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Abstract

We enhance the well established software combining synchronization technique
to create cornbining funnels. Previous software combining methods used a statically
assigned tree whose depth was logarithmic in the total number of processors in the
system. On shared memory multiprocessors the new method allows to dynamically
build combining trees with depth logarithmic in the actual number of processors
concurrently accessing the data structure. The structure is comprised from a series
of combining layers through which processor’s requests are funneled. These layers
use randomization instead of a rigid tree structure to allow processors to find part-
ners for combining. By using an adaptive scheme the funnel can change width and
depth to accommodate different access frequencies without requiring global agree-
ment as to its size. Rather, processors choose parameters of the protocol privately,
making this scheme very simple to implement and tune. When we add an “elim-
ination” mechanism Touitou) to the funnel structure, the randomly constructed
“tree” is transformed into a “forest” of disjoint (and on average shallower) trees of
requests, thus enhancing the level of parallelisin and decreasing latency.

We present two new linearizable combining funnel based data structures: a
fetch-and-add object and a stack. We study the performance of these structures by
benchmarking them against the most efficient software implementations of fetch-
and-add and stacks known to date, combining trees and elimination trees, on a
simulated shared memory multiprocessor using Proteus. Our empirical data shows
that combining funnel based fetch-and-add outperforms combining trees of fixed
height by as much as 70%. In fact, even compared to combining trees optimized for
a given load, funnel performance is the same or better. Elimination trees, which
are not linearizable, are 10% faster than funnels under highest load, but as load
drops combining funnels adapt their size, giving them a 34% lead in latency.
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1 Introduction

When different threads running a parallel application on a shared memory machine ac-
cess the same object simultaneously, a synchronization protocol must be used to avoid
interference. Since modern shared memory architectures usually supply very basic syn-
chronization primitives, it is up to the programmer to handle more complex situations
in software. Synchronization methods should be simple and easy to implement and
offer both correctness and efficiency. Correctness implies that for any interleaving of in-
structions by any number of processors, the behavior of the synchronized object always
adheres to some well defined specification. Efficiency, in this context, can be broken
into several categories: parallelism — as more threads (processors) are added to the sys-
tem the throughput should generally increase; scalability — it should be possible for the
method to support an arbitrary number of threads; and robustness the time it takes to
perform operations should minimize sensitivity to load fluctuations. Finally, the method
should be widely applicable to avoid the need to invent a new synchronization protocol
for every application.

1.1 Software Combining

It is well documented [1, 8, 14, 26] that concurrent access to a single object by many
threads can lead to a degradation in performance due to contention. A relatively well
established method which has been used to alleviate this “hot spot” [8, 26] contention
is combining. Combining was invented by Gottlieb et al. to be used in switches of a
network which connects processors to memory [10, 25]. It allows one to avoid contention
by merging several messages with a like destination. If a switch discovers two read
operations attempting to access the same word of memory, it will forward only one
message to the memory system. When a message returns with the contents of the
memory, the switch will dispatch two messages back to the processors to satisty both
read requests. In the NYU Ultracomputer (Gottlieb et al. [11]), hardware switches can
perform combining on several different kinds of messages, including reads, writes and
fetch-and-add operations [18]. The most notable example of combining in software are
the combining trees of Goodman et al. [9] and Yew et al. [33] for performing fetch-and-
add. In these algorithms, the current value of a fetch-and-add counter is stored at the
root of a binary tree. Processors advance from the tree’s leaves to its root, combining
requests at each node along their path. Whenever combining occurs, one processor
continues to ascend the tree, while the other is delayed. When a processor reaches the
root, it adds to the counter the sum of all the fetch-and-add operations with which it
combined, then it descends the tree, delivering the results to the delayed processors,
which in turn propagate it down the tree.

Unlike faster lock-free structures such as the Diffracting trees of Shavit and Zemach
[29], combining trees are linearizable. Linearizability is a consistency condition defined
by Herlihy and Wing [15], which allows the programimer to treat complex operations as if
they happened atomically. Dealing with linearizable data structures makes programming
casier since one can assume, for example, that once an update is complete (e.g. the call
to the update procedure returns) all later operations consistently see its effects.

Combining trees are widely applicable and can be used to enhance the implementa-
tion of any fetch-and-® [11, 18] synchronization primitive, as well as some simple data
structures such as sets. In the classic combining tree scheme, scalability as the number
of processors P increases is achieved my making the tree deeper, adding more levels to
make sure that the number of leaves is [P/2]. Under maximal load, the throughput of
such a tree will be P/(2log P) operations per time unit, offering a significant speedup.
Two mechanisms are used to keep contention at tree nodes low. Processors are statically
pre-assigned two to a leaf, and every node contains a lock. In the classical combining
scheme, processors must acquire this lock in order to ascend from a node to its par-



ent. Thus, the number of processors that may concurrently enter a node is limited to
two regardless of the load, effectively eliminating contention. (Though it is possible to
construct trees with fan-out greater than two in order to reduce tree depth, that would
sacrifice the simplicity of the nodes and increase the number of instructions required to
traverse them. Indeed, preliminary experiments which we conducted on such trees show
that the “higher fan-out for lower depth” trade-off is not worth it: the overhead of more
complex inner nodes overshadows the benefits of decreased depth).

1.2 Combining Under Varying Loads

Combining is thus a compelling idea for providing linearizable parallel implementations.
However, it turns out that the very mechanisms that make the tree structure so useful
under high loads, namely static assignment and locking of nodes, are actually drawbacks
as the load decreases.

The downside of static assignment is that even if the tree is rarely accessed by all
P processors simultaneously, its depth must still be log P. The locking of tree nodes
means that a processor that misses a chance for combining is locked out of the path to
the root and must wait for an earlier one to ascend the tree and return before it can
progress. As noted by Herlihy et al. [14], this makes combining trees extremely sensitive
to changes in the arrival rate of requests. Herlihy et al. show that even a small drop
from the maximal load will cause a 50% drop in the level of combining, and from there
performance continues to degrade rapidly (this is discussed in detail in Section 4 and
in [29]).

The original software combining tree algorithm of Goodman et. al. does not of-
fer easy ways to work out these difficulties: they all introduce performance tradeoffs.
For example, pipelining requests up the tree (by removing locks or allowing processors
to overtake locked nodes) introduces a tradeoff between node latency and the level of
overtaking. Naive attempts to allow overtaking at locked nodes would mean that other
nodes (especially the root) could be reached by many processors at a time. The need to
have each node handle this increased parallelism and contention effectively complicates
the protocol used in the tree nodes and increases latency.

Combining trees are also not easily amenable to an adaptive strategy which shrinks
the tree when average load is low (e.g. the reactive locks of Lim and Agarwal [19]), since
there is no clear way to lower the number of nodes and at the same time limit simul-
taneous access to a node to no more than two processors. Furthermore, decentralized
algorithms for dynamically changing tree size (see for example the Reactive Diffracting
Trees of Della-Libera and Shavit [7]) tend to be complex and require significant tuning
efforts.

This is not to say that there are no known adaptive combining schemes. Gupta
and Hill [13] and Mellor-Crummey and Scott [24] have devised adaptive combining
tree barriers that support changing the layout of a combining tree on the fly. However,
their constructions cannot be readily applied to implement general data structures.
The reason is that in order to work they require two key assumptions that cannot be
met by general data-structures. First, they require that all processors arrive at the
data structure and traverse it exactly once before it is reused, and second, that the
information passed between processors be exactly the same (“barrier complete”) and
not unique (“your result is 7). Both conditions can be met only because of the very
nature of a barrier — everyone is delayed until the current instance of the barrier is
complete.

In summary, it seems that allowing pipelining of requests, eliminating unnecessary
waiting, and modifying the tree algorithm to be adaptive, would benefit performance.
However, the associated tradeoffs suggest that there is no easy way to fit all these
properties into the classic combining tree framework.



1.3 Beyond trees: the new approach

In this paper we present a new general method for implementing the “combining”
paradigm on large-scale shared memory multiprocessors. Our method, combining fun-
nels, replaces the “static” tree with a collection of randomly created dynamic trees.
This is done via a cascade of combining layers through which requests are funneled
and combined to form the dynamic trees, hence the name combining funnels. Tt allows
us, especially under high loads, to reap many of the benefits of combining without the
drawbacks of using a global tree structure.

In broad terms, the combining funnel approach can be stated as follows. Assume you
are given a simple data object with combinable [10, 18] operations, and that this object
operates correctly in a parallel environment (though not necessarily efficiently). Parallel
performance can be enhanced by adding a combining funnel structure as a front end (see
Figure 1). All processors attempting to access the object pass through the layers of the
funnel and can at each layer collide with others heading for the same object. When a
collision occurs the colliding processors perform a localized combining protocol much in
the same way as communication network switches combine messages. When processors
emerge from the funnel, they apply their (possibly combined) operation to the “central”
object.

