
Di�racting Trees

Nir Shavityz Asaph Zemachy

August ��� ����

Abstract

Shared counters are among the most basic coordination structures in multiprocessor computa�

tion� with applications ranging from barrier synchronization to concurrent�data�structure design�

This paper introduces di�racting trees� novel data structures for shared counting and load balanc�

ing in a distributed parallel environment� Empirical evidence� collected on a simulated distributed

shared�memory machine and several simulated message passing architectures� shows that di�rac�

ting trees scale better and are more robust than both combining trees and counting networks�

currently the most e�ective known methods for implementing concurrent counters in software� The

use of a randomized coordination method together with a combinatorial data structure overcomes

the resiliency drawbacks of combining trees� Our simulations show that to handle the same load�

di�racting trees and counting networks should have a similar width w� yet the depth of a di�racting

tree is O�logw�� whereas counting networks have depth O�log�w��

Di�racting trees have already been used to implement highly e�cient producer	consumer queues�

and we believe di�raction will prove to be an e�ective alternative paradigm to combining and queue�

locking in the design of many concurrent data structures�

�A preliminary version of this work appeared in the Proceedings of the Annual Symposium on Parallel Algorithms

and Architectures �SPAA�� June �����
yDepartment of Computer Science� Tel�Aviv University� Tel�Aviv ���	
� Israel�
zContact Author� E�mail� shanir�math�tau�ac�il�

� Introduction

It is hard to imagine a program that doesn�t count something� and indeed� on multiprocessor

machines shared counters are the key to solving a variety of coordination problems such as barrier

synchronization �
�� index distribution� shared program counters ��� and the design of concurrent

data structures such as queues and stacks �see also ���� ��� ���� In its purest form� a counter is

an object that holds an integer value and provides a fetch�and�increment operation� incrementing

the counter and returning its previous value� Given that the majority of current multiprocessor

architectures do not provide specialized hardware support for e�cient counting� there is a growing

need to develop e�ective software�based counting methods�

The simplest way to implement a counter is to place it in a spin�lock protected critical section�

adding an exponential�back�o� mechanism ��� �� ��� or a queue lock as devised by Anderson ���

and Mellor�Crummey and Scott �
� to reduce contention ��
� ��� Unfortunately� such centralized

methods are inherently non�parallel and cannot hope to scale well� This is true also of hardware

supported fetch�and�increment operations unless the hardware itself employs one of the parallel

methods described below�

A recent survey of counting techniques by Herlihy� Lim� and Shavit ��� suggests that scalable

counting can only be achieved by methods that are distributed and therefore have low contention

on memory and interconnect� and are parallel� and thus allow many requests to be dealt with

concurrently� The combining trees of Yew� Tzeng� and Lawrie ��� and Goodman� Vernon� and

Woest ����� and the counting networks of Aspnes� Herlihy� and Shavit ���� both meet the above

criteria� and indeed were found to be the most e�ective methods for concurrent counting in software�

A combining tree is a distributed binary�tree based data structure with a shared counter at its

root� Processors combine their increment requests going up the tree from the leaves to the root�

and propagate the answers down the tree� thus eliminating the need for all processors to actually

reach the root in order to increment the counter� For n processors optimal combining trees have

O�logn� depth and the desirable property that the unavoidable �collisions� of processors at their

nodes are utilized to increase parallelism� At peak performance a combining tree would have a

throughput of n�� logn indices per time step� that is� n indices are returned every � logn steps�

However� this throughput is highly dependent on processor timings� and a single processor�s delay

or failure can delay all others inde�nitely�

A Bitonic counting network ��� is a distributed data structure having a layout isomorphic to

Batcher�s Bitonic sorting network ���� with a �local counter� at the end of each output wire�

Unlike queue�locks and combining trees which are based on a single counter location handing out

indices� counting networks have a collection of w separate counter locations� To guarantee that

indices handed out by the w separate counters are not erroneously �duplicated� or �omitted�� one

adds a special network coordination structure to be traversed by processes before accessing the

�

X = 5 4 3 2 1 0

y0 = 0 4

y1 = 1 5

y2 = 2

y3 = 3

y0
y1
y2
y3
y4
y5
y6
y7

X

Figure �� Two Simple Counting Trees

counters� Bitonic counting networks have width w � n and depth O�log� w�� Unlike combining

trees� counting networks support complete independence among requests and are thus highly fault

tolerant� At peak performance their throughput is w� as w indices are returned per time step

by the independent counters� Unfortunately� counting networks su�er a performance drop�o� due

to contention as concurrency increases� and the latency in traversing them is a high O�log�w��

There is a wide body of theoretical research analyzing the performance of counting networks and

attempting to improve on their O�log�w� depth ��� �� �� ��� ��� ��� ��� ��� ���� The most e�ective is

the elegant combinatorial design due to Klugerman and Plaxton ���� ��� of depth close to O�logw��

Unfortunately� the �exponentially large� constants involved make these constructions impractical�

This paper introduces di�racting trees� a new distributed technique for shared counting� enjoying

the bene�ts of the above methods and avoiding many of their drawbacks� Di�racting trees� like

counting networks ���� are constructed from simple one�input two�output computing elements called

balancers that are connected to one another by wires to form a balanced binary tree� Tokens arrive

on the balancer�s input wire at arbitrary times� and are output on its output wires� Intuitively one

may think of a balancer as a toggle mechanism� that given a stream of input tokens� repeatedly

sends one token to the left output wire and one to the right� e�ectively balancing the number of

tokens that have been output� To illustrate this property� consider an execution in which tokens

traverse the tree sequentially� one completely after the other� The left�hand side of Figure � shows

such an execution on a tree of width � As can be seen� if the output wires are arranged correctly�

the tree will move input tokens to output wires in increasing order modulo � Trees of balancers

having this property can easily be adapted to count the total number of tokens that have entered

the network� As in the case of counting networks� counting is done by adding a local counter to

each output wire i� so that tokens coming out of that wire are assigned numbers i� i�� i�� ��� � � �
A clear advantage of the tree over a counting network is its depth which is logarithmic in w�

This means that it can support the same kind of throughput to w independent counters with much

�

lower latency� However� it seems that we are back to square one since the root of the tree will

be a �hot spot� ��
� �� and a sequential bottleneck that is no better than a centralized counter

implementation� This would indeed be true if one were to use the accepted �counting network�

implementation of a balancer � a single location with a bit toggled by each passing token� The

problem is overcome based on the following simple observation� if an even number of tokens pass

through a balancer they leave the toggle bit state unchanged� Thus� if one could have pairs of

tokens collide and then di�ract in a coordinated manner one to the left and one to the right� both

could leave the balancer without ever having to toggle the shared bit� This bit will only be accessed

by processors that did not collide� Di�racting trees implement this approach by adding a software

�prism� in front of the toggle bit of every balancer �see Figure ��� The prism is an inherently

distributed data structure that allows many di�ractions to occur in parallel� Processors select

prism locations uniformly at random to ensure load balancing and high collision	di�raction rates�

The tree structure guarantees correctness of the output values� Di�racting trees thus combine the

the high degree of parallelism and fault�tolerance of counting networks with the bene�cial utilization

of �collisions� of a combining tree�

We compared the performance of di�racting trees to the above methods in simulated shared

memory and message passing environments� The Proteus Parallel Hardware Simulator ��
� ���

of Brewer� Dellarocas� Colbrook and Weihl was used to evaluate performance in a shared mem�

ory architecture similar to the Alewife machine of Agarwal� Chaiken� Johnson� Krantz� Kubia�

towicz� Kurihara� Lim� Maa� and Nussbaumet ���� Netsim� part of the Rice Parallel Processing

Testbed ���� ��� developed by Covington� Dwarkadas� Jump� Sinclair� and Madala was used for

testing in message passing architectures� We found that� in shared�memory systems� di�racting

trees substantially outperform both combining trees and counting networks� currently the most

e�ective known methods for shared counting� They scale better� giving higher throughput over

a large number of processors� and are more robust in terms of their ability to handle unexpected

latencies and di�ering loads� Note also that like counting networks but unlike combining trees�

di�racting trees can be implemented in a wait�free ���� manner �given the appropriate hardware

primitives�� By this we mean that for each increment operation termination is guaranteed in a

bounded number of steps independently of the pace or even a possible halting failure of all other

processors� In message passing environments� we analyzed the e�ects of network bandwidth and

locality on these distributed data structures� We found that in low bandwidth mesh networks

combining trees can be optimally placed so that they are by far the most e�ective method� but

only when the load is very high� A drop in the load immediately results in poor combining and

the performance falls below that of the more robust di�racting tree� In other architectures where

locality plays a lesser role or where wider bandwidth is available� all the methods have comparable

behavior� In a butter�y type network� which has no locality and low bandwidth� di�racting trees

substantially outperform other methods�

�

In summary� we believe di�raction will prove to be an e�ective alternative paradigm to com�

bining in the design of many concurrent data structures and algorithms for multi�scale computing�

This paper is organized as follows� Section � describes tree counting networkswith theBinary�w�

layout and introduces di�racting trees� Section � gives the shared memory implementation of di��

racting trees and performance results on Proteus� Section has the message passing implementation

and results of Netsim simulations� Section � contains formal correctness proofs for all our construc�

tions� and Section � concludes this paper and lists areas of further research�

� Trees that Count

We begin by introducing the abstract notion of a counting tree� a special form of the counting

network data structures introduced by Aspnes� Herlihy� and Shavit ���� A counting tree balancer is

a computing element with one input wire and two output wires� Tokens arrive on the balancer�s

input wire at arbitrary times� and are output on its output wires� Intuitively one may think of a

balancer as a toggle mechanism� that given a stream of input tokens� repeatedly sends one token

to the left output wire and one to the right� e�ectively balancing the number output on each wire�

We denote by x the number of input tokens ever received on the balancer�s input wire� and by

yi� i � f
� �g the number of tokens ever output on its ith output wire� Given any �nite number
of input tokens x� it is guaranteed that within a �nite amount of time� the balancer will reach a

quiescent state� that is� one in which the sets of input and output tokens are the same� In any

quiescent state� y� � dx��e and y� � bx��c� We will abuse this notation and use yi both as the
name of the ith output wire and as the count of the number of tokens output on the wire�

A balancing tree of width w is a binary tree of balancers� where output wires of one balancer

are connected to input wires of another� having one designated root input wire and w designated

output wires� y�� y�� ��� yw��� Formal de�nitions of the properties of balancing networks can be found

elsewhere ���� On a shared memory multiprocessor one can implement a balancing tree as a shared

data structure� where balancers are records� and wires are pointers from one record to another�

Each of the machine�s asynchronous processors can run a program that repeatedly traverses the

data structure from the root input pointer to some output pointer� each time shepherding a new

�token� through the network� In a message passing architecture �tokens� would be implemented

as messages� and balancers would be processors that receive messages and send them left or right

in a balanced way�

We extend the notion of quiescence to trees in the natural way� and de�ne a counting tree of

width w as a balancing tree whose outputs y�� ��� yw�� satisfy the following step property�

In any quiescent state�
 � yi � yj � � for any i � j�

To illustrate this property� consider an execution in which tokens traverse the tree sequentially�

one completely after the other� The left�hand side of Figure � shows such an execution on a

Binary�� type counting tree �width � which we de�ne formally below� As can be seen� the

network moves input tokens to output wires in increasing order modulo w� Balancing trees having

this property are called counting trees because they can easily be adapted to count the total number

of tokens that have entered the network� Counting is done by adding a local counter to each output

wire i� so that tokens coming out of that wire are assigned numbers i� i�w� � � �� i��yi���w� Code for
implementing a simple counting tree can be found in Figure �� The increment counter at leaf��

call �line � of fetch�incr� hides the implementation of a simpler form of counting operation� either

one that employs a software lock or through a hardware fetch�and�increment operation�

We use a counting tree called Binary�w�� de�ned as follows� Let w be a power of two� and

let us de�ne the counting tree Binary��k� inductively� When k is equal to �� the Binary��k� tree

consists of a single balancer with output wires y� and y�� For k � �� we construct the Binary��k�

tree from two Binary�k� trees and one additional balancer� We make the input wire x of the

single balancer the root of the tree and connect each of its output wires to the input wire of a tree

of width k� We then redesignate output wires y�� y�� � � � � yk�� of the tree extending from the �
�

output wire as the even output wires y�� y�� � � � � y�k�� of Binary��k� and the wires y�� y�� � � � � yk��

of the tree extending from the balancer�s ��� output wire as the odd output wires y�� y�� � � � � y�k���

Theorem ��� in Section ��� proves that Binary��k� is indeed a counting tree�

To informally understand why Binary��k� has the step property in a quiescent state� assume

inductively that Binary�k� has the step property in a quiescent state� The root balancer passes

at most one token more to the Binary�k� tree on its �
� �top� wire than on its��� �bottom� wire�

Thus� the tokens exiting the top Binary�k� subtree have the shape of a step di�ering from that

of the bottom subtree on exactly one wire j among their k output wires� The outputs of the

Binary��k� are a perfect shu�e of the wires stemming from the two subtrees� and it easily follows

that the two step�shaped token sequences of width k will form a new step of width �k where the

possible single excess token resides in the higher of the two wires j� that is� the one stemming from

the top Binary�k� tree�

��� Di�raction Balancing

Consider implementing a Binary�w� tree using the standard balancer implementation� as in Fig�

ure �� Each processor shepherding a token through the tree toggles a bit inside each balancer

encountered� and accordingly decides on which wire to exit� If many tokens attempt to pass

through the same balancer concurrently� the toggle bit quickly becomes a hot�spot� Even if one

applies contention reduction techniques such as exponential backo�� the toggle bit still forms a

sequential bottleneck� Contention would be greatest at the root balancer through which all tokens

�

type balancer is

begin

lock� boolean

toggle� boolean

next� array ������ of ptr to balancer

end

constants

width� global integer

root � global ptr to root of Binary�width� tree

� function typical�balancer	b� ptr to balancer
 � ptr to balancer

� begin

� lock	b�lock

� i �� b�toggle

� b�toggle �� not	i

� unlock	b�lock

� return b�next�i�

� end

� function fetch�incr	
� integer

� begin

� b�� root

� while not leaf	b

� b �� typical�balancer	b

� endwhile

� i �� increment�counter�at�leaf	b

� return i � width � number�of�leaf	b

� end

Figure �� A Shared�Memory tree�based counter implementation

must pass� To overcome this di�culty we make use of the following observation�

If an even number of tokens pass through a balancer� they are evenly balanced left and

right� yet the value of the toggle bit is unchanged�

If we could �nd a method that allows separate pairs of tokens arriving at a balancer to �collide�

and coordinate among themselves which is di�racted �right� and which di�racted �left�� both could

�

prism

toggle
bitx

y0

y1

y2

y3

y4

y5

y6

y7

Figure �� A Di�racting Tree

leave the balancer without either having to touch the toggle bit� This potential hot�spot would only

be accessed by those processors that did not manage to collide� By performing the collision	co�

ordination decisions independently in separate locations instead of at a single toggle bit� we will

hopefully increase parallelism and lower contention� However� we must guarantee that many such

collisions occur� not an obvious task given the inherent asynchrony in the system�

Our di�racting balancer data structure is based on adding a special prism array �in front� of

the toggle bit in every balancer� When a token T enters the balancer� it �rst selects a location� l� in

prism uniformly at random� T tries to �collide� with the previous token to select l� or� by waiting

for a �xed time� with the next token to do so� If a collision occurs� both tokens leave the balancer on

separate wires� otherwise the undi�racted token T toggles the bit and leaves accordingly� Figure �

shows a di�racting tree of width ��

The next two sections discuss how di�racting trees are implemented in the two major parallel

programming paradigms� shared memory �Section �� and message passing �Section ��

� A Shared Memory Implementation

In shared memory a di�racting tree is implemented by a Binary�w� tree of balancer records� Each

processor that wishes to increment the counter� shepherds a token though the tree by executing

a program that reads and writes to shared memory� Each balancer record consists of a toggle

bit �our implementation uses a spin�lock to allow atomic toggling of this bit�� and a prism array�

Additionally� each balancer holds the size of its prism array in the variable size� the addresses of

its descendant balancers �or counters� in next and an additional �eld� spin� detailed below� An

�

additional global location����n� array has an element per processor p � f� � � �ng �per processor�
not per token�� holding the address of the balancer which p is currently traversing�

Figure gives the di�racting balancer data structure and code and Figure � illustrates an

actual run of the algorithm �detailed below�� Three synchronization operations are used in the

implementation code�

� register to memory swap�addr�val� writes val to address addr� and returns its previous

value�

� compare and swap�addr�old�new� checks if the value at address addr is equal to old� and

if so� replaces it with new� returning TRUE� otherwise it just returns FALSE� and

� test and set�addr� writes TRUE to address addr and returns the previous value�

All three operations can be implemented in a lock�free ���� manner using the load�linked	store�

conditional operations available on many modern architectures ���� ���� On machines like the

MIT Alewife ��� that support full�empty bits in hardware� the compare and swap operations can be

directly replaced by loads and stores that interact	are�conditioned on the bit ���

The code translates into the following sequence of operations �illustrated in Figure �� performed

by a process shepherding a token through a balancer� In Phase � processor p announces the arrival

of its token at balancer b�� by writing b� to location�p� �Line ��� Using the routine random�a�b�� it

chooses a location in the prism array uniformly at random and swaps its own PID for the one written

there �Lines � ��� Assuming it has read the PID of an existing processor �i�e� not empty�him���

p attempts to di�ract it� This di�raction is accomplished by performing two compare�and�swap

operations on the location array �Lines � � ��� The �rst clears p�s element� assuring no other

processor will collide with it during the di�raction �this avoids race conditions�� The second clears

the other processor�s element� and completes the di�raction� If both compare�and�swap operations

succeed� the di�raction is successful� and p is di�racted to the b��next�	
 balancer �Line ��� In

Figure � this might happen if p were trying to di�ract r� since examining the location array shows

both to be at balancer b�� If the �rst compare�and�swap fails� it follows that some other processor

has already managed to di�ract p� so p is directed to the b��next��
 balancer �Line ���� If the

�rst succeeds but the second compare�and�swap fails� then the processor with whom p was trying

to collide is no longer available� in which case p goes on to Phase �� though not before updating

location�p� to re�ect the fact the p is still at b� �Line �
�� This would happen if� for example�

p were trying to di�ract q� since q is at balancer b� �location�q� is b�� not b�� causing the second

compare�and�swap to fail��

In Phase �� processor p repeatedly checks to see if it has been di�racted by another processor� by

examining location�p� spin times �Lines � � ���� This gives any processor that might have read

�

type balancer is

begin

size� integer

spin� integer

prism� array ����size� of integer

lock� boolean

toggle� boolean

next� array ������ of ptr to balancer

end

location� global array����NUMPROCS� of ptr to balancer

� function diff�bal	b� ptr to balancer
� ptr to balancer

� begin

����������������������� phase � �����������������������

� location�mypid� �� b

� place �� random	��b�size

� him �� register�to�memory�swap	b�prism�place��mypid

� if not�empty	him
 then

� if compare�and�swap	location�mypid��b�EMPTY
 then

� if compare�and�swap	location�him��b�EMPTY
 then

� return b�next���

�� else location�mypid� �� b

�� else return b�next���

�� endif

����������������������� phase � �����������������������

�� while true

�� repeat b�spin times

�� if location�mypid� � b then

�� return b�next���

�� endrepeat

�� if test�and�set	b�lock
 then

�� if compare�and�swap	location�mypid��b�EMPTY

�� then

�� i �� b�toggle

�� b�toggle �� not	i

�� b�lock �� FALSE

�� return b�next�i�

�� else

�� b�lock �� FALSE

�� return b�next���

�� endif

�� endif

�� endwhile

�� end

Figure � Code for traversing a di�racting balancer

�

p

location

r qs

p

0

b0

prism

toggle

b1

b2

q

1

0

s

counter0

counter1

counter2

counter3

b0 b0 b0 b1

1. n

Figure �� The shared memory implementation of a di�racting tree

p�s PID from prism time to di�ract p� The amount of time is dependent on the value of the spin

�eld of each balancer� A higher spin value indicates more time is spent waiting to be di�racted� If

not di�racted� p attempts to acquire the lock on the toggle bit �Line ���� If successful� p �rst clears

its element of location� using compare�and�swap� and then toggles the bit and exits the balancer

�Lines �� � ��� If location�p� could not be erased it follows that some other processor already

collided with p� and p exits the balancer� being di�racted to b��next��
 �Lines ������� If the lock

could not be seized� processor p resumes spinning�

Notice that before accessing the toggle bit or trying to di�ract� p clears location�p� using a

compare�and�swap operation� The use of compare�and�swap operations guarantees that the same

processor p will not be di�racted twice� since success ensures that p has not yet been di�racted�

It also guarantees that p will not be di�racted before getting a chance to exit the balancer� This

protects us from situations where some processor q is di�racted by p without noticing� The con�

struction works because it assures that for every processor being di�racted left �to b��next�	
��

there is exactly one processor di�racted right �to b��next��
�� Since all other processors go through

the toggle bit a balance is maintained� A formal proof is given in Section ����

��� Some Implementation Details

The following discussion assumes an implementation on a machine that supports a globally ad�

dressable� physically distributed memory model� Each processor has part of the machine�s memory

adjacent to it� and operates on non�local memory through a network which connects all processors

and memory modules� Recently accessed memory is cached locally� Caches are kept up�to�date

�

through the machine�s cache coherency protocol�

On such a machine� when a large number of processors concurrently enter a balancer� the

chances for successful collisions in the prism are high� and contention on the lock of the toggle bit

is unlikely� When there are few processors� each will spin a �short� while� reach for the toggle bit

and be o�� Since all spinning is done on a cached copy of the value of location�mypid
 it incurs

very little overhead� The only case in which a processor repeatedly accesses memory� is when no

other processor di�racts it� and it constantly reaches for the lock on the toggle bit� This becomes

increasingly unlikely as more processors enter the balancer�

Two parameters are of critical importance to the performance of the di�racting balancer�

�� size This value a�ects the chances of a successful pairing�o�� If it is too high� then

processors will tend to miss each other� failing to pair�o� and causing contention on the lock

of the toggle bit� If it is too low� contention will occur on the prism array as too many

processors will try to access fewer locations at the same time�

�� spin If this value is too low� processors will not have a chance to pair�o�� and there will

be contention on the lock of the toggle bit� If it is too high� processors will tend to wait for

a long time even though the toggle bit may be free� causing a degradation in performance�

The choice of these parameters is obviously architecture dependent� In our simulations we used

for the variable size the values ������ and �� for levels
� � � � � of a width �� tree respectively� We

also used a form of adaptive �exponential� back�o� ��� on the spin to facilitate rapid access to the

toggle bit in reduced load situations� Each processor kept a local copy of the tree�s spin variables

and used them as initial values for the back�o�� After each failed attempt at seizing the toggle

bit� the processor would double its local spin �up to a maximum bound of ��� iterations�� thus

increasing the amount of time it waited to be di�racted with� However� if the toggle bit was seized�

the initial value of spin used by the processor in its next pass through this balancer was halved�

Figure � shows how these changes are incorporated into the code� A further discussion on the

e�ects of spin optimization is given in Section ��� In order to maximize the distribution of the

balancer�s data structure the elements of the prism array were all located to separate modules of

memory� Notice that it is possible that some processor will swap another processor�s PID from the

prism� but for some reason not manage to di�ract it� despite the fact that both may be at the same

balancer� If the second processor�s PID is no longer written in the prism it will have no chance of

being di�racted� To overcome this we enhance performance by giving processors a �second�chance��

after spinning at the toggle bit for a while a processor rewrites its PID to the prism array and allows

itself to be di�racted as in Phase � of the code� This increases its chances of being di�racted during

a given traversal of a balancer� Correctness of this �second�chance� enhancement follows since

the state of the balancer when a token changes from waiting on the toggle to its �second�chance�

��

waiting on the prism� is the same as if it had not yet entered the balancer� �The location array

entry for it is EMPTY and its PID could appear in some entries of the prism array but this could

as well be the result of accesses to that balancer in earlier tree traversals�� Thus� the correctness

proof of the algorithm with the enhancement follows directly from the proof of the original code in

Section ���� and is left to the interested reader�

��� Fault Tolerance

The di�racting tree implementation given in Figure employs the test�and�set operation to lock

the balancer�s toggle bit� The use of locks is not fault tolerant� if a processor fails inside the critical

section it will never release the lock� potentially making further progress impossible� A fault

tolerant version of the di�racting tree using a hardware fetch�and�complement operation which

atomically �ips the value of its argument returning the previous value is described in Figure ���

To complete the fault tolerant construction the local counters at the leaves of the di�racting tree

must be made fault tolerant as well� This of course requires the replacement of the locks by a

hardware fetch�and�increment operation� �We remind the reader that having hardware support

for a fetch�and�increment operation does not obviate the need for the di�racting tree structure�

as a single memory location with a hardware fetch�and�increment as a counter would su�er from

contention and sequential bottlenecking drawbacks�� The same method can be used to produce

fault tolerant counting networks� In fact� replacing the toggling operation with a hardware fetch�

and�complement operation would make the di�racting tree and counting network implementations

wait�free ����� That is� the number of steps needed to increment the shared counter is bounded by

a constant� regardless of the actions of other processors� A formal proof that the implementation

in Figure � is wait�free is given in Lemma �����

��� Performance

We evaluated the performance of di�racting trees relative to other known methods by running a

collection of benchmarks on a simulated distributed�shared�memory multiprocessor similar to the

MIT Alewife machine developed by Agarwal et� al� ���� Our simulations were performed using

Proteus�� a multiprocessor simulator developed by Brewer et� al� ����� Proteus simulates parallel

code by multiplexing several parallel threads on a single CPU� Each thread runs on its own virtual

CPU with accompanying local memory� cache and communications hardware� keeping track of how

much time is spent using each component� In order to facilitate fast simulations� Proteus does

�For this purpose a hardware fetch�and�complement is planned to be added to the next version of the Alewife�s

Sparcle processor �� as a conditional store operation on a location with a full�empty bit� The new ��
 node Alewife

machine is due to be operational sometime in �����
�Version ����� dated February �
� �����

��

type balancer is

begin

shared �� by all processors ��

prism� array ����size� of integer

lock� boolean

toggle� boolean

next� array ������ of ptr to balancer

size� integer

local �� each processor has its own copy ��

spin� integer

end

location� global array����NUMPROCS� of ptr to balancer

� function diff�bal	b� ptr to balancer
� ptr to balancer

� begin

����������������� phase � is unchanged �����������������

����������������������� phase � �����������������������

�� while true

�� repeat b�spin times

�� if location�mypid� � b then

�� return b�next���

�� endrepeat

�� if test�and�set	b�lock
 then

�� if compare�and�swap	location�mypid��b�EMPTY

�� then

�� i �� b�toggle

�� b�toggle �� not	i

�� b�lock �� FALSE

�� if b�spin � then b�spin �� b�spin � �

�� return b�next�i�

�� else

�� b�lock �� FALSE

�� return b�next���

�� endif

�� endif

�� if b�spin � MAXSPIN then b�spin �� b�spin � �

�� endwhile

�� end

Figure �� Di�racting balancer with adaptive spin

��

type balancer is

begin

size� integer

spin� integer

prism� array ����size� of integer

toggle� boolean

next� array ������ of ptr to balancer

end

location� global array����NUMPROCS� of ptr to balancer

� function wait�free�diff�bal	b� ptr to balancer
� ptr to balancer

� begin

����������������������� phase � �����������������������

� location�mypid� �� b

� place �� random	��b�size

� him �� register�to�memory�swap	b�prism�place��mypid

� if not�empty	him
 then

� if compare�and�swap	location�mypid��b�EMPTY
 then

� if compare�and�swap	location�him��b�EMPTY
 then

� return b�next���

�� else location�mypid� �� b

�� else return b�next���

�� endif

����������������������� phase � �����������������������

�� repeat b�spin times

�� if location�mypid� � b then

�� return b�next���

�� endrepeat

�� if compare�and�swap	location�mypid��b�EMPTY
 then

�� i �� fetch�and�complement	b�toggle

�� return b�next�i�

�� else

�� return return b�next���

�� endif

�� end

Figure �� Code for a fault tolerant di�racting balancer

�

not perform complete hardware simulations� Instead� operations which are local �do not interact

with the parallel environment� are run directly on the simulating machine�s CPU and memory�

The amount of time used for local calculations is added to the time spent performing �simulated�

globally visible operations to derive each thread�s notion of the current time� Proteus makes sure

a thread can only see global events within the scope of its local time�

Two benchmarks were used to test the performance of di�racting trees� index�distribution and

job queues�

����� Index Distribution Benchmark

Index�distribution is a load balancing technique� in which processors dynamically choose loop itera�

tions to execute in parallel� As mentioned elsewhere ���� a simple example of index distribution is

the problem of rendering the Mandelbrot Set� Each loop iteration covers a rectangle in the screen�

Because rectangles are independent of one another� they can be rendered in parallel� but because

some rectangles take unpredictably longer than others� dynamic load�balancing is important for

performance� Here is the pseudo�code for this benchmark�

Procedure index�dist�bench�work� integer�

loop� i � get�next�index��

delay�random�	�work��

goto loop

In our benchmark� after each index is delivered processors pause for a random amount of time

in the range �
�work�� When work is chosen as
� this benchmark actually becomes the well known

counting benchmark� in which processors attempt to load a shared counter to full capacity�

We ran the benchmark varying the number of processors participating in the simulation �each

processor ran only one process�� and varying the value of the parameter work� In Proteus processes

do not begin at exactly the same time� instead� every few cycles a new process begins and this

continues until all the processes used in the simulation are running� For this reason the times

measured at the start of the simulation are inaccurate and must be ignored� To overcome this

problem� we began our measurements after the �

th index was delivered�

The data collected was�

Latency The average amount of time between the moment get next index was called� and the

time it returned with a new index�

��

Throughput The average number of indices distributed in a one million cycle period� This cycle

count includes the delay�� time� We measured t� the time it took to make d increments�

The throughput is �
�d�t�

As a basis for comparison� a collection of the fastest known software counting techniques was

used� To make the comparisons fair� the code for each method below was optimized� as was the

distribution of the data structures in the machine�s memory� The methods are�

ExpBacko� A counter protected by a lock using test�and�test�and�set with exponential backo� ���

����

MCS A counter protected by the queue�lock of Mellor�Crummey and Scott �
�� Processors waiting

for the lock form a linked list� each pointing to its predecessor� At the �head� of the list is

the processor who has the lock� To free the lock� the head processor hands ownership to its

successor� and so on� down the list� While waiting for the lock� processors spin locally on their

own node in the linked list� The lock has a single �tail� pointer which directs new processors

wishing to acquire the lock to the end of the queue� The code was taken directly from Mellor�

Crummey and Scott�s article �
� and implemented using atomic register�to�memory�swap

and compare�and�swap operations�

CTree A counter at the root of an optimal width combining tree using the protocol of Goodman

et al� ���� as modi�ed by Herlihy� Lim� and Shavit ���� A combining tree is a distributed

data structure with the layout of a binary tree� Optimal width means that when n processors

participate in the simulation� a tree of width n�� is used ���� Every node of the tree �including

the leaves� contains a spin�lock� and the root contains a local counter� Each pair of processors

is accorded a leaf� In order to reach the counter at the root� a processor�s request to increment

the counter must ascend the tree from a leaf� To this end a process attempts to ascend the

tree� acquiring the locks in the nodes on its path� If a lock is currently held by another

processor or processors� it waits until the lock is freed� If two processors reach the same node

and try to acquire the lock at approximately the same time� they combine their increment

requests� and only one of them continues to ascend the tree with the combined requests� This

eliminates the need for all processors to actually reach the root counter� When a processor

acquires the root it increments the counter by the sum of all combined increments� and then

descends the tree� unlocking nodes along its path� and handing down results of the increment

operation to the processors with which it combined�

CNet The Bitonic counting network of Aspnes� Herlihy� and Shavit ��� of width �� A Bitonic

counting network is a network of two�input�two�output balancers having a layout isomorphic

to a Bitonic sorting network ���� Each processor performing an increment operation travels

��

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

32 64 96 128 160 192 224 256

O
pe

ra
tio

ns
 p

er
 T

im
e

P
er

io
d

Processors

CNet[64]
CTree[n]

DTree[32]
MCS

Exp. Backoff

Figure �� Throughput of various counting methods when work 	

through the network from input wires to output wires toggling the shared bits in the balancers

along its path� The code in Figure � with the assignment of the root balancer �Line �

of fetch�incr� replaced by the selection of a random input wire to a Binary��� amply

describes the counting network protocol� The wires	pointers from one balancer to another

are cached locally by processors� while the toggle bit in shared memory is protected by a spin�

lock with exponential backo� ��� ���� Each output wire ends in a local counter implemented

using a short critical section protected by a test�and�test�and�set lock with exponential backo�

��� ���� The counting network width of � was chosen based on preliminary testing that showed

it provides the best throughput	average latency over a range of up to ��� processors� We

note that Felten� LaMarca� and Ladner ���� show network designs using higher fan�in	out

balancers which can get up to a ��! performance improvement over the Bitonic network�

DTree A Di�racting Tree of width ���

The graphs in Figures � and � show the throughput and latency of the various counting methods�

Our performance graphs for the known methods other than Di�racting trees conform with previous

�ndings and in particular� agree with the results of Herlihy� Lim and Shavit ��� on ASIM ���� the

Alewife machine hardware simulator��

It is clear from these graphs that the MCS lock and the lock with exponential backo� do not

�To con�rm our �ndings we reproduced their experiments with Proteus and got nearly identical results� Since the

rest of our study uses a ��� processor machine in contrast to their ��� those results are not given here�

��

0

2000

4000

6000

8000

10000

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

CNet[64]
CTree[n]

DTree[32]
MCS

Exp. Backoff

Figure �� Latency of various counting methods when work 	

scale well� latency grows quickly� and throughput diminishes� This is not surprising� since both are

methods for eliminating contention but do not support parallelism� Our results for the MCS lock

di�er from those of Mellor�Crummey and Scott �
� due to di�erences in machine architecture� In

their BBN Butter�y experiments if two read�modify�write operations are performed on the same

memory location �such as register�to�memory�swap on the lock�s tail pointer� one will succeed

immediately and the other is blocked and retried later� In the cache coherence protocol used

by Proteus this results in cache livelocks� both are aborted and retried� possibly several times�

explaining the sharp rise in latency seen in Figure ��

The remainder of the discussion concentrates on the latency and throughput results of the three

parallel techniques� combining trees� bitonic counting networks and di�racting trees� The graphs in

Figure � show that di�racting trees give consistently better throughput than the other methods� In

terms of latency Figures � and �
 show that they scale extremely well� average latency is una�ected

by the level of concurrency�

While processors that failed to combine in a combining tree must waste cycles waiting for earlier

processors to ascend the tree� processors in a di�racting tree proceed in an almost uninterrupted

manner due to the high rate of collisions in the prism array� To estimate the number of useful

collisions �those leading to a di�raction� in the prism array� we de�ne the term di�raction rate of

a balancer� to be the ratio between the number of tokens leaving the balancer by di�raction� to

the number of tokens leaving the balancer via the toggle bit� Consider some balancer� b after a

su�ciently long run of the algorithm� Suppose l tokens have passed through b� of those� d where

��

0

1000

2000

3000

4000

5000

6000

7000

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

CNet[64]
CTree[n]

DTree[32]

Figure �
� Latency of distributed parallel counting methods when work �			

0

5

10

15

20

25

30

35

40

32 64 96 128 160 192 224 256

D
iff

ra
ct

io
n

R
at

e

Processors

work=0
work=1000

Figure ��� Di�raction Rate

��

2048

4096

8192

16384

32768

65536

131072

4 8 16 32 64 128 256

O
pe

ra
tio

ns
 p

er
 T

im
e

P
er

io
d

Processors

DTree[4]
DTree[8]

DTree[16]
DTree[32]

Figure ��� E�ects of di�racting tree height on throughput� when work 	

di�racted and t � l� d went through the toggle bit� We de�ne � � the di�raction rate as� � � d�t�

Figure �� shows the di�raction rate at the root balancer as a function of the number of processors

in the simulation� The graph indicates a linear relationship of the form � � an � c exists� where

n is the number of processors and a and c are some constants� Remembering that � � d�t� and

d � l� t� we get t � l

an�c��
� Let us consider now a short interval of time "� during which "l tokens

enter the balancer� "l � n since only n tokens can exists simultaneously� If n is large enough� we

get "t � n

an�c��
� �

a
� where "t is the number of tokens passing through the toggle bit during "�

This means that the contention on the toggle bit is bounded by the constant �
a
� the number of

accesses during "� Thus� the level of contention on the toggle bit remains constant as concurrency

increases� and in fact� our measurements show that �
a
� �
 for the root balancer when work is
�

The scalable throughput of di�racting trees is to a large extent a result of their ability to

withstand high loads with low contention as explained above� coupled with their low depth� To see

why this is so consider the following �back of the envelope� calculation� Optimal depth combining

trees ��� have a depth of log n�� where n is the number of processes� With n of about ��� and

assuming time tctree to traverse	combine in a node� it takes ��tctree logn��� � �tctree time to get

��� indices back so its throughput is ���tctree�

A counting network with w counters at its output wires has a �xed depth of �logw����logw����

Unlike the combining tree� tokens traversing the counting network are pipelined in the structure�

so as long as there are su�ciently many processors concurrently accessing the network� w indices

are returned every tcnet time where tcnet is the balancer traversal time� One would hope this means

�

that a network of width w � �� could deliver top throughput performance of ���tcnet� for� say

���w�logw��� � logw� � ��
 processors� Unfortunately� as empirical testing shows ��� ��� if the

counting network is loaded to that extent� tcnet for each balancer tends to degrade �grow� rapidly

due to contention and sequential bottlenecking� This explains our preliminary tests that found the

counting network with best performance for the range of ��� processors has width � and depth ���

Unfortunately� it thus has rather limited pipelining and delivers substantially less than � indices

every tcnet time� If one assumes an even distribution of processors per level of the counting network�

then there could be no more than ������ processors at the counters at any time� giving an average

throughput of ������tcnet � ���tcnet� The experimentally measured throughput for the counting

network is accordingly slightly less than that of a combining tree� �One must keep in mind that

this is a very crude estimate as the ratio of tcnet to tctree is a factor in the comparison which is hard

to determine��

A di�racting tree� like a counting network� allows pipelining of requests� has depth logw� and

outputs w indices every tdtree time� where tdtree is the time to traverse a di�racting balancer�

Though most likely tdtree � tcnet� the di�racting balancer� as we explained above� is not susceptible

to contention and does not introduce a sequential bottleneck� Thus� loading the tree structure will

not signi�cantly increase tdtree� The empirically observed consequence is that a width w � �� and

depth logw � � di�racting tree can sustain concurrent access by at least �� processors without a

drop in throughput�

Under the reasonable assumption that tdtree for a di�racting balancer is no higher than tctree

for a combining tree node� and given that it is less susceptible to contention and to �uctuations

in access times� it becomes clear that the di�racting tree�s throughput of ���tdtree is substantially

higher than the ���tctree of the combining tree� as con�rmed by the empirical results� Moreover� the

di�racting tree�s traversal time of �tdtree is much shorter than �tctree for the combining tree and

��tcnet for the counting network� which explains its signi�cantly smaller observed average latency�

�This should again be taken with a grain of salt since the ratio tcnet to tdtree is hard to estimate��

For the remainder of the paper we will present either latency or throughput results� but not

both� since one can deduce latency from throughput and vice�versa� The reason for this is as follows�

Let L be the average latency of a counting method during an interval of t cycles� Each processor

can perform t�L fetch�and�increment operations� If n processors are active� we get T � nt�L total

operations performed� T is therefore the throughput of the system� Figures � and � show that

whenever there is a signi�cant change in one measure� there is a corresponding change in the other�

Figure �
 shows how latency scales for work �			� As can be seen� the average latency of the

di�racting trees is una�ected by the large variance in increment request arrival times indicating a

method that is scalable to both large numbers of processors and di�erent work loads� Scalability of

the counting network is likewise una�ected by arrival times� and as before latency increases with

��

Procedure prod�cons�bench	work� integer

loop� w �� random	��work
 �� produce ��

i �� increment	NQcounter

enqueue w at Queue�i mod n�

i �� increment	DQcounter

dequeue w from Queue�i mod n�

delay	w
 �� consume ��

goto loop

Figure ��� Code for producer	consumer benchmark

concurrency� The combining tree is severely a�ected by �uctuations in arrival times �see also ����

and scales poorly�

As seen in Figure � the di�racting tree shows a drop in performance when the number of

processors goes from �� to ���� This suggests the need to increase the size of the tree if more

processors are to be used� Figure �� shows the relationship between di�racting tree size and

performance� Choosing a tree that is too narrow or too wide can have negative e�ects� However�

since the interval in which a given width is optimal increases with tree size� the wider tree can

usually be used without fear� Also� the application of an adaptive scheme for changing di�racting

tree size �on the �y� �see for example ����� will most likely not result in frequent changes among

di�erent width trees�

In summary� di�racting trees scale substantially better than the other methods tested as they

have small depth and enjoy both the parallelism of counting networks and the bene�cial utilization

of �collisions� of combining trees�

����� Producer�Consumer Benchmark

This benchmark simulates a producer	consumer bu�er used as a job queue where processors take

turns serving as producers and consumers� Each processor produces a job and enqueues it� dequeues

a job and performs it� and so on� until N jobs have been performed� The job queue is implemented

using an array of n elements� each of which can hold a single job� Processors increment shared

counters to choose locations for queue operations� A dequeue operation on the i�th array element

will block until some job has been enqueued there� Similarly� enqueues block if the location is full�

Since array locations are independent� queue operations can proceed in parallel� The code for this

benchmark is given in Figure ���

To compare the performance of di�erent counters� we measured the time to perform �

queue operations� Results appear in Figure � for work �		 and Figure �� for work �			�

��

The graphs clearly show that a di�racting tree outperforms the other methods by a factor of

approximately two when work is low� and is about �
! faster when work is high� Notice that

we used a smaller di�racting tree and counting network here �widths �� and ��� instead of ��

and �� respectively� to take advantage of the smaller load� something that can�t be done with

combining trees� Unlike the index distribution benchmark� here the counting network wins over

the combining tree because processor arrival times may be quite far apart� making combining more

di�cult� Section �� discusses this issue in further detail�

� Message Passing

The following section describes a realization of di�racting trees in a message passing environment�

We studied the performance of the algorithm and compared it to the other parallel methods� in

the context of four message passing topologies that di�er in their interconnect bandwidth and their

utilization of network locality�

��� Implementation

The implementation �see Figure ��� is fairly straightforward� instead of the prism array locations

and toggle bit� a balancer will consist of a collection of prism processors and a toggle processor�

Shepherding a token through a balancer is accomplished by sending a message to one of the bal�

ancer�s prism processors �chosen uniformly at random�� This processor delays the message for a

�xed number of cycles �maintained in the balancer�s spin �eld�� to allow another token �message� to

arrive� If another token arrives� the processor di�racts the two tokens� sending one in a message to

the left balancer and the other in a message to the right� If another token did not arrive during this

interval� the processor forwards the token to the balancer�s toggle processor who decides whether

to send it to the left or right balancer based on its internal toggle bit� Counters are implemented

using processors that keep an internal counter� increment it when a message arrives� and send the

resulting index to the processor who originally requested it� Notice that some processors play two

roles �implemented using separate threads�� generating requests for indices and participating in

the implementation of the data structures�

Figure �� presents the code and data structure for the message passing implementation� The

balancer data type is very similar to the one used for the shared memory version� the size� spin�

and next �elds are exactly the same� the toggle �eld and prism array have been changed from

integers to thread IDs �TIDs�� as was explained previously� We assume that each thread has a

pointer to the balancer it is implementing in its mybalancer variable� The following routines are

used in the code�

��

0

5000

10000

15000

20000

25000

30000

35000

40000

32 64 96 128 160 192 224 256

Q
ue

ue
 O

pe
ra

tio
ns

 P
er

 T
im

e
P

er
io

d

Processors

CNet[32]
CTree[n]

DTree[16]

Figure �� Producer	Consumer benchmark throughput results for work �		

0

5000

10000

15000

20000

25000

30000

35000

32 64 96 128 160 192 224 256

Q
ue

ue
 O

pe
ra

tio
ns

 P
er

 T
im

e
P

er
io

d

Processors

CNet[32]
CTree[n]

DTree[16]

Figure ��� Producer	Consumer benchmark throughput results for work �			

�

P

P

P

P
P

P

P

P

T

T

T

C

C

C

C

Toggle
Processor

Prism
Processors

Counting
Processors

Messages

Diffracting Balancer

Figure ��� The message passing implementation of a di�racting tree

dispatch message�b�m� Sends the message m to a randomly chosen prism processor of balancer

b�

receive message�t� Waits for a message to arrive� then returns that message� If no message

arrives after t cycles NULL is returned� If t has the special value BLOCK� the routine waits

inde�nitely�

send message�t�m� Sends the message m to the thread t�

random�a�b� Returns a random integer in the interval �a�b��

Section ��� contains the correctness proof for this implementation�

��� Measuring Performance

It has been shown ��� that for the cache�coherent Alewife architecture on which our shared memory

counting methods were tested� message passing implementations are signi�cantly faster than shared

memory ones� Rather than duplicate those e�orts here we choose to focus on performance issues

that are common to most message passing systems� ignoring the speci�c hardware support that

might be available in a multiprocessor�

��

type balancer is

begin

size� integer

spin� integer �� How long to wait ��

prism� array����size� of TID �� prism processors ��

toggle� TID �� toggle processor ��

next� array������ of ptr to balancer �� left � right ��

end

� dispatch�message	b� ptr to balancer� m� message

� begin

� send�message	b�prism� random	��b�size
 ��m

� end

� CountingProc �� code for counting processor ��

� begin

� Vars

� Counter � integer

� Code

� message �� receive�message	BLOCK

� send�message	message�source � Counter

� Counter �� Counter � �

� end

� ToggleProc �� code for counting processor ��

� begin

� Vars

� ToggleBit� integer

� Code

� message �� receive�message	BLOCK

� dispatch�message	mybalancer�next�ToggleBit��message

� ToggleBit �� not	ToggleBit

� end

� PrismProc �� code for counting processor ��

� begin

� Code

� message� �� receive�message	BLOCK

�� wait �spin� cycles for another message to diffract ��

� message� �� receive�message	mybalancer�spin

� if 	message� � NULL
 then �� perform diffraction ��

� dispatch�message	mybalancer�next����message�

� dispatch�message	mybalancer�next����message�

� else �� send to toggle ��

�� send�message	mybalancer�toggle�message�

�� endif

�� end

Figure ��� Code for message passing di�racting balancer

��

We tested the performance of the message passing di�racting trees in simulated network envi�

ronments using Netsim ����� Netsim is a generic network simulator� developed as part of the Rice

Parallel Processing Testbed ����� The simulation is event driven� implying that time progresses

from event to event� operations performed between events� which do not interact with the simu�

lated network� take no time� Between a receive message�� and a subsequent send message�� a

process can perform any amount of computation with no performance penalty and no time passing�

However� it takes time for a message to travel through the network� and arrive at its destination�

Some of the factors which e�ect this time are the following� the network architecture� the num�

ber and size of messages sent� the distance messages must travel to their destinations� and the

congestion at network nodes and switches� This type of modeling re�ects current trends in com�

puter architecture� where network speeds dominate scalability since they do not improve as fast as

processor speeds �����

Our experiments included four types of networks� a torus mesh network with single wire

switches� a torus mesh network with crossbar switches� a butter�y network with crossbar switches�

and an n � n crossbar network� The choice of networks allows the study of two important perfor�

mance parameters that govern the behavior of highly distributed communication intense control

structures� locality and bandwidth� As presented in Table � the four types of networks tested cover

the various combinations of these two parameters�

Each network is made up of processors� wires and switches� Messages are sent by processors�

along wires and are routed by switches along their path to their destination� A wire can accommo�

date one message at a time� switches may be able to handle more� depending on their construction�

Messages arriving at a switch or wire that is busy servicing previous requests� wait at bu�ers till

the network is ready to service them�

Low Locality High Locality

Low Bandwidth Butter�y Network Mesh with single wire switches

High Bandwidth n� n Crossbar Mesh with Crossbar switches

Table �� A Comparison of Network Topologies

Torus mesh network with single wire switches This network has a two dimensional mesh

topology� Network switches are placed on the grid points of a two dimensional
p
n � p

n

mesh� and each switch interfaces with �ve components� the four switches around it and

the processor local to its grid point� An interface between components uses two wires� one

incoming and one outgoing� The switches at the edge of the grid are connected �around

the back� to form a torus� The routing used is a simple� shortest path� X coordinate �rst

��

algorithm� The switches can support only one message at a time� as can the wires between

switches� The diameter of this network is O�
p
n�� where n is the number of processors�

Torus mesh network with crossbar switches Except for the construction of the switches� this

is exactly the same as the previous network� Here we use �� � crossbar switches� this means
that a number of messages can pass through a switch at the same time� provided each has

a di�erent source� and a di�erent destination� At most � messages can pass through such a

switch simultaneously�

Butter�y network In this architecture �sometimes called a multi�layer network�� processors form

the bottom layer of an arrangement of switches� log n layers deep� Messages are sent from

the processors� to the �rst layer of switches� which forwards them to the next layer� and so

on� until log n layers are passed through� The last layer is connected �around the back� to

the processor layer� completing the cycle� and delivering messages to their destination� Each

switch is connected to four other switches� two on the layer below it� and two on the layer

above� The switches are � � � crossbars� allowing two messages with di�erent sources and
destinations to pass through at the same time� This network has a diameter of O�logn��

n� n crossbar network A crossbar network is a switch which provides a dedicated communica�

tions channel between any two pairs of processors� giving an O��� diameter� The switch has

n input wires� and n output wires� each pair of which is connected to a processor� It can

simultaneously route messages that don�t share the same input or output wire� handling at

most n concurrent messages�

We ran the index distribution benchmark on each architecture� each time measuring the follow�

ing�

Latency The average number of cycles to pass between the time a processor sends a message

requesting a number� and the arrival time of the message carrying the requested index�

Throughput The number of indices the system can hand out in T cycles� This is calculated using

the formula Td�t� where t is the time took the system to hand out d indices� Since Netsim�

unlike Proteus� is an event based simulator� there is no need to take in to account start�up

times � all processors are ready at the same time�

Since it has already been shown ��� that centralized counting methods do not scale well� we

compare only the three distributed�parallel counting methods�

CNet�w� A message based Bitonic counting network� implemented in the obvious way� balancers

are threads of control and tokens are messages� For the width of the network w� we tested the

��

following values� �� �� and ��� In each benchmark� results are presented for the best width

network�

CTree An optimal depth combining tree� Combining trees are described in Section ����� The

message passing version was implemented by mapping the tree�s nodes to threads in the

multiprocessor� Each node� upon receiving a message requesting an index� holds that message

until combining can be performed# this behavior is optimal as explained below�

DTree�w� A di�racting tree of width w � f� �� ��� ��g� In each benchmark� results are presented
for the best width tree�

In our experiments we varied the number of threads requesting indices� This is the value plotted

along the X�axis� In counting networks and di�racting trees� the number of threads implementing

the data structure is independent of the number of threads requesting indices� so the size of these

structures was kept constant throughout each experiment �graph�� For optimal depth combining

trees a new level must be added whenever the number of threads requesting indices doubles� so

the data structure itself grows during the experiment� In all experiments the number of threads

per processor was at most two� one to implement the data structure� and one to request indices�

Here� as with the experiments in shared memory� every attempt has been made to optimize the

data structures� as we further detail below�

��� Results

Overall� combining trees proved to be the most e�cient counting method in mesh topologies with

low bandwidth switching where locality is a primary performance factor� while di�racting trees

proved the most e�cient method in �non�localized� butter�y style networks where locality is not

a factor� We now discuss these conclusions in detail�

����� Choosing a Waiting Policy

Nodes of a combining tree or prism processors in a di�racting tree delay arriving messages to

create a time interval in which combining or di�raction can occur� Figure �� compares combining

tree latency when work is high using � waiting policies� wait �� cycles� wait ��� cycles� and wait

inde�nitely� When the number of processors is larger than �� inde�nite waiting is by far the best

policy� This follows since an un�combined token message locks later received token messages from

progressing until it returns from traversing the root� so a large performance penalty is paid for

each un�combined message� Because the chances of combining are good at higher arrival rates we

found that when work 	� simulation using more than four processors justify inde�nite waiting�

We used this policy for all combining trees�

��

0

500

1000

1500

2000

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

Indefinitely
Medium Wait

Short Wait

Figure ��� E�ects of waiting time policy on combining tree latency in a mesh network with single

wire switches when work �		

In di�racting trees� high loads favor waiting� However� when arrival rates are low� as in the

case when work is high or the number of processors in the simulation is small� prism processors

should expedite the sending of messages to the toggle processor to reduce latency� As in the shared

memory implementation� the best di�racting tree performance was attained when using an adaptive

policy to update token delay time as a function of concurrency� The tree is initialized with a list of

values for the spin variable� Whenever a thread acting as a prism processor di�racts a message�

it doubles its spin time since this indicates a high load� If time runs out before di�raction occurs�

usually as a result of low load� the spin time is halved�

����� Robustness

For our purposes� an algorithm is considered robust if its performs well under a wide variety of

conditions� such as di�erent work loads� or a large variance in request arrival times� Combining

trees proved to be the least robust of the counting methods we studied and di�racting trees the

most robust� We �rst analyze robustness in the face of load �uctuations� For combining trees� in all

the network architectures we tested� as the range of work between counter accesses grew� variations

in the arrival rates of requests made combining more di�cult� and performance degraded� This

conforms with the observations of Herlihy� Lim� and Shavit ��� that combining trees perform poorly

�lower percentages of requests are combined� when the load drops� A dramatic example of this can

be seen in the tests on the torus mesh network with single wire switches �the same network used

for Figure ��� under di�erent workloads �Figures �� through �
�� The need to wait for latecoming

�

0

50

100

150

200

250

300

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

CNet[32]
CTree[n]

DTree[32]

Figure ��� Latency in mesh network with single wire switches� when work 	

0

50

100

150

200

250

300

350

400

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

CNet[32]
CTree[n]

DTree[32]

Figure �
� Latency in mesh network with single wire switches� when work �		

processors causes a signi�cant rise in latency which in turn lowers throughput�

Fluctuations in request arrival times have a lesser e�ect on di�racting trees and counting net�

works� Comparing Figures �� and �
 shows that for counting networks lower load leads to less

contention� latency still rises as concurrency increases� albeit more slowly� In di�racting trees there

��

is less di�raction in low load situations� but there is also very little congestion on the toggle bit� In

addition di�racting balancers are adaptive� dynamically reducing waiting times at prism processors�

When the load is very low� waiting time is reduced to
 and prism processors immediately forward

messages to the toggle processor� In a sense this transforms the di�racting balancer into regular

balancer that takes two messages to traverse� This claim is justi�ed by Figure �� which shows

that when the number of processors is small ����� the latency of a width �� counting network ���

messages to traverse� is about � cycles� whereas that a width �� di�racting tree ��
 messages to

traverse� is �� cycles� the ratio of latencies is very close to ����
� A slight increase in concurrency

leads to congestion at the toggle bit� causing a rise in latency� then after a further increase di�rac�

tions begin to occur and latency falls again� This gives di�racting trees the characteristic latency

curve which appears in all the architectures we tested�

We now consider robustness as load increases� In a counting network� when the load is high

there is congestion at the balancers� causing a rise in latency and a lowering of throughput �Fig�

ures ��� ��� �� and ���� On the other hand� combining and di�racting trees make use of the high

arrival rate to combine	di�ract messages� utilizing the added congestion to increase parallelism

�combining requests or avoiding the shared toggle processor�� Combining trees handle concurrency

by increasing depth� which adds latency with each new level �e�g� Figures �� and ���� Di�racting

trees are more scalable� a single di�racting tree can often handle a wide range of concurrency levels

with little or no performance penalty�

����� Performance	 The E�ects of Locality and Bandwidth

Combining tree layout can be optimized to take advantage of network locality� The tree thus sends

relatively few messages per index delivered which is important if bandwidth is low� For these

reasons combining outperforms all other methods in the mesh network with single wire switches

�Figure ���� While a counting network�s layout can also be optimized �though to a lesser extent

than a combining tree�� the dynamic �ow patterns of di�racting trees make layout optimization

much less e�ective� In our experiments we used the simulated annealing algorithm ��
� to attempt

to minimize the average distance traveled per message for each data structure� Figure � compares

the performance of combining and di�racting trees� with and without layout optimization� i�e� once

according to the results of the annealing process� and once when threads are randomly distributed

among processors in the network� The results show that combining trees are less robust placing

them randomly on the mesh causes a drop of nearly ��! in throughput� Note also that in our

experiments� when fewer than n processors participated in the simulation� they were selected in

a bottom�up	left�to�right manner� ignoring the advantage that such a �xed distribution gives to

localized methods like combining�

Higher bandwidth reduces the need to conserve messages or shorten distances as the added

��

0

20

40

60

80

100

120

140

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

CNet[32]
CTree[n]

DTree[16]

Figure ��� Latency in mesh network with crossbar switches� when work 	

0

50

100

150

200

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

CNet[16]
CTree[n]
DTree[8]

Figure ��� Latency in butter�y network when work 	

��

0

10

20

30

40

50

60

70

32 64 96 128 160 192 224 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

CNet[32]
CTree[n]

DTree[16]

Figure ��� Latency in full crossbar network when work 	

bandwidth helps hide the e�ects of locality� In the mesh with � � � crossbar switches di�racting
trees reap the bene�ts of lower depth� they have increased throughput and lower latency �Figure ���

relative to other methods� Counting networks� like combining trees� gain less from locality� and

given balancer contention and relatively high depth� they are the least desirable data structure�

In equidistant network topologies� data structure depth becomes the key performance issue�

When bandwidth is low as in the butter�y network �Figure ���� cost per message is high and

di�racting trees� having the lowest depth� substantially outperform the other methods� In the

complete crossbar network �Figure ���� the added bandwidth reduces the cost of messages and all

three methods have roughly similar performance� with the di�racting tree leading in throughput

by about ��!�

The appropriate choice of width of a di�racting tree or counting network depends on the prop�

erties of the network being used� In equidistant� low bandwidth networks� where depth is the main

concern� smaller trees and networks work better� On the other hand a larger data structure is

better suited to take advantage of bandwidth� and also tends to spread messages around the entire

network� which is useful when congestion is a problem� as in the case of the mesh with single wire

switches� Table � summarizes the optimized widths of the constructions we present�

�

Di�racting Tree

locality

Bandwidth Low High

Low � ��

High �� ��

Counting Network

locality

Bandwidth Low High

Low �� ��

High �� ��

Table �� Width of di�racting tree and counting network per network type�

� Correctness Proofs

��� A Proof that Counting Trees Count

This section contains a formal proof that a counting tree�s outputs will achieve the desired step

property in any quiescent state� Our formal model for multiprocessor computation follows ��� ����

First a formal description of a balancer is given� then it is shown that any Binary counting tree

counts� that is� its outputs have the step property�

Let the state of a balancer at a given time be de�ned as the collection of tokens on its input and

output wires ���� We denote by x the number of input tokens ever received on the balancer�s input

wire� and by yi� i � f
� �g the number of tokens ever output on its ith output wire� For the sake

0

200

400

600

800

1000

1200

32 64 96 128 160 192 224 256

O
pe

ra
tio

ns
 p

er
 T

im
e

P
er

io
d

Processors

CTree[n]
CTree[n] Random Placement

DTree[32]
DTree[32] Random Placement

Figure �� E�ects of placement optimization on throughput in mesh network with single wire

switches when work 	

��

of clarity it is assumed that tokens are all distinct� The properties de�ning a balancer�s correct

behavior are�

safety In any state x � y� � y�� �i�e� a balancer never creates output tokens��

liveness Given any �nite number of input tokens m � x to the balancer� it is guaranteed that

within a �nite amount of time� it will reach a quiescent state� that is� one in which the sets

of input and output tokens are the same�

balancing In any quiescent state� y� � dm��e and y� � bm��c�

As described earlier� a counting tree of width w is a binary tree of balancers� where output wires

are connected to input wires� having one designated root input wire� x� �which is not connected to

an output wire� and w designated output wires y�� y�� ��� yw�� �similarly unconnected�� Let the state

of the tree at a given time be de�ned as the union of the states of all its component balancers� The

safety and liveness of the tree follow naturally from the above tree de�nition and the properties of

balancers� namely� that it is always the case that x � Pw��
i�� yi� and for any �nite sequence of m

input tokens� within �nite time the tree reaches a quiescent state� i�e� one in which
Pw��

i�� yi � m�

It is important to note that we make no assumptions about the timing of token transitions from

balancer to balancer in the tree the tree�s behavior is completely asynchronous�

We will show that if a Binary�w� counting tree reaches a quiescent state� then its outputs�

y�� � � � � yw�� have the following step property�

In any quiescent state�
 � yi � yj � � for any i � j�

We present the following useful lemmas due to Aspnes� Herlihy� and Shavit ����

Lemma
�� If y�� � � � � yw�� is a sequence of non�negative integers� the following statements are

equivalent�

�� For any i � j�
 � yi � yj � ��

�� If m �
Pw��

i�� yi� then yi �
�
m�i

w

�
�

Lemma
�� Let x�� � � � � xk�� and y�� � � � � yk�� be arbitrary sequences having the step property� If

k��X
i��

xi �
k��X
i��

yi

then xi � yi for all
 � i � k�

��

Lemma
�� Let x�� � � � � xk�� and y�� � � � � yk�� be arbitrary sequences having the step property� If

k��X
i��

xi �
k��X
i��

yi � �

then there exists a unique j�
 � j � k� such that xj � yj � �� and xi � yi for i 	� j�
 � i � k�

Using the above we can show that�

Lemma
�� Let x�� x�� � � � � xk�� and y�� y�� � � � � yk�� be two arbitrary sequences having the step

property� Then if

 �
k��X
i��

yi �
k��X
i��

xi � �

then the sequence

y�� x�� y�� x�� � � � � yk��� xk��

has the step property�

Proof	 There are two cases�

��
Pk��

i�� yi �
Pk��

i�� xi� in this case� by Lemma ���� both sequences are identical� and the proof

is trivial�

�� m �
Pk��

i�� yi �
Pk��

i�� xi��� in this case� Lemma ���� applies� and the two sequences look like

this�

X sequence�
m�kz �� �

aa � � �a bb � � �bb

Y sequence�
m�k��z �� �
aa � � �aa b � � �bb

Where a �
�
m

w

�
� b � a� �� and
 is the modulus operator� The interleaved sequence has the

form�

Joint sequence�

��m�k	��z �� �
aa � � �aa bb � � �bb

which clearly has the step property�

Theorem
�
 The outputs of Binary�w�� where w is a power of �� have the step property in any

quiescent state�

��

Proof	 Note that the proof need analyze the tree only in quiescent states� and need not account

for concurrent executions� We thus examine the number of tokens that passed through each and

every balancer in a di�racting tree once a quiescent state has been reached�

By induction� if w � � then the tree is a single balancer� and the step property follows by

de�nition� Assume the theorem holds for all trees of width w � k� and let us prove that it holds

for w � �k� According to the construction given in section �� the large tree of width �k� is actually

one root balancer whose two outputs are connected to trees of width k� The even leaves of the the

large tree are the leaves of the left small tree� and the odd leaves� are the leaves of the right small

tree� Since the trees are connected by a balancer� we know that the number of tokens input to the

left and right width k trees di�er by at most one� By the induction hypothesis this means that

they have the step property� By Lemma ��� the outputs of Binary��k� have the step property�

A shared counter is an object that allows increment operations that return consecutive integers�

In any execution in which m increment operations are performed� all the values
 � � �m � � are
returned� that is� each operation returns an index and there is no duplication or ommission� A

counter can be constructed from a Binary�w� tree by adding local counters to the tree�s output

wires�

We paraphrase a lemma ��� which equates counting with balancing�

Lemma
�� Consider a Binary�w� tree based shared counter as described above� Let x be the

largest number returned by any increment operation on the counter� Let R be the set of of numbers

less then x which have not been returned by any increment request� Then�

�� the size of R is not greater than the number of operations still in progress�

�� if y � R� then y � x� wjRj�

Theorem
�� A Binary�w� tree� where w is a power of �� counts�

��� A Proof of the Shared Memory Implementation

We will �rst show that the di�racting balancer implementation meets the balancer speci�cation�

then show that this is maintained for all balancers in a di�racting tree� The code line numbering

in the proof refers to Figure �

Let us introduce some notation� A processor that has performed the write operation on line

�� is said to have entered the balancer� A token has exited the balancer� once the return value of

its evocation of the diff�bal code is decided� i�e� no change in the state of any shared object

��

can cause it to exit on a di�erent wire� Between entering and exiting this processor is said to

be shepherding a token� Since a processor can shepherd only one token at a time �there is no

multiplexing of tokens on a processor�� each token is identi�ed uniquely by the pair �p� T � where p

is the ID of the shepherding processor and T is the time at which p entered the balancer�

Our proof is based on examining the di�erent values taken by the entries of the location

array during the lifetime of a balancer� The proof will make strong use of the fact that the

compare and swap� register to memory swap� and test and set operations are atomic� that is�

can be assumed to take place at a unique point in time� We assume the machine�s shared memory

to be a collection of �memory locations�� each of which follows the speci�cation of of an atomic

register ���� The operations on each memory location �and therefore the values it takes� can be

ordered chronologically� and atomicity assures us that this ordering is well de�ned� Thus one can

draw a time�line of events for each of the memory locations making up the location array�

The following is an example of the reasoning used in the proofs� Let R be a memory location�

Let processor p perform a C	S �compare�and�swap� operation of the form C	Sp�R� ��
� � true�

where the notation �� true� indicates that the operation was successful� It follows that prior

to this operation R had the value �� and following it it has the value
� If the next operation p

performed on R is another successful C	Sp�R� ��
�� it follows that between these operations the

value of R was changed to �� and we can surmise that some processor must have performed the

operation that changed the value of R between p�s C	S operations�

The next simple lemma will be proved using the following observation� The only time a token

�p� T � changes the value of location�r
 where r 	� p� is in the C	S operation of line ��

Lemma
� Given processors r 	� fp� qg� if p performs the operation on line

C	Sp�location�r�� b� EMPTY� � true

and� if the next successful C	S operation on location�r� by some processor q �other then r� is

also�

C	Sq�location�r�� b� EMPTY� � true

then a new token� shepherded by r� must have entered balancer b between these two C	S operations�

Proof	 Following processor p�s C	S operation� location�r� � EMPTY� In order for q�s C	S op�

eration to succeed� some sequence of operations strictly between the two C	S operations must

have ended in an operation that left location�r� � b� From the code� the only operations leaving

location�r� with value b are the writer�location�r�� b� �the write by processor r of the value b to

location�r�� operations performed by processor r on lines � or �
� In case the last operation in the

sequence was a write by r on line �� then processor r has entered the balancer with a new token

��

between the C	S operations and the claim follows� Otherwise� the last operation was a write by

r on line �
� Line �
 is reached by processor r by performing the following sequence of operations

on location�r��

��� writer�location�r�� b��

��� C	Sr�location�r�� b�EMPTY� � true�

��
�writer�location�r�� b��

This implies that the write by r on line � preceded the C	Sq operation� We complete the proof by

showing that it strictly followed p�s C	Sp operation� The successful C	Sp�location�r�� b� EMPTY�

operation is by assumption before the write on line �
� It could not follow r�s successful C	Sr on

line � since that would cause it to fail� and it cannot be between r�s operations on lines � and �

since that would cause r�s C	Sr on line � to fail� It follows that it must have preceded r�s write

operation on line ��

Notice� that the previous lemma does not say how many tokens are shepherded by r between p

and q�s successful C	S operations� only that there is at least one such token� Let us now show that

if a balancer is in a quiescent state� the number of tokens output on each wire is balanced to within

one� De�ne three types of tokens� A token exiting the di�racting balancer code via the return at

line � will be called a canceling token# one that leaves through a return on lines ��� �� or �� will

be called a canceled token� and one that leaves through line � will be called a toggling token�

Canceling tokens leave the balancer through b��next�	
 � the �rst output wire� canceled tokens

leave through b��next��
 � the second output wire� Toggling tokens may leave through either wire�

Lemma
�� In a quiescent state the toggling tokens have the step property�

Proof	 From the code� the toggle bit is protected by a critical section� and is initialized so that

the �rst token to access it leaves through the �rst output wire� b��next�	
�

Showing that the number of canceled tokens is equal to the number of canceling tokens� will

prove that the number of tokens added on each output wire is the same� and the balancing property

is maintained�

Lemma
��� If location�r
� b then processor r is shepherding a token �r� T � and currently

executing the code of balancer b�

Proof	 Initially the location array is set to EMPTY� The �rst operation performed by the process

shepherding token �r� T � is setting location�r
 to b� so this property holds� Examining all the

return points from the balancer code� shows that each is preceded by an operation that either

sets the value of location�r
 to EMPTY or tests that it is EMPTY already� Since no other token can

cause a write b to location�r
 until �r� T � has exited b� the process shepherding �r� T � must still

be executing the code of balancer b�

Corollary
��� In a quiescent state� all elements of the location array are EMPTY�

Lemma
��� After a successful C	Sq�location�r�� b� EMPTY� operation� where q 	� r� and until

the next such operation by p 	� r �if there is one�� exactly one canceled token shepherded by r leaves

balancer b�

Proof	 Let t � �r� T � be the last of r�s tokens to enter b before the C	Sq�location�r�� b� EMPTY�

operation� Lemmas ��� and ���
 together prove that t exists and entered b after any previous

successful C	Ss operation �s 	� r�� if there was one� We will now show that t is a canceled token�

Assume otherwise� this means that t exited the balancer either on line � or on line � The operations

performed before the return on line � are

��� writer�location�r�� b�

��� C	Sr�location�r�� b� EMPTY� � true

��� return

Those before the return on line � are one of either

��� writer�location�r�� b�

��� C	Sr�location�r�� b� EMPTY� � true

��� writer�location�r�� b�

���� C	Sr�location�r�� b� EMPTY� � true

��� return

or�

��� writer�location�r�� b�

���� C	Sr�location�r�� b� EMPTY� � true

��� return

Both lines � and � can be reached by r only after performing a successful C	S operation on

location�r
� changing its value from b to EMPTY� The write on line � occurs by assumption before

q�s C	S operation� Using the same reasoning as in the proof of lemma ��� it can been seen that

q�s operation could not have occurred successfully anywhere between this write and the subsequent

return without causing one of r�s C	S operations to fail� Furthermore� q�s operation could not

have occurred just after the return since that would cause it to fail� Thus token t could not have

left through either of line � or line �� and must be a canceled token� Let p be the processor to

perform the next C	Sp�location�r�� b� EMPTY� � true operation� It remains to be shown that for

�

each token t� � �r� T �� such that t� entered b after t and left before p�s C	S operation� t� is not a

canceled token� Keep in mind that while t� is passing through b it is the only token to change the

value of location�r
� Examination of the code shows that if no other token changes the value of

location�r
 during the execution� t� will leave the code either on line � or line ��

Lemma
��� Any token �r� T � entering balancer b after a C	Sp�location�r�� b� EMPTY� � true�

and leaving before the next C	Sq�location�r�� b� EMPTY� � true� p� q 	� r� is not a canceled token�

Lemma
��� Any token �r� T � leaving the balancer b� before the rst C	Sp�location�r�� b� EMPTY� �

true� p 	� r� is not a canceled token�

Theorem
��
 A di�racting balancer b has the step property in any quiescent state�

Proof	 By lemma ��� is su�ces to show that the number of canceling tokens is equal to the

number of canceled tokens� For any processor r� operations performed on location�r
 are either

C	S operations by processors other than r� or writes and C	S operations by r� Any token whose

shepherding process successfully performing a C	S operation on another processor�s element of the

location array� is a canceling token� Lemma ���� shows us that following every canceling token

there is one canceled token� and corollaries ���� and ��� tell us that there are no other canceled

tokens�

We de�ne the following notion of progress for a balancer�

Non�blocking In any execution where a non�empty set of tokens are accessing a balancer b� some

token will enter b within a �nite number of steps�

Theorem
��� The di�racting balancer has the non�blocking property�

Proof	 Phase � of the code contains compare�and�swaps� register�to�memory�swaps� and writes�

all of which are guaranteed to complete� Since this phase contains no backward branches it will

end in a �nite number of steps� In Phase � processor p reads the location array a �nite number of

times� and then attempts to seize the lock on the toggle bit� If p or any other processor shepherding

a token ever manages to seize the lock it will exit the balancer in a �nite number of steps� releasing

the lock� The only case where p repeatedly fails in entering the critical section is thus if other

processors are constantly acquiring the lock and releasing it� i�e� leaving the balancer�

A di�racting tree has the form of a binary tree with one shared location array used by all

di�racting balancer nodes� The following lemma shows that having a shared location array does

not invalidate balancer behaviour as de�ned by Theorem ���� and Theorem �����

�

Theorem
��� Any k distinct di�racting balancers b� � � � bk will have the step property and the

non�blocking property even if they share the same location array�

Proof	 For any processor r� the operations performed on location�r
 are either�

� writer�location�r�� b�� on lines � and �
or

� C	Sp�location�r�� b� EMPTY�� where p is any processor� on lines ���� and ���

where b � fb� � � � bkg� A processor shepherds only one token at a time through the di�racting tree�
Thus� if r is currently shepherding a token through balancer bi� no processor shepherding a token

through any other balancer bj can cause a change in location�r�� Obviously� writer�location�r�� b�

operations are una�ected by having a shared location�r� array since they are performed by r itself�

C	S operations succeed only if performed by a token in the same balancer bi� and failed C	S

operations do not change the value of location� The claim thus follows from Theorem ���� and

Theorem �����

Notice that while our implementation of di�racting trees is non�blocking� as proven in The�

orem ����� it is not starvation free� A token might be blocked forever repeatedly attempting to

acquire the lock on toggle bit before succeeding�

Theorem
�� The Binary�w� di�racting tree maintains the non�blocking and counting proper�

ties�

Proof	 The non�blocking property of each individual di�racting balancer follows from Theo�

rem ����� if some token is always making progress� and there are a �nite number tokens� eventually

all tokens will exit balancer� Since the tree is an acyclic graph of di�racting balancers� the liveness

of the entire tree follows from the liveness of each balancer� as explained at the start of this section�

The counting property of the Binary�w� di�racting tree follows from Theorem ���� which proves

that a di�racting balancer is� in fact� a balancer� Theorem ��� states that a Binary�w� tree of

balancers counts�

Lemma
��� Di�racting trees of balancers implemented using a fetch�and�complement toggle op�

eration as in Figure � are wait free�

Proof	 Phase one of the code completes in at most � shared memory operation� two writes and

two compare�and�swaps on the location array and one register�to�memory�swap on the prism

array� In phase two at most b��spin reads are performed on location�mypid
� and after a single

additional fetch�and�complement the processor leaves the balancer�

�

��� A Proof of the Message Passing Implementation

The correctness proof given here is based on the following assumptions�

�� Processors don�t fail during the execution of the algorithm

�� The network always delivers messages in a �nite number of cycles�

A token enters a di�racting balancer as soon as it arrives at a prism processor� and leaves as

soon it is dispatched to the next balancer�

Lemma
��� A message passing di�racting balancer is a balancer�

Proof	 We prove that is meets the balancer speci�cation� Safety follows since neither prism

processors nor toggle processor create any messages on their own� they only forward message sent

to them� Liveness follows since prism processors hold tokens for no more than a bounded number

of cycles before di�raction occurs or the token is sent to the toggle processor� which dispatches

the token immediately� Finally� balancing follows since tokens enter the balancer only through

the prism processors� Prism processors only dispatch balanced pairs of tokens to other balancers�

otherwise the token goes through the toggle processor� Since there is only one toggle processor per

balancer it gives centralized control and insures a balanced output�

Theorem ��� together with Lemma ���
 give us�

Theorem
��� A Binary�w� tree of message passing di�racting balancers counts�

� Discussion

Di�racting trees represent a new class of concurrent algorithms prove to be an e�ective alternative

paradigm to combining in the design of many concurrent data structures�

There is clearly room for experimentation on real machines and networks� One test application

will hopefully be the ����node�Alewife debugger�s logging mechanism� The machines� concurrent

logging mechanism will have all processors repeatedly write blocks of logged operations onto mul�

tiple disks� The counter handing out next�available�disk�block locations will be a test case for a

di�racting counter solution to what would otherwise be a hot�spot and a sequential bottleneck

����� As mentioned earlier� given the hardware fetch�and�complement operation to be added to

the Sparcle chip�s set of conditional load	store operations� one will be able to implement a shared

memory di�racting�tree based counter in a wait�free manner� that is� without any locks� Further

enhancements to Alewife�s LimitLess protocol will hopefully allow to improve performance even

further� The machine is due to become operational in �����

We are also developing a version of di�racting trees for non�coherent shared memory machines

such as the Cray T�D ���� A recent paper by Shavit and Touitou �� introduces �Elimination

Trees�� a new form of Di�racting trees that can be used to create highly parallel producer	consumer

pools and stacks ���� ��� The algorithms provide superior response �on average just a few machine

instructions� under high loads with a guaranteed logarithmic �in w� number of steps under sparse

request patterns�

On the more theoretical side� combining trees have the advantage of o�ering a general fetch�

and�$ operation� and it would be interesting to �nd out if a variant of di�racting could provide

such a property� A recent paper by Shavit� Upfal� and Zemach ��� provides a combinatorial model

and steady�state analysis that con�rm some of the empirical results observed in this paper and o�er

a collection of improvements� among them a more �stable� di�racting tree algorithm� Our hope

is that such modeling will allow one to determine the optimal setting of parameters such as spin

and prism width in a non empirical way� It would also be interesting to formally analyze di�racting

tree behavior using newly developed models of contention such as that of Dwork� Herlihy� and

Waarts �����

Finally� it would be interesting to extend the use of di�raction to other forms of counting

networks such as those of Felten� LaMarca� and Ladner ����� Aiello� Venkatesan� and Yung ���� and

Busch and Mavronicolas ���� ���

� Acknowledgments

We wish to thank Dan Touitou for his many insightful observations and the anonymous referees for

their many valuable comments� Thanks are also due to Allan Fekete for his careful proof�reading

of the �nal manuscript�

References

��� A� Agarwal and M� Cherian� Adaptive Backo� Synchronization Techniques� In the Proceedings

of the ��th International Symposium on Computer Architecture� pp� ����
�� May �����

��� E� Aharonson and H� Attiya� Counting networks with arbitrary fan out� In the Proceedings

of the �rd ACM�SIAM Symposium on Discrete Algorithms� Orlando� Florida� January �����

Also� Technical Report ���� The Technion� June �����

�

��� A� Agarwal� D� Chaiken� K� Johnson� D� Krantz� J� Kubiatowicz� K� Kurihara� B� Lim� G�

Maa� and D� Nussbaum� The MIT Alewife Machine� A Large�Scale Distributed�Memory

Multiprocessor� In Scalable Shared Memory Multiprocessors� Kluwer Academic Publishers�

����� Also as MIT Technical Report MIT	LCS	TM��� June �����

�� Anant Agarwal� John Kubiatowicz� David Kranz� Beng�Hong Lim� Donald Yeung� Godfrey

D�Souza� and Mike Parkin� Sparcle� An Evolutionary Processor Design for Large�Scale Mul�

tiprocessors� IEEE Micro� pages ����� June ����

��� B� Aiello� R� Venkatesan� and M� Yung� Coins� Weights and Contention in Balancing Networks�

In the Proceedings of the Thirteenth ACM SIGACT�SIGOPS Symposium on Principles of

Distributed Computing� pp� ������� August ����

��� T�E� Anderson� The Performance of Spin Lock Alternatives for Shared�Memory Multiproces�

sors� IEEE Transactions on Parallel and Distributed Systems� ���������� January ���
�

��� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting Networks and Multi�Processor Coordination�

In the Proceedings of the ��rd ACM Annual Symposium on Theory of Computing� pp� �������

May �����

��� K�E� Batcher� Sorting Networks and their Applications� In the Proceedings of AFIPS Joint

Computer Conference� pages ������� �����

��� R�D� Blumofe� and C�E� Leiserson� Sheduling Multithreaded Computations by Work Stealing�

In the Proceeding of the ��th Symposium on Foundations of Computer Science �FOCS �����

pp� �������� Nov� ����

��
� E�A� Brewer� C�N� Dellarocas� Proteus User Documentation� MIT� �� Technology Square�

Cambridge� MA
�����
�� edition� December �����

���� E�A� Brewer� C�N� Dellarocas� A� Colbrook and W�E� Weihl� Proteus� A High�Performance

Parallel�Architecture Simulator� MIT Technical Report 	MIT	LCS	TR����� September �����

���� C� Busch and M� Mavronicolas� A Combinatorial Treatment of Balancing Networks� In Thir�

teenth ACM SIGACT�SIGOPS Symposium on Principles of Distributed Computing� pp� �
��

���� August ����

���� C� Busch and M� Mavronicolas� A Logarithmic Depth Counting Network� Annouced in Four�

teeth ACM SIGACT�SIGOPS Symposium on Principles of Distributed Computing� pp� ���

August �����

��� C� Busch and M� Mavronicolas� Load Balancing Networks� Annouced in Fourteeth ACM

SIGACT�SIGOPS Symposium on Principles of Distributed Computing� pp� ���� August �����

�

���� R� G� Covington� S� Dwarkadas� J� R� Jump� J� B� Sinclair� S� Madala� The E�cient Simulation

of Parallel Computer Systems� International Journal in Computer Simulations� Vol� �� pp� ���

��� �������

���� Digital Equipment Corporation� Alpha system reference manual�

���� C� Dwork� M� P� Herlihy� and O� Waarts� Contention in shared memory algorithms� In the

Proceedings of the ��th ACM Symposium on Theory of Computing� pp� ������� May �����

Expanded version� Digital Equipment Corporation Technical Report CRL ��	���

���� E�W� Felten� A� LaMarca� R� Ladner� Building Counting Networks from Larger Balancers�

University of Washington T�R� %���
�
��

���� E� Freudenthal and A� Gottlieb� Process Coordination with Fetch�and�Increment� In the

Proceedings of the Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems �ASPLOS�� SIGOPS Operating Systems Review Special

Issue� page ��
� April ����� Santa Clara� California�

��
� D� Gawlick� Processing �hot spots� in high performance systems� In the Proceedings IEEE

COMPCON�
�� Feb� �����

���� J�R� Goodman� M�K� Vernon� and P�J� Woest� E�cient Synchronization Primitives for Large�

Scale Cache�Coherent multiprocessors� In the Proceedings of the Third International Confer�

ence on Architectural Support for Programming Languages and Operating Systems �ASPLOS��

pages ����� April �����

���� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for the e�cient coordi�

nation of very large numbers of cooperating sequential processors� ACM Transactions on

Programming Languages and Systems� ������������ April �����

���� G� Graunke and S� Thakkar� Synchronization Algorithms for Shared�Memory Multiprocessors�

IEEE Computer� �������
��
� June ���
�

��� M� Herlihy� B�H� Lim and N� Shavit� Low Contention Load Balancing on Large Scale Multi�

processors� In the Proceedings of the �rd Annual ACM Symposium on Parallel Algorithms and

Architectures �SPAA�� July ����� San Diego� CA� Full version available as a DEC TR�

���� M�P� Herlihy� A methodology for implementing highly concurrent data structures� In the

Proceedings of the Second ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming� pages �����
�� Seattle� WA� March ���� ���
�

���� M�P� Herlihy� Wait�Free Synchronization� ACM Transactions on Programming Languages and

Systems� ������������� January �����

�

���� M�P� Herlihy� N� Shavit� and O� Waarts� Linearizable Counting Networks� In the Proceedings

of the ��nd Annual Symposium on Foundations of Computer Science� San Juan� Puerto Rico�

October ����� pp� �������� Detailed version with empirical results appeared as MIT	LCS

technical manuscript ��� November �����

���� K� Hwang� Advanced Computer Architecture� McGraw�Hill Computer Engineering Series�

ISBN
�
��
��������

���� J� R� Jump Netsim Reference Manual� Rice University� Available by ftp from

titan�cs�rice�edu as �public�parallel�sim�tar�Z�

��
� S� Kirkpatrick and C� D� Gelatt and M� P� Vecchi� Optimization by simulated annealing�

Science� Vol� ��
� ����� pages ������
�

���� J� Kubiatowicz� Personal communication �February ������

���� M� Klugerman and C�G� Plaxton� Small�depth Counting Networks� In the Proceedings of the

��th ACM Symposium on Theory of Computing �STOC�� pp� ������ �����

���� M� Klugerman� Small�Depth Counting Networks� Ph�D� Thesis� MIT� ����

��� Nancy A� Lynch� Distributed Algorithms� Morgan Kaufmann� San Mateo� Calif�� �����

���� R� L&uling� and B� Monien� A Dynamic Distributed Load Balancing Algorithm with Provable

Good Performance� In the Proceedings of the �rd ACM Symposium on Parallel Algorithms and

Architectures� pp� ������� June �����

���� N�A� Lynch and M�R� Tuttle� Hierarchical Correctness Proofs for Distributed Algorithms� In

Sixth ACM SIGACT�SIGOPS Symposium on Principles of Distributed Computing� pp� ����

���� August ����� Full version available as MIT Technical Report MIT	LCS	TR�����

���� B�H� Lim and A� Agarwal� Reactive Synchronization Algorithms for Multiprocessors� In Sixth

International Conference on Architectural Support for Programming Languages and Operating

Systems �ASPLOS VI�� pp� ������ ����

���� Udi Manber� On maintaining dynamic information in a concurrent environment SIAM J�

Computing ������ pages ���
����� November �����

���� MIPS Computer Company� The MIPS RISC Architecture�

�
� J�M� Mellor�Crummey and M�L� Scott� Algorithms for Scalable Synchronization on Shared�

Memory Multiprocessors� Technical Report ��� University of Rochester� Rochester� NY �����

April ���
�

�

��� J�M� Mellor�Crummey and T�J� LeBlanc� A software instruction counter� In the Proceedings of

the �rd ACM International Conference On Architectural Support for Programming Languages

and Operating Systems� pages ������ April �����

��� G�H� P�ster and A� Norton� 'Hot Spot� contention and combining in multistage interconnection

networks� IEEE Transactions on Computers� C��������������� November �����

��� L� Rudolph� M� Slivkin� and E� Upfal� A Simple Load Balancing Scheme for Task Allocation

in Parallel Machines� In the Proceedings of the �rd ACM Symposium on Parallel Algorithms

and Architectures� pp� ������� July �����

�� N� Shavit� and D� Touito� Elimination Trees and the Construction of Pools and Stacks� To

appear in the Proceedings of the Fifteenth ACM Symposium on Principles of Distributed Com�

puting� Philadelphia� May ������ �����

��� N� Shavit� E� Upfal� and A� Zemach� A Steady�State Analysis of Di�racting Trees� To appear

in the Proceedings of the Eight Annual Symposium on Parallel Algorithms and Architectures

�SPAA�� Padua� Italy� June �����

��� N� Shavit and A� Zemach� Di�racting Trees� In the Proceedings of the Fifth Annual ACM

Symposium on Parallel Algorithms and Architectures �SPAA�� June ����

��� H�S� Stone� Database applications of the fetch�and�add instruction� IEEE Transactions on

Computers� C��������
����� July ����

��� Cray Research� CRAY T�D System Architecture Overview� Available via WWW as

http���www�cray�com�PUBLIC�product�info�mpp�T�D Architecture Over�

��� P�C Yew� N�F� Tzeng� and D�H� Lawrie� Distributing Hot�Spot Addressing in Large�Scale

Multiprocessors� IEEE Transactions on Computers� pages �������� April �����

�

