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Abstract

Sorting is one of a set of fundamental problems in computer science. In this
paper we present the first wait-free algorithm for sorting an input array of size
N using P < N processors to achieve optimal running time. We show two vari-
ants of the algorithm, one deterministic and one randomized and prove that, with
high probability, the latter suffers no more than O(\/I_D) contention when run syn-
chronously. Known sorting algorithms, when made wait-free through previously
established transformation techniques, have complexity O(log3 N). The algorithm
we present here, when run in the CRCW PRAM model, executes with high prob-
ability in optimal O(log N) time when P = N, and O(N log N/P) otherwise. The
wait-free property guarantees that the sort will complete despite any delays or fail-
ures incurred by the processors. This is a very desirable property from an operating
systems point of view, since it allows oblivious thread scheduling as well as thread
creation and deletion, without fear of losing the algorithm’s correctness.

1 Introduction

Sorting is a basic algorithmic building block and has attracted the attention of many
researchers. In this paper, we present a wait-free algorithm for sorting an array of N
elements in the CRCW PRAM model. With high probability the algorithm runs in
optimal time and has maximum memory contention of O(\/ﬁ) Herlihy [27] defines a
wait-free data structure as one on which any operation by any processor is guaranteed to
complete within a bounded number of steps, regardless of the actions or possible failure
of other processors. Contention is the empirically observed phenomenon [5, 21] that
when several processors attempt to access the same memory location (e.g. a variable)
at the same time, a delay occurs, since the hardware can only handle a limited number
of simultaneous requests. Keeping contention low is therefore a high priority in terms
of program performance.

Wait-free algorithms have the appealing property that correct completion of the algo-
rithm is assured despite any problematic scheduling imposed by the system. Greenwald
and Cheriton [26] note that such algorithms are well suited for implementing operat-
ing system kernels since they free the operating system from many book-keeping tasks.
Consider the case of sorting a large data set in the background of other ongoing com-
putations. Using the wait-free algorithm given here one can begin the sort by spawning
a thread for each idle processor in the machine. If during the execution a processor is
needed elsewhere, one can reap the thread associated with it without fear of leaving the
program’s internal data structures in an inconsistent state. On the other hand if other
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processors become free, one can spawn more threads to speed up the sorting process.
An interesting special case is when one of the sorting algorithm’s own threads must wait
for some time-consuming operation such as a page fault. One can immediately spawn a
new sorting thread for the same processor and continue working on available elements
of the array, soaking up otherwise wasted cycles. When the page fault is handled, any
such thread can summarily be destroy. From the point of view of the operating system,
wait-free algorithms are desirable since they allow oblivious allocation of processors to
threads, creation of new threads, and destruction of redundant threads as needed, this
leads to better utilization of system resources.

1.1 Related work

The number of articles dealing with sorting in a parallel environment is too large to allow
mentioning them all, so we will restrict discussion to those that are directly related to
our work. The sorting technique we use is based on Hoare’s serial Quicksort [30] of which
there have been a number of parallel implementations. For the CRCW PRAM, there
is the algorithm of Martel and Gusfield [38], with an O(log N) running time that may
require as much as O(N3) memory. This is improved upon by Chlebus and Vrto [17]
to achieve O(log N) time and O(N) space using a method that is very similar to the
one we use here. For EREW PRAMs, Zhang and Rao [43] present an algorithm with a
running time of O((log P + N/P)log N). This was later improved upon by Brown and
Xiong [12] to achieve O((N/P)log N) for the case where P < N/logN. All of these
algorithms work in the PRAM model, making strong use of processor synchronization,
and are not wait-free.

In [27] Herlihy also gave a general method for the construction of wait-free ob-
jects [28]. Unfortunately, the algorithm resulting from implementing a “sorting-object”
using this method (or the improvements of Afek et al. on it [1]) is inefficient. Proces-
sors wishing to update the shared object will have to first post the changes they are
about to make. If they fail before these changes are completed another processor can
complete them, ensuring the object remains consistent. This can be detrimental to par-
allelism as often only one process performs all pending work. For example, using the
methods of [1], the complexity of a wait-free operation is O(kflog f), where k is the
number of processors accessing the object concurrently, and f is the complexity of the
update operation. Using any straight-forward sorting algorithm, we can expect k& = P
and O(PN log N) cost per operation, which will not yield good performance. Similar
objections apply to Shavit and Touitou’s software implementation [39] of Herlihy and
Moss’ transactional shared memory [29], while proposed hardware implementations are
limited in size [9]. Some special purpose wait-free data structures have also been intro-
duced, of which the most suitable for sorting are heaps and priority queues. Both data
structures use a scheme for announcing pending operations similar to the one proposed
by Herlihy, and tend to perform at least part of each pending operation in a serial man-
ner. For Barnes’ [10] wait-free heap the complexity is O(Mklog N) for performing M
operations by k threads on a heap with N elements. Israeli and Rappoport’s [31] pri-
ority queue, besides requiring a non-standard two word Compare&Swap operation also
employs a “helping” method which limits concurrency (this is discussed in [39]). In any
event, simply providing a wait-free data structure which can order its inputs does not
immediately imply a wait-free solution to the sorting problem. One must still allocate
processors to values, handle duplicate insertions and deletions of the same value, and
make sure values aren’t lost even if the processor assigned to them fails.