The combining layer structure provides the basis for an adaptive combining structure.
Adaptive algorithms, allowing the data structure to change behavior to accommodate
different access frequencies, have been used both in locking (see Karlin et al. [17] and
Lim and Agarwal [20]) and for more general fetch-and-® operations [19]. The work of
Lim and Agarwal [19] showed the performance benefit of dynamically switching between
locking an object and using (static) combining trees, based on whether the overhead of
the latter justifies the added potential for parallelism. Combining funnels take this idea
one step further by using a single funnel structure to support an entire range of sizes, from
a single lock to a full funnel. Unlike the approach of Lim and Agarwal, adaption does
not require global agreement as to the size of the data structure. Rather, each processor
dynamically and independently chooses the part of the funnel it will try and traverse.
This lack of coordination among processors lowers overhead and simplifies the protocol.
It means however that at various points in the execution, different processors might end
up with different size decisions: some using large funnels, some small. Nevertheless, this
does not affect the algorithm’s correctness, and as we will show, produces a significant
performance advantage.

Apart from being adaptive, combining funnels also support a mechanism for elimi-
nation, as defined in the work of Shavit and Touitou [27]. Elimination is used in shared
objects that support operations with reversing semantics: applying the operations to
the object in a certain order leaves the object unchanged. A stack is good example:
applying a push operation, immediately followed by a pop operation, returns the stack
to its original state. A pair of operations with reversing semantics can be eliminated if
both requests can be satisfied, that is, correct values are returned without any update to
the central object. The combining funnel allows us to extend elimination from pairs of
operations to dynamically constructed “trees of operations” — satistfying complete trees
of operations in parallel without accessing the central object.

In this paper we present implementations of two combining funnel based data struc-
tures: a fetch-and-add object which can serve as a template for a general fetch-and-®
object; and a concurrent stack. Both data structures are linearizable [15], that is, oper-
ations on them appear to be atomic. This is a property found in combining trees but
not in previous prism based methods such as diffracting trees and elimination trees.

We evaluate the performance of the new structures by benchmarking them against
the most efficient software implementations of fetch-and-add and stacks known to date,
combining trees and elimination trees, on a simulated 256 processor shared memory
multiprocessor similar to the MIT Alewife machine [2]. Our simulation uses the well



established Proteus simulator [4, 5]. Since the type of futuristic applications that will
benefit from such high levels of concurrency are currently not available, we use a standard
collection of synthetic benchmarks that mimic their possible access patterns. Based on
our empirical results, we believe our linearizable fetch-and-add and linearizable stack
objects display the kind of performance, robustness and simplicity which would make
them useful additions to the parallel computing tool-boxes of the near future.

The rest of the article is organized as follows. Section 2 presents the combining funnel
scheme and gives an in-depth look at fetch-and-add and stacks, Section 3 describes how
adaption is incorporated into the funnel, Section 4 gives benchmark results, and Section 5
concludes the paper and discusses areas of further research. In the appendix one can
find detailed pseudo-code for both of the data structures implemented.

2 Combining Funnels

Combining Funnel
Front-end

Acquire

Central
Object

Release

Figure 1: Schematic depiction of combining funnel mechanism

We first present our combining-funnel scheme in a generalized form and then show
how both a fetch-and-add and a stack object fit into the framework. The idea, illustrated
in Figure 1, is to maintain a single “central object” and use a series of funnel layers as
a “front-end” to make access to it more efficient. Our only requirement in terms of
parallelism from the central object is that it must correctly handle simultaneous access
attempts by multiple processors. This can be achieved simply by protecting access to
the object by locks. The combining funnel handles efficiency and prevents the object
from becoming a serial bottle-neck.

Normally, a processor would first acquire the object’s lock, then apply its operation
and finally release the lock. Instead, it will now first “pass through” a series of combining
layers. The function of the layers is to hand each passing processor the ID of another
processor that has recently gone through the same layer. Since each object has its own
funnel this ID is likely to belong to a processor that is concurrently trying to access
the same object. The first processor now attempts to collide with the one whose 1D
it got. If successful, processors can exchange information and update their operations
accordingly. For example, processors p and ¢q access a stack object concurrently with
operations PUSH(A) and PUSH(B) respectively. Processor p passes through one of the
stack’s layers and exits with ¢’s ID. If p manages to collide with ¢ the results could
be for p’s operation to become PUSH({A,B}) and ¢’s to change to “WAIT for B to be
PUSHed”. We say p becomnes ¢’s parent since p is going to be performing both operations.
A more elaborate example appears in Figure 2.

In a shared memory environment, a funnel layer can be implemented using an array.!
A processor arriving at the array picks a location at random and applies a register-to-

1 An algorithm that can be modified to implement funnel layers using message passing is described



Figure 2: Example of processors going through a funnel. On the left we see p,q,r and
t as they go through the first layer where p collides with ¢ and ¢ with r, then ¢ and »
wait while p and ¢ advance to the second layer where they collide. On the right side
we see how combining trees are dynamically created by collisions, the waiting processor
becomes the child of the advancing processor.

memory-swap operation on it,> reading the ID written there and writing its own ID
in its place. By overwriting existing IDs, we can keep the array up-to-date and avoid
accumulating stale information. By using an array with several locations, we allow many
processors to pass through the layer at the same time. Wider layers (arrays) provide
more parallelism and reduce contention, narrower layers are more likely to be up-to-
date. Upon exiting each layer in the funnel (ID in hand), processors first attempt to
collide, then advance to the next layer. Notice that a processor only ever waits if it has
successfully combined with another processor that is going to perform its operation for
it. A processor is never delayed simply because an array location is “in use.” This is
not the case with combining trees where tree nodes can be locked, thus preventing the
advance of unrelated operations.

2.1 An overview of the algorithm

The following presents a high-level step-by-step description of the combining-funnel
scheme for a processor p. The algorithm makes use of a Location array, with one
element per processor. Each element has two fields: object which is the name (or ad-
dress) of the object p is trying to operate on; and operation which is the operation p is
trying to apply to the object. For an object X and an operation F', initially Location[p]
contains the pair < object = X, operation = F >.

1. Foreach funnel layer do

(a) Swap. Read(q) from random location in layer, write(p) there.

(b) Attempt collide(p,q). If Succeeded combine(p,q). Possible combining
results include: p performing both operations while g waits for notification;
and elimination of both operations.

in [29].
2A read followed immediately by a write would also work.The correctness of the algorithm does not
depend on access to the layer being atomic.



(c) Delay. Allow some other processor a chance to read p’s ID and collide with p.
If Location[p] .operation has changed, perform the new operation. Usually
this is either a wait for notification, or an exit of the funnel (if eliminated).

2. Exit funnel. Attempt to perform Location[p] .operation on the central object.

3. Succeeded? Distribute results. Failed? goto 1.

Referring back to our stack example we will show how p and g execute the algorithm.
The Location array keeps track of which object a processor is currently operating on.
Processor p marks that it is going to apply a PUSH(A) operation on the funnel associated
with stack S by setting Location[p] to < object = S, operation = PUSH(4) >. Let
us assume p has read ¢’s ID from a funnel layer at step la and now attempts to collide
with q.

The routine collide(p,q) actually tries to perform the collision. The collision will
succeed if both processors are operating on the same object: Location[p].object =
Location[q].object; and Location[p].operation is combinable with the operation
Location[g] .operation. The decision regarding which operations are combinable is
object dependent. In a stack, any pair of colliding operations can be combined. A
processor that has already collided and is now waiting for its operation to be performed
by some other processor, cannot be further combined.

If the collision succeeds, p calculates the combined operation using combine(p,q).
Combine updates the operation field of both Location array elements to reflect the
results of the collision.® In our stack example, when two PUSH operations collide,
Location[p] .operation is set to PUSH({A,B}) and Location[q].operation is set to
“WAIT for B to be PUSHed.” Processor ¢ is now unavailable for further collisions.

In step lc processors delay to give others an opportunity to collide with them. Here
q will discover the collision with p and wait for notification that B has been pushed into
the stack. Once notified, ¢ will exit both the funnel and the stack object.

After passing through all layers, processors can access the central object, though
they may opt not to wait on a busy lock and instead traverse the funnel again. Once
the processor performs its operation on the object, it must deliver results e.g. when p
completes its operation on the stack, it informs ¢ that B has been pushed. The width of
funnel layers decreases with each level since it is assumed that collisions will reduce the
number of accesses to subsequent layers. Determining the number of layers to use and
the width of each layer is of critical importance and is discussed in Section 3. We now
present our two combining funnel based data structures: fetch-and-add and stack.

