
Combining Funnels� A Dynamic Approach

To Software Combining �

Nir Shavity

Department of Computer Science�

Tel�Aviv University�

Tel�Aviv ������ Israel�

Asaph Zemachz

Department of Computer Science�

Tel�Aviv University�

Tel�Aviv ������ Israel

and

Tera Computer Company�

	

 First Avenue South�

Seattle� WA� ��
�	�

July ��
���

Abstract

We enhance the well established software combining synchronization technique
to create combining funnels� Previous software combiningmethods used a statically
assigned tree whose depth was logarithmic in the total number of processors in the
system� On shared memory multiprocessors the new method allows to dynamically
build combining trees with depth logarithmic in the actual number of processors
concurrently accessing the data structure� The structure is comprised from a series
of combining layers through which processor�s requests are funneled� These layers
use randomization instead of a rigid tree structure to allow processors to �nd part�
ners for combining� By using an adaptive scheme the funnel can change width and
depth to accommodate di�erent access frequencies without requiring global agree�
ment as to its size� Rather� processors choose parameters of the protocol privately�
making this scheme very simple to implement and tune� When we add an �elim�
ination	 mechanism Touitou
 to the funnel structure� the randomly constructed
�tree	 is transformed into a �forest	 of disjoint �and on average shallower
 trees of
requests� thus enhancing the level of parallelism and decreasing latency�

We present two new linearizable combining funnel based data structures� a
fetch�and�add object and a stack� We study the performance of these structures by
benchmarking them against the most e
cient software implementations of fetch�
and�add and stacks known to date� combining trees and elimination trees� on a
simulated shared memory multiprocessor using Proteus� Our empirical data shows
that combining funnel based fetch�and�add outperforms combining trees of �xed
height by as much as ���� In fact� even compared to combining trees optimized for
a given load� funnel performance is the same or better� Elimination trees� which
are not linearizable� are ��� faster than funnels under highest load� but as load
drops combining funnels adapt their size� giving them a ��� lead in latency�

�A preliminary version of this work appeared in Principals of Distributed Computing �PODC����
ySupported by NSF grant CCR���	
	��� A grant from the Israel Ministry of Science� and a grant

from the Israel National Academy of Sciences� Contact Author� E�mail� shanir�math�tau�ac�il

zSupported by an Israeli Ministry of Science Eshkol Scholarship�

�

� Introduction

When di�erent threads running a parallel application on a shared memory machine ac�
cess the same object simultaneously� a synchronization protocol must be used to avoid
interference� Since modern shared memory architectures usually supply very basic syn�
chronization primitives� it is up to the programmer to handle more complex situations
in software� Synchronization methods should be simple and easy to implement and
o�er both correctness and e�ciency� Correctness implies that for any interleaving of in�
structions by any number of processors� the behavior of the synchronized object always
adheres to some well de�ned speci�cation� E�ciency� in this context� can be broken
into several categories� parallelism 	 as more threads
processors� are added to the sys�
tem the throughput should generally increase� scalability 	 it should be possible for the
method to support an arbitrary number of threads� and robustness 	 the time it takes to
perform operations should minimize sensitivity to load
uctuations� Finally� the method
should be widely applicable to avoid the need to invent a new synchronization protocol
for every application�

��� Software Combining

It is well documented ��� �� ��� ��� that concurrent access to a single object by many
threads can lead to a degradation in performance due to contention� A relatively well
established method which has been used to alleviate this �hot spot� ��� ��� contention
is combining� Combining was invented by Gottlieb et al� to be used in switches of a
network which connects processors to memory ���� ���� It allows one to avoid contention
by merging several messages with a like destination� If a switch discovers two read
operations attempting to access the same word of memory� it will forward only one
message to the memory system� When a message returns with the contents of the
memory� the switch will dispatch two messages back to the processors to satisfy both
read requests� In the NYU Ultracomputer
Gottlieb et al� ������ hardware switches can
perform combining on several di�erent kinds of messages� including reads� writes and
fetch�and�add operations ����� The most notable example of combining in software are
the combining trees of Goodman et al� ��� and Yew et al� ���� for performing fetch�and�
add� In these algorithms� the current value of a fetch�and�add counter is stored at the
root of a binary tree� Processors advance from the tree�s leaves to its root� combining
requests at each node along their path� Whenever combining occurs� one processor
continues to ascend the tree� while the other is delayed� When a processor reaches the
root� it adds to the counter the sum of all the fetch�and�add operations with which it
combined� then it descends the tree� delivering the results to the delayed processors�
which in turn propagate it down the tree�
Unlike faster lock�free structures such as the Di�racting trees of Shavit and Zemach

����� combining trees are linearizable� Linearizability is a consistency condition de�ned
by Herlihy andWing ����� which allows the programmer to treat complex operations as if
they happened atomically� Dealing with linearizable data structuresmakes programming
easier since one can assume� for example� that once an update is complete
e�g� the call
to the update procedure returns� all later operations consistently see its e�ects�
Combining trees are widely applicable and can be used to enhance the implementa�

tion of any fetch�and�� ���� ��� synchronization primitive� as well as some simple data
structures such as sets� In the classic combining tree scheme� scalability as the number
of processors P increases is achieved my making the tree deeper� adding more levels to
make sure that the number of leaves is dP��e� Under maximal load� the throughput of
such a tree will be P�
� logP � operations per time unit� o�ering a signi�cant speedup�
Two mechanisms are used to keep contention at tree nodes low� Processors are statically
pre�assigned two to a leaf� and every node contains a lock� In the classical combining
scheme� processors must acquire this lock in order to ascend from a node to its par�

�

ent� Thus� the number of processors that may concurrently enter a node is limited to
two regardless of the load� e�ectively eliminating contention�
Though it is possible to
construct trees with fan�out greater than two in order to reduce tree depth� that would
sacri�ce the simplicity of the nodes and increase the number of instructions required to
traverse them� Indeed� preliminary experiments which we conducted on such trees show
that the �higher fan�out for lower depth� trade�o� is not worth it� the overhead of more
complex inner nodes overshadows the bene�ts of decreased depth��

��� Combining Under Varying Loads

Combining is thus a compelling idea for providing linearizable parallel implementations�
However� it turns out that the very mechanisms that make the tree structure so useful
under high loads� namely static assignment and locking of nodes� are actually drawbacks
as the load decreases�
The downside of static assignment is that even if the tree is rarely accessed by all

P processors simultaneously� its depth must still be logP � The locking of tree nodes
means that a processor that misses a chance for combining is locked out of the path to
the root and must wait for an earlier one to ascend the tree and return before it can
progress� As noted by Herlihy et al� ����� this makes combining trees extremely sensitive
to changes in the arrival rate of requests� Herlihy et al� show that even a small drop
from the maximal load will cause a ��� drop in the level of combining� and from there
performance continues to degrade rapidly
this is discussed in detail in Section � and
in ������
The original software combining tree algorithm of Goodman et� al� does not of�

fer easy ways to work out these di�culties� they all introduce performance tradeo�s�
For example� pipelining requests up the tree
by removing locks or allowing processors
to overtake locked nodes� introduces a tradeo� between node latency and the level of
overtaking� Naive attempts to allow overtaking at locked nodes would mean that other
nodes
especially the root� could be reached by many processors at a time� The need to
have each node handle this increased parallelism and contention e�ectively complicates
the protocol used in the tree nodes and increases latency�
Combining trees are also not easily amenable to an adaptive strategy which shrinks

the tree when average load is low
e�g� the reactive locks of Lim and Agarwal ������ since
there is no clear way to lower the number of nodes and at the same time limit simul�
taneous access to a node to no more than two processors� Furthermore� decentralized
algorithms for dynamically changing tree size
see for example the Reactive Di�racting
Trees of Della�Libera and Shavit ���� tend to be complex and require signi�cant tuning
e�orts�
This is not to say that there are no known adaptive combining schemes� Gupta

and Hill ���� and Mellor�Crummey and Scott ���� have devised adaptive combining
tree barriers that support changing the layout of a combining tree on the
y� However�
their constructions cannot be readily applied to implement general data structures�
The reason is that in order to work they require two key assumptions that cannot be
met by general data�structures� First� they require that all processors arrive at the
data structure and traverse it exactly once before it is reused� and second� that the
information passed between processors be exactly the same
�barrier complete�� and
not unique
�your result is x��� Both conditions can be met only because of the very
nature of a barrier 	 everyone is delayed until the current instance of the barrier is
complete�
In summary� it seems that allowing pipelining of requests� eliminating unnecessary

waiting� and modifying the tree algorithm to be adaptive� would bene�t performance�
However� the associated tradeo�s suggest that there is no easy way to �t all these
properties into the classic combining tree framework�

�

��� Beyond trees� the new approach

In this paper we present a new general method for implementing the �combining�
paradigm on large�scale shared memory multiprocessors� Our method� combining fun�
nels� replaces the �static� tree with a collection of randomly created dynamic trees�
This is done via a cascade of combining layers through which requests are funneled
and combined to form the dynamic trees� hence the name combining funnels� It allows
us� especially under high loads� to reap many of the bene�ts of combining without the
drawbacks of using a global tree structure�
In broad terms� the combining funnel approach can be stated as follows� Assume you

are given a simple data object with combinable ���� ��� operations� and that this object
operates correctly in a parallel environment
though not necessarily e�ciently�� Parallel
performance can be enhanced by adding a combining funnel structure as a front end
see
Figure ��� All processors attempting to access the object pass through the layers of the
funnel and can at each layer collide with others heading for the same object� When a
collision occurs the colliding processors perform a localized combining protocol much in
the same way as communication network switches combine messages� When processors
emerge from the funnel� they apply their
possibly combined� operation to the �central�
object�
The combining layer structure provides the basis for an adaptive combining structure�

Adaptive algorithms� allowing the data structure to change behavior to accommodate
di�erent access frequencies� have been used both in locking
see Karlin et al� ���� and
Lim and Agarwal ����� and for more general fetch�and�� operations ����� The work of
Lim and Agarwal ���� showed the performance bene�t of dynamically switching between
locking an object and using
static� combining trees� based on whether the overhead of
the latter justi�es the added potential for parallelism� Combining funnels take this idea
one step further by using a single funnel structure to support an entire range of sizes� from
a single lock to a full funnel� Unlike the approach of Lim and Agarwal� adaption does
not require global agreement as to the size of the data structure� Rather� each processor
dynamically and independently chooses the part of the funnel it will try and traverse�
This lack of coordination among processors lowers overhead and simpli�es the protocol�
It means however that at various points in the execution� di�erent processors might end
up with di�erent size decisions� some using large funnels� some small� Nevertheless� this
does not a�ect the algorithm�s correctness� and as we will show� produces a signi�cant
performance advantage�
Apart from being adaptive� combining funnels also support a mechanism for elimi�

nation� as de�ned in the work of Shavit and Touitou ����� Elimination is used in shared
objects that support operations with reversing semantics� applying the operations to
the object in a certain order leaves the object unchanged� A stack is good example�
applying a push operation� immediately followed by a pop operation� returns the stack
to its original state� A pair of operations with reversing semantics can be eliminated if
both requests can be satis�ed� that is� correct values are returned without any update to
the central object� The combining funnel allows us to extend elimination from pairs of
operations to dynamically constructed �trees of operations� 	 satisfying complete trees
of operations in parallel without accessing the central object�
In this paper we present implementations of two combining funnel based data struc�

tures� a fetch�and�add object which can serve as a template for a general fetch�and��
object� and a concurrent stack� Both data structures are linearizable ����� that is� oper�
ations on them appear to be atomic� This is a property found in combining trees but
not in previous prism based methods such as di�racting trees and elimination trees�
We evaluate the performance of the new structures by benchmarking them against

the most e�cient software implementations of fetch�and�add and stacks known to date�
combining trees and elimination trees� on a simulated ��� processor shared memory
multiprocessor similar to the MIT Alewife machine ���� Our simulation uses the well

�

established Proteus simulator ��� ��� Since the type of futuristic applications that will
bene�t from such high levels of concurrency are currently not available� we use a standard
collection of synthetic benchmarks that mimic their possible access patterns� Based on
our empirical results� we believe our linearizable fetch�and�add and linearizable stack
objects display the kind of performance� robustness and simplicity which would make
them useful additions to the parallel computing tool�boxes of the near future�
The rest of the article is organized as follows� Section � presents the combining funnel

scheme and gives an in�depth look at fetch�and�add and stacks� Section � describes how
adaption is incorporated into the funnel� Section � gives benchmark results� and Section �
concludes the paper and discusses areas of further research� In the appendix one can
�nd detailed pseudo�code for both of the data structures implemented�

� Combining Funnels

Acquire

Release

Central
Object

Combining Funnel
Front-end

Figure �� Schematic depiction of combining funnel mechanism

We �rst present our combining�funnel scheme in a generalized form and then show
how both a fetch�and�add and a stack object �t into the framework� The idea� illustrated
in Figure �� is to maintain a single �central object� and use a series of funnel layers as
a �front�end� to make access to it more e�cient� Our only requirement in terms of
parallelism from the central object is that it must correctly handle simultaneous access
attempts by multiple processors� This can be achieved simply by protecting access to
the object by locks� The combining funnel handles e�ciency and prevents the object
from becoming a serial bottle�neck�
Normally� a processor would �rst acquire the object�s lock� then apply its operation

and �nally release the lock� Instead� it will now �rst �pass through� a series of combining
layers� The function of the layers is to hand each passing processor the ID of another
processor that has recently gone through the same layer� Since each object has its own
funnel this ID is likely to belong to a processor that is concurrently trying to access
the same object� The �rst processor now attempts to collide with the one whose ID
it got� If successful� processors can exchange information and update their operations
accordingly� For example� processors p and q access a stack object concurrently with
operations PUSH�A� and PUSH�B� respectively� Processor p passes through one of the
stack�s layers and exits with q�s ID� If p manages to collide with q the results could
be for p�s operation to become PUSH�fA�Bg� and q�s to change to �WAIT for B to be

PUSHed�� We say p becomes q�s parent since p is going to be performing both operations�
A more elaborate example appears in Figure ��
In a shared memory environment� a funnel layer can be implemented using an array��

A processor arriving at the array picks a location at random and applies a register�to�
�An algorithm that can be modi
ed to implement funnel layers using message passing is described

�

q

p

t

r

t

rq

p

p q

p

t r

t

p

p q t r

Figure �� Example of processors going through a funnel� On the left we see p� q� r and
t as they go through the �rst layer where p collides with q and t with r� then q and r
wait while p and t advance to the second layer where they collide� On the right side
we see how combining trees are dynamically created by collisions� the waiting processor
becomes the child of the advancing processor�

memory�swap operation on it�� reading the ID written there and writing its own ID
in its place� By overwriting existing IDs� we can keep the array up�to�date and avoid
accumulating stale information� By using an array with several locations� we allow many
processors to pass through the layer at the same time� Wider layers
arrays� provide
more parallelism and reduce contention� narrower layers are more likely to be up�to�
date� Upon exiting each layer in the funnel
ID in hand�� processors �rst attempt to
collide� then advance to the next layer� Notice that a processor only ever waits if it has
successfully combined with another processor that is going to perform its operation for
it� A processor is never delayed simply because an array location is �in use�� This is
not the case with combining trees where tree nodes can be locked� thus preventing the
advance of unrelated operations�

��� An overview of the algorithm

The following presents a high�level step�by�step description of the combining�funnel
scheme for a processor p� The algorithm makes use of a Location array� with one
element per processor� Each element has two �elds� object which is the name
or ad�
dress� of the object p is trying to operate on� and operation which is the operation p is
trying to apply to the object� For an object X and an operation F � initially Location�p�
contains the pair � object � X� operation � F ��

�� Foreach funnel layer do

a� Swap� Read�q� from random location in layer� write�p� there�

b� Attempt collide�p�q�� If Succeeded combine�p�q�� Possible combining
results include� p performing both operations while q waits for noti�cation�
and elimination of both operations�

in �	���
�A read followed immediately by a write would also work�The correctness of the algorithm does not

depend on access to the layer being atomic�

�

c� Delay� Allow some other processor a chance to read p�s ID and collide with p�
If Location�p��operation has changed� perform the new operation� Usually
this is either a wait for noti�cation� or an exit of the funnel
if eliminated��

�� Exit funnel� Attempt to perform Location�p��operation on the central object�

�� Succeeded� Distribute results� Failed� goto ��

Referring back to our stack example we will show how p and q execute the algorithm�
The Location array keeps track of which object a processor is currently operating on�
Processor p marks that it is going to apply a PUSH�A� operation on the funnel associated
with stack S by setting Location�p� to � object � S� operation � PUSH
A� �� Let
us assume p has read q�s ID from a funnel layer at step �a and now attempts to collide
with q�
The routine collide�p�q� actually tries to perform the collision� The collision will

succeed if both processors are operating on the same object� Location�p��object �

Location�q��object� and Location�p��operation is combinable with the operation
Location�q��operation� The decision regarding which operations are combinable is
object dependent� In a stack� any pair of colliding operations can be combined� A
processor that has already collided and is now waiting for its operation to be performed
by some other processor� cannot be further combined�
If the collision succeeds� p calculates the combined operation using combine�p�q��

Combine updates the operation �eld of both Location array elements to re
ect the
results of the collision�� In our stack example� when two PUSH operations collide�
Location�p��operation is set to PUSH�fA�Bg� and Location�q��operation is set to
�WAIT for B to be PUSHed�� Processor q is now unavailable for further collisions�
In step �c processors delay to give others an opportunity to collide with them� Here

q will discover the collision with p and wait for noti�cation that B has been pushed into
the stack� Once noti�ed� q will exit both the funnel and the stack object�
After passing through all layers� processors can access the central object� though

they may opt not to wait on a busy lock and instead traverse the funnel again� Once
the processor performs its operation on the object� it must deliver results e�g� when p
completes its operation on the stack� it informs q that B has been pushed� The width of
funnel layers decreases with each level since it is assumed that collisions will reduce the
number of accesses to subsequent layers� Determining the number of layers to use and
the width of each layer is of critical importance and is discussed in Section �� We now
present our two combining funnel based data structures� fetch�and�add and stack�

��� Fetch�and�Add

To assist in presenting the fetch�and�add structure� we introduce the following high�level
description of the stages that one must go through to add a combining�funnel front�end
to an object� The step numbering refers to the algorithm in Section ����

�� Decide what the object is and what operations it supports�

�� Determine when two operations can be combined and what the result is
step �b��
The combined operation may sometimes imply creation of new operations not
de�ned in the original object speci�cation� In this case� the semantics of these
operations
for step �� and their interaction with the original ones must be de�ned�

�� Determine what actions processors must take when they discover they have been
combined with
step �c��

�In this informal description there appears to be a race condition between collide and combine�
The pseudo�code given in the appendix solves this using compare�and�swap� Locking of the elements
of the Location array can also be used to achieve this e�ect�

�

�� Determine if a distribution of results is necessary and how it should be done

step ���

Using this methodology we now construct a combining funnel for a fetch�and�add
object� The central object for a combining funnel fetch�and�add is a location in memory
where the current value of the counter is stored� Exclusive access to the counter can
be supplied using any locking method or through an atomic fetch�and�add primitive in
hardware� Fetch�and�add objects support one operation� ADD�x� which atomically adds
the value x to the counter and returns its previous value� Combining in fetch�and�add
is based on the following observation� When two processors want to perform F�A
X� a�
and F�A
X� b� respectively� if one of them instead performs F�A
X� a b� and returns
X�s current value to itself and X a to the other 	 both requests to be satis�ed� To
facilitate the combining phase we will de�ne another operation� WAIT� which is not a
true operation� but rather indicates that a processor is stalled pending the completion
of its operation by someone else� namely� its parent� All processors enter the object with
an ADD operation� When ADD�x� and ADD�y� collide� step �b changes the speci�cation
of one to ADD�x y� and that of the other to WAIT� The processor who is assigned
ADD�x y� becomes the parent of the stalled processor� To support the distribution
phase� parents are responsible for keeping a list of children� holding the identity and
request sizes of processors they combined with� Processors in the distribution phase go
over the list of children and deliver a result to each of them� Processors who discover
they have become children
i�e� the operation �eld of their element of Location is
changed to WAIT� delay in step �c pending delivery of a result and must then distribute
values to their own children� Detailed pseudo�code for the fetch�and�add object can be
found in Appendix A���
We can distinguish between two types of information associated with each fetch�and�

add operation� public and private� The public part is held in the Location array and
includes the address of the fetch�and�add object and the operation ADD�x�� The private
part is each processor�s list of children� To see why this list can be kept private consider
a collision between a processor p performing an ADD�x� operation and a processor q
whose operation is ADD�y�� If p is to continue with an ADD�x y� operation� it must
know that part of the result of this operation must be distributed to q� However� if r now
collides with p� it is enough that r knows that p�s operation is ADD�x y�� it does not
need to know that p intends to distribute part of the result to q� This is why we can say
that p�s operation becomes ADD�x y� and not e�g� �ADD�x� for p and ADD�y� for

q�� Figure � illustrates the data associated with each of the fetch�and�add operations
and shows how it is updated during a collision� We see that P��s ADD�	� operation is
actually an aggregate of its original operation and the ADD�
� of P�� we can deduce
that P��s original operation was ADD���� When P� collides with P� it updates its own
data� both private and public� It also updates the public part of P��s data� Only the
information available in P��s public data is used by P� in the update�
Collisions between processors dynamically create combining trees as the processor

who initiated the collision becomes the parent of the processor with which it collided�
The trees created are not necessarily binary since a single processor may collide with
many processors� each of which might have collided with any number of other processors�
Figure � shows P� as the parent of P�� and P� as the parent of P� and P�� Figure �
illustrates the tree created when P� collides with P� and becomes its parent� We also see
other parent�child relationships
e�g� P� is the parent of P�� which can not be deduced
from the lists held by P� or P�� If P� now manages to acquire the central counter� it will
increment it by ��� the sum of all increment requests in the tree� Assuming the central
counter held the value � when it was acquired by P�� the �gure shows what value will
be returned by each processor�
The random nature of the collisions in the fetch�and�add implementation means the

trees have no prede�ned shape� Consider a tree t with depth d containing n operations�

�

Proc: 1

Op:

 Proc Val

Fun:

(Public)

List of Children
(Private) 2 3

3 5

Proc: 4

Op:

 Proc Val

Fun:

5 1

Proc: 1

Op:

 Proc Val

Fun:

2 3
3 5
4 4

Proc: 4

Op:

 Proc Val

Fun:

5 1

Figure �� Example of data structures updated during a collision between two fetch�and�
add operations� Visible are the two �elds of the location�� array� object in this case
�fetch�and�add object !��� and operation in this example either ADD�� or WAIT�

1

2 3

6

7

4

5

2 7 6 3 5 4 1

Linearization Order

Original
Request

Final
RequestProcessor

Return
Value

1 4 16 12

2 3 3 0

3 2 5 6

4 3 4 9

5 1 1 8

6 1 3 5

7 2 2 3

Figure �� left� Dynamic combining tree created by collisions� and right� A table showing
how values are propagated up and down the tree and the linearization order determined
by the return values�

If n � d the tree can actually be a linear list of operations� This is the worst case in
terms of the time it takes to distribute results to children� However� notice that the
chances of this happening are exponentially small� If a list shape tree t collides with
another tree t�� the only way for the new tree to still be a linear list is if t� is a single
operation and t� becomes the root� The probability of t always becoming the child in a
collision is exponentially small in the number of collisions�

��� Stacks

This section describes the implementation of a stack object� The most straightfor�
ward implementation of a central object for a stack is simply to take a regular serial
stack and surround it by a locking mechanism� as we have done in Figure �� Standard
stack operations are PUSH�x� which pushes x unto the top of the stack and POP which
returns the topmost value in the stack� How can we apply a combining funnel here�
If two PUSH operations collide we can combine by having one processor� after acquiring
the stack�s lock� push both values into the stack� By extension� trees of PUSH operations

�

counter SP

data�type Stack�STACKSIZE�

lock StackLock

int push�datatype d� datatype pop��

� �

Acquire�StackLock� Acquire�StackLock�

if� SP �� MAXSIZE � if� SP �� 	 �

result � STACK�FULL result � STACK�EMPTY

else � else �

Stack�SP� � d SP

SP�� result � Stack�SP�

result � PUSHED �

� Release�StackLock�

Release�StackLock� return result

return result �

�

Figure �� Simple stack implementation

will work the same way� the root performs all the operations once it has the lock on the
stack� this will take a time linear in the total number of operations in the tree� Colliding
POPs are analogous� There is some gain here since we amortize the time it takes to
do lock operations over many stack operations� though it is not as signi�cant as in the
fetch�and�add case�
We can improve on this naive approach if we make the following observation� if a

tree is homogeneous
contains only one kind of operation� either PUSH or POP� then when
the the root performs the operations one by one� each operation has a di�erent value
of the stack pointer
SP�� In other words� each operation is performed on a di�erent
element of the stack� We can therefore view homogeneous trees as a kind of fetch�and�
add operation� where the root adds to
or subtracts from in the case of POP� the current
value of SP the size of its tree and delivers to each child an index� Children then continue
the process till each node in the tree knows which element of the stack it is supposed
to operate on� Any node that receives an index can then immediately perform its stack
operation on it� Once the root knows that all operations in its tree are complete� it
can release the lock on the stack and allow the next tree to begin operations� This
parallel approach reduces the time to complete a tree of operations from linear in the
total number of processors in the tree� to linear in the depth of the tree� which will
usually be much smaller�

����� Elimination and the layout problem

What about combining opposite operations� Observe that if a PUSH is followed immedi�
ately by a POP the stack is returned to exactly the state it had prior to both operations�
In a sense� PUSH and POP operations that immediately follow one another are nothing
more than one processor passing a value to another� using the stack as a conduit� Such
operations are said to have reversing semantics since one reverses the a�ects of the
other 	 when applied in the right order� Elimination ���� is a technique which allows
the pairing o� of operations with reversing semantics� such that both processors exit the
data structure with correct results� but the object itself is not updated� For example�
p performs PUSH�x� while q performs POP� The operations collide and are eliminated� p
passes the value x directly to q� Processors p returns with an indication of success� q
returns with x as its popped value� Though the stack was never touched� the result is
indistinguishable from the case in which p actually pushed x unto the central stack� and
q retrieved it from the stack�

��

We wish to generalize elimination to handle entire trees of operations rather than
single operations� Thus� when a tree of push operations collides with a tree of pop
operations� values are passed from one tree to the other� and the central stack is avoided�
However� if colliding trees have a di�erent layout� this can be a problem� Consider the
situation illustrated in Figure �� where a tree of three POP operations collides with a tree
of �ve PUSH operations� The most natural thing to do is to transfer three elements from
the �push�ers� to the �pop�ers� thereby eliminating the left tree altogether� However�
it is not clear how to decide which �push�er� should be paired with which �pop�er�� It
would seem that we have to engage in some �layout�matching�protocol�� which would
most likely increase latency�

1

2

3

4

5 6

7 8

Figure �� Collisions between trees of di�erent layouts can make elimination di�cult�

����� Solving the layout problem

To avoid the layout problem we choose to only allow collisions between roots of trees
that have the same number of operations� Thus� the root of a tree of n PUSH operations
may only collide with a root of a similar tree� creating a tree of �n PUSH operations� It
can also collide with the root of a tree of n POP operations leading to the elimination
of both trees� Since all aggregate operations are formed through an identical series of
collisions� all are homogeneous and all have the same layout� Limiting collisions to trees
of equal size forces all trees to be isomorphic� For example� a tree of eight operations is
always formed by the collision of two singleton operations� followed by a collision with
a double operation and ending in a collision with a quadruple operation as in Figure ��
To increase the chance that collisions occur between trees of the same size we alter the
method by which processors move from one layer to the next� All processors enter the
combining�funnel at the �rst layer
as usual� but advance to the next layer only after
a successful collision� if passing through a layer does not yield a collision� processors
remain at the same layer� This way all processors spinning at the i�th layer are roots of
trees with �i operations�
However� this introduces the possibility of starvation� To avoid starvation� processors

periodically attempt to perform their operations on the central object regardless of which
layer they are on� Eliminating trees of the same size and layout is substantially easier
than doing so for general trees as illustrated in Figure �� If the trees are singleton
operations elimination is performed by having the �push�ing� processor hand its value
directly to the �pop�ing� processor� Otherwise� let p and q be colliding roots of trees
of size �l� Note that both p and q each have l children and that the i�th child of
each is the root of a tree of size �i� First� p sends q
a pointer to� a list of its l
children� then q sends its i�th child the name of p�s i�th child� now for all i � f� � � � lg
the i�th child of q eliminates with p�s i�th child� �nally p and q perform a singleton
elimination� Note that if the children that are roots of larger trees are informed of

��

their partners �rst� we can expect all collisions to occur within time that is logarithmic
in the size of the tree� Figure � shows that the time to eliminate a tree of l levels is
T
l� � maxf� T
l � ��� � T
l � ��� � � � � � l T
��g � �l ��

6

7

1 1

2

1

2 4

842

3

1

53

Figure �� Forming aggregate operations by collisions of equal size trees�

T(l-1)

T(l-2)

T(0)

Q

T(l-1)

T(l-2)

T(0)

P

t=1: Transfer list of children

t=2: Transfer name of partner

t=3: collision between trees of size l-1

t=l+2: collision between trees of size 1

t=3: Transfer
name of partner

t=4: collision between trees of size l-2

Figure �� Elimination of trees with equal size and layout is simple�

Earlier we said that a root acquiring the lock on the central stack releases it only
after all operations in its tree are done� However� we found that better performance can
be achieved by pipelining� the �rst stage of the pipe is the update to SP and the second
is the update of the Stack array� The pipeline is implemented by using two locks� the
�rst on SP and the second� a ticket lock ����� on Stack� When a root acquires the �rst
lock it updates SP and receives a ticket for the second lock� then it releases the �rst�
This assures that operations on Stack occur in exactly the same order as operations on
SP which maintains the pipeline� The reason we require such a strict order is that if we
allow operations to overtake one another in the pipeline the resulting stack would not be
linearizable� A detailed discussion of why both fetch�and�add and stack implementations
are linearizable appears in Section ����

����� The Push and Pop operations

We present a high level description of a PUSH operation for processor p going through
funnel s� the POP operation is analogous� The implementation uses four operations� PUSH
and POP with the obvious semantics� WAIT which is returned to one of the processors
when two of the same type of operation collide� and ELIMINATE which is returned to
both processors at a collision between opposite operations� As usual when two PUSHes

��

or POPs collide� one becomes the parent
the root� in fact� and retains its operation� and
the other� the child� has its operation changed to WAIT� Pseudo�code for a push is�

�� Location�p��� funnel � S� operation � PUSH
A� �� l� ��

�� Swap� Read q from random location in layer l� write p there�

�� If q�s size � my size� attempt to collide with q�

�� Collided� If q�s operation is PUSH� change q to WAIT� add q to list of children�
l� l �� Otherwise change q to ELIMINATE and eliminate both trees�

�� Delay� Give some other processor a chance to collide with me�

�� Collided with� If operation is changed to ELIMINATE� eliminate� Otherwise� WAIT
for root to either eliminate or acquire the central stack�

�� i� i �� If i MOD CONST � � attempt to acquire lock�

�� Acquired�

a� Copy MYSP�SP� MYTICKET�TICKET� increment SP by �l� increment TICKET
by �� release lock�

b� Distribute stack locations to children�

c� When NOWSERVING reaches MYTICKET give �go ahead� for all processors in the
tree to push data into the stack�

d� When all processors in my tree are done� increment NOWSERVING� Exit�

�� Didn�t acquire� goto ��

A processor that collides with a like operation and becomes the child must WAIT till
it learns the fate of its tree
step ��� If the tree�s root enters the central stack update
pipeline it will be given a location in the stack on which to operate and must then wait
for the tree to reach the second pipeline stage
update Stack� before acting� Once the
root enters the second stage it informs the children� and they all push their values into
the stack� each child that completes its stack operation decrements a counter stored at
the root� when this counter reaches zero the root knows that all operations in its tree are
done and it can safely advance the ticket counter� If the root collides with an opposite
operation both trees are eliminated�

��� Linearizability

This section introduces Linearizability and then explains why our constructed funnel
based data structures are linearizable�
Linearizability is a consistency condition introduced by Herlihy and Wing ����� that

allows one to easily reason about and compose concurrent objects� Informally� an im�
plementation of an object is linearizable if operations on it appear to be atomic to all
processors� More formally� assume that a data structure like a counter or a stack is given
a sequential speci�cation� By this we mean that it is described as an abstract data type
whose behavior is determined by a collection of allowable sequential executions� For a
stack each such execution would be a sequence of push and pop operations and their
returned values� An implementation of a data structure is said to be linearizable if for
every concurrent execution� that is� one in which operations may overlap in time� one
can�

� associate with every implemented operation a single time point within its actual
execution interval at which the operation is said to take place�

� such that the associated execution is a valid sequential execution in the data
structure�s sequential speci�cation�

��

Put di�erently� Linearizability means that by compressing an operation�s actual execu�
tion interval in time to a single point
thus preserving the real�time order�� we can place
all operations on a single time�line� and the resulting totally ordered execution then
conforms to the object�s sequential speci�cation�
We now explain why our fetch�and�add and stack implementations are linearizable�

which amounts to showing a linearization order� The interested reader can formalize
these proof outlines in the I"O automata model of Lynch and Tuttle �����

��	�� Linearizability of Fetch
and
Add

To understand why our fetch�and�add construction is linearizable� let us �rst imagine
a run of the algorithm in which all combining attempts fail� Processors go through
the funnel� swap values on the layer array� but never manage to collide with a partner�
In this scenario� each processor carries only its own add request and applies it when
it acquires the lock on the central object� This is correct since the linearization order
corresponds exactly with the order in which processors acquire the lock� Now let us
assume combining does occur� but that when p acquires the lock on the counter it
applies the operations in its tree one by one� Notice that since each operation is applied
separately and that during this time only p operates on the object� a correct linearization
order exists and corresponds to the order in which p applies the operations� Let S be the
set of processors whose operations are in p�s tree� Let t�

i
for i � S denote the starting

time of i�s operation� Similarly� t�
i
denotes the end time� Also� let a denote the time

at which p acquires the object� Clearly t�
i
� a � t�

i
for all i� since no operation in S

completes until p acquires the lock� Let pi denote the time at which p performs the
operation of processor i� We get t�

i
� a � pi � t�

i
� Thus each operation is linearized

correctly�
In actuality� recall that processors outside p�s tree can only examine the object after

p releases the lock� so from their point of view it doesn�t matter whether p applies all
operations at once or one at a time� For processors inside p�s tree the distribution phase
returns to each of them exactly the same value it would have received had p applied
the operations one by one� Thus� for every processor the case in which p applies the
operations one at a time is indistinguishable from the case in which all operations are
applied at once� The return values which are determined by the distribution phase at
each parent implicitly determine the order in which the increment requests are linearized�
For example� in our code the linearization order corresponds to pre�order numbering of
the nodes of the tree� Using the notation of the previous paragraph� let a be the time
at which p applies the operation to the object� and b be the time the next operation
is applied to the object� We number the operations in p�s tree in pre�order� such the
operation i is numbered n
i�� The linearization order of the operations in S is therefore�
a � t� � t� � � � � � tn � b� where operation i is considered performed at time tn�i	�

��	�� Linearizability of the Stack

The argument regarding Linearizability of our stack implementation runs along similar
lines� First we look only at operations which don�t combine or eliminate� These all end
when the processors performing them acquire the main lock on the stack� so they have a
natural linear order� Now we allow processors to combine operations� but ignore the fact
that the implementation splits the stack pointer increment phase from the actual stack
insertion� This gives us a natural linear order among trees� and since no other processor
may probe the stack until all operations in a tree are complete� we only need to concern
ourselves with tree members when assigning a linearization order� As noted earlier a
property of homogeneous trees is that stack locations distributed to the processors are
monotone and each processor is assigned a di�erent element� This yields a linearization
order based on corresponding stack locations� e�g� for two pushing processors the one
with the lower location is linearized �rst� The fact that we split the update of the stack

��

pointer from the update of the stack itself is of no consequence since we use a ticket lock
to make sure that access to the stack is in exactly the same order as access to the stack
pointer�
Having established a linearization order among operations which end up being ap�

plied to the stack itself� we need to account for eliminating processors� The recursive
nature of the elimination process allows us to ignore the fact that we eliminate whole
trees and simply look at pairs of eliminating processors� Consider a pair of processors
p and q performing a push and a pop respectively� At some point p knows that it must
eliminate with q
either p performed the elimination� or its parent told it�� later p will
write its value for q to read� Since a push"pop pair leaves the stack in exactly the same
state� we can linearize this pair anywhere in the time interval in which their operations
overlap� As long as we do not linearize any operation between them� this will ensure that
all processors have a consistent view of the stack� Since there can be only a countable
number of operations in the time interval� we can always �nd a linearization point�

� Adaption

We begin with a general discussion of parameterized data structures and adaption� and
later outline the speci�c strategies we use in our implementation�

��� Parameterized Data Structures

Combining funnels� like di�racting and elimination trees� are a parameterized data struc�
ture� performance of the algorithm is determined by certain parameterswhich di�er from
application to application� For funnels� these are the number of layers traversed� the
width of each layer and the delay at each level� Each of these can be optimized based on
the expected load on the object and the speci�cs of the machine being used� Contention
at the central object can occur if there are too few collisions� This might be a result of
layers that are too wide� too few layers� or delay times that are too short� Funnels that
are too deep and overly long delay times increase the latency of each operation� whereas
narrow layers cause contention on layer locations� Clearly the right choice of parameters
is of paramount importance to achieving best possible performance�
The parameters however� di�er from one application to the next� and for the same

application as the load on it changes� Consider for example a fetch�and�add object� If
this object is accessed only rarely� the best performance would be achieved by imple�
menting it using a single location in memory protected by simple� low overhead locking
method� However� this implementation works extremely poorly for frequently accessed
counters ��� ��� ���� Other implementations have the opposite behavior� they perform
well when accessed frequently but their overhead is prohibitively high for rarely accessed
objects ��� ����

��� Adaptive Structure of Funnels

From the above examples it becomes clear that tuning the structure� that is� optimizing
its parameters for each application and load� is not a feasible solution� The solution is
to use an adaptive strategy for automatically tuning the parameters to the current load
on the data structure� As noticed by previous researchers ���� ��� ���� using an adaptive
data structure one can provide a solution that dynamically adjusts its parameters based
on actual conditions encountered and can be approximately as good as the best existing
method for each speci�c access pattern�
Combining funnels allow the user to devise a general adaptive strategy that is op�

timized for only a few cases� and lets the processors modify the remaining parameters
on the
y based on the actual load incurred� As an indicator of the load� funnels use
the number of collisions a processor is involved in during each access to the object� Few

��

collisions serve as evidence of low load� and suggest using smaller layers and lower depth

In fact� it may even be possible to avoid the use of a funnel altogether and achieve la�
tency equal to that of a simple locking object�� Conversely� many collisions imply wider
layers and deeper funnels are needed
Widening of layers increases their parallelism as
more processors can collide simultaneously�� Deepening the funnel increases the num�
ber of collisions and reduces the number of accesses to the central object� at the cost of
increased latency�
Since we know of no method that supports adding large numbers of processors with�

out an increase in latency� our goal is to keep this increase as low as possible� Decisions
on parameter changes are thus made locally by each processor� layers or funnels don�t
actually grow or shrink� Instead� each processor independently chooses its random layer
location from a subrange of the full width� and starts traversal at a given layer from the
full depth of layers available� Figure � illustrates two possible adaption strategies� In the
one on the left� which better �ts our fetch�and�add implementation� processors which
believe the load is high enter the funnel at the very top going through all layers� Those
that believe otherwise enter the funnel further down and traverse less and narrower lay�
ers� On the right hand side is an adaption strategy for the stack� Here processors must
always enter on the �rst level
layer� since the level determines the depth of their tree�
though if they perceive the load to be low� they can choose to use only part of the layer�s
width and attempt to access the central object more often�

Central
Object

Acquire

Release

Acquire

High Load

Low Load

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

Central
Object

Release

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Low Load

High Load

Figure �� Two methods of adapting layer sizes to di�erent loads� Shaded areas are used
when the load is low�

��� Speci�c Adaptive Strategies

The following are our adaptive strategies for the fetch�and�add and stacks structures�

fetch
and
add For fetch�and�add the algorithm adapts as follows� Each time a proces�
sor p passes through the funnel� it marks l� the number of levels passed through
before a collision occurred� Let #l denote the average of l over N successive oper�
ations� Assuming some suitably chosen threshold values T and K� if #l � T � an
indication of high contention� p increments a private counter c when c reaches K�
Processor p then adapts by starting deeper inside the funnel on its next operation�

��

If #l � T � an indication of low contention� c is decremented� and when c reaches ��
p adapts by starting at a layer higher up the funnel on its next operation�

stack For a stack we use a slightly di�erent approach� Each processor keeps a value
� � f � �� by which it multiplies the layer width at each level to choose the
interval into which it will randomly swap
e�g� if f � ��� only half the width is
used�� When a processor p successfully acquires the central object� it increments
a private counter c� and when c reaches some limit K� f is halved� If p fails to
acquire the central object� c is decremented� and when c reaches �� f is doubled�

A major advantage of combining funnels over tree based methods such as combining
trees and elimination trees is that they adapt to di�erent machine loads with very little
overhead� The di�erence between shrinking a layer array and removing levels from a
tree is that processors need not coordinate the move to a di�erent layer size� While
there are algorithms that support changing the size of a di�racting tree on the
y in
response to load changes ���� they are substantially more complicated than our adaption
strategies� When using combining funnels� no coordination is necessary� it is possible for
processors to have di�erent ideas about layer�s width or funnel depth� Each processor
makes its decisions locally based on what it perceives the load to be� A particularly bad
adaption scheme might cause processors to make wildly inaccurate layer size decisions
lead to low performance� but correctness is never in jeopardy�

� Performance

This section presents our performance benchmarks and the empirical evidence we col�
lected using them� We begin with a general discussion and then present the speci�c
performance results collected for the fetch�and�add and stack structures�
Research ���� ��� ��� has shown that in order to scale well� data structures must be

parallel� Avoiding contention is not enough� and throughput must actually increase as
more processors are added to the system� Currently� combining trees and elimination
trees
detailed below� are the most e�ective parallel fetch�and�add and stack structures�
respectively� We compared combining funnels to these algorithms� We also compared
them to a simple locking variant of each data structure in order to have a point of
reference for performance in low load situations�
Our tests were performed on a simulated distributed�shared�memory multiprocessor

similar to the MIT Alewife machine ��� of Agarwal et al� The simulation was conducted
using the Proteus� multiprocessor simulator developed by Brewer et al� ��� ��� The
simulated Alewife machine is a ��� processor ccNUMA multiprocessor with realistic
memory bandwidth and latency� We ran Proteus with accurate network simulation�
which traces every packet and models contention and communication hot�spots� Though
this is not a real ��� node machine� we note that previous research by Della�Libera ���
has shown that with appropriate scaling� Proteus simulates a �� node Alewife machine�

accurately for the kinds of data structures tested in this paper�
Proteus simulates parallel code by multiplexing several parallel threads on a single

CPU� Each thread runs on its own virtual CPU with accompanying local memory� cache�
and communications hardware� keeping track of how much time is spent using each
component� In order to facilitate fast simulations� Proteus does not perform complete
hardware simulations� Instead� operations which are local
do not interact with the
parallel environment� are run directly on the simulating machine�s CPU and memory�
The amount of time used for local calculations is added to the time spent performing

simulated� globally visible operations to derive each thread�s notion of the current time�

�Version ��

� dated February ��� �����
�Though Alewife was designed to scale to hundreds of processors� the largest machine currently

available has �	 nodes�

��

Proteus makes sure a thread can only see global events within the scope of its local time�
The machine we simulated had ��� processors in a mesh topology� each with ��� bytes
of memory and a cache of ��� lines of �� bytes per line�

global count

FnA�benchmark��

�

while�count
 N� �

w � random�	� work�

for�i�	� i
w� i���

�

start � TIME��

a � fetch�and�add���

latency � TIME��
 start

count��

�

�

global count

Stack�benchmark��

�

while�count
 N� �

w � random�	� work�

for�i�	� i
w� i���

�

r � random�	���

start � TIME��

if�r��	� push�a�

else a � pop��

latency � TIME��
 start

count��

�

�

Figure ��� Code for benchmarking fetch�and�add
left� and stack
right� implementa�
tions� Global variables are seen by all threads but require no synchronization to access�

In our benchmarks� processors alternated between performing local work and access�
ing the shared object being tested� as detailed in Figure ��� Though these benchmarks
are not real applications� they allowed us to accurately measure the di�erence in per�
formance between our method and other algorithms� This approach has been used
extensively in the literature ��� �� ��� ��� ��� ��� ��� ��� ��� ����
In order to choose the combining layer parameters
layer width� depth of funnel� delay

times� etc�� we ran a series of preliminary tests aimed at �nding the best parameters for
the highest load� that is� ��� processors and no local work� We used these parameters in
all our experiments� We ran two sets of benchmarks� one in which we vary the number
of processors and keep local work a small constant and the other in which we vary
local work and keep the number of processor at the maximum� In each experiment we
measured latency� the amount of time
in cycles� it takes for an average access to the
object� Using the notation of Figure �� this is the sum of all latency values divided by
count�
In experiments where less than ��� processors were used� we nevertheless simulated

a machine of ��� processors� though not all processors participated in running the al�
gorithm� Processor � always participated� and other processors were added in order
of increasing distance
on the mesh� from processor �� We �rst added processors at
distance � on the mesh from �� then those at distance �� and so on�

��� Fetch�and�Add Performance

The graph in the left part of Figure �� shows the performance of the fetch�and�add
implementations as the number of processors changes and where local work is a small
constant� We plotted two curves for combining trees� one in which the height of the tree
is optimal
marked H�opt� i�e� for p processors a tree of height dlog p��e is used� The
other curve is of a tree of constant height eight
marked H���� needed to support ���
processors 	 the maximum number of processors in our simulations�
The curve marked MCS represents performance of a single counter protected by an

MCS�lock ����� The graph shows that combining funnels are substantially more expen�
sive than the MCS�lock only for eight or fewer processors� At sixteen processors both

��

methods perform about equally� Beyond this level of concurrency� latency of the MCS�
lock increases rapidly� At �� processors and beyond the latency is signi�cantly worse
than that of the other methods tested�
Combining funnels outperform optimal height combining trees by a small amount

for all levels of concurrency� Notice� that this result indicates that adapting between
di�erent sized combining trees ���� would be slower than employing adaptive funnels�
The performance of both methods is very close since both are trying to accomplish the
same task� However� combining funnels can adjust to the actual number of processors
present� whereas combining trees must be given this number explicitly� This is evidenced
by the curve for constant height combining trees� Examination of the curve shows a
signi�cant gap between this method and combining funnels� When using �� processors�
the combining tree is two levels too deep and has ��� higher latency� Halve the number
of processors� and the tree becomes three levels too deep and twice as slow as our method�
The right�hand graph of Figure �� provides an even more compelling argument for

the power of adaptive strategies� Using ��� processors� we must employ a combining
tree of height eight even though� for higher local work loads� the tree is unlikely to
reach that level of concurrency� The case where the number of processors is high 	
but not maximal 	 is the worst possible scenario for combining trees� A slight drop in
concurrency immediately leads to a substantial decrease in the amount of combining�
Processors that do not combine are essentially locked out of the path to the root� The
result� a �spike� in the latency curve� As local work increases this e�ect slowly dimin�
ishes� Lower levels of concurrency increase each processor�s chances of ascending to the
root with little waiting��

No sudden increase appears in the latency curve of combining funnels� since no
prede�ned �tree� structure exists and paths cannot be locked� The situation where
processors are constantly arriving �too late� to combine and must wait for their would�
be partners to ascend and then descend the entire tree does not arise� If there are many
processors in the data structure� chances of colliding are good since combining can occur
between any pair of processors� As concurrency drops the shrinking layer width helps
keep chances of colliding high� while the shrinking depth lowers latency� Unfortunately�
under sparse access patterns� funnels are still up to three times slower than MCS�locks�
Nevertheless� one should remember that MCS�locks are speci�cally tailored to the low
concurrency case�
To summarize these results� the low overhead of MCS�locks makes them appealing

for objects with low contention� In these cases combining funnels are not appropriate�
though they are still substantially better then constant depth combining trees� For
objects which are usually accessed by more than �� processors concurrently� the extra
parallelism a�orded by combining funnels more than compensates for the extra overhead�
and makes them the better choice�

��� Stack Performance

In ����� Shavit and Touitou compare di�erent stack implementations and the one based
on elimination trees is shown to outperform the rest� An elimination tree is a non�
linearizable stack implementation shaped as a complete binary tree of l levels� where the
root and all internal nodes are simple data structures called elimination�balancers� Pro�
cessors traverse the tree from the root to the leaves by passing through the elimination�
balancers� At each leaf a regular serial stack is located� protected by a lock� on which
PUSH and POP operations can proceed normally� At the heart of each elimination�balancer
is a one�bit variable called a toggle�bit with one or more prism arrays before it� When
two processors collide in a prism they can either eliminate� if one is a PUSH operation
and the other a POP� in which case the PUSH�ing processor delivers its element directly
to the POP�ing processor and both exit the elimination�tree immediately� Or� if both

�A more detailed analysis of combining tree performance under various conditions in appears in �	���

��

0

1000

2000

3000

4000

5000

4 8 16 32 64 128 256

L
at

en
cy

Processors

Comb-Funnel
MCS

Comb. Tree [H=8]
Comb. Tree [opt]

0

1000

2000

3000

4000

5000

6000

7000

4 64 1024 16384 262144

L
at

en
cy

Work

Combining Funnel
MCS

Combining Tree

Figure ��� Latency of di�erent fetch�and�add implementations with varying number of
processors
left� and local work
right��

0

500

1000

1500

2000

4 8 16 32 64 128 256

L
at

en
cy

Processors

Combining Funnel
MCS

Elimination Tree
Comb. Tree [H=Opt]

0

500

1000

1500

2000

2500

3000

4 64 1024 16384 262144

L
at

en
cy

Work

Combining Funnel
MCS

Elimination Tree

Figure ��� Latency of di�erent stack implementations with varying number of processors

left� and local work
right��

processors are performing the same operation� di�ract� one processor descends to the
node�s left child and the other to the right child� Only processors which do not collide in
a funnel� and instead gain access to a balancer�s toggle�bit� perform the equivalent of a
fetch�and�complement operation on it� They then decide whether to descend to the left
or right child based on the result of complement operation� Processors performing PUSH
go left if the result was ��� and right on a ���� those performing POP do the opposite�
Thus� any operation performed on the tree can end either part�way down if successfully
eliminated� or� having passed through l elimination�balancers� end at one of the stacks
at the leaves�
We compared our stack implementation to the non�linearizable elimination tree and

to two linearizable methods� a serial stack protected by an MCS lock and a combining
tree based stack� The way we turn a combining tree into a stack is very similar to our
combining funnel method� except that it does not support elimination� Processors com�
bine requests of the same kind going up the tree� when one reaches the root it increments

or decrements� the counter there by the total number of requests combined with� A
distribution phase follows� in which every combined processor is given a location in the
stack� To ensure linearizability we use the same ticket�lock"�go ahead� type method
we used in combining funnels� We found that combining trees are always substantially
slower than combining funnels� ten times slower at maximum load� This is mostly due
to elimination though we found that even if elimination is not used e�g� all operation
are PUSH� trees were three times slower than funnels� For this reason we do not display

��

0

500

1000

1500

4 8 16 32 64 128 256

L
at

en
cy

Processors

Best Combining Funnel
Best Elimination Tree

Best Elimination Tree D=5

0

500

1000

1500

2000

4 8 16 32 64 128 256

L
at

en
cy

Processors

Combining Funnel
Best Combining Funnel

Elimination Tree
Best Elimination Tree D=5

Figure ��� Latency of di�erent stack implementations using best possible parameters
for each concurrency level
left�� and comparison of best parameters to those achieved
by using an adaptive strategy
right��

these results in our graphs� concentrating on other methods instead�
In Figure �� we again see that the latency of simple MCS based locking is unsurpassed

at low concurrency levels� However� already at eight processors the di�erence between
this method and ours is quite small� Adding more processors causes a rise in contention
slowing this method considerably� These results are mirrored in the graph on the right�
where MCS based stacks can be seen to underperform for all but the highest local
work loads i�e� the lowest concurrency levels� At the opposite end of the spectrum
we see that at ��� processors elimination trees outperform combining funnels by about
���
recall that the parameters used by both methods have been optimized for ���
processors�� However� the latency curve for elimination trees has a downward slope�
indicating an increase in latency as processors are removed from the simulation
this is
consistent with the results of ������ while the curve for combining funnels slopes up 	
fewer processors mean lower latency� Thus at �� processors the di�erence is ��� and at
��� ��� in favor of combining funnels� The graph for varying local work tells a similar
story�Initially� elimination trees have a slight edge in performance� but at around the
middle of the graph
 the curve begins to slope upwards� The explanation lies in the
inability of elimination trees to adapt their height� As concurrency drops so do chances
of di�raction� thus processors are forced to descend further down the tree before either
eliminating or storing their element at the leaves� It might seem that an appropriate
adaption strategy applied to elimination trees would be able to combat this problem�
but as we shall see this is not the case�
To study the behavior of our adaption strategy we conducted a series of experiments

to hand�pick an optimum set of parameters for each level of concurrency� We then
compared the performance of the adaptive strategy to the �best parameter set�� These
results are summarized in Figure ��� For elimination trees we di�erentiate between
parameters which achieve lowest latency for a given depth tree� and those which also
pick the optimum depth for the tree� We believe this is a reasonable distinction since
changing the depth of the tree �on the
y� is much harder than altering other parameters�
The left�hand graph of Figure �� shows latency when using best parameters� Elimination
trees with adjustable depth can be seen to consistently outperform combining funnels by
about ���� However� when depth is kept constant we see the familiar downwards curve
of elimination tree latency� This means that even under the most favorable conditions
this method cannot escape the consequences of reduced chances for di�raction� It further
proves that any adaption method that does not allow for tree shrinkage cannot deliver

�At this point the processors are spending about half their time doing local work and the other half
updating the stack�

��

good performance for all concurrency levels� Comparing the performance of the best set
of parameters to those achieved using adaption
on the right�hand side of Figure ��� we
see that the adaptive strategy is less than ��� slower when the number of processors is
��� or more� ��� slower when there are between �� and ��� processors� but below that
the gap grows to ���� Our adaption techniques appear to work reasonably well� though
there is room for improvement here� especially in low load situations�
It is important to note that when we picked the combining funnel parameters for use

in our tests� we optimized for one particular case� maximal load� Where maximal load
is de�ned as all processors repeatedly accessing a single funnel� The adaptive strategy
did all the rest� This is signi�cant since it implies there is no need to re�optimize for
each application� only for each size of machine� Thus� one set of parameters can be used
for all applications running on a machine of ��� processors 	 the set which gives best
performance at maximal load� Moreover� the graphs in Figures �� serve as an indication
of the sensitivity of the data structure to di�erent choices of parameters� For example�
they show that using parameters optimized for ��� processors on a machine with only
��� costs about ��� in performance� Whether this is acceptable or not is application
dependent�

� Discussion

We presented Combining funnels� a generalized framework for developing highly con�
current data objects� We hope to have convinced the reader that they o�er a simple�
structured� step�by�step approach that can be used to create e�ective parallel fetch�and�
add and stack objects�
We note that a similar adaptive variation of combining� the counting pyramid� was

introduced by Wattenhofer and Widmayer ���� concurrently and independently of the
preliminary version of this paper ����� In their paper the authors provide a queuing
theory based analysis of the counting pyramid�s performance� The counting pyramid
di�ers from our work in several fundamental ways�
�� it is a message passing algorithm�

�� does not employ any form of elimination� and
�� its adaptivity is not in response
to the load incurred by processors while traversing the tree
rather� processors choose a
�level of entry� based on the frequency of their individual increment requests�� However�
the analysis of counting pyramids suggests that it would be interesting to apply similar
techniques to evaluate the performance of combining funnels�
The kernels used in our benchmarks do not exhibit real world behavior� In a well de�

signed application it is rare to �nd all processors hammering on a single object� However�
our methods already show an advantage in performance when the number of processors
is just ��� We believe that in applications running on hundreds of processors objects
accessed by �� processors concurrently might not be so rare� Similarly� as applications
are scaled to thousands of processors� the ability to �plug in� data structures which can
e�ectively handle hundreds of concurrent accesses will make programmers� lives much
easier� They will be able to concentrate more on the algorithm and spend less time
worrying about the contention on each individual object�
The stack described here is only one of many possible stack implementations that �t

within the combining funnel framework� We chose this one since� of those we tried� it
gave the best performance� Other possibilities include having colliding equal operations
copy operands from one to the other so that processors carry arrays of operands rather
than trees� this makes elimination very simple even for di�erent sized arrays� Another is
to employ linked�lists of operands� this way combining lists takes only O
�� operations
as does inserting lists into the stack� For both variations removing n values from the
stack becomesO
n�� rather than O
logn� as in the method we employed� On our system
these methods did not do as well� on others they might�

��

Similarly� the adaptive strategy employed in our implementation was chosen arbi�
trarily since it seemed to make sense and performed well in our tests� We have not
carried out research aimed at determining the best possible adaption strategy� though
clearly this is an interesting problem�
Currently all our experiments were done by simulation� However� machines large

enough to bene�t from these methods are slowly becoming more common� We hope
to be able to try these methods out in a real world setting in the near future� We
are currently looking for a large scale application into which we might �plug�in� our
methods and see if performance has really improved� Also of interest are composite
data structures made up of several smaller objects� some implemented using combining
funnels�
The implementations given here are all done in a shared memory environment�

however translation of the algorithms into message passing is straightforward and fol�
lows ���� ���� The work of Herlihy et al� in ���� would seem to indicate that one
could expect substantially better overall performance for the message passing versions�
at least on Alewife� The results of ���� show that low bandwidth"high locality mes�
sage passing systems favour algorithms with highly optimized static assignment� On
such systems combining trees might outperform funnels� However� it is an interesting
research question whether the ability to adapt or the predetermined optimized layout
are the dominant factor in determining performance at lower concurrency levels�
Finally� we have recently been able to use combining funnels to implement highly

scalable priority queues ����� We believe many other funnel based data�structures have
yet to be developed�

� Acknowledgments

We would like to thank Dan Touitou for his many insightful suggestions and comments�

References

��� A� Agarwal and M� Cherian� Adaptive Backo� Synchronization Techniques� In
Proceedings of the ��th International Symposium on Computer Architecture� pp�
���	���� May �����

��� A� Agarwal� D� Chaiken� K� Johnson� D� Krantz� J� Kubiatowicz� K� Kurihara�
B� Lim� G� Maa� and D� Nussbaum� The MIT Alewife Machine� A Large�Scale
Distributed�Memory Multiprocessor� In Scalable Shared Memory Multiprocessors�
Kluwer Academic Publishers� ����� Also as MIT Technical Report MIT"LCS"TM�
���� June �����

��� T�E� Anderson� The Performance of Spin Lock Alternatives for Shared�Memory
Multiprocessors� IEEE Transactions on Parallel and Distributed Systems� �
����	
��� January �����

��� E�A� Brewer� C�N� Dellarocas� ProteusUser Documentation� MIT� ��� Technology
Square� Cambridge� MA ������ ��� edition� December �����

��� E�A� Brewer� C�N� Dellarocas� A� Colbrook and W�E� Weihl� Proteus�

A High�Performance Parallel�Architecture Simulator� MIT Technical Report
"MIT"LCS"TR����� September �����

��� G� Della�Libera� Reactive Di�racting Trees� Master�s Thesis� Massachusetts Insti�
tute of Technology� �����

��

��� G� Della�Libera and N� Shavit� Reactive Di�racting Trees In Proceedings of the �th
Annual Symposium on Parallel Algorithms and Architectures 	SPAA
� June �����

��� D� Gawlick� Processing �hot spots� in high performance systems� In Proceedings
IEEE COMPCON��
� Feb� �����

��� J�R� Goodman� M�K� Vernon� and P�J� Woest� E�cient Synchronization Primitives
for Large�Scale Cache�Coherent multiprocessors� In Proceedings of the Third In�
ternational Conference on Architectural Support for Programming Languages and
Operating Systems 	ASPLOS
� pages ��	��� April �����

���� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph� and M� Snir�
The NYU Ultracomputer � designing an MIMD parallel computer� IEEE Transac�
tions on Computers� C���
������	���� February �����

���� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for the e�cient
coordination of very large numbers of cooperating sequential processors� ACM
Transactions on Programming Languages and Systems� �
������	���� April �����

���� G� Graunke and S� Thakkar� Synchronization Algorithms for Shared�Memory Mul�
tiprocessors� IEEE Computer� ��
�����	��� June �����

���� R� Gupta and C�R� Hill� A Scalable Implementation of Barrier Synchronization
Using an Adaptive Combining Tree� Proceedings of the Third International Confer�
ence on Architectural Support for Programming Languages and Operating Systems
	ASPLOS III
� pp� ��	��� �����

���� M�P� Herlihy� B�H� Lim and N� Shavit� Scalable Concurrent Counting� ACM Trans�
actions on Computer Systems� �����
����� ��������

���� M�P� Herlihy and J�M� Wing Linearizability� A correctness condition for concurrent
objects� ACM Transactions on Programming Languages and Systems� ��
�� pp�
�������� July �����

���� G�C� Hunt� M�M� Michael� S� Parthasarathy andM�L� Scott� An E�cient Algorithm
for Concurrent Priority Queue Heaps� In Information Processing Letters� ��
������	
���� November �����

���� A� Karlin� K� Li� M� Manasse and S� Owicki� Empirical Studies of Competitive Spin�
ning for A Shared Memory Multiprocessor� In ��th ACM Symposium on Operating
System Principles 	SOSP
� pp� ��	��� October �����

���� C�P� Kruskal� L� Rudolph� and M� Snir� E�cient synchronization on multiprocessors
with shared memory� In Fifth ACM SIGACT�SIGOPS Symposium on Principles
of Distributed Computing� August �����

���� B�H� Lim and A� Agarwal� Reactive Synchronization Algorithms for Multiproces�
sors� In Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems 	ASPLOS VI
� pp� ��	��� �����

���� B�H� Lim and A� Agarwal� Waiting Algorithms for Synchronization in Large�Scale
Multiprocessors� In ACM Transactions on Computer Systems� ��
������	���� Au�
gust �����

���� N�A� Lynch and M�R� Tuttle� Hierarchical Correctness Proofs for Distributed Algo�
rithms� In Sixth ACM SIGACT�SIGOPS Symposium on Principles of Distributed
Computing� pp� ���	���� August ����� Full version available as MIT Technical
Report MIT"LCS"TR	����

��

���� J�M� Mellor�Crummey and M�L� Scott� Algorithms for Scalable Synchronization
on Shared�Memory Multiprocessors� ACM Transactions on Computer Systems�
�
�����	��� Feb �����

���� M�M� Michael and M�L� Scott� Simple� Fast� and Practical Non�Blocking and Block�
ing Concurrent Queue Algorithms� Technical Report University of Rochester� Com�
puter Science Department� TR���� Dec� ����

���� J�M� Mellor�Crummey and M�L� Scott� Fast� Contention�Free Combining Tree Bar�
riers� Intl� J� of Parallel Programming� ��
��� August �����

���� G�H� P�ster et al� The IBM research parallel processor prototype
RP��� introduc�
tion and architecture� In International Conference on Parallel Processing� �����

���� G�H� P�ster and A� Norton� $Hot Spot� contention and combining in multistage
interconnection networks� IEEE Transactions on Computers� C���
�������	����
November �����

���� N� Shavit� and D� Touitou� Elimination Trees and the Construction of Pools and
Stacks In Proceedings of the �th Annual Symposium on Parallel Algorithms and
Architectures 	SPAA
� pages ������ July �����

���� N� Shavit� E� Upfal and A� Zemach� A Steady State Analysis of Di�racting Trees�
In Proceedings of the �th Annual ACM Symposium on Parallel Algorithms and
Architectures� June ����� pp� ��	���

���� N� Shavit and A� Zemach� Di�racting Trees� ACM Transactions on Computer
Systems� ��
��� pp� ��������Nov �����

���� N� Shavit and A� Zemach� Combining Funnels� A New Twist on an Old Tale���
In Proceedings of the ��th Annual ACM Symposium on Principals of Distributed
Computing 	PODC
� Santa Barbara� pages ������ August �����

���� N� Shavit and A� Zemach� Scalable Concurrent Priority Queue Algorithms In Pro�
ceedings of the ��th Annual ACM Symposium on Principals of Distributed Comput�
ing 	PODC
� Atlanta� pages �������� May �����

���� R� Wattenhofer and P� Widmayer The Counting Pyramid� an Adaptive Distributed
Counting Scheme� Proceedings of the
th International Colloquium on Structural
Information and Communication Complexity� �����

���� P�C Yew� N�F� Tzeng� and D�H� Lawrie� Distributing Hot�Spot Addressing in Large�
Scale Multiprocessors� IEEE Transactions on Computers� C���
������	���� April
�����

A The Data Structures Code

A�� Fetch and Add

Figure �� lists pseudo�code for our fetch�and�add implementation� We assume per�
processor data is accessed through a my pointer� and that obj and op encapsulate data
and functions speci�c to the object and operation
respectively� being performed� The
per�processor public data used here is a Location word which is used for collisions� and
an Operation word which points to the public part of a processor�s operation�
The following is a brief walk through the code of a given processor� Lines �	� set up

the data structures for an operation� Aside from setting up several counters� a processor
initializes its my structure to re
ect the fact that it is operating on obj
Line �� with
operation op
Line ���

��

Fetch�and�Add� object �obj � operation�type �op �

�

� n � 	

� subtotal � op
�sum

� op
�result � EMPTY

� my
�Location � obj �� I�m working on obj

� my
�Operation � op �� I�m applying op

� while� � � �

� for�i�	� i
 NumberOflayers� i��� � �� foreach layer

� r � random�� � obj
�layerWidth�i� �� choose random location

� q � SWAP� obj
�layer�i��r� � MYID � �� read q

�	 if � CaS�my
�Location� obj� NULL � � � �� Lock myself

�� if � CaS�q
�Location� obj� NULL � � � �� Lock q

�� list�n��� � �q � q
�Operation
�sum � �� collision succeeds�

�� op
�sum �� q
�Operation
�sum �� add q and update op

�� �

�� my
�Location � obj �� unlock myself

�� �

�� else goto distribute �� I�ve been collided with

�� for�i�	�i
obj
�Spin�l�� i��� �� delay loop

�� if � my
�Location �� obj� goto distribute

�	 �

�� if�CaS�my
�Location�obj�NULL�� � �� Lock myself

�� val � obj
�counter�

�� if�CaS�obj
�counter � val� val � op
�sum�� � �� Update counter

�� op
�result � val �� update successful

�� goto distribute �� distribute results

�� �

�� my
�Location�obj �� update failed� unlock

�� �

�� else goto distribute

�	 �

�� distribute�

�� while� op
�result �� EMPTY� �� spin ��� �� wait for parent�s result

�� val � op
�result

�� for�i�	� i
n� i��� � �� distribute results

�� � q � qsum � � list�i� �� to children

�� q
�Operation
�result � val � subtotal

�� subtotal �� qsum

�� �

�

Figure ��� Code for Fetch and Add implementation

��

Next� the processor enters the funnel and repeats the following sequence of operations
for each of the funnel layers� First� it picks a random location in the layer r
Line ��� It
reads into q the ID of the processor written at r and writes its own ID in place
Line ���
Using a pair of compare�and�swap operations it accomplishs the �collision�� The �rst
compare�and�swap �locks� its Location pointer by replacing the object pointer with
a NULL� The second compare�and�swap locks q in the same way� The success of both
operations indicates that both processors are available for collision� A process then adds
q to the list of its children� and updates its Operation �eld
Lines ������� It then resets
its Location �eld to note that it allows more collisions to occur
Line ���� The goto in
Line �� is taken only if its attempt to lock its own Location failed� since then it follows
that some other processor has collided with it� and it must wait for that processor to
distribute a result� Finally� after attempting a collision� the processor delays at the
current funnel layer to give another processor a chance to collide with it
Lines ��	����
After passing through all funnel layers� the processor attempts to apply its combined

operation to the shared object� First it must avoid races by preventing collisions during
its attempt� This is again done through locking its Location pointer
Line ���� It now
reads the current value of the counter val� and attempts to update it to the new value val

 sum using a compare�and�swap operation� If the compare�and�swap succeeded� the
counter has been updated and the processor can jump to the distribution phase
Line ����
Otherwise� it unlocks its Location pointer and traverses the funnel again
Lines �������
On a machine that supports an atomic fetch�and�add� it might be more e�cient to
apply the operation val � fetch�and�add�obj��Counter� op��sum� instead of using
the compare�and�swap on Line ��� This would increment the counter directly and avoid
the chance of the compare�and�swap failing�
Lines ��	�� implement the distribution phase� A processor �rst waits for a value to

be provided by its parent
if it has no parent� op��result will be set on Line ���� It
then iterates over its list of children and provides each one with a result by setting its
op��result �eld
lines �������

A�� Stack

Code for the stack implementation is slightly more involved� Due to its length we
have broken the code into two separate �gures� Figure �� shows how collisions occur
and the central stack is handled� and Figure �� deals with processors once they have
collided� The same public data is used here as in the fetch�and�add algorithm with an
additional per�processor public word Comm used to relay di�erent types of information
between processors�
A processor begins as before with a setup phase
lines �	�� followed by an attempt

to collide
lines �	���� Notice that the for loop in Line � has an added exit condition�
In the fetch�and�add implementation a processor advances one level at every attempt�
so it is guaranteed to exit the funnel and attempt access to the central object after at
most obj��Levels attempts� The stack implementation advances levels only after a
successful collision� In order to avoid starvation when collisions are rare� a processor is
provided a �back�door� to exit the funnel after every obj��Attempts collision attempts�
A processor then chooses r and reads q as before� It then tries to collide using two

compare�and�swap operations
Lines ������ Here it uses not only the object�s pointer in
the Location array� but the current level as well� This means the compare�and�swap
with q will only succeed if q is also operating on this object and q is currently on the
same level as the process is� In this way collisions between processors on di�erent levels
are avoided by default�
When two processors collide� they can have either the same operation or opposing

operations� In the case of both operations being equal
Line ��� the processor adds q to
its list of children and advances to the next level� It also resets its attempts counter n

Line ��� to give it more chances to collide on the next layer� When the operations are

��

Stack� object �obj � operation�type �op �

�

� l � 	

� my
�Comm � EMPTY

� my
�Op � op

� my
�Location �
 obj � l � �� setup location

� while��� �

� for�n�	�n
 obj
�Attempts l
 obj
�Levels� n��� �

� r � random�� � obj
�Width�l� �� choose r

� q � SWAP�obj
�layer�l��r�� my� �� read q

� if�CaS�my
�Location�
id�l�� NULL�� � �� attempt collision

�	 if�CaS�q
�Location�
id�l�� NULL�� �

�� if� q
�Op
�command �� op
�command� � �� success equal

�� my
�List�l� � q �� add to list

�� my
�Location �
id � ��l� �� go to next level

�� n � 	 �� reset attempts

�� �

�� else � �� success opposite

�� if�op
�command �� PUSH� � �� pusher gets COLLIDE

�� my
�Comm �
 COLLIDE� q� 	 � �� and address of popper!

�� else �� Popper not updated

�	 q
�Comm �
 COLLIDE � my� 	 � �� and waits!

�� goto collided

�� �

�� �

�� else my
�Location �
 id � l� �� unlock myself

�� �

�� else goto collided

�� for�i�	�i
obj
�Spin� i��� �� delay loop

�� if� my
�Location ��
id� l� � goto collided

�� �

�	 if�CaS�my
�Location�
id�l�� NULL�� � �� lock myself

�� if�Acquired�obj
�lock�� � �� try to lock SP

�� sp � obj
�SP �� success�

�� obj
�SP � update�sp�sp� op
�command � �

l� �� update sp

�� myticket � obj
�TICKET�� �� get ticket for

�� Release�obj
�lock� �� update phase

�� myplace � update�sp�sp � op
�command � ��

�� for�i�l
�� i��	� i

� � �� distribute stack

�� my
�List�i�
�Comm �
STACK � my� sp � �� locations to

�� sp � update�sp�sp� op
�command � �

i� �� children

�	 �

�� while �obj
�NOWSERVING �� myticket� � �� wait my turn

�� my
�Go � �

l �� everyone in my tree

�� ret � obj
�do�single�myplace�op� �� can access stack now

�� Decrement�my
�Go�

�� while�my
�Go � 	� �� when everyone done

�� obj
�NOWSERVING �� �� next proc goes

�� return ret

�� �

�� else my
�Location �
 id � l �

�	 �

�� else goto collided

�� �

Figure ��� Part � of code for stack implementation

��

�� collided�

�� while� my
�Comm �� EMPTY� � �� wait for status update

��
 type � q � val � � my
�Comm

�� switch� type � �

�� case STACK� �� root acquired SP

�� sp � update�sp�val� op
�command� �� �� distribute a stack

�� for�i�l
�� i��	� i

� � �� location to each child

�	 my
�List�i�
�Comm �
 STACK � q� sp �

�� sp � update�sp�sp� op
�command� �

i�

�� �

�� while�q
�Go��	� � �� wait for go
ahead

�� op
�result � obj
�do�single�val�op� �� update stack

�� Decrement�q
�Go�

�� break

�� case COLLIDE �� I�m an eliminated pusher

�� for�i�l
�� i��	� i

� �� each child gets a popper

�� my
�list�i�
�Comm �
 COLLIDE � q
�list�i�� 	 �

�	 q
�Comm �
 VALUE � 	� op
�data � �� send my popper my value

�� break

�� case VALUE �� I�m an eliminated popper

�� op
�result � val �� return value got from pusher

�� �

�

Figure ��� Part � of the code for stack implementation

opposing an elimination occurs� The processor performing the PUSH is given a pointer to
the other processor�s operation� in its Comm word
Lines ������� This allows the pushing
processor to write the values in its tree to the processors waiting to perform a POP�
As before� Line �� resets the Location pointer after an unsuccessful collision attempt�

Line ���s goto is taken if a processor has been collided with� Lines ��	�� delay a
processor at its current layer to allow more collisions�
Lines ��	�� detail the operations performed on the central stack� A processor begins

by locking its own Location
Line ��� and attempting to acquire the lock on the stack�
pointer
Line ���� If the �rst locking attempt fails� it was collided with
Line ���� If the
second fails� it indicates load on the stack and the processor unlocks its Location and
returns to the funnel� Having acquired the lock on the stack�pointer the processor can
now safely update it
Line ���� The routine update sp�sp� op� x� increments sp by x
if op is a PUSH and decrements it by x otherwise� In neither case is sp allowed to exceed
the appropriate bounds� The size of the update in line �� is �l since� having been on
the l�th layer� a processor is known to be at the root of a tree of �l operations� While
still holding the lock on the stack�pointer the processor gets a ticket for the the next
phase 	 updating the stack itself
Line ���� Ticket in hand� it releases the lock on the
stack�pointer
Line ���� At this point it holds no locks
though it has a placed reserved
on the ticket line�� It thus takes the time to distribute stack locations to it children�
Lines ��	�� implement a distribution phase similar to the one used in the fetch�and�add
implementation� and provide each child with a unique location in the stack where they
can apply their PUSH or POP operation�
When a processor�s turn arrives at the ticket lock� it gives all its children a �go�ahead�

signal by setting its own �go� �eld
Line ���� It then performs its single operation on
the stack and waits for processors in its tree to complete their operations� The loop in
Line �� serves as a barrier and prevents passing the ticket to the next waiting processor
before all operations in this tree are done�

��

Any processor that collided jumps to Line ��� Note that when a collision occurs it
is not yet known if a processor�s traversal of the funnel will end in an elimination or an
update of the central stack� Thus� the code in lines ��	�� must be prepared to handle
both possibilities� The type �eld written to the Comm word informs the processor of the
fate of the tree� STACK indicates that it is operating on the central stack� and val is its
location� First it distributes locations to its children
Lines ��	���� and then it waits for
the root�s �go�ahead�
Line ���� When the go ahead is received the processor updates
the stack and decrements the barrier
Line ����
The identi�er COLLIDE indicates an elimination� When a processor�s operation is a

PUSH� i�e� it must push its value to a partner performing a POP� a pointer to the partner
q is provided to the processor in the Comm word by its parent� The same is done for
the processor�s children� by iterating over q�s list of children� and writing one pointer in
each of its children�s Comm word
Lines ��	���� Finally� the processor updates q�s Comm
word with the value it is pushing and the identi�er VALUE
Line ���� A processor that
sees the VALUE identi�er knows that the value it must return was written in the third
�eld of the Comm word
Line ����

��

