
Scalable Concurrent Priority Queue

Algorithms

Nir Shavit Asaph Zemach

October ��� ����

Abstract

This paper addresses the problem of designing bounded range priority queues�

that is� queues that support a �xed range of priorities� Bounded range priority

queues are fundamental in the design of modern multiprocessor algorithms � from

the application level to lowest levels of the operating system kernel� While most of

the available priority queue literature is directed at existing small�scale machines�

we chose to evaluate algorithms on a broader concurrency scale using a simulated

��	 node shared memory multiprocessor architecture similar to the MIT Alewife�

Our empirical evidence suggests that the priority queue algorithms currently avail�

able in the literature do not scale� Based on these �ndings� we present two sim�

ple new algorithms� LinearFunnels and FunnelTree� that provide true scalability

throughout the concurrency range�

� Introduction

Priority queues are a fundamental class of data structures used in the design of modern
multiprocessor algorithms� Their uses range from the application level to lowest levels of
the operating system kernel ����� The most e�ective concurrent priority queue algorithms
currently available in the literature ��� 	
� �� �� 	�� 	�� �� ��� use ingenious heap based
implementations to support an unbounded range of allowable priorities� Unfortunately�
as we will show� their scalability is rather limited� This may be part of the reason
why many highly concurrent applications are designed using sequential priority queue
implementations ��� ��� or alternatively� by avoiding the use of priorities altogether�
Though hard to quantify� there is reason to believe that the availability of e�ective
concurrent priority queue implementations will ultimately simplify application design�
making prioritization possible without having to take steps to limit concurrent access to
the priority queue�
This paper addresses the problem of designing scalable priority queue structures� We

concentrate on the design of bounded range priority queues� that is� queues that support
a �xed range of priorities� as can be found for example in operating systems schedulers
��� ��� By concentrating on queues with a �xed range of priorities� we can o�er new
algorithmic approaches that avoid the use of tightly synchronized structures such as
priority heaps� search trees� and skip�lists ��� 	
� �� �� 	�� 	��
� �� ����
We began our research by evaluating the performance of representative bounded

range priority queue implementations based on algorithms from the literature in the
context of a shared memory multiprocessor architecture with minimal hardware support�
We used only the most common synchronization primitives such as register�to�memory�
swap and compare�and�swap�� The representative algorithms� described in Section �
included those of Hunt et al� �	
�� a variant of the skip lists of Pugh �
�� and �list of bins�
and �tree of bins� structures using the MCS locks of Mellor�Crummey and Scott ����

�The load�linked�store�conditional pair or full�empty bits can also be used

	

We evaluated the above structures by running a series of simple synthetic benchmarks
using the well accepted Proteus simulator �	�� of Brewer et� al� We used Proteus to
simulate a �� processor ccNUMA multiprocessor similar to the Alewife of Agarwal et
al� �	� with realistic memory bandwidth and latency� Though this is not a real ��
node machine� we note that previous research by Della�Libera �		� has shown that with
appropriate scaling� Proteus simulates a � node Alewife machine� accurately for the
kinds of data structures tested in this paper�
Our empirical evidence� presented in Section �� indicates that the concurrent heap

of Hunt et� al �	
� and the skip lists of Pugh �
� have performance problems even
at low concurrency levels�� On the other hand� the simple �list of bins� and �tree of
bins� structures using MCS�locks perform exceptionally well at low concurrency levels�
Unfortunately� for each of the above algorithms� there is a point on the concurrency
scale at which contention becomes so high that performance degrades and the algorithm
becomes unusable�
Based on our �ndings� we present in Section � two simple new algorithms� Linear�

Funnels and FunnelTree� These are variants of the �list of bins� and �tree of bins�
structures that use new forms of the combining funnel coordination mechanism of Shavit
and Zemach ���� in place of MCS locks ��� in the �bins� and tree �nodes�� Combining
funnels are a randomized variant of software combining trees �	�� 	�� ��� that support
e�cient parallel fetch�and�increment operations�� Our new versions of combining funnel
structures allow us to support a novel bounded fetch�and�decrement operation� Though
other structures like di�racting trees ��� and counting networks ��� provide e�cient
implementations of fetch�and�increment� their operations cannot be readily transformed
into the new bounded fetch�and�increment required for our priority queues�
As the research of Lim and Agarwal �� ��� Della�Libera and Shavit �	�� and Kar�

lin et al� �	�� has shown� the key to delivering good performance over a wide range of
concurrency levels� is the ability of a data structure to adapt to the load actually en�
countered� The adaption techniques of Lim and Agarwal �� use a centralized form of
coordination that replaces one entire data structure by another� say� an MCS queue�
lock with a combining�tree� in order to handle higher �respectively� lower� load� Our
approach here is to avoid replacing one complete structure with another� as this would
require a more centralized �as opposed to distributed� algorithmic solution and strong
coordination� Instead� to achieve adaptability� we construct the parts of our data struc�
tures that are potential hot�spots �their �internal nodes� and �bins�� using a localized
adaptive mechanism � combining funnels� In Section ��	 we describe combining funnels
in more detail and outline the new variant of the funnels we use in our constructions�
The �nal part of our paper� in Section �� compares the performance of the new

adaptive LinearFunnels and FunnelTree algorithms to former methods� Our conclusion is
that they have the potential of being the �rst algorithms to provide scalable performance
throughout the concurrency range�

� Concurrent Priority Queue Implementations

We begin evaluating the performance of priority queue alternatives by testing imple�
mentations of various published methods and other methods which we consider natural
choices� Our implementation of these structures was optimized to the best of our ability
while still maintaining the characteristics of the original� By comparing algorithms from

�Though Alewife was designed to scale to hundreds of processors� the largest machine currently
available has �� nodes�

�Keep in mind however that they are �general	 algorithms� designed to allow an unbounded range
of priorities�

�Though we chose to use funnels� one can alternately use adaptive mechanisms such as
��� on a local
level� However� their peak performance under high load is that of an optimal combining tree� which is
not as e�cient as a combining funnel
����

widely varying �families�� we hope to minimize the role of the actual implementation
properties of the algorithms themselves� The following section describes the priority
queue algorithms studied in this paper� For each we provide pseudo�code which de�
�nes the algorithm�s behavior and illustrates important implementation issues� A dis�
cussion of di�erent consistency conditions as they apply to priority queues appears in
Appendix B�

SingleLock This is a heap based priority queue implemented as an array with a single
MCS lock ��� on the entire data structure� as shown in Figure 		 in Appendix A� This
algorithm supports arbitrary priorities and is linearizable� It is a representative of the
class of centralized lock�based algorithms�

HuntEtAl This is the priority queue implementation of Hunt et al� �	
�� In this
algorithm �see Figure 		 in Appendix A�� there is a single lock which protects a variable
holding the size of the heap� All processors must acquire it in order to begin their
operations� but unlike the previous data structure it is not held for the duration of
the operation� Rather� the heap�s size is updated� then a lock on either the �rst or
last element of the heap is acquired and then the �rst lock is released� In order to
increase parallelism insertions traverse the heap bottom�up while deletions proceed top�
down� insertions also employ a novel bit�reversal technique which allows a series of
insertion operations to proceed up the heap independently without getting in each other�s
way� The implementation is based on the code from the authors� FTP site� optimized
for Proteus� This algorithm supports arbitrary priorities� and is linearizable� It is a
representative of a class of algorithms such as that of Rao and Kumar ���� Ayani ���
and Yan and Zhang ����� that use centralized locking but are sophisticated in terms of
minimizing the number and duration of lock�access while traversing the shared heap
structure�

��� Bin and counter based algorithms

The priority queue algorithms in the sequel use two shared data structures which we
call counter and bin� A counter is a shared object that holds an integer and supports
fetch�and�increment �FaI� and fetch�and�decrement �FaD� operations on it� Increment or
decrement operations may optionally be bounded meaning they will not update the value
of a counter beyond some speci�ed bound �BFaI and BFaD�� A bin �sometimes called a
bag or a pool� is an object which holds arbitrary elements� and supports insertion of
a speci�ed element �bin�insert�� an emptiness test �bin�empty�� and removal of an
unspeci�ed element �bin�delete�� Simple code for implementing these data structures
appears in Figure 	� The code of bin�insert and bin�delete uses locks explicitly� but
the implementation of FaI and BFaI uses the atomicallyfg operator to stress that we
do not implement them with locks� we either execute these operations in hardware or
implement them using combining funnels�

SkipList This is a priority queue algorithm based on Pugh�s skip list structure �
��
and optimized for a �xed set of priorities� as seen in Figure 	 in Appendix A� We
pre�allocated N links where each link contains a bin which stores items with the link�s
priority� To insert an element of priority i� processor p adds the item to the bin in
the i�th link� If the link is not currently threaded into the skip list it inserts it using
Pugh�s concurrent skip list insertion algorithm ���� For deletion we follow the ideas of
Johnson �	��� by setting aside a special �delete bin�� Delete operations �rst attempt to
remove items from this bin� The �rst processor to �nd the bin empty unlinks the �rst
bin in the skip list and sets the delete bu�er to point to it� This lowers contention in
the deletion phase�

�

��fetch�and�increment

int FaI�counter p�

�

atomically �

old � p�val

p�val��

	

return old

	

��bounded fetch�and�decrement

int BFaD�counter p
 int bound�

�

atomically �

old � p�val

if �old � bound� p�val��

	

return old

	

bin�insert�bin b
 elem�type e�

�

acquire�b�lock�

if�b�size MAXSIZE�

b�elems�b�size��� � e

release�b�lock�

	

bin�empty�bin b�

�

return �b�size �� ��

	

bin�delete�bin b�

�

acquire�b�lock�

if �not bin�empty�b��

e � b�elems���b�size�

release�b�lock�

return e

	

Figure 	� Right� code for shared counter operations� Left� simple bin implementation�

Skip lists have been shown to have the same complexity and better empirical per�
formance than search�tree based methods ���� and so we use this algorithm to repre�
sent the performance delivered by the class of search�tree based priority queue algo�
rithms ��� �� 	�� 	���

SimpleLinear As shown in Figure � the algorithm maintains an array of bins� To
insert an item with priority i a processor simply adds it to the i�th bin� The delete�min
operation scans bins from smallest to largest priority and attempts to delete an element
from non�empty bins it encounters� The scan stops when an element is found� When
the bins are implemented as in Figure 	� this data structure is linearizable�

SimpleTree An algorithm based on binary trees of counters illustrated in Figure ��
The tree has N leaves where the i�th leaf holds items of priority i� N�	 shared counters

bin Bins�MAXPRI�

insert�elem�type e�

�

bin�insert�Bins�e�pri�
 e�

	

delete�min��

�

for�i��� iMAXPRI�i���

if�not bin�empty�Bins�i��� �

e � bin�delete�Bins�i��

if �e �� NULL� return e

	

return e

	

Figure � SimpleLinear� code for a simple bounded range priority queue algorithm
with a linear layout�

�

tree�leaf Leaves�MAXPRI�

tree �Root

insert�elem�type e�

�

n � Leaves�e�pri�

bin�insert�n��bin
 e�

while� not root�n� � �

p � n��parent

if � n �� p��left�child �

FaI�p��counter�

n � p

	

	

delete�min��

�

n � Root

while� not leaf�n� � �

i � BFaD� n��counter
 � �

if � i � � � n � n��left�child

else n � n��right�child

	

e � bin�delete�n��bin�

return e

	

Figure �� SimpleTree� code for a simple bounded range priority queue algorithm with
a binary tree layout showing associated counter operations�

in the tree�s internal nodes count the total number of items in the all the leaves of the
subtree rooted in a node�s left �lower priority� child� delete�min operations start at
the root and descend to the smallest priority non�empty leaf by examining the counter
at each node� They go right if it is zero and decrement it and go left otherwise� This
decision is implemented using a bounded fetch�and�decrement operation �BFaD�� Since
processors can overtake each other� insertions must not proceed in the same top�down
manner or incorrect executions can occur� Instead� insertions of an item with priority i
traverse the tree bottom�up from the i�th leaf� When ascending from the left child� the
parent�s counter is incremented using a fetch�and�increment operation�
In the following section we present two combining funnel based implementations of

the latter two algorithms� LinearFunnels and FunnelTree�

� The New Funnel Based Algorithms

The counter and bin implementations provided in Figure 	 are not scalable ��	� �� ���
and will be sources of contention ��� if simultaneously accessed by many processors
in both SimpleLinear and SimpleTree� To create our LinearFunnels and FunnelTree
priority queues� we replace the simple data structures in these potential trouble spots
with combining funnel based implementations� Speci�cally� we employ combining funnel
based counters in the inner tree nodes of SimpleTree and combining funnel based stacks
to implement the bins in both algorithms�

��� Combining funnel basics

The following section outlines the key elements of the combining funnel data struc�
ture� The interested reader can �nd further details in ����� The funnel is composed
of a �typically small� number of combining layers� implemented as arrays in memory�
These are used by processors accessing the same serial object to locate each other and
combine� As processors pass through a layer� they read a PID �processor ID� from a
randomly chosen array element� and write their own in its place� They then attempt to
collide with the processor whose ID they read� A successful collision allows a processor
to exchange information and update its operations� For example� assume processors
p and q attempt to access a bin object concurrently with operations bin�insert�A�
and bin�insert�B� respectively� Both processors pass through the �rst of the bin�s

�

q

p

t

r

t

rq

p

p q

p

t r

t

p

p q t r

Figure �� Example of processors going through a funnel� On the left we see p� q� r and t
as they go through the �rst layer where p collides with q and t with r� then q and r wait
while p and t advance to the second layer where they collide� On the right side we see
how combining trees are dynamically formed by collisions� when the waiting processor
becomes the child of the advancing processor�

combining layers and p reads q�s ID� If p manages to collide with q� it updates its op�
eration to bin�insert�fA�Bg�� while q changes its operation to �wait for B to be

inserted�� Since p is now doing both operation it is considered q�s parent� When
the parent completes its operations� it informs its children of the results� Processor p
can now continue to the next layer� if it exists� Suppose it collides with some other
processor r who is doing bin�insert�C� and p becomes the child� Now� r�s operation
will be bin�insert�fA�B�Cg�� while p changes its operation to �wait for A and B to

be inserted�� When r�s operation is complete� it informs p� who in turn will inform
q� After passing through all funnel layers� a processor is said to exit the funnel� and
may now try to apply its �updated� operation on the object� in our example� the bin�
Figure � illustrates this process�
In the scenario just given� suppose p�s operation was bin�delete�� when it collides

with q� Since p wishes to remove an item� while q wants to add one� it is natural to
have p return q�s item� thereby satisfying both requests� without either p or q needing to
access the bin itself� This process is called elimination ��	�� as it allows operation with
reversing semantics to be eliminated in the early stages of funnel traversal� Elimination
improves performance since it allows some operations to complete sooner and reduces
contention�
Finally� funnels support adaption� By having each processor decide locally how many

combining layers to traverse before applying its operation to the object� it can trade�o�
overhead �going through more layers� for increased chances of collision� Under high load�
the extra overhead of more layers is justi�ed� but under low load there is no contention
so it is better to simply apply the operation and be done�

��� Priority queues using funnels

In order to construct combining funnel variants of SimpleLinear and SimpleTree� we
need to provide implementations of some basic primitives using funnels� The paper
of Shavit and Zemach ���� contains detailed pseudo�code for constructing a combining
funnel based counter which supports the fetch�and�increment operation� we use that