2.2 Fetch-and-Add

To assist in presenting the fetch-and-add structure, we introduce the following high-level
description of the stages that one must go through to add a combining-funnel front-end
to an object. The step numbering refers to the algorithm in Section 2.1.

1. Decide what the object is and what operations it supports.

2. Determine when two operations can be combined and what the result is (step 1b).
The combined operation may sometimes imply creation of new operations not
defined in the original object specification. In this case, the semantics of these
operations (for step 2) and their interaction with the original ones must be defined.

3. Determine what actions processors must take when they discover they have been
combined with (step lc).

3In this informal description there appears to be a race condition between collide and combine.
The pseudo-code given in the appendix solves this using compare-and-swap. Locking of the elements
of the Location array can also be used to achieve this effect.



4. Determine if a distribution of results is necessary and how it should be done
(step 3).

Using this methodology we now construct a combining funnel for a fetch-and-add
object. The central object for a combining funnel fetch-and-add is a location in memory
where the current value of the counter is stored. Exclusive access to the counter can
be supplied using any locking method or through an atomic fetch-and-add primitive in
hardware. Fetch-and-add objects support one operation: ADD(x) which atomically adds
the value z to the counter and returns its previous value. Combining in fetch-and-add
is based on the following observation. When two processors want to perform F&A(X, a)
and FEA(X,b) respectively, if one of them instead performs FEA(X, a+b) and returns
X’s current value to itself and X + a to the other — both requests to be satisfied. To
facilitate the combining phase we will define another operation, WAIT, which is not a
true operation, but rather indicates that a processor is stalled pending the completion
of its operation by someone else, namely, its parent. All processors enter the object with
an ADD operation. When ADD(z) and ADD(y) collide, step 1b changes the specification
of one to ADD(z + y) and that of the other to WAIT. The processor who is assigned
ADD(z + y) becomes the parent of the stalled processor. To support the distribution
phase, parents are responsible for keeping a list of children, holding the identity and
request sizes of processors they combined with. Processors in the distribution phase go
over the list of children and deliver a result to each of them. Processors who discover
they have become children (i.e. the operation field of their element of Location is
changed to WAIT) delay in step 1c pending delivery of a result and must then distribute
values to their own children. Detailed pseudo-code for the fetch-and-add object can be
found in Appendix A.1.

We can distinguish between two types of information associated with each fetch-and-
add operation: public and private. The public part is held in the Location array and
includes the address of the fetch-and-add object and the operation ADD(x). The private
part is each processor’s list of children. To see why this list can be kept private consider
a collision between a processor p performing an ADD(z) operation and a processor g
whose operation is ADD(y). If p is to continue with an ADD(x + y) operation, it must
know that part of the result of this operation must be distributed to q. However, if » now
collides with p, it is enough that r knows that p’s operation is ADD(z + y); it does not
need to know that p intends to distribute part of the result to g. This is why we can say
that p’s operation becomes ADD(z + y) and not e.g. “ADD(x) for p and ADD(y) for
q.” Figure 3 illustrates the data associated with each of the fetch-and-add operations
and shows how it is updated during a collision. We see that P,’s ADD(4) operation is
actually an aggregate of its original operation and the ADD(1) of P;: we can deduce
that Py’s original operation was ADD(3). When P; collides with Py it updates its own
data, both private and public. It also updates the public part of Py’s data. Only the
information available in P;’s public data is used by P; in the update.

Collisions between processors dynamically create combining trees as the processor
who initiated the collision becomes the parent of the processor with which it collided.
The trees created are not necessarily binary since a single processor may collide with
many processors, each of which might have collided with any number of other processors.
Figure 3 shows P as the parent of Ps, and P; as the parent of P, and Ps;. Figure 4
illustrates the tree created when P; collides with Py and becomes its parent. We also see
other parent-child relationships (e.g. Ps is the parent of Ps) which can not be deduced
from the lists held by P; or P4. If P; now manages to acquire the central counter, it will
increment it by 16, the sum of all increment, requests in the tree. Assuming the central
counter held the value 0 when it was acquired by P;, the figure shows what value will
be returned by each processor.

The random nature of the collisions in the fetch-and-add implementation means the
trees have no predefined shape. Consider a tree ¢t with depth d containing n operations.



Proc: 1 Proc: 4 Proc: 1 Proc: 4

Location[ ] Fun: F&A #1 | |Fun: FRA #1 Fun: FRA #1 | |Fun: FRA #1
(Public)  |op: ADD(12) | | Op: ADD(4) Op: ADD(16) | | op: WAIT
List of Children | Proc [ val Proc | Val > Proc | va Proc | Vva
(Private) % g 5 1 g g 5 1
4 4

Figure 3: Example of data structures updated during a collision between two fetch-and-
add operations. Visible are the two fields of the location[] array: object in this case
“fetch-and-add object #1”; and operation in this example either ADD() or WAIT.

0 Origina | Fina Return
Processor | Request Request Value

1 4 16 12

e e ° 2 3 3 0
3 2 5 6

4 3 4 9

e e 5 1 1 8

6 1 3 5

a 7 2 2 3

Linearization Order

Figure 4: left: Dynamic combining tree created by collisions; and right: A table showing
how values are propagated up and down the tree and the linearization order determined
by the return values.

If n = d the tree can actually be a linear list of operations. This is the worst case in
terms of the time it takes to distribute results to children. However, notice that the
chances of this happening are exponentially small. If a list shape tree t collides with
another tree t', the only way for the new tree to still be a linear list is if ¢’ is a single
operation and ¢ becomes the root. The probability of ¢ always becoming the child in a
collision is exponentially small in the number of collisions.

2.3 Stacks

This section describes the implementation of a stack object. The most straightfor-
ward implementation of a central object for a stack is simply to take a regular serial
stack and surround it by a locking mechanism, as we have done in Figure 5. Standard
stack operations are PUSH(z) which pushes  unto the top of the stack and POP which
returns the topmost value in the stack. How can we apply a combining funnel here?
If two PUSH operations collide we can combine by having one processor, after acquiring
the stack’s lock, push both values into the stack. By extension, trees of PUSH operations



counter SP
data_type Stack[STACKSIZE]
lock StackLock

int push(datatype d) datatype pop()
{ {
Acquire(StackLock) Acquire(StackLock)
if( SP == MAXSIZE ) if( SP == 0 )
result = STACK_FULL result = STACK_EMPTY
else { else {
Stack[SP] = d SP--
SP++ result = Stack[SP]
result = PUSHED }
} Release(StackLock)
Release(StackLock) return result
return result }

Figure 5: Simple stack implementation

will work the same way, the root performs all the operations once it has the lock on the
stack, this will take a time linear in the total number of operations in the tree. Colliding
POPs are analogous. There is some gain here since we amortize the time it takes to
do lock operations over many stack operations, though it is not as significant as in the
fetch-and-add case.

We can improve on this naive approach if we make the following observation: if a
tree is homogeneous (contains only one kind of operation, either PUSH or POP) then when
the the root performs the operations one by one, each operation has a different value
of the stack pointer (SP). In other words, each operation is performed on a different
element of the stack. We can therefore view homogeneous trees as a kind of fetch-and-
add operation, where the root adds to (or subtracts from in the case of POP) the current
value of SP the size of its tree and delivers to each child an index. Children then continue
the process till each node in the tree knows which element of the stack it is supposed
to operate on. Any node that receives an index can then immediately perform its stack
operation on it. Once the root knows that all operations in its tree are complete, it
can release the lock on the stack and allow the next tree to begin operations. This
parallel approach reduces the time to complete a tree of operations from linear in the
total number of processors in the tree, to linear in the depth of the tree, which will
usually be much smaller.

2.3.1 Elimination and the layout problem

What about combining opposite operations? Observe that if a PUSH is followed immedi-
ately by a POP the stack is returned to exactly the state it had prior to both operations.
In a sense, PUSH and POP operations that immediately follow one another are nothing
more than one processor passing a value to another, using the stack as a conduit. Such
operations are sald to have reversing semantics since one reverses the affects of the
other — when applied in the right order. Elimination [27] is a technique which allows
the pairing off of operations with reversing semantics, such that both processors exit the
data structure with correct results, but the object itself is not updated. For example,
p performs PUSH(z) while ¢ performs POP. The operations collide and are eliminated: p
passes the value z directly to q. Processors p returns with an indication of success, ¢
returns with z as its popped value. Though the stack was never touched, the result is
indistinguishable from the case in which p actually pushed = unto the central stack, and
q retrieved it from the stack.
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We wish to generalize elimination to handle entire trees of operations rather than
single operations. Thus, when a tree of push operations collides with a tree of pop
operations, values are passed from one tree to the other, and the central stack is avoided.
However, if colliding trees have a different layout, this can be a problem. Consider the
situation illustrated in Figure 6, where a tree of three POP operations collides with a tree
of five PUSH operations. The most natural thing to do is to transfer three elements from
the “push-ers” to the “pop-ers” thereby eliminating the left tree altogether. However,
it is not clear how to decide which “push-er” should be paired with which “pop-er.” It
would seem that we have to engage in some “layout-matching-protocol,” which would
most likely increase latency.

POP PUSH

Figure 6: Collisions between trees of different layouts can make elimination difficult.

2.3.2 Solving the layout problem

To avoid the layout problem we choose to only allow collisions between roots of trees
that have the same number of operations. Thus, the root of a tree of n PUSH operations
may only collide with a root of a similar tree, creating a tree of 2n PUSH operations. It
can also collide with the root of a tree of n POP operations leading to the elimination
of both trees. Since all aggregate operations are formed through an identical series of
collisions, all are homogeneous and all have the same layout. Limiting collisions to trees
of equal size forces all trees to be isomorphic. For example, a tree of eight operations is
always formed by the collision of two singleton operations, followed by a collision with
a double operation and ending in a collision with a quadruple operation as in Figure 7.
To increase the chance that collisions occur between trees of the same size we alter the
method by which processors move from one layer to the next. All processors enter the
combining-funnel at the first layer (as usual) but advance to the next layer only after
a successful collision, if passing through a layer does not yield a collision, processors
remain at the same layer. This way all processors spinning at the ¢-th layer are roots of
trees with 2% operations.

However, this introduces the possibility of starvation. To avoid starvation, processors
periodically attempt to perform their operations on the central object regardless of which
layer they are on. Eliminating trees of the same size and layout is substantially easier
than doing so for general trees as illustrated in Figure 8. If the trees are singleton
operations elimination is performed by having the “push-ing” processor hand its value
directly to the “pop-ing” processor. Otherwise, let p and ¢ be colliding roots of trees
of size 2!. Note that both p and g each have I children and that the i-th child of
each is the root of a tree of size 2°. First, p sends ¢ (a pointer to) a list of its I
children, then ¢ sends its i-th child the name of p’s i-th child, now for all 7 € {1...1}
the +-th child of ¢ eliminates with p’s ¢-th child, finally p and ¢ perform a singleton
elimination. Note that if the children that are roots of larger trees are informed of
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their partners first, we can expect all collisions to occur within time that is logarithmic
in the size of the tree. Figure 8 shows that the time to eliminate a tree of [ levels is

T() =max{2+T(1 —1),3+T(1—2),....14+14+T(0)} =20 + 1.

B4 A

Figure 7: Forming aggregate operations by collisions of equal size trees.

t=1: Transfer list of children
—

t=2: Transfer name of partner

t=I+2: collision between trees of size 1

Figure 8: Elimination of trees with equal size and layout is simple.

Earlier we said that a root acquiring the lock on the central stack releases it only
after all operations in its tree are done. However, we found that better performance can
be achieved by pipelining, the first stage of the pipe is the update to SP and the second
is the update of the Stack array. The pipeline is implemented by using two locks, the
first on SP and the second, a ticket lock [22], on Stack. When a root acquires the first
lock it updates SP and receives a ticket for the second lock, then it releases the first.
This assures that operations on Stack occur in exactly the same order as operations on
SP which maintains the pipeline. The reason we require such a strict order is that if we
allow operations to overtake one another in the pipeline the resulting stack would not be
linearizable. A detailed discussion of why both fetch-and-add and stack implementations
are linearizable appears in Section 2.4.

2.3.3 The Push and Pop operations

We present a high level description of a PUSH operation for processor p going through
funnel s, the POP operation is analogous. The implementation uses four operations: PUSH
and POP with the obvious semantics, WAIT which is returned to one of the processors
when two of the same type of operation collide, and ELIMINATE which is returned to
both processors at a collision between opposite operations. As usual when two PUSHes
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or POPs collide, one becomes the parent (the root, in fact) and retains its operation, and
the other, the child, has its operation changed to WAIT. Pseudo-code for a push is:

1. Location[p] < funnel = S, operation = PUSH(A) >. [ « 0.

2. Swap. Read ¢ from random location in layer [, write p there.
3. If ¢’s size = my size, attempt to collide with q.
4

. Collided? If ¢’s operation is PUSH, change ¢ to WAIT, add ¢ to list of children,
l + 1+ 1. Otherwise change ¢ to ELIMINATE and eliminate both trees.

[S2¢

Delay. Give some other processor a chance to collide with me.

6. Collided with? If operation is changed to ELIMINATE, eliminate. Otherwise, WAIT
for root to either eliminate or acquire the central stack.

7. 1+ 1+ 1. If i MOD CONST = 0 attempt to acquire lock.
8. Acquired?

(a) Copy MYSP«+SP, MYTICKET«+TICKET, increment SP by 2!, increment TICKET
by 1, release lock.

(b) Distribute stack locations to children.

(¢) When NOWSERVING reaches MYTICKET give “go ahead” for all processors in the
tree to push data into the stack.

(d) When all processors in my tree are done, increment NOWSERVING. Exit.

9. Didn’t acquire. goto 2.

A processor that collides with a like operation and becomes the child must WAIT till
it learns the fate of its tree (step 6). If the tree’s root enters the central stack update
pipeline it will be given a location in the stack on which to operate and must then wait
for the tree to reach the second pipeline stage (update Stack) before acting. Once the
root enters the second stage it informs the children, and they all push their values into
the stack, each child that completes its stack operation decrements a counter stored at
the root, when this counter reaches zero the root knows that all operations in its tree are
done and it can safely advance the ticket counter. If the root collides with an opposite
operation both trees are eliminated.

2.4 Linearizability

This section introduces Linearizability and then explains why our constructed funnel
based data structures are linearizable.

Linearizability is a consistency condition introduced by Herlihy and Wing [15], that
allows one to easily reason about and compose concurrent objects. Informally, an im-
plementation of an object is linearizable if operations on it appear to be atomic to all
processors. More formally, assume that a data structure like a counter or a stack is given
a sequential specification. By this we mean that it is described as an abstract data type
whose behavior is determined by a collection of allowable sequential executions. For a
stack each such execution would be a sequence of push and pop operations and their
returned values. An implementation of a data structure is said to be linearizable if for
every concurrent execution, that is, one in which operations may overlap in time, one
can:

e associate with every implemented operation a single time point within its actual
execution interval at which the operation is said to take place,

e such that the associated execution is a valid sequential execution in the data
structure’s sequential specification.
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Put differently, Linearizability means that by compressing an operation’s actual execu-
tion interval in time to a single point (thus preserving the real-time order), we can place
all operations on a single time-line, and the resulting totally ordered execution then
conforms to the object’s sequential specification.

We now explain why our fetch-and-add and stack implementations are linearizable,
which amounts to showing a linearization order. The interested reader can formalize
these proof outlines in the I/O automata model of Lynch and Tuttle [21].

2.4.1 Linearizability of Fetch-and-Add

To understand why our fetch-and-add construction is linearizable, let us first immagine
a run of the algorithm in which all combining attempts fail. Processors go through
the funnel, swap values on the layer array, but never manage to collide with a partner.
In this scenario, each processor carries only its own add request and applies it when
it acquires the lock on the central object. This is correct since the linearization order
corresponds exactly with the order in which processors acquire the lock. Now let us
assume combining does occur, but that when p acquires the lock on the counter it
applies the operations in its tree one by one. Notice that since each operation is applied
separately and that during this time only p operates on the object, a correct linearization
order exists and corresponds to the order in which p applies the operations. Let S be the
set of processors whose operations are in p’s tree. Let t) for i € S denote the starting
time of ’s operation. Similarly, ¢! denotes the end time. Also, let a denote the time
at which p acquires the object. Clearly ¢! < a < t! for all 4, since no operation in S
completes until p acquires the lock. Let p; denote the time at which p performs the
operation of processor i. We get t? < a < p; < t}. Thus each operation is linearized
correctly.

In actuality, recall that processors outside p’s tree can only examine the object after
p releases the lock, so from their point of view it doesn’t matter whether p applies all
operations at once or one at a time. For processors inside p’s tree the distribution phase
returns to each of them exactly the same value it would have received had p applied
the operations one by one. Thus, for every processor the case in which p applies the
operations one at a time is indistinguishable from the case in which all operations are
applied at once. The return values which are determined by the distribution phase at
each parent implicitly determine the order in which the increment requests are linearized.
For example, in our code the linearization order corresponds to pre-order numbering of
the nodes of the tree. Using the notation of the previous paragraph, let a be the time
at which p applies the operation to the object, and b be the time the next operation
is applied to the object. We number the operations in p’s tree in pre-order, such the
operation ¢ is mumbered n(7). The linearization order of the operations in S is therefore:
a <ty <t <...<t, <b, where operation : is considered performed at time #,,;).

2.4.2 Linearizability of the Stack

The argument regarding Linearizability of our stack implementation runs along similar
lines. First we look only at operations which don’t combine or eliminate. These all end
when the processors performing them acquire the main lock on the stack, so they have a
natural linear order. Now we allow processors to combine operations, but ignore the fact
that the implementation splits the stack pointer increment phase from the actual stack
insertion. This gives us a natural linear order among trees, and since no other processor
may probe the stack until all operations in a tree are complete, we only need to concern
ourselves with tree members when assigning a linearization order. As noted earlier a
property of homogeneous trees is that stack locations distributed to the processors are
monotone and each processor is assigned a different element. This yields a linearization
order based on corresponding stack locations, e.g. for two pushing processors the one
with the lower location is linearized first. The fact that we split the update of the stack
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pointer from the update of the stack itself is of no consequence since we use a ticket lock
to make sure that access to the stack is in exactly the same order as access to the stack
pointer.

Having established a linearization order among operations which end up being ap-
plied to the stack itself, we need to account for eliminating processors. The recursive
nature of the elimination process allows us to ignore the fact that we eliminate whole
trees and simply look at pairs of eliminating processors. Consider a pair of processors
p and g performing a push and a pop respectively. At some point p knows that it must
eliminate with ¢ (either p performed the elimination, or its parent told it), later p will
write its value for ¢ to read. Since a push/pop pair leaves the stack in exactly the same
state, we can linearize this pair anywhere in the time interval in which their operations
overlap. Aslong as we do not linearize any operation between them, this will ensure that
all processors have a consistent view of the stack. Since there can be only a countable
number of operations in the time interval, we can always find a linearization point.

3 Adaption

We begin with a general discussion of parameterized data structures and adaption, and
later outline the specific strategies we use in our implementation.

3.1 Parameterized Data Structures

Combining funnels, like diffracting and elimination trees, are a parameterized data struc-
ture: performance of the algorithm is determined by certain parameters which differ from
application to application. For funnels, these are the number of layers traversed, the
width of each layer and the delay at each level. Each of these can be optimized based on
the expected load on the object and the specifics of the machine being used. Contention
at the central object can occur if there are too few collisions. This might be a result of
layers that are too wide, too few layers, or delay times that are too short. Funnels that
are too deep and overly long delay times increase the latency of each operation, whereas
narrow layers cause contention on layer locations. Clearly the right choice of parameters
is of paramount importance to achieving best possible performance.

The parameters however, differ from one application to the next, and for the same
application as the load on it changes. Consider for example a fetch-and-add object. If
this object is accessed only rarely, the best performance would be achieved by imple-
menting it using a single location in memory protected by simmple, low overhead locking
method. However, this implementation works extremely poorly for frequently accessed
counters [3, 12, 22]. Other implementations have the opposite behavior, they perform
well when accessed frequently but their overhead is prohibitively high for rarely accessed
objects [3, 22].

3.2 Adaptive Structure of Funnels

From the above examples it becomes clear that tuning the structure, that is, optimizing
its parameters for each application and load, is not a feasible solution. The solution is
to use an adaptive strategy for automatically tuning the parameters to the current load
on the data structure. As noticed by previous researchers [17, 19, 20], using an adaptive
data structure one can provide a solution that dynamically adjusts its parameters based
on actual conditions encountered and can be approximately as good as the best existing
method for each specific access pattern.

Combining funnels allow the user to devise a general adaptive strategy that is op-
timized for only a few cases, and lets the processors modify the remaining parameters
on the fly based on the actual load incurred. As an indicator of the load, funnels use
the number of collisions a processor is involved in during each access to the object. Few
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collisions serve as evidence of low load, and suggest using smaller layers and lower depth
(In fact, it may even be possible to avoid the use of a funnel altogether and achieve la-
tency equal to that of a simple locking object). Conversely, many collisions imply wider
layers and deeper funnels are needed (Widening of layers increases their parallelism as
more processors can collide simultaneously). Deepening the funnel increases the num-
ber of collisions and reduces the number of accesses to the central object, at the cost of
increased latency.

Since we know of no method that supports adding large numbers of processors with-
out an increase in latency, our goal is to keep this increase as low as possible. Decisions
on parameter changes are thus made locally by each processor: layers or funnels don’t
actually grow or shrink. Instead, each processor independently chooses its random layer
location from a subrange of the full width, and starts traversal at a given layer from the
full depth of layers available. Figure 9 illustrates two possible adaption strategies. In the
one on the left, which better fits our fetch-and-add implementation, processors which
believe the load is high enter the funnel at the very top going through all layers. Those
that believe otherwise enter the funnel further down and traverse less and narrower lay-
ers. On the right hand side is an adaption strategy for the stack. Here processors must
always enter on the first level (layer) since the level determines the depth of their tree,
though if they perceive the load to be low, they can choose to use only part of the layer’s
width and attempt to access the central object more often.

High Load
High Load
l Low Load

Low Load \ / W % /
T —
T

Acquire Acquire
Centra Centra
Object Object
Release Release

Figure 9: Two methods of adapting layer sizes to different loads. Shaded areas are used
when the load is low.

3.3 Specific Adaptive Strategies

The following are our adaptive strategies for the fetch-and-add and stacks structures.

fetch-and-add For fetch-and-add the algorithm adapts as follows. Each time a proces-
sor p passes through the funnel, it marks [, the number of levels passed through
before a collision occurred. Let I denote the average of I over N successive oper-
ations. Assuming some suitably chosen threshold values T and K, if [ < T, an
indication of high contention, p increments a private counter ¢ when ¢ reaches K.
Processor p then adapts by starting deeper inside the funnel on its next operation.
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If I > T, an indication of low contention, ¢ is decremented, and when ¢ reaches 0,
p adapts by starting at a layer higher up the funnel on its next operation.

stack For a stack we use a slightly different approach. Each processor keeps a value
0 < f < 1, by which it multiplies the layer width at each level to choose the
interval into which it will randomly swap (e.g. if f = 0.5 only half the width is
used). When a processor p successfully acquires the central object, it increments
a private counter ¢, and when ¢ reaches some limit K, f is halved. If p fails to
acquire the central object, ¢ is decremented, and when ¢ reaches 0, f is doubled.

A major advantage of combining funnels over tree based methods such as combining
trees and elimination trees is that they adapt to different machine loads with very little
overhead. The difference between shrinking a layer array and removing levels from a
tree is that processors need not coordinate the move to a different layer size. While
there are algorithms that support changing the size of a diffracting tree on the fly in
response to load changes [7], they are substantially more complicated than our adaption
strategies. When using combining funnels, no coordination is necessary, it is possible for
processors to have different ideas about layer’s width or funnel depth. Each processor
makes its decisions locally based on what it perceives the load to be. A particularly bad
adaption scheme might cause processors to make wildly inaccurate layer size decisions
lead to low performance, but correctness is never in jeopardy.

4 Performance

This section presents our performance benchmarks and the empirical evidence we col-
lected using them. We begin with a general discussion and then present the specific
performance results collected for the fetch-and-add and stack structures.

Research [14, 27, 29] has shown that in order to scale well, data structures must be
parallel. Avoiding contention is not enough, and throughput must actually increase as
more processors are added to the system. Currently, combining trees and elimination
trees (detailed below) are the most effective parallel fetch-and-add and stack structures,
respectively. We compared combining funnels to these algorithms. We also compared
them to a simple locking variant of each data structure in order to have a point of
reference for performance in low load situations.

Our tests were performed on a simulated distributed-shared-memory multiprocessor
similar to the MIT Alewife machine [2] of Agarwal et al. The simulation was conducted
using the Proteus* multiprocessor simulator developed by Brewer et al. [4, 5]. The
simulated Alewife machine is a 256 processor ccNUMA multiprocessor with realistic
memory bandwidth and latency. We ran Proteus with accurate network simulation,
which traces every packet and models contention and communication hot-spots. Though
this is not a real 256 node machine, we note that previous research by Della-Libera [6]
has shown that with appropriate scaling, Proteus simulates a 32 node Alewife machine®
accurately for the kinds of data structures tested in this paper.

Proteus simulates parallel code by multiplexing several parallel threads on a single
CPU. Each thread runs on its own virtual CPU with accompanying local memory, cache,
and communications hardware, keeping track of how much time is spent using each
component. In order to facilitate fast simulations, Proteus does not perform complete
hardware simulations. Instead, operations which are local (do not interact with the
parallel environment) are run directly on the simulating machine’s CPU and memory.
The amount of time used for local calculations is added to the time spent performing
(simulated) globally visible operations to derive each thread’s notion of the current time.

4Version 3.00, dated February 18, 1993.
5Though Alewife was designed to scale to hundreds of processors, the largest machine currently
available has 32 nodes.
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Proteus makes sure a thread can only see global events within the scope of its local time.
The machine we simulated had 256 processors in a mesh topology, each with 2'% bytes
of memory and a cache of 256 lines of 32 bytes per line.

global count global count
FnA_benchmark () Stack_benchmark ()
{ {
while(count < N) { while(count < N) {
w = random(0, work) w = random(0, work)
for(i=0; i<w; i++) for(i=0; i<w; i++)
5 H
start = TIME() r = random(0,1)
a = fetch_and_add(1) start = TIME()
latency = TIME() - start if (r==0) push(a)
count++ else a = pop()
} latency = TIME() - start
} count++
¥
+

Figure 10: Code for benchmarking fetch-and-add (left) and stack (right) implementa-
tions. Global variables are seen by all threads but require no synchronization to access.

In our benchmarks, processors alternated between performing local work and access-
ing the shared object being tested, as detailed in Figure 10. Though these benchmarks
are not real applications, they allowed us to accurately measure the difference in per-
formance between our method and other algorithms. This approach has been used
extensively in the literature [3, 7, 14, 16, 19, 22, 23, 27, 28, 29].

In order to choose the combining layer parameters (layer width, depth of funnel, delay
times, etc.) we ran a series of preliminary tests aimed at finding the best parameters for
the highest load, that is, 256 processors and no local work. We used these parameters in
all our experiments. We ran two sets of benchmarks, one in which we vary the number
of processors and keep local work a small constant and the other in which we vary
local work and keep the number of processor at the maximum. In each experiment we
measured latency, the amount of time (in cycles) it takes for an average access to the
object. Using the notation of Figure 10 this is the sum of all latency values divided by
count.

In experiments where less than 256 processors were used, we nevertheless simulated
a machine of 256 processors, though not all processors participated in running the al-
gorithm. Processor 0 always participated, and other processors were added in order
of increasing distance (on the mesh) from processor 0. We first added processors at
distance 1 on the mesh from 0, then those at distance 2, and so on.

4.1 Fetch-and-Add Performance

The graph in the left part of Figure 11 shows the performance of the fetch-and-add
implementations as the number of processors changes and where local work is a small
constant. We plotted two curves for combining trees, one in which the height of the tree
is optimal (marked H=opt) i.e. for p processors a tree of height [logp/2] is used. The
other curve is of a tree of constant height eight (marked H=8), needed to support 256
processors — the maximum number of processors in our simulations.

The curve marked MCS represents performance of a single counter protected by an
MCS-lock [22]. The graph shows that combining funnels are substantially more expen-
sive than the MCS-lock only for eight or fewer processors. At sixteen processors both
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methods perform about equally. Beyond this level of concurrency, latency of the MCS-
lock increases rapidly. At 48 processors and beyond the latency is significantly worse
than that of the other methods tested.

Combining funnels outperform optimal height combining trees by a small amount
for all levels of concurrency. Notice, that this result indicates that adapting between
different, sized combining trees [19] would be slower than employing adaptive funnels.
The performance of both methods is very close since both are trying to accomplish the
same task. However, combining funnels can adjust to the actual number of processors
present, whereas combining trees must be given this number explicitly. This is evidenced
by the curve for constant height combining trees. Examination of the curve shows a
significant gap between this method and combining funnels. When using 64 processors,
the combining tree is two levels too deep and has 70% higher latency. Halve the number
of processors, and the tree becomes three levels too deep and twice as slow as our method.

The right-hand graph of Figure 11 provides an even more compelling argument for
the power of adaptive strategies. Using 256 processors, we must employ a combining
tree of height eight even though, for higher local work loads, the tree is unlikely to
reach that level of concurrency. The case where the number of processors is high —
but not maximal — is the worst possible scenario for combining trees. A slight drop in
concurrency immediately leads to a substantial decrease in the amount of combining.
Processors that do not combine are essentially locked out of the path to the root. The
result: a “spike” in the latency curve. As local work increases this effect slowly dimin-
ishes. Lower levels of concurrency increase each processor’s chances of ascending to the
root with little waiting.®

No sudden increase appears in the latency curve of combining funnels, since no
predefined “tree” structure exists and paths cannot be locked. The situation where
processors are constantly arriving “too late” to combine and must wait for their would-
be partners to ascend and then descend the entire tree does not arise. If there are many
processors in the data structure, chances of colliding are good since combining can occur
between any pair of processors. As concurrency drops the shrinking layer width helps
keep chances of colliding high, while the shrinking depth lowers latency. Unfortunately,
under sparse access patterns, funnels are still up to three times slower than MCS-locks.
Nevertheless, one should remember that MCS-locks are specifically tailored to the low
concurrency case.

To summarize these results: the low overhead of MCS-locks makes them appealing
for objects with low contention. In these cases combining funnels are not appropriate,
though they are still substantially better then constant depth combining trees. For
objects which are usually accessed by more than 16 processors concurrently, the extra
parallelism afforded by combining funnels more than compensates for the extra overhead,
and makes them the better choice.

4.2 Stack Performance

In [27], Shavit and Touitou compare different stack implementations and the one based
on elimination trees is shown to outperform the rest. An elimination tree is a non-
linearizable stack implementation shaped as a complete binary tree of I levels, where the
root and all internal nodes are simple data structures called elimination-balancers. Pro-
cessors traverse the tree from the root to the leaves by passing through the elimination-
balancers. At each leaf a regular serial stack is located, protected by a lock, on which
PUSH and POP operations can proceed normally. At the heart of each elimination-balancer
is a one-bit variable called a toggle-bit with one or more prism arrays before it. When
two processors collide in a prism they can either eliminate, if one is a PUSH operation
and the other a POP, in which case the PUSH-ing processor delivers its element directly
to the POP-ing processor and both exit the elimination-tree immediately. Or, if both

%A more detailed analysis of combining tree performance under various conditions in appears in [29].
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Figure 11: Latency of different fetch-and-add implementations with varying number of
processors (left) and local work (right).
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Figure 12: Latency of different stack implementations with varying number of processors
(left) and local work (right).

processors are performing the same operation, diffract, one processor descends to the
node’s left child and the other to the right child. Only processors which do not collide in
a funnel, and instead gain access to a balancer’s toggle-bit, perform the equivalent of a
fetch-and-complement operation on it. They then decide whether to descend to the left
or right child based on the result of complement operation. Processors performing PUSH
go left if the result was “0” and right on a “1”, those performing POP do the opposite.
Thus, any operation performed on the tree can end either part-way down if successfully
eliminated, or, having passed through [ elimination-balancers, end at one of the stacks
at the leaves.

We compared our stack implementation to the non-linearizable elimination tree and
to two linearizable methods: a serial stack protected by an MCS lock and a combining
tree based stack. The way we turn a combining tree into a stack is very similar to our
combining funnel method, except that it does not support elimination. Processors com-
bine requests of the same kind going up the tree, when one reaches the root it increments
(or decrements) the counter there by the total number of requests combined with. A
distribution phase follows, in which every combined processor is given a location in the
stack. To ensure linearizability we use the same ticket-lock/”go ahead” type method
we used in combining funnels. We found that combining trees are always substantially
slower than combining funnels, ten times slower at maximum load. This is mostly due
to elimination though we found that even if elimination is not used e.g. all operation
are PUSH, trees were three times slower than funnels. For this reason we do not display
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Figure 13: Latency of different stack implementations using best possible parameters
for each concurrency level (left); and comparison of best parameters to those achieved
by using an adaptive strategy (right).

these results in our graphs, concentrating on other methods instead.

In Figure 12 we again see that the latency of simple MCS based locking is unsurpassed
at low concurrency levels. However, already at eight processors the difference between
this method and ours is quite small. Adding more processors causes a rise in contention
slowing this method considerably. These results are mirrored in the graph on the right,
where MCS based stacks can be seen to underperform for all but the highest local
work loads i.e. the lowest concurrency levels. At the opposite end of the spectrum
we see that at 256 processors elimination trees outperform combining funnels by about
10% (recall that the parameters used by both methods have been optimized for 256
processors). However, the latency curve for elimination trees has a downward slope,
indicating an increase in latency as processors are removed from the simulation (this is
consistent with the results of [27]), while the curve for combining funnels slopes up —
fewer processors mean lower latency. Thus at 64 processors the difference is 16% and at
32, 34% in favor of combining funnels. The graph for varying local work tells a similar
story.Initially, elimination trees have a slight edge in performance, but at around the
middle of the graph” the curve begins to slope upwards. The explanation lies in the
inability of elimination trees to adapt their height. As concurrency drops so do chances
of diffraction, thus processors are forced to descend further down the tree before either
eliminating or storing their element at the leaves. It might seem that an appropriate
adaption strategy applied to elimination trees would be able to combat this problem,
but as we shall see this is not the case.

To study the behavior of our adaption strategy we conducted a series of experiments
to hand-pick an optimum set of parameters for each level of concurrency. We then
compared the performance of the adaptive strategy to the “best parameter set.” These
results are summarized in Figure 13. For elimination trees we differentiate between
parameters which achieve lowest latency for a given depth tree, and those which also
pick the optimum depth for the tree. We believe this is a reasonable distinction since
changing the depth of the tree “on the fly” is much harder than altering other parameters.
The left-hand graph of Figure 13 shows latency when using best parameters. Elimination
trees with adjustable depth can be seen to consistently outperform combining funnels by
about 10%. However, when depth is kept constant we see the familiar downwards curve
of elimination tree latency. This means that even under the most favorable conditions
this method cannot escape the consequences of reduced chances for diffraction. It further
proves that any adaption method that does not allow for tree shrinkage cannot deliver

7At this point the processors are spending about half their time doing local work and the other half
updating the stack.
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good performance for all concurrency levels. Comparing the performance of the best set
of parameters to those achieved using adaption (on the right-hand side of Figure 13) we
see that the adaptive strategy is less than 10% slower when the number of processors is
128 or more, 20% slower when there are between 16 and 128 processors, but below that
the gap grows to 40%. Our adaption techniques appear to work reasonably well, though
there is room for improvement, here, especially in low load situations.

It is important to note that when we picked the combining funnel parameters for use
in our tests, we optimized for one particular case: maximal load. Where maximal load
is defined as all processors repeatedly accessing a single funnel. The adaptive strategy
did all the rest. This is significant since it implies there is no need to re-optimize for
each application, only for each size of machine. Thus, one set of parameters can be used
for all applications running on a machine of 256 processors — the set which gives best
performance at maximal load. Moreover, the graphs in Figures 13 serve as an indication
of the sensitivity of the data structure to different choices of parameters. For example,
they show that using parameters optimized for 256 processors on a machine with only
32, costs about 20% in performance. Whether this is acceptable or not is application
dependent.

5 Discussion

We presented Combining funnels, a generalized framework for developing highly con-
current data objects. We hope to have convinced the reader that they offer a simple,
structured, step-by-step approach that can be used to create effective parallel fetch-and-
add and stack objects.

We note that a similar adaptive variation of combining, the counting pyramid, was
introduced by Wattenhofer and Widmayer [32] concurrently and independently of the
preliminary version of this paper [30]. In their paper the authors provide a queuing
theory based analysis of the counting pyramid’s performance. The counting pyramid
differs from our work in several fundamental ways: (1) it is a message passing algorithm,
(2) does not employ any form of elimination, and (3) its adaptivity is not in response
to the load incurred by processors while traversing the tree (rather, processors choose a
“level of entry” based on the frequency of their individual increment requests). However,
the analysis of counting pyramids suggests that it would be interesting to apply similar
techniques to evaluate the performance of combining funnels.

The kernels used in our benchmarks do not exhibit real world behavior. In a well de-
signed application it is rare to find all processors hammering on a single object. However,
our methods already show an advantage in performance when the number of processors
is just 16. We believe that in applications running on hundreds of processors objects
accessed by 16 processors concurrently might not be so rare. Similarly, as applications
are scaled to thousands of processors, the ability to “plug in” data structures which can
effectively handle hundreds of concurrent accesses will make programmers’ lives much
easier. They will be able to concentrate more on the algorithm and spend less time
worrying about the contention on each individual object.

The stack described here is only one of many possible stack implementations that fit
within the combining funnel framework. We chose this one since, of those we tried, it
gave the best performance. Other possibilities include having colliding equal operations
copy operands from one to the other so that processors carry arrays of operands rather
than trees, this makes elimination very simple even for different sized arrays. Another is
to employ linked-lists of operands, this way combining lists takes only O(1) operations
as does inserting lists into the stack. For both variations removing n values from the
stack becomes O(n), rather than O(logn) as in the method we employed. On our system
these methods did not do as well, on others they might.
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Similarly, the adaptive strategy employed in our implementation was chosen arbi-
trarily since it seemed to make sense and performed well in our tests. We have not
carried out research aimed at determining the best possible adaption strategy, though
clearly this is an interesting problem.

Currently all our experiments were done by simulation. However, machines large
enough to benefit from these methods are slowly becoming more common. We hope
to be able to try these methods out in a real world setting in the near future. We
are currently looking for a large scale application into which we might “plug-in” our
methods and see if performance has really improved. Also of interest are composite
data structures made up of several smaller objects, some implemented using combining
funnels.

The implementations given here are all done in a shared memory environment,
however translation of the algorithms into message passing is straightforward and fol-
lows [14, 29]. The work of Herlihy et al. in [14] would seem to indicate that one
could expect substantially better overall performance for the message passing versions,
at least on Alewife. The results of [29] show that low bandwidth/high locality mes-
sage passing systems favour algorithms with highly optimized static assignment. On
such systems combining trees might outperform funnels. However, it is an interesting
research question whether the ability to adapt or the predetermined optimized layout
are the dominant factor in determining performance at lower concurrency levels.

Finally, we have recently been able to use combining funnels to implement highly
scalable priority queues [31]. We believe many other funnel based data-structures have
yet to be developed.
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A The Data Structures Code
A.1 Fetch and Add

Figure 14 lists pseudo-code for our fetch-and-add implementation. We assume per-
processor data is accessed through a my pointer, and that obj and op encapsulate data
and functions specific to the object and operation (respectively) being performed. The
per-processor public data used here is a Location word which is used for collisions, and
an Operation word which points to the public part of a processor’s operation.

The following is a brief walk through the code of a given processor. Lines 1 5 set up
the data structures for an operation. Aside from setting up several counters, a processor
initializes its my structure to reflect the fact that it is operating on obj (Line 4) with
operation op (Line b5).
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Fetch_and_Add( object *obj , operation_type *op )

{
1 n=20
2 subtotal = op->sum
3 op->result = EMPTY
4 my->Location = obj // I’m working on obj
5 my->0peration = op // I’m applying op
6 while( 1 ) {
7 for(i=0; i < NumberOflayers; i++) { // foreach layer
8 r = random() % obj->layerWidth[i] // choose random location
9 q = SWAP( obj->layer[i][r] , MYID ) // read q
10 if ( CaS(my->Location, obj, NULL ) ) { // Lock myself
11 if ( CaS(q->Location, obj, NULL ) ) { // Lock q
12 list[n++] = (q , gq->Operation->sum ) // collision succeeds!
13 op->sum += q->Operation->sum // add q and update op
14 }
15 my->Location = obj // unlock myself
16 }
17 else goto distribute // I’ve been collided with
18 for(i=0;i<obj->Spin[1]; i++) // delay loop
19 if ( my->Location != obj) goto distribute
20 3
21 if (CaS(my->Location,obj,NULL)) { // Lock myself
22 val = obj->counter;
23 if(CaS(obj->counter , val, val + op->sum)) { // Update counter
24 op->result = val // update successful
25 goto distribute // distribute results
26 3
27 my->Location=obj // update failed, unlock
28 3
29 else goto distribute
30 3
31 distribute:
32 while( op->result == EMPTY) /# spin */; // wait for parent’s result
33 val = op->result
34 for(i=0; i<n; i++) { // distribute results
35 (q, gsum ) = list[i] // to children
36 q->0Operation->result = val + subtotal
37 subtotal += gsum
38 3
}

Figure 14: Code for Fetch and Add implementation
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Next, the processor enters the funnel and repeats the following sequence of operations
for each of the funnel layers. First, it picks a random location in the layer r (Line 8). It
reads into q the ID of the processor written at r and writes its own ID in place (Line 9).
Using a pair of compare-and-swap operations it accomplishs the “collision.” The first
compare-and-swap “locks” its Location pointer by replacing the object pointer with
a NULL. The second compare-and-swap locks q in the same way. The success of both
operations indicates that both processors are available for collision. A process then adds
q to the list of its children, and updates its Operation field (Lines 12-13). It then resets
its Location field to note that it allows more collisions to occur (Line 15). The goto in
Line 17 is taken only if its attempt to lock its own Location failed, since then it follows
that some other processor has collided with it, and it must wait for that processor to
distribute a result. Finally, after attempting a collision, the processor delays at the
current funnel layer to give another processor a chance to collide with it (Lines 18-19).

After passing through all funnel layers, the processor attempts to apply its combined
operation to the shared object. First it must avoid races by preventing collisions during
its attempt. This is again done through locking its Location pointer (Line 21). It now
reads the current value of the counter val, and attempts to update it to the new value val
+ sum using a compare-and-swap operation. If the compare-and-swap succeeded, the
counter has been updated and the processor can jump to the distribution phase (Line 25).
Otherwise, it unlocks its Location pointer and traverses the funnel again (Lines 27,30).
On a machine that supports an atomic fetch-and-add, it might be more efficient to
apply the operation val = fetch-and-add(obj->Counter, op->sum) iustead of using
the compare-and-swap on Line 23. This would increment the counter directly and avoid
the chance of the compare-and-swap failing.

Lines 32 38 implement the distribution phase. A processor first waits for a value to
be provided by its parent (if it has no parent, op->result will be set on Line 24). Tt
then iterates over its list of children and provides each one with a result by setting its
op->result field (lines 34-37).

A.2 Stack

Code for the stack implementation is slightly more involved. Due to its length we
have broken the code into two separate figures. Figure 15 shows how collisions occur
and the central stack is handled, and Figure 16 deals with processors once they have
collided. The same public data is used here as in the fetch-and-add algorithm with an
additional per-processor public word Comm used to relay different types of information
between processors.

A processor begins as before with a setup phase (lines 1-4) followed by an attempt
to collide (lines 7-10). Notice that the for loop in Line 6 has an added exit condition.
In the fetch-and-add implementation a processor advances one level at every attempt,
so it is guaranteed to exit the funnel and attempt access to the central object after at
most obj->Levels attempts. The stack implementation advances levels only after a
successful collision. In order to avoid starvation when collisions are rare, a processor is
provided a “back-door” to exit the funnel after every obj->Attempts collision attempts.

A processor then chooses r and reads q as before. It then tries to collide using two
compare-and-swap operations (Lines 7-10). Here it uses not only the object’s pointer in
the Location array, but the current level as well. This means the compare-and-swap
with q will only succeed if q is also operating on this object and q is currently on the
same level as the process is. In this way collisions between processors on different levels
are avoided by default.

When two processors collide, they can have either the same operation or opposing
operations. In the case of both operations being equal (Line 11) the processor adds q to
its list of children and advances to the next level. It also resets its attempts counter n
(Line 14) to give it more chances to collide on the next layer. When the operations are
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Stack( object *obj , operation_type *op )

{
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1 =0

my->Comm = EMPTY

my->0p = op

my->Location = < obj , 1 >
while(1) {

for(n=0;n < obj->Attempts && 1 < obj->Levels; n++) {

r = random() % obj->Width[1]
q = SWAP(obj->layer[1][r], my)
if (CaS(my->Location, <id,1>, NULL)) {
if(CaS(q->Location, <id,1>, NULL)) {
if( q->0p->command == op->command) {
my->List[1] = q
my->Location = <id , ++1>
n=20
}
else {
if (op->command == PUSH) {
my->Comm = < COLLIDE, q, O >
else
q->Comm = < COLLIDE , my, O >
goto collided
}
}
else my->Location = < id , 1>
}
else goto collided
for(i=0;i<obj->Spin; i++)
if( my->Location != <id, 1> ) goto collided
}
if (CaS(my->Location, <id,1>, NULL)) {
if (Acquired(obj->lock)) {
sp = obj->SP
obj->SP = update_sp(sp, op->command , 1<<1)
myticket = obj->TICKET++
Release(obj->lock)
myplace = update_sp(sp , op->command , 1)
for(i=1-1; i>=0; i--) {
my->List[i]->Comm = <STACK , my, sp >
sp = update_sp(sp, op->command , 1<<i)
}
while (obj->NOWSERVING != myticket) ;
my->Go = 1<<1
ret = obj->do_single(myplace,op)
Decrement (my->Go)
while(my->Go > 0)
obj->NOWSERVING ++
return ret
}
else my->Location = < id , 1 >
}
else goto collided
}

//
//
//

//
//
//
//

//
//
//
//
//

//

/

// setup location

choose r

read q
attempt collision

success & equal
add to list

go

to next level

reset attempts

success & opposite
pusher gets COLLIDE
and address of popper.

Popper not updated

and waits.

unlock myself

delay loop

//
//
//
//
//
//

//
//
//

//
//
//

//
//

lock myself
try to lock SP
success!
update sp

get ticket for
update phase

distribute stack
locations to
children

wait my turn
everyone in my tree
can access stack now

when everyone done
next proc goes

Figure 15: Part 1 of code for stack implementation
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53 collided:

54 while( my->Comm == EMPTY) ; // wait for status update
55 < type , q , val > = my->Comm

56 switch( type ) {

57 case STACK: // root acquired SP

58 sp = update_sp(val, op->command, 1) // distribute a stack

59 for(i=1-1; i>=0; i--) { // location to each child
60 my->List[i]->Comm = < STACK , q, sp >

61 sp = update_sp(sp, op->command, 1<<i)

62 b

63 while(gq->Go==0) ; // wait for go-ahead

64 op->result = obj->do_single(val,op) // update stack

65 Decrement (q->Go)

66 break

67 case COLLIDE // I’m an eliminated pusher
68 for(i=1l-1; i>=0; i--) // each child gets a popper
69 my->1list[i]->Comm = < COLLIDE , q->list[i], O >

70 q->Comm = < VALUE , O, op->data > // send my popper my value
71 break

72 case VALUE // I’m an eliminated popper
73 op->result = val // return value got from pusher
74 3

}

Figure 16: Part 2 of the code for stack implementation

opposing an elimination occurs. The processor performing the PUSH is given a pointer to
the other processor’s operation, in its Comm word (Lines 17-20). This allows the pushing
processor to write the values in its tree to the processors waiting to perform a POP.

As before, Line 24 resets the Location pointer after an unsuccessful collision attempt.
Line 26’s goto is taken if a processor has been collided with. Lines 27 28 delay a
processor at its current layer to allow more collisions.

Lines 30-51 detail the operations performed on the central stack. A processor begins
by locking its own Location (Line 30) and attempting to acquire the lock on the stack-
pointer (Line 31). If the first locking attempt fails, it was collided with (Line 51). If the
second fails, it indicates load on the stack and the processor unlocks its Location and
returns to the funnel. Having acquired the lock on the stack-pointer the processor can
now safely update it (Line 34). The routine update_sp(sp, op, ) increments sp by =
if op is a PUSH and decrements it by = otherwise. In neither case is sp allowed to exceed
the appropriate bounds. The size of the update in line 33 is 2! since, having been on
the I-th layer, a processor is known to be at the root of a tree of 2! operations. While
still holding the lock on the stack-pointer the processor gets a ticket for the the next
phase — updating the stack itself (Line 35). Ticket in hand, it releases the lock on the
stack-pointer (Line 36). At this point it holds no locks (though it has a placed reserved
on the ticket line). Tt thus takes the time to distribute stack locations to it children.
Lines 37—40 implement a distribution phase similar to the one used in the fetch-and-add
implementation, and provide each child with a unique location in the stack where they
can apply their PUSH or POP operation.

When a processor’s turn arrives at the ticket lock, it gives all its children a “go-ahead”
signal by setting its own “go” field (Line 42). It then performs its single operation on
the stack and waits for processors in its tree to complete their operations. The loop in
Line 45 serves as a barrier and prevents passing the ticket to the next waiting processor
before all operations in this tree are done.
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Any processor that collided jumps to Line 53. Note that when a collision occurs it
is not yet known if a processor’s traversal of the funnel will end in an elimination or an
update of the central stack. Thus, the code in lines 54-74 must be prepared to handle
both possibilities. The type field written to the Comm word informs the processor of the
fate of the tree. STACK indicates that it is operating on the central stack, and val is its
location. First it distributes locations to its children (Lines 58-62), and then it waits for
the root’s “go-ahead” (Line 63). When the go ahead is received the processor updates
the stack and decrements the barrier (Line 65).

The identifier COLLIDE indicates an elimination. When a processor’s operation is a
PUSH, i.e. it must push its value to a partner performing a POP, a pointer to the partner
q is provided to the processor in the Comm word by its parent. The same is done for
the processor’s children, by iterating over g’s list of children, and writing one pointer in
each of its children’s Comm word (Lines 68-69). Finally, the processor updates q’s Comm
word with the value it is pushing and the identifier VALUE (Line 70). A processor that
sees the VALUE identifier knows that the value it must return was written in the third
field of the Comm word (Line 73).
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