Another possible approach comes from research into fault tolerant systems. For a
fixed sized array, an algorithm which sorts in a failure model which allows processors to
fail, and later possibly revive and proceed (in an undetectable manner) would also sort
under wait-free assumptions. It is possible to convert any PRAM algorithm to work in
this failure model. However such transformations are expensive. One might start with



an O(log N) sorting algorithm [4, 11, 18] and apply a transformation technique which
simulates a reliable PRAM on a faulty one. This idea was first introduced by Kanellakis
and Shvartsman in [32], and later improved upon by Kedem et al. [33]. Both of these
results are for the fail-stop model. In the general asynchronous model the results of
Anderson and Woll [6] and Buss et al. [16] apply, and would mean an increase in the
complexity of the sort to at least O(log3 N), and cost a multiplicative log N factor in
memory. The method of Martel et al. [35] would also work, and would increase running
time by only a log N factor. However, it supports only limited asynchrony through the
use of the non-standard FTS instruction.! The above simulations would not be efficient,
as was noticed by [6], since they require synchronization at the end of every PRAM step.

A previous result in fault-tolerant sorting is given by Yen et al. [42]. It employs
the Batcher sorting network, giving a complexity of O(log2 N). This result supports
only the fail-stop failure model and requires non-standard hardware components. It is
possible to transform this algorithm into a wait-free sorting algorithm with a complexity
of O(log® N), but it would require an O(log? N) factor memory increase. There has also
been much study of fault tolerant sorting networks, see for example the articles by Assaf
and Upfal [7], Ma [34], and Sun and Gecsei [40]. These papers deal with networks whose
comparator-gates may be faulty but whose connections do not fail. This is akin to a
computation model where processors do not fail, but may sometimes return the wrong
result for a comparison.

Related work has also been done on asynchronous computing models. Cole and Za-
jicek [19] proposed the APRAM model for designing parallel algorithms to work in an
asynchronous setting. Zhou et al. [44] present a sorting algorithm for asynchronous ma-
chines that is not wait-free. Neither is the recent sorting algorithm of Gibbons et al. [24]
for the QRQW asynchronous PRAM. This sample-sort based algorithm is somewhat
similar to the one we use here in that it uses binary search trees built by a sampling
phase, where we construct binary pivot trees. The main differences being that we use
O(N) space as opposed to their O(N log N), and that our algorithm is guaranteed to
run to completion once it is started, whereas theirs might require a restart phase if
failure is detected during the run. All of these models avoid making any timing as-
sumptions, but they do not allow processor failures, and hence do not produce wait-free
algorithms. These results indicate the need to develop an efficient sorting algorithm
designed specifically for the wait-free case.

1.2 Contention

Contention is a phenomenon observed in multiprocessors [21, 25] that occurs when sev-
eral processors attempt to access the same location in memory at the same time. Since
current hardware can only service a constant number memory access operations per
cycle some processors might have their access operations deferred to later cycles, forc-
ing them to wait. On real machines, contention can account for a large portion of a
program’s run time [2] and ignoring this issue can lead the creation of algorithms that
appear sound but perform poorly. Dwork et al. present the first formal complexity
model for contention [20]. In their model, if two or more processors attempt to access
the same memory location concurrently, one will succeed and the others will stall. They
differentiate between the contention of an algorithm, defined as total number of stalls
which can be induced by an adversary scheduler divided by the number of processors,
and the variable-contention, defined as the worst case number of concurrent accesses to
any single variable. They further prove that an adversary scheduler can always cause
the variable-contention of a wait-free algorithm running on P processors to be O(P), so
we cannot use this measure directly. Much of the subsequent work using formal con-
tention models has dealt with amortized contention of counting networks [3, 13, 14] and

1The FTS Fetch-Test-Store instruction is a stronger version of Read-Modify-Write which can read
one location and, based on the value read, modify a different location.



is based on the fact that networks have a regular, well defined structure. Since there is
no bound on the number of tokens that may pass through a network, measuring amor-
tized contention is a natural choice much in the same way that measuring the amortized
complexity of operations on serial data structures.

We use a similar definition which we feel is more suited to an algorithm with well
defined start and finish. We define contention as the maximum number of concurrent
accesses to any single variable that occur with non-negligible probability when the algo-
rithm is run on a CRCW PRAM. This is a natural measure since it makes no assumptions

about how the machine handles concurrent accesses, it simply asks “How many are there
likely to be?”

1.3 Our algorithm

Our parallel Quicksort algorithm is the first wait-free algorithm for the sorting problem
to achieve optimal running time of O(N log N/P) or O(log N) in the case where P = N.
These running times are achieved with high probability under the assumption that the
execution is “normal”, that is, all processors participate in the algorithm and incur no
delays. This form of run time analysis was proposed by Attiya et al. [8], as a way of
capturing the overhead of wait-free algorithms. The idea being that since the common
basis for comparison is the PRAM, which is faultless and synchronous, we should apply
the same standard to other algorithms as a way of measuring any extra work performed
to achieve wait-freedom.

We are able to achieve optimal running time by not using a standard PRAM sorting
algorithm which generally requires O(log N) synchronized steps. As was previously
noted, the cost of simulating O(log N) PRAM steps in a wait-free manner is O(log® N).
In contrast, our algorithm consists of three phases, each of which requires logarithmic
time. Since wait-freedom is inherently incorporated into the algorithm, the log N cost
of tracking completed work can be made additive (as opposed to multiplicative when
using simulation techniques).

After presenting a simple, deterministic version of the algorithm we turn our at-
tention to the issue of contention and show how randomization can be used to reduce
contention. We first present a simple low contention work allocation scheme that when
combined with low contention winner selection and approximate write-all [32] (actually,
write-most) yields a randomized wait-free sorting algorithm with contention O(\/ﬁ) with
high probability.

2 A Wait Free Sorting Algorithm

One of the challenges of writing wait-free code for manipulating a number of objects
concurrently is to make sure that all objects are dealt with. Since processors may
fail, one cannot assume that just because work has been assigned to a processor — it
will indeed complete that job. This situation is modeled by the write-all problem of
Kanellakis and Shvartsman [32]: given an array B of N elements and P fault-prone
processors, devise an algorithm that fills every element of B with “1”. A standard
solution is to assign work to processors using binary trees.

2.1 Work assignment trees

Work Assignment Trees (WATs) are binary trees that store jobs in the leaves and use
the inner nodes to track progress in subtrees rooted at those nodes. These structures
have been used extensively in the literature (see for example [6, 16, 32, 36]). Our
implementation in Figure 1 follows Algorithm X of Buss et al. in [16]. The second
operand of the routine next_element, i, will usually be the leaf of the WAT whose work
the calling processor has just completed. The routine climbs the tree from i until it



1 function next_element(tree: WAT(N), i: integer)
returns integer

2 begin

3 tree[i] := DONE

4 repeat

5 s := sibling(di)

6 p := parent(i)

7 if tree[s] = DONE then

8 tree[p] := DONE

9 i:=p

10 if p = ROOT return DONE
11 endif

12 until tree[s] <> DONE

13 i=3s

14 while not leaf (i)

15 if treel left_child(i) ] <> DONE then
16 i := left_child(i)

17 else if tree[ right_child(i) ] <> DONE then
18 i := right_child(i)

19 else

20 return i

21 endif

21 endwhile

22 return i

23 end

Figure 1: Work-Assignment-Tree algorithm

finds a node for whom one child is not yet marked DONE. During the climb at a given
node one can determine the status of its parent by examining the status of its sibling.
This is because the current node (in fact, the entire current subtree) is known to be
marked DONE. If the routine reaches the root and marks it DONE it means that all the
leaves have been handled and the special value DONE is returned as an indicator. If a
sibling, s, not marked DONE is found, the routine descends the tree and normally returns
an un-DONE leaf the tree rooted at s. A special case occurs if during the descent the
processor discovers that the information at a node is outdated i.e. even though both
children are DONE the node was not yet marked as completed. In this case the processor
stops its descent and returns that inner node. The routine could have been written to
return to the ascent phase to search for a different leaf, but we found this version makes
the proofs simpler.

Lemma 2.1 The routine next_element is wait-free and completes in O(log N) time.

Proof: The routine contains two loops, the one in line 4-12 climbs the tree at each
iteration, and so cannot climb more than log N steps before stopping. Similarly the
second loop, in lines 14-20, descends the tree at each iteration. [ |

Corollary 2.2 Let S be set of all calls to next_element which have completed before
a given call at time t. Let S’ denote the set of all initial starting nodes (the second
operand) of the calls in S. The call at time t will return a node of the tree not in S', or
DONE if S’ contains all of the tree’s nodes.

Using Lemma 2.1 and its corollary it is easy to see that the algorithm of Figure 2
is wait-free, provided the function func() is wait-free. If we replace the call to func()



procedure wait-free-algorithm
shared variables
work: WAT(N)
processor private variables
i: integer

begin
i := leaf number N * PID / P + 1
repeat
if leaf(i) func(i)
i := next_element(work, i)
until i = DONE
end

Figure 2: A skeleton wait free algorithm

with the operation B[i] :=1 for some array B of size N, we get a solution for the write-all
problem.

Lemma 2.3 Let P = N, and assume the routine func() can teke no more than K
time steps to complete. Then the skeleton wait-free algorithm of Figure 2 when run on
a faultless CRCW PRAM completes in O(K + log N) time steps.

Proof: Initially each processor is assigned a different leaf of the WAT, within K time
steps all processors will complete working on their leaf, and all that remains to show is
that it takes log N additional steps for this information to propagate to every node of
the tree. When the last processor completes the leaf it was assigned, all nodes at depth
log N will be marked DONE, though there may be processors who completed their own
leaf early and are still working on other leaves. Within at most K additional time steps
all processors will be in the WAT at depth at most log N and will never be assigned a
leaf again. Let S denote the set of processors at depth log N at the 2K-th time step.
Each processor in S examines its node’s sibling, notices that it is DONE, ascends to depth
log N—1, and sets the node there to DONE. For every node at depth log N —1 the following
is true, either there is a processor who has just set its value to DONE, or a processor has
passed through that node previously and set its value to DONE, thus all processors at
level log N — 1 rise to level log N — 2 in the next time step. The same logic continues to
hold, and at the 2K + i-th time step, all processors at level log N — 7 — 1 raise to level
log N — 4. Within log N time steps all processor reach the tree root and leave the tree.
|

2.2 The sorting algorithm

We now present in detail our wait-free algorithm for sorting an array A of N elements
using P processors. The algorithm is divided into three phases: tree building, tree
summation and element shuffling. In the first phase we construct a sorted binary tree
whose nodes contain the records of A. For this purpose we attach two child pointers to
each record of A to point to subtrees of smaller and larger nodes. Initially, all pointers
have the distinct value EMPTY. The first phase follows the scheme outlined in Figure 2
with the routine build_tree of Figure 4 replacing the call to func. First we note the fact
that A[1], being the first pivot need not be inserted into the tree (line 5). A processor p
which is inserting record ¢ first compares its key to the key of the root element, setting
side to the result of the comparison. We assume that no two keys are the same, which
can easily be accomplished by using an element’s index to break ties. Now p tries to
establish ¢ as the appropriate child of the root node (line 14). After the call either p or
some other processor will have managed to install its records as the child of the root.



type Element is
key: any-type
child: array [BIG, SMALL] of integer
initialized to EMPTY

size: integer initialized to 0
place: integer initialized to 0
end

A: array [1..N] of Element

Figure 3: Data structure used for sorting

1 procedure build_tree(i: integer)

2 processor private variables

3 parent,side: integer

4 begin

5 if i = 1 return

6 parent := 1

7 while true

8 if A[parent].key > A[i].key then
9 side := SMALL

10 else

11 side := BIG

12 endif

13 compare_and_swap(A[parent].child[side] ,EMPTY, i)
14 if A[parent].child[side] = i then
15 return

16 else

17 parent := A[parent].child[side]
18 endif

19 endwhile
20 end

Figure 4: Core of phase 1 of the sort: building the Quicksort tree

Since the compare_and swap operation will succeed only if the child is EMPTY, p can
re-read the child’s value after the operation to check success. Successful installation of
i (either by p or by some other processor simultaneously working on ¢) terminates the
routine. If ¢ was not installed, it follows that some other processor, ¢ preceded p in
installing its element, j, as the root’s child. So p must now try to install 7z as a child
of j. It does so by updating its local parent pointer to j, and going through the loop
again. Eventually, p will install 2 somewhere in the tree, and go on to the next element.
We make the following observations about the procedure build _tree.

1. All processors begin the routine with the same value for parent.

2. For a given pair of values of i and parent, the comparison in line 8 always yields
the same results.

3. For a given pair of values of parent and side the read operation in line 14 always
returns the same value, which is never EMPTY.



4. The sequence of values of the variable parent determines a path along the nodes of
the Quicksort tree. As a direct consequence of facts 1-3, we get that two processors
with the same value for i would get the same value of parent in each iteration of
the loop in lines 7-19, and therefore follow the same path down the tree.

5. From fact 3 follows that the value of i determines a unique path down the tree
into which insertion attempts (line 13) are made, so the same value cannot be suc-
cessfully inserted twice into the tree. Which also means that, for a given processor
and value of i, each iteration of the loop in lines 7-19 is done with a different value
of parent.

6. Each time the compare_and_swap in line 13 succeeds, it is with a different value for
i. This follows directly from the fact that processors working on the same element
follow the same path down the tree.

Lemma 2.4 The loop in lines 7-19 will be performed no more than N — 1 times.

Proof: The proof is by the pigeon-hole principle. At each iteration a processor at-
tempts the compare_and swap on a different location (fact 5). There are N possible
locations, and only N-1 possible different values of i (no processor is assigned i=1).
Since no value can be encountered twice (facts 5 and 6), eventually either the compare-
_and_swap succeeds, or a processor encounters its own value in the tree and exits. [ |

We interpret Lemma 2.4 to mean that the routine build tree is wait-free and re-
quires no more than O(N) operations to run. This along with Lemma 2.3 proves that
the entire first phase of the algorithm is wait-free and can be completed in O(N(log N +
N)) = O(N?) operations. We now show that it builds the pivot tree correctly.

Lemma 2.5 When the first processor completes the first phase of the algorithm the tree
defined by the child pointers will be a sorted binary tree containing all the records of A.

Proof: A node’s child pointers, once set, are never changed. This assures the com-
parison in line 8 is consistent for all processors. Since key values don’t change during
the course of the algorithm and all processors start by comparing their key to the same
value, the resulting tree is correctly sorted. [ |

function tree_sum(i: integer, d: integer) returns integer
processor private variables
sum: integer
begin
if i = EMPTY then
return 0
else if A[i].size > O then
return A[i].size

else

side = d-th bit of PID

sum := tree_sum( A[i].child[side] , d+1)

sum := sum + tree_sum( A[i].child[1 - side] , d+1 )
endif

A[i] .size = sum+1
return sum+i
endif

Figure 5: Phase 2 of the sort: summing the subtrees



procedure find _place(i: integer, sub: integer, d: integer)
processor private variables
s: integer

begin
if i = EMPTY or A[i].place > 0 then
return
endif

if A[i].child[SMALL] <> EMPTY then
s := A[ A[i].child[SMALL] ].size
else
s :=0
endif
Ali] .place := s + sub + 1
if d-th bit of PID == SMALL then
find_place( A[i].child[SMALL], sub, d+1)
find_place( A[i].child[BIG], sub + s + 1, d+1)
else
find_place( A[i].child[BIG], sub + s + 1, d+1)
find_place( A[i].child[SMALL], sub, d+1)
endif

end
Figure 6: Phase 3 of the sort: putting the elements in their right place

Any processor that completes the first phase immediately goes on to the second
phase. In the second phase of the algorithm we calculate the size of the subtree rooted
at each element. Since our binary trees are not complete we must count the elements
directly. The algorithm follows the standard tree summation method except that it uses
each processor’s unique processor ID (assumed to be in the range 0,..., P—1) to spread
the processors around the tree. Code for this phase appears in Figure 5.

Any processor which completes the second phase advances without delay to the
third phase. Using the results from the second phase, calculating the location of each
element in the sorted array is now a simple matter. We use the following rule in the
routine find place. Let j be some element whose left and right children, I(3) and r(3j)
correspond to the larger and smaller child respectively. We denote by P(j) j’s rank
among the elements of 4 after sorting, and by S(j) the size of the subtree rooted at j.
Then P(I(5)) = P(j) + S(r(i(5))) + 1 and P(r(3)) = P(5) — S(i(r(4))). The routine
find place() is initially called with i = 0, sub = 0, and d = 0.

Since tree based algorithms have been dealt with extensively in the literature, we
state the following without proof (see for example Kanellakis and Shvartsman [15]).

Lemma 2.6 The second and third phase of the algorithm are both wait-free and require
no more than O(N) operations to complete.

2.3 Run-time analysis

We analyze the running time of the algorithm in the synchronized case, where it is

essentially running on a CRCW PRAM.

Lemma 2.7 Let K be a bound on the running time of build _tree. The first phase of
the algorithm, when run on a faultless CRCW PRAM has running time of O(N(log N +
K)/P).

Proof: Our work allocation scheme initially assigns each processor a leaf of of the WAT
spaced N/ P leaves apart. Processors are assigned work in a localized manner, meaning
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Figure 7: Division of subtrees between processors: after descending log P steps from the
root every processor is in a sense assigned its own subtree of depth log N — log P.

that if 77 and T, are two disjoint subtrees of the WAT, and processor p is currently
assigned a leaf of T1, p will complete every leaf of T} (and mark all its nodes DONE) before
being assigned any leaf of 5. We can therefore view processors as initially being assigned
subtrees of depth D = log N — log P rather than leaves (see Figure 7). Processors
complete working on their subtrees in time O(2?(D + K)) = O(N/P(log N + K)). We
can therefore view running the first phase of the algorithm as a special case of Lemma 2.3
where the running time of func is O(N/P(log N+ K)) and there are P processors. Total
running time will then be O(N/P(log N+ K)+log P) = O(N/P(log N+ K)) for P < N.
|

The bound K on the running time of build_tree corresponds to the depth of the
Quicksort tree being built. Therefore, second and third phases require traversing a
binary tree whose depth is K. A processor p in the second (summation) phase, operating
on a node n at depth d, checks first whether the node is a leaf, and if so it marks its
size as “1” and ascends to the node’s parent. Otherwise, it visits both of n’s children,
calculates each of their sizes, and sets n’s size accordingly. The order in which p visits
n’s children corresponds to the d-th bit of p’s processor ID (PID). To avoid duplicating
other processor’s work, p will not descend to children of nodes whose size is known. In
this phase information propagates bottom-up: only when the size of a node’s children
is known can the size of the node be determined. Let us assume this phase runs on a
complete binary tree of K levels. Initially, all processors start at the root, odd numbered
ones will then descend to the root’s SMALL child, while even numbered ones will go to
the BIG child. This process continues until all processors are at depth log P, at which
point each one is alone at the root of a tree of depth K — log P. Processors finish
summing their subtrees in unison and begin ascending the tree. Since the algorithm
avoids descending into trees which have already been summed, all processors now ascend
to the root simultaneously. The total running time is therefore log P+2K 196 P L Jog P =
O(log P+ M/P) where M = 2% < N. If the binary tree of the depth K is not complete,
the algorithm will not take longer to run: the processor (or set of processors) which
finishes its tree last will move monotonically up as soon as its tree is complete since all
nodes it encounters can be shown to be complete. The proof is essentially the same as
that of Lemma 2.7. The algorithm’s third phase is analogous to the second, and has the
same running time.

Lemma 2.8 Assuming that the elements in the initial array are in random order, the
watit-free sorting algorithm, when run on a faultless CRCW PRAM has a running time
of O(N log N/ P) with high probability.
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Proof: The sum of the running times of the first, second and third phases calculated
above is: O(N/P(log N+ K)) for a Quicksort tree of depth K. If the elements of A are in
random order, the Quicksort tree can be shown to have depth O(log N') with high prob-
ability (see for example [17]). The resulting total running time is then O(N/P log N).
|

The assumption that elements in the initial array are in random order is needed only
for the first phase. We can eliminate this assumption by employing the following work
allocation strategy in the first phase of the algorithm. Instead of calling undone_element,
a processor will pick one of the elements of A uniformly at random. If the element is
not DONE the processor will insert it into the tree, and propagate its DONE value up
the tree via a sequence of operations like that of lines 4-12 of next_element. This
continues until a processor has randomly chosen DONE elements log N times in a row.
From this stage elements are chosen using next_element. This change guarantees that
with high probability all nodes in the first log N — loglog N levels of the Quicksort
tree are chosen uniformly at random. Thus, with high probability all nodes at level
log N —loglog N are roots of a subtree with O(log N) nodes, and the total sorting time
remains O(N/P log N).

3 Dealing with Contention

The algorithm presented in the previous section suffers O(P) contention, for example, at
the very start when all processors attempt to install the element they are working on at
the root. Once the tree contains O(P) levels, the random nature of element selection will
reduce the expected contention at each element to O(1). If P « N, initial contention
is less of an issue, even under QRQW [22] assumptions since the running time of the
algorithm will be dominated by N. As N approaches P, contention begins to play a
greater role in determining running time. In this section we try to overcome this to some
extent by presenting a randomized method for lowering contention to O(\/ﬁ)

3.1 Low contention WATSs

We begin by introducing low contention work assignment trees (LC-WATs), which solve
the write-all problem in time O(log P) with O(log P/loglog P) contention with high
probability.

The code in Figure 8 follows the work allocation scheme of Martel et al. [37], but has
been modified for low contention. In the algorithm of [37] processors must constantly
check the root to find out whether all the work of the tree has been completed. This
causes the root to be a source of O(P) contention. We modify the algorithm by having
the processor that would have set the root to DONE set it instead to ALLDONE. This
ALLDONE value propagates down the tree, till in time O(log P) with high probability,
most of the tree is marked ALLDONE. We thus trade an additive log factor in time for low
contention completion discovery.

Lemma 3.1 Assuming O(1) work per tree leaf. Under synchronous ezecution assump-
tions with high probability the LC-WAT algorithm given above terminates in O(log P)
time, with mazimum contention O(log P/loglog P).

Proof: We first bound the run-time of the algorithm. A node can be marked DONE only
after its two children are marked DONE. Once the two children are marked the probability
that the node is not marked in the next ¢ steps is bounded by (1 — #)tp. We bound the
probability that the root was not marked after T steps using a delay sequence argument
similar to the one used by Upfal in packet routing analysis [41]. Let zo,...,z1,gp be a

sequence of nodes such that (1) zo is the root of the tree; (2) z; is the last child to be
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procedure low_contention_work
shared variables
tree: LCWAT(n)
processor private variables
i: integer

begin
while true
i := random_node ( tree )
if tree[i] = EMPTY then
if leaf(i) then // found un-DONE leaf
func (i) // do the leaf’s work
tree[i] := DONE // mark the leaf done
else
if tree[ left_child(i) ] = DONE and // found node with
tree[ right_child(i) ] = DONE then // both children DONE
if root(i) then // it is the root
tree[i] = ALLDONE // ALL work DONE
else // else, it is inner
tree[i] = DONE // mark it DONE
endif
endif
endif
else
if tree[i] = ALLDONE and not leaf(i) then // found ALLDONE marker
tree[ left_child(i) ] := ALLDONE // propagate to children
tree[ right_child(i) ] := ALLDONE
return // quit
endif
endif
endwhile
end

Figure 8: Low Contention Work Assignment

marked DONE among the two children of #;_; (ties are broken arbitrarily). Let ¢; be the
time node z; was marked DONE, let tjogp41 = 0. If the root was not marked after T'

steps then
log P

d ti—tig >T
=0

Let s; = t; — ti11, then z; was marked s; steps after its two children had been marked.
If the root was marked after T steps then there is a root-to-leaf path for which

log P
Z 83 Z T.
The probability that such a path exists for 7' = blog P is bounded by

blog P —1 (1- L)P(b—l)logP < i
log P 2P - P

for a sufficiently large constant b. A similar argument bounds the probability that
dissemination of the ALLDONE mark through the tree takes more than blog P steps.

To bound the contention we observe that at each iteration, P processors choose
randomly between 2P locations causing an average of O(1/2) contention per node per
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step. The probability that through the execution of the algorithm any node experiences
a contention of at least clog P/loglog P is bounded by

4Pblog P _~ yclogP/loglogP < =
8 (clogP/loglogP)(2P) =p

for a sufficiently large constant c. ]

3.2 Building the Quicksort tree

We now show how to deal with contention in the tree building phase of the algorithm,
we assume that work is distributed using LC-WATs. The method we use is based on
splitting the sort into three major phases, the first and last of which are based on the
sort of the previous section and the middle phase serves as a “glue” between them. For
simplicity we will present the algorithm for the case where P = N, extending it to other
cases is straightforward. Here is a high level view of the sort.

1. Split the P processors into v/P groups of v/P processors each. Each group sorts
a different slice of size v/P of the original array in parallel, using the algorithm of
Section 2.

2. One group, the winner, is selected, most likely the first group to finish sorting its
slice. This sorted slice is transformed into a fat balanced binary tree [23] with v/P
copies of each node.

3. The entire array is sorted using the algorithm of Section 2, the only difference is
that node values of elements with depth < log\/ﬁ are read from the fat tree of
the previous phase (This is similar to the approach used by Gibbons et al. [24]).

The second phase of the algorithm has two new parts: winner selection and fattening
of the tree. Low contention winner selection can be achieved using a balanced binary
tree (e.g. implemented as an array) whose nodes are all initially set to EMPTY. Processors
begin at the tree’s leaves and advance towards the root till they reach a node with a
value (one that is not EMPTY), they then copy this value to the node’s two children. If
the root is reached, the processor attempts to acquire it using compare-and-swap. Low
contention is achieved by having processors enter the tree in waves with appropriate
constant spacing between them. The first wave has a single processor, each successive
wave has twice as many processors as the last, till the log P-th wave has P/2 processors.
If we assume that all processors arrive at the winner selection phase simultaneously, are
assigned delays as above and operate in PRAM-like synchrony then the root will be
acquired by a single processor after log P steps with O(1) contention. That processor
will also write its value to the root’s two children. Each child will in turn be read by
a single processor who will continue the propagation towards the leaves. In this way
we can select the winner in O(log P) time with O(1) contention. In the context of our
algorithm processors cannot be guaranteed to arrive at this phase simultaneously and
will generally arrive within a span of O(log P) time steps. Instead of pre-assigning delays
we will have processors choose delay times randomly so that the expected distribution
will be the same. Figure 9 provides pseudo-code for this phase.

Lemma 3.2 If all the processors reach the winner selection routine of Figure 9 within
a span of O(log P) time steps then for an appropriate constant K, with high probability
the routine selects a winner in time O(log P) with ezpected contention O(log P).

Proof: The winner selection routine consists of two phases: the wait phase, and the
tree traversal phase. Since a processors spends no more than K logp steps in the wait
phase, and then traverses a path on the tree of no more than log P nodes the routine
run-time is O(log P).
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function select_winner(candidate: integer) : returns integer
shared variables

winner : tree of P leaves initialized to EMPTY
processor private variables

i: integer

j: a node of winner

begin
s :=0
while toss_coin() = Heads and s < log(P)
s :=s + 1
endwhile
for i = 1 to K*(log(P)-s)
endfor

j = leaf number PID of winner
while winner[j] = EMPTY and not root(j)
j = parent(j)
endwhile
if root(j) then
compare_and_swap(winner[j] , EMPTY, candidate)
endif
winner[ left_child(j) ] = winner[j]
winner[ right_child(j) ] = winner[j]
end

Figure 9: Low Contention Winner Selection

To bound the contention we observe that contention can occur only between proces-
sors that exit the wait phase at the same step. Let z; be the number of processors leaving
the wait phase at time ¢K. Let z; = @; + y;, where z; are processors that had zero wait
(s=log P) and y; = z;—&;. Since for any given processor Prob(s = log P) = 1/P, even if
all processors start the routine at time ¢K, with high probability z; = O(log P). Next we
observe that if a processor was in the wait phase at time (¢ — 1)K, the probability that it
will exit the wait at time (¢—1)K is exactly half the probability of exiting the wait at time
tK. Thus, either z; < log P, or with high probability y; < 2(1+€)z;_1 + log P, for some
small constant €. Thus, when the z; processors traverse the tree at least %zi —O(log P)
nodes are not EMPTY. Since the z; processors are randomly distributed between these
nodes, with high probability the contention is O(log P). ]

Once a winner is selected, we use its sorted slice as the base for a fat balanced binary
tree which will serve for the top levels of the Quicksort tree. A balanced binary tree is
a binary tree, where each node has two children. The tree is made fat by duplicating
the values: VP copies of the value at each node are made. Recall that the total number
of nodes in the tree is +/P so that all in all we have P copies. To fill the fat tree
with values we will use an approximation of the write-all problem, write-most. Each
processor reaching this stage will choose log P values of the fat tree at random, and
write into them values taken from the sorted slice of A chosen in the previous stage
(the winning slice). Any two processors choosing the same node of the fat tree, even
if they choose different duplicate values in that node must read from the same element
of A. Since there are v/P nodes, the expected number of processors reading from the
same location in A concurrently is P/\/ﬁ = +/P. This way we can fill the fat tree with
high probability in time log P, with contention v/P. The main difference between our
fat-tree and that of Gibbons et al. [24] (other than the fact that the sizes are different),
is that [24] use binary broadcast to fill the tree, a method that is not wait-free, while we
employ randomized write-most to ensure independence of actions between processors.
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We can now apply the first stage of the sorting algorithm, build_tree, to the entire
array and construct the Quicksort tree with expected contention at most v/P. Processors
reading the fat tree have access to multiple copies. This reduces contention. The node
with the largest ratio of processors to duplicate values will be the root which is accessed
by P processors and has v/P duplicates, leading to /P contention. Once out of the fat
tree, the processors are divided into groups of expected size v/ P, each group operating
on a different node.

3.3 Completing the sort

We complete the sort by giving low contention versions of the second and third phases
of the sort: tree_sum and find_place. Tree summation follows the algorithm for LC-
WATs in Figure 8, with the following minor changes:

1. The work for each leaf is simply setting its SUM value to 1.

2. Before marking an inner node as DONE we set its SUM value to the sum of each of
its children’s SUM values plus 1.

We can find an element’s location using a similar method. Again nodes are repeatedly
picked at random, and the following actions are taken:

1. For the root: the root’s place can be calculated immediately using the size of its
SMALL subtree. If both of the root’s children are marked DONE the root is marked
ALLDONE.

2. For an inner node whose parent’s place is known: the node’s place is calculated.

3. For a leaf whose parent’s place is known: the leaf’s place is calculated and the
leaf is marked DONE.

4. For a node for which both children are marked DONE: the node is marked DONE.

5. For a node marked ALLDONE: the value is propagated to the node’s children (if
there are any) and the processor quits.

We set a node’s PLACE based on its parent’s location using the equations in Section 2.
When processors are all participating, this phase takes O(log P) time, in three passes:
first place values are written going down the tree, then DONE values propagate up the
tree, and finally, ALLDONE values spread back down the tree.

Lemma 3.3 For both second and third phases contention is the same as for the LC-
WAT algorithm of Figure 8.

Proof: The second phase is nearly word for word identical to the algorithm of Figure 8.
The third phase follows the same “blueprint”, the only difference being that processors
access a constant number of additional memory locations at each node. Since these
locations are in the vicinity of a processor’s randomly chosen node (either a parent or
the children) knowing the number of processors choosing the same node is enough to
bound the contention (up to a constant factor), so Lemma 3.1 applies. ]

4 Conclusions

This paper presented the first run-time optimal wait-free sorting algorithm. The al-
gorithm completes the sort in O(N log N/P) time, with high probability, when run on
a CRCW PRAM. A detailed analysis of the work performed by the algorithm in the
asynchronous case is still required. Using low contention randomized solutions for win-
ner selection and work allocation, we have shown how to reduce the contention suffered
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by the algorithm to O(\/ﬁ) in the synchronous case. In the asynchronous case it has
been shown that an omnipotent adversary can always cause a wait-free algorithm to
suffer O(P) contention [20]. Still, it would be interesting to present an analysis of our
contention reduced variant in the face of a weaker adversary.

While this algorithm is not immediately practical, it does make use of some interest-
ing general constructions. These constructions for solving work-allocation, write-most,
and winner-selection suffer contention of no more than O(log P) with high probability.
We believe they represent building-blocks that are simple, efficient and of low enough
contention that they could form the basis of other, more practical, wait-free algorithms.
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