�

implementation where FaI is needed� In section ��� we present a novel construction for
implementing the BFaD operation� which cannot be directly implemented using either
di�racting trees or counting networks� Together these two primitives provide for all the
needed counter support� To implement the bins we use the stack construction of �����
Thus our bin�insert is actually push� bin�delete is pop� and bin�empty reads the
current value of the stack�s pointer and compares it to zero� Like the funnels that
implement them� these priority queues support quiescent consistency�
We chose to use stacks in place of bins since their funnel implementation is simple�

linearizable and supports elimination� However� this can cause unfairness �and even star�
vation� among items of equal priority� as later insertions occlude earlier ones� Whether
or not this matters is application dependent� If it does� one could either use FIFO queues
�and give up elimination� or use a hybrid data structure which supports elimination in
the funnel� but queues items internally in FIFO order�

LinearFunnels Returning to �gure we see that SimpleLinear requires only bins�
which we implement using funnel based in the most straightforward manner� However�
there is one point that should be stressed� the delete�min operation queries each bin to
see if it is empty before trying to remove a value� This is crucial to the performance of
LinearFunnels� since testing for emptiness is much faster �requires only one read� than
actually going through the funnel trying to remove an element�

FunnelTree As in the previous case we replace the bin operations with stack opera�
tions� The calls to FaI and BFaD are replaced by funnel based implementation� but only
for counters at the top four levels of tree� for counters below that we use MCS locks� We
do not require funnels at the deeper levels since contention �tra�c� there is much lower
than at the top� Our experiments show that� at a cost of about �� in performance we
could have avoided making the cut�o� decision and used funnels throughout the tree�
Those at the bottom would have automatically shrunk� adapting to prefer low overhead
and fewer combining layers� However� in our simulation this would have taken too long�
so we chose this approach instead �details in the full paper��

��� The scalable bounded counter algorithm using funnels

In Figure 	� in Appendix A we present pseudo�code for a bounded fetch�and�increment�decrement
counter using combining funnels� Note that for our priority queue scheme� we could get
by with a counter that supports only two operations� an �unbounded� increment� and a
bounded decrement that returns only an indication of whether the counter was decre�
mented or not� However� for the sake of completeness� we provide an implementation
that supports bounded�fetch�and�decrement�x�bound� whose pseudo�code de�nition
appears in Figure 	� and an analogous bounded�fetch�and�increment�x�bound��
Given a fetch�and�add operation� it is possible to construct this type of bounded

counter directly as Gottlieb et al� �	�� have shown� For example� bounded fetch�and�
increment can be done by �rst applying a fetch�and�add�x��� operation and if the
value returned is greater than the bound� applying a fetch�and�add�x���� operation
and returning the bound� Since this approach can potentially require two fetch�and�
add operations� which in our case would require two traversals of the combining funnel�
we will show how to avoid the extra overhead by incorporating the bounds checking
operation directly into the funnel algorithm� This approach also allows to integrate
elimination seamlessly into the algorithm� As seen in Figure �� the performance gain
from using elimination can be as high as ����
At �rst blush it might seem that adding the bounds check is only a trivial departure

from the standard combining based fetch�and�add operation �	�� 	�� ��� since it appears
that one can combine as usual and perform the bounds check at the root of the combining
structure� Unfortunately� this approach is wrong due to the subtle fact that bounded

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4 8 16 32 64 128 256

L
at

en
cy

Processors

Fetch-and-add
BFaD with elimination

0

800

1600

2400

3200

4000

0 20 40 60 80 100

L
at

en
cy

% of decrement operations

Fetch-and-add
BFaD with elimination

Figure �� Comparison of latencies of combining funnel based fetch�and�add and bounded
decrement� With an equal number of increment and decrement operations at varying
degrees of concurrency elimination makes the bounded version substantially more e��
cient �left�� At �� processors with varying distribution of operations �right� eliminations
are rarer and eventually fetