records of A�

Proof� A node�s child pointers� once set� are never changed� This assures the com�
parison in line � is consistent for all processors� Since key values don�t change during
the course of the algorithm and all processors start by comparing their key to the same
value� the resulting tree is correctly sorted�

function tree�sum�i� integer� d� integer� returns integer

processor private variables

sum� integer

begin

if i � EMPTY then

return �

else if A	i
�size � � then

return A	i
�size

else

side � d�th bit of PID

sum �� tree�sum� A	i
�child	side
 � d���

sum �� sum � tree�sum� A	i
�child	� � side
 � d�� �

endif

A	i
�size � sum��

return sum��

endif

Figure �� Phase � of the sort� summing the subtrees

�

procedure find�place�i� integer� sub� integer� d� integer�

processor private variables

s� integer

begin

if i � EMPTY or A	i
�place � � then

return

endif

if A	i
�child	SMALL
 �� EMPTY then

s �� A	 A	i
�child	SMALL

�size

else

s �� �

endif

A	i
�place �� s � sub � �

if d�th bit of PID �� SMALL then

find�place� A	i
�child	SMALL
� sub� d���

find�place� A	i
�child	BIG
� sub � s � �� d���

else

find�place� A	i
�child	BIG
� sub � s � �� d���

find�place� A	i
�child	SMALL
� sub� d���

endif

end

Figure �� Phase � of the sort� putting the elements in their right place

Any processor that completes the �rst phase immediately goes on to the second
phase� In the second phase of the algorithm we calculate the size of the subtree rooted
at each element� Since our binary trees are not complete we must count the elements
directly� The algorithm follows the standard tree summation method except that it uses
each processor�s unique processor ID �assumed to be in the range �� � � � � P�� to spread
the processors around the tree� Code for this phase appears in Figure ��

Any processor which completes the second phase advances without delay to the
third phase� Using the results from the second phase� calculating the location of each
element in the sorted array is now a simple matter� We use the following rule in the
routine find place� Let j be some element whose left and right children� l�j� and r�j�
correspond to the larger and smaller child respectively� We denote by P �j� j�s rank
among the elements of A after sorting� and by S�j� the size of the subtree rooted at j�
Then P �l�j�� � P �j� � S�r�l�j��� � and P �r�j�� � P �j� � S�l�r�j���� The routine
find place�� is initially called with i �
� sub �
� and d �
�

Since tree based algorithms have been dealt with extensively in the literature� we
state the following without proof �see for example Kanellakis and Shvartsman ��
��

Lemma ��	 The second and third phase of the algorithm are both wait�free and require
no more than O�N � operations to complete�

��� Run�time analysis

We analyze the running time of the algorithm in the synchronized case� where it is
essentially running on a CRCW PRAM�

Lemma ��
 Let K be a bound on the running time of build tree� The rst phase of
the algorithm� when run on a faultless CRCW PRAM has running time of O�N �logN �
K��P ��

Proof� Our work allocation scheme initially assigns each processor a leaf of of the WAT
spaced N�P leaves apart� Processors are assigned work in a localized manner� meaning

�

logP

P subtrees

log N - logP

Figure 	� Division of subtrees between processors� after descending logP steps from the
root every processor is in a sense assigned its own subtree of depth logN � logP �

that if T� and T� are two disjoint subtrees of the WAT� and processor p is currently
assigned a leaf of T�� p will complete every leaf of T� �and mark all its nodes DONE� before
being assigned any leaf of T�� We can therefore view processors as initially being assigned
subtrees of depth D � logN � logP rather than leaves �see Figure 	�� Processors
complete working on their subtrees in time O��D�D � K�� � O�N�P �logN � K��� We
can therefore view running the �rst phase of the algorithm as a special case of Lemma ���
where the running time of func is O�N�P �logN �K�� and there are P processors� Total
running time will then be O�N�P �logN�K��log P � � O�N�P �logN �K�� for P � N �

The bound K on the running time of build tree corresponds to the depth of the
Quicksort tree being built� Therefore� second and third phases require traversing a
binary tree whose depth is K� A processor p in the second �summation� phase� operating
on a node n at depth d� checks �rst whether the node is a leaf� and if so it marks its
size as �� and ascends to the node�s parent� Otherwise� it visits both of n�s children�
calculates each of their sizes� and sets n�s size accordingly� The order in which p visits
n�s children corresponds to the d�th bit of p�s processor ID �PID�� To avoid duplicating
other processor�s work� p will not descend to children of nodes whose size is known� In
this phase information propagates bottom�up� only when the size of a node�s children
is known can the size of the node be determined� Let us assume this phase runs on a
complete binary tree of K levels� Initially� all processors start at the root� odd numbered
ones will then descend to the root�s SMALL child� while even numbered ones will go to
the BIG child� This process continues until all processors are at depth logP � at which
point each one is alone at the root of a tree of depth K � logP � Processors �nish
summing their subtrees in unison and begin ascending the tree� Since the algorithm
avoids descending into trees which have already been summed� all processors now ascend
to the root simultaneously� The total running time is therefore logP��K�logP �logP �
O�logP �M�P � where M � �K � N � If the binary tree of the depth K is not complete�
the algorithm will not take longer to run� the processor �or set of processors� which
�nishes its tree last will move monotonically up as soon as its tree is complete since all
nodes it encounters can be shown to be complete� The proof is essentially the same as
that of Lemma ��	� The algorithm�s third phase is analogous to the second� and has the
same running time�

Lemma ��� Assuming that the elements in the initial array are in random order� the
wait�free sorting algorithm� when run on a faultless CRCW PRAM has a running time
of O�N logN�P � with high probability�

�

Proof� The sum of the running times of the �rst� second and third phases calculated
above is� O�N�P �logN�K�� for a Quicksort tree of depth K� If the elements of A are in
random order� the Quicksort tree can be shown to have depth O�logN � with high prob�
ability �see for example �	
�� The resulting total running time is then O�N�P logN ��

The assumption that elements in the initial array are in random order is needed only
for the �rst phase� We can eliminate this assumption by employing the following work
allocation strategy in the �rst phase of the algorithm� Instead of calling undone element�
a processor will pick one of the elements of A uniformly at random� If the element is
not DONE the processor will insert it into the tree� and propagate its DONE value up
the tree via a sequence of operations like that of lines ��� of next element� This
continues until a processor has randomly chosen DONE elements logN times in a row�
From this stage elements are chosen using next element� This change guarantees that
with high probability all nodes in the �rst logN � log logN levels of the Quicksort
tree are chosen uniformly at random� Thus� with high probability all nodes at level
logN � log logN are roots of a subtree with O�logN � nodes� and the total sorting time
remains O�N�P logN ��

� Dealing with Contention

The algorithm presented in the previous section su�ers O�P � contention� for example� at
the very start when all processors attempt to install the element they are working on at
the root� Once the tree contains O�P � levels� the random nature of element selection will
reduce the expected contention at each element to O��� If P � N � initial contention
is less of an issue� even under QRQW ���
 assumptions since the running time of the
algorithm will be dominated by N � As N approaches P � contention begins to play a
greater role in determining running time� In this section we try to overcome this to some
extent by presenting a randomized method for lowering contention to O�

p
P ��

��� Low contention WATs

We begin by introducing low contention work assignment trees �LC�WATs�� which solve
the write�all problem in time O�logP � with O�logP� log logP � contention with high
probability�

The code in Figure � follows the work allocation scheme of Martel et al� ��	
� but has
been modi�ed for low contention� In the algorithm of ��	
 processors must constantly
check the root to �nd out whether all the work of the tree has been completed� This
causes the root to be a source of O�P � contention� We modify the algorithm by having
the processor that would have set the root to DONE set it instead to ALLDONE� This
ALLDONE value propagates down the tree� till in time O�logP � with high probability�
most of the tree is marked ALLDONE� We thus trade an additive log factor in time for low
contention completion discovery�

Lemma ��� Assuming O�� work per tree leaf� Under synchronous execution assump�
tions with high probability the LC�WAT algorithm given above terminates in O�logP �
time� with maximum contention O�logP� log logP ��

Proof� We �rst bound the run�time of the algorithm� A node can be marked DONE only
after its two children are marked DONE� Once the two children are marked the probability
that the node is not marked in the next t steps is bounded by �� �

�P
�tP � We bound the

probability that the root was not marked after T steps using a delay sequence argument
similar to the one used by Upfal in packet routing analysis ��
� Let x�� ���� xlogP be a
sequence of nodes such that �� x� is the root of the tree ��� xi is the last child to be

procedure low�contention�work

shared variables

tree� LCWAT�n�

processor private variables

i� integer

begin

while true

i �� random�node � tree �

if tree	i
 � EMPTY then

if leaf�i� then �� found un�DONE leaf

func�i� �� do the leaf�s work

tree	i
 �� DONE �� mark the leaf done

else

if tree	 left�child�i�
 � DONE and �� found node with

tree	 right�child�i�
 � DONE then �� both children DONE

if root�i� then �� it is the root

tree	i
 � ALLDONE �� ALL work DONE

else �� else� it is inner

tree	i
 � DONE �� mark it DONE

endif

endif

endif

else

if tree	i
 � ALLDONE and not leaf�i� then �� found ALLDONE marker

tree	 left�child�i�
 �� ALLDONE �� propagate to children

tree	 right�child�i�
 �� ALLDONE

return �� quit

endif

endif

endwhile

end

Figure �� Low Contention Work Assignment

marked DONE among the two children of xi�� �ties are broken arbitrarily�� Let ti be the
time node xi was marked DONE� let tlogP�� � �� If the root was not marked after T
steps then

logPX
i��

ti � ti�� � T�

Let si � ti � ti��� then xi was marked si steps after its two children had been marked�
If the root was marked after T steps then there is a root�to�leaf path for which

logPX
i��

si � T�

The probability that such a path exists for T � b logP is bounded by

�
b logP �

logP

�
��

�P
�P �b��� logP �

P

for a su�ciently large constant b� A similar argument bounds the probability that
dissemination of the ALLDONE mark through the tree takes more than b logP steps�

To bound the contention we observe that at each iteration� P processors choose
randomly between �P locations causing an average of O���� contention per node per

�

step� The probability that through the execution of the algorithm any node experiences
a contention of at least c logP� log logP is bounded by

�Pb logP

�
P

c logP� log logP

�
�

�P
�c logP� log logP �

P

for a su�ciently large constant c�

��� Building the Quicksort tree

We now show how to deal with contention in the tree building phase of the algorithm�
we assume that work is distributed using LC�WATs� The method we use is based on
splitting the sort into three major phases� the �rst and last of which are based on the
sort of the previous section and the middle phase serves as a �glue� between them� For
simplicity we will present the algorithm for the case where P � N � extending it to other
cases is straightforward� Here is a high level view of the sort�

� Split the P processors into
p
P groups of

p
P processors each� Each group sorts

a di�erent slice of size
p
P of the original array in parallel� using the algorithm of

Section ��

�� One group� the winner� is selected� most likely the �rst group to �nish sorting its
slice� This sorted slice is transformed into a fat balanced binary tree ���
 with

p
P

copies of each node�

�� The entire array is sorted using the algorithm of Section �� the only di�erence is
that node values of elements with depth � log

p
P are read from the fat tree of

the previous phase �This is similar to the approach used by Gibbons et al� ���
��

The second phase of the algorithm has two new parts� winner selection and fattening
of the tree� Low contention winner selection can be achieved using a balanced binary
tree �e�g� implemented as an array� whose nodes are all initially set to EMPTY� Processors
begin at the tree�s leaves and advance towards the root till they reach a node with a
value �one that is not EMPTY�� they then copy this value to the node�s two children� If
the root is reached� the processor attempts to acquire it using compare�and�swap� Low
contention is achieved by having processors enter the tree in waves with appropriate
constant spacing between them� The �rst wave has a single processor� each successive
wave has twice as many processors as the last� till the logP �th wave has P�� processors�
If we assume that all processors arrive at the winner selection phase simultaneously� are
assigned delays as above and operate in PRAM�like synchrony then the root will be
acquired by a single processor after logP steps with O�� contention� That processor
will also write its value to the root�s two children� Each child will in turn be read by
a single processor who will continue the propagation towards the leaves� In this way
we can select the winner in O�logP � time with O�� contention� In the context of our
algorithm processors cannot be guaranteed to arrive at this phase simultaneously and
will generally arrive within a span of O�logP � time steps� Instead of pre�assigning delays
we will have processors choose delay times randomly so that the expected distribution
will be the same� Figure � provides pseudo�code for this phase�

Lemma ��� If all the processors reach the winner selection routine of Figure � within
a span of O�logP � time steps then for an appropriate constant K� with high probability
the routine selects a winner in time O�logP � with expected contention O�logP ��

Proof� The winner selection routine consists of two phases� the wait phase� and the
tree traversal phase� Since a processors spends no more than K logp steps in the wait
phase� and then traverses a path on the tree of no more than logP nodes the routine
run�time is O�logP ��

�

function select�winner�candidate� integer� � returns integer

shared variables

winner � tree of P leaves initialized to EMPTY

processor private variables

i� integer

j� a node of winner

begin

s �� �

while toss�coin�� � Heads and s � log�P�

s �� s � �

endwhile

for i � � to K��log�P��s�

endfor

j � leaf number PID of winner

while winner	j
 � EMPTY and not root�j�

j � parent�j�

endwhile

if root�j� then

compare�and�swap�winner	j
 � EMPTY� candidate�

endif

winner	 left�child�j�
 � winner	j

winner	 right�child�j�
 � winner	j

end

Figure �� Low Contention Winner Selection

To bound the contention we observe that contention can occur only between proces�
sors that exit the wait phase at the same step� Let zi be the number of processors leaving
the wait phase at time iK� Let zi � xi � yi� where xi are processors that had zero wait
�s� logP � and yi � zi�xi� Since for any given processor Prob�s � logP � � �P � even if
all processors start the routine at time iK� with high probability xi � O�logP �� Next we
observe that if a processor was in the wait phase at time �i��K� the probability that it
will exit the wait at time �i��K is exactly half the probability of exiting the wait at time
iK� Thus� either zi � logP � or with high probability yi � �� � ��zi�� � logP � for some
small constant �� Thus� when the zi processors traverse the tree at least ���

� zi�O�logP �
nodes are not EMPTY� Since the zi processors are randomly distributed between these
nodes� with high probability the contention is O�logP ��

Once a winner is selected� we use its sorted slice as the base for a fat balanced binary
tree which will serve for the top levels of the Quicksort tree� A balanced binary tree is
a binary tree� where each node has two children� The tree is made fat by duplicating
the values�

p
P copies of the value at each node are made� Recall that the total number

of nodes in the tree is
p
P so that all in all we have P copies� To �ll the fat tree

with values we will use an approximation of the write�all problem� write�most� Each
processor reaching this stage will choose logP values of the fat tree at random� and
write into them values taken from the sorted slice of A chosen in the previous stage
�the winning slice�� Any two processors choosing the same node of the fat tree� even
if they choose di�erent duplicate values in that node must read from the same element
of A� Since there are

p
P nodes� the expected number of processors reading from the

same location in A concurrently is P�
p
P �

p
P � This way we can �ll the fat tree with

high probability in time logP � with contention
p
P � The main di�erence between our

fat�tree and that of Gibbons et al� ���
 �other than the fact that the sizes are di�erent��
is that ���
 use binary broadcast to �ll the tree� a method that is not wait�free� while we
employ randomized write�most to ensure independence of actions between processors�

�

We can now apply the �rst stage of the sorting algorithm� build tree� to the entire
array and construct the Quicksort tree with expected contention at most

p
P � Processors

reading the fat tree have access to multiple copies� This reduces contention� The node
with the largest ratio of processors to duplicate values will be the root which is accessed
by P processors and has

p
P duplicates� leading to

p
P contention� Once out of the fat

tree� the processors are divided into groups of expected size
p
P � each group operating

on a di�erent node�

��� Completing the sort

We complete the sort by giving low contention versions of the second and third phases
of the sort� tree sum and find place� Tree summation follows the algorithm for LC�
WATs in Figure �� with the following minor changes�

� The work for each leaf is simply setting its SUM value to �

�� Before marking an inner node as DONE we set its SUM value to the sum of each of
its children�s SUM values plus �

We can �nd an element�s location using a similar method� Again nodes are repeatedly
picked at random� and the following actions are taken�

� For the root� the root�s place can be calculated immediately using the size of its
SMALL subtree� If both of the root�s children are marked DONE the root is marked
ALLDONE�

�� For an inner node whose parent�s place is known� the node�s place is calculated�

�� For a leaf whose parent�s place is known� the leaf�s place is calculated and the
leaf is marked DONE�

�� For a node for which both children are marked DONE� the node is marked DONE�

�� For a node marked ALLDONE� the value is propagated to the node�s children �if
there are any� and the processor quits�

We set a node�s PLACE based on its parent�s location using the equations in Section ��
When processors are all participating� this phase takes O�logP � time� in three passes�
�rst place values are written going down the tree� then DONE values propagate up the
tree� and �nally� ALLDONE values spread back down the tree�

Lemma ��� For both second and third phases contention is the same as for the LC�
WAT algorithm of Figure ��

Proof� The second phase is nearly word for word identical to the algorithm of Figure ��
The third phase follows the same �blueprint�� the only di�erence being that processors
access a constant number of additional memory locations at each node� Since these
locations are in the vicinity of a processor�s randomly chosen node �either a parent or
the children� knowing the number of processors choosing the same node is enough to
bound the contention �up to a constant factor�� so Lemma �� applies�

� Conclusions

This paper presented the �rst run�time optimal wait�free sorting algorithm� The al�
gorithm completes the sort in O�N logN�P � time� with high probability� when run on
a CRCW PRAM� A detailed analysis of the work performed by the algorithm in the
asynchronous case is still required� Using low contention randomized solutions for win�
ner selection and work allocation� we have shown how to reduce the contention su�ered

�

by the algorithm to O�
p
P � in the synchronous case� In the asynchronous case it has

been shown that an omnipotent adversary can always cause a wait�free algorithm to
su�er O�P � contention ���
� Still� it would be interesting to present an analysis of our
contention reduced variant in the face of a weaker adversary�

While this algorithm is not immediately practical� it does make use of some interest�
ing general constructions� These constructions for solving work�allocation� write�most�
and winner�selection su�er contention of no more than O�logP � with high probability�
We believe they represent building�blocks that are simple� e�cient and of low enough
contention that they could form the basis of other� more practical� wait�free algorithms�

� Acknowledgments

Thanks are due to Alex Shvartsman and to The Collection of Computer Science Bibli�
ographies maintained by Alf�Christian Achilles at
http���liinwww�ira�uka�de�bibliography�index�html�

References

�
 Afek� Y�� Dauber� D�� and Touitou� D� Wait�free made fast �extended abstract�� In
Proceedings of the Twenty�Seventh Annual ACM Symposium on Theory of Com�
puting �Las Vegas� Nevada� �� May� June ����� pp� ������	�

��
 A� Agarwal and M� Cherian� Adaptive Backo� Synchronization Techniques� In
Proceedings of the ��th International Symposium on Computer Architecture� pp�
�������� May ����

��
 W� Aiello� R� Venkatesan and M� Yung� Coins� Weights and Contention in Counting
Networks� In ��th ACM Symposium on Principles of Distributed Computing� pp�
������� August ����

��
 Ajtai� M�� Koml!os� J�� and Szemer!edi� E� An O�n logn� sorting network� In Proceed�
ings of the Fifteenth Annual ACM Symposium on Theory of Computing �Boston�
Massachusetts� ����	 Apr� ����� pp� ���

��
 T�E� Anderson� The Performance of Spin Lock Alternatives for Shared�Memory
Multiprocessors� IEEE Transactions on Parallel and Distributed Systems� �����
�� January ����

��
 Anderson� R� J�� and Woll� H� Wait�free parallel algorithms for the union��nd
problem� In Proceedings of the ��rd Annual ACM Symposium on the Theory of
Computing �New Orleans� LS� May ���� B� Awerbuch� Ed�� ACM Press� pp� �	��
����

�	
 Assaf� S� and Upfal� E� Fault tolerant sorting networks� SIJDM� SIAM Journal on
Discrete Mathematics � �����

��
 H� Attiya� N� Lynch and N� Shavit� Are Wait�Free Algorithms Fast� JACM� �����
pp� 	���	��� July ����

��
 Banatre� M�� Muller� G�� Rochat� B�� and Sanchez� P� Design decisions for the
FTM� a general purpose fault tolerant machine� ��st Int� Symp� on Fault�Tolerant
Computing �FTCS���� ����� 	���

��
 Barnes� G� Wait�free algorithms for heaps� Technical Report ������	� University
of Washington� Department of Computer Science and Engineering� ����

�

�
 Batcher� K� E� Sorting networks and their applications� Proceedings of AFIPS
Spring Joint Computer Conference ������ ��	����

��
 Brown� T�� and Xiong� R� A parallel Quicksort algorithm� Journal of Parallel and
Distributed Computing ��� � �Oct� ����� ������

��
 C� Busch� N� Hardavellas and M� Marvonicolas Contention in Counting Networks
In ��th ACM Symposium on Principles of Distributed Computing� pp� ���� August
����

��
 C� Busch and M� Marvonicolas A CombinatoricalTreatment of Balancing Networks�
JACM� ������ pp� 	������� September ����

��
 Kanellakis� P� C�� and Shvartsman� A� A� Fault�Tolerant Parallel Computation�
Kluwer Academic Publishers� Boston� ��	� ISBN ��	�����������

��
 Buss� J� F�� Kanellakis� P� C�� Ragde� P� L�� and Shvartsman� A� A� Parallel algo�
rithms with processor failures and delays� Journal of Algorithms ��� �Jan� �����
������

�	
 Chlebus� B� S�� and Vrto� I� Parallel Quicksort� Journal of Parallel and Distributed
Computing ��� � ���
 ���� ������	�

��
 Cole� R� Parallel merge sort� SIAM J� Comput� �� � �Aug� ����� 		��	���

��
 Cole� R�� and Zajicek� O� The APRAM� Incorporating asynchrony into the PRAM
model� In Proceedings of the �st Annual ACM Symposium on Parallel Algorithms
and Architectures �Santa Fe� NM� June ����� A��S� ACM�SIGARCH� Ed�� ACM
Press� pp� ���	��

���
 Dwork� C�� Herlihy� M�� Waarts� O� Contention in Shared Memory Algorithms� In
Proceedings of the Twenty Fifth Annual ACM Symposium on Theory of Computing
������ pp� 	����

��
 D� Gawlick� Processing �hot spots� in high performance systems� In Proceedings
IEEE COMPCON���� Feb� ����

���
 Gibbons� P� B�� Matias� Y�� and Ramachandran� V� The Queue�Read Queue�Write
PRAM model� Accounting for contention in parallel algorithms� In Proceedings of
the �th ACM�SIAM Symp� on Discrete Algorithms� January� ���� pp� ��������

���
 Gibbons� P� B�� Matias� Y�� and Ramachandran� V� E�cient Low�Contention Par�
allel Algorithms In Journal of Computer and System Sciences� �������	����� Dec�
����

���
 Gibbons� P� B�� Matias� Y�� and Ramachandran� V� The queue�read queue�write
asynchronous PRAM model� Lecture Notes in Computer Science ���� ������
pg� �	�

���
 J�R� Goodman� M�K� Vernon� and P�J� Woest� E�cient Synchronization Primitives
for Large�Scale Cache�Coherent multiprocessors� In Proceedings of the Third In�
ternational Conference on Architectural Support for Programming Languages and
Operating Systems �ASPLOS�� pages ���	�� April ����

���
 Greenwald� M� and Cheriton� D� � The Synergy Between Non�blocking Synchro�
nization and Operating System Structure� In Proceedings of the Second Symposium
on Operating System Design and Implementation� USENIX� Seattle� October� ����
pp ������

	

��	
 Herlihy� M� Wait�Free Synchronization� ACM Transactions on Programming Lan�
guages and Systems� ���������� January ���

���
 Herlihy� M� A methodology for implementing highly concurrent data objects� ACM
Transactions on Programming Languages and Systems ��� � �Nov� ����� 	���		��

���
 Herlihy� M�� and Moss� J� E� B� Transactional memory� Architectural support for
lock�free data structures� In Proceedings of the ��th Annual International Sympo�
sium on Computer Architecture �San Diego� California� May 	��� ����� ACM
SIGARCH and IEEE Computer Society TCCA� pp� ��������

���
 Hoare� A�� Quicksort� In C� A� A� Hoare and C� B� Jones �Ed��� Essays in Com�
puting Science� Prentice Hall� ����

��
 Israeli� A�� and Rappoport� L� E�cient wait�free implementation of a concurrent
priority queue� Lecture Notes in Computer Science 	�� ������ ���

���
 Kanellakis� P� C�� and Shvartsman� A� A� E�cient parallel algorithms can be made
robust� In Proceedings of the �th Annual Symposium on Principles of Distributed
Computing �Edmonton� AB� Canada� Aug� ����� P� Rudnicki� Ed�� ACM Press�
pp� ������

���
 Kedem� Z� M�� Palem� K� V�� and Spirakis� P� G� E�cient robust parallel computa�
tions �extended abstract�� In Proceedings of the Twenty Second Annual ACM Sym�
posium on Theory of Computing �Baltimore� Maryland� ��� May ����� pp� ���
���

���
 Ma� Y� An O�n logn��size fault�tolerant sorting network �extended abstract�� In
Proceedings of the Twenty�Eighth Annual ACM Symposium on Theory of Comput�
ing �Philadelphia� Pennsylvania� ����� May ����� pp� �����	��

���
 Martel� C�� Subramonian� R�� and Park� A� Asynchronous PRAMs are �almost� as
good as synchronous PRAMs� In Proceedings of the ��st Annual Symposium on
Foundations of Computer Science �St� Louis� MS� Oct� ����� IEEE� Ed�� IEEE
Computer Society Press� pp� ��������

���
 Martel� and C�� Subramonian On the Complexity of Certi�ed Write�All Algorithms�
J� of Algorithms ����� pp� �����	 �May ����

��	
 Martel� C�� Subramonian� R�� and Park� A� Work Optimal Asynchronous Algo�
rithms For Shared Memory Parallel Machines SIAM J� Computing ����� pp� �	��
���� ������

���
 Martel� C� U�� and Gus�eld� D� A fast parallel Quicksort algorithm� Information
Processing Letters ��� � �Jan� ����� �	����

���
 Shavit� N�� and Touitou� D� Software Transactional Memory� In Proc� of the ��th
Annual ACM Symp� on Principles of Distributed Computing �PODC���� �Aug�
�����

���
 Sun� J�� and Gecsei� J� A multiple�fault tolerant sorting network� ��st Int� Symp�
on Fault�Tolerant Computing �FTCS���� ����� �	����

��
 Upfal� E� E�cient schemes for parallel communication� J� ACM ������� ��	��	�

���
 Yen� I��L�� Bastani� F�� and Leiss� E� An inherently fault tolerant sorting algorithm�
In Proceedings of the �th International Parallel Processing Symposium �Anaheim�
CA� Apr��May ���� V� K� P� Kumar� Ed�� IEEE Computer Society Press� pp� �	�
���

�

���
 Zhang� W�� and Rao� N� Optimal parallel Quicksort on EREW PRAM� BIT� BIT
�� �����

���
 Zhou� B� B�� Brent� R� P�� and Tridgell� A� E�cient implementation of sorting
algorithms on asynchronous mimd machines� Tech� Rep� TR�CS������� Australian
National University� Computer Science Department� May ���

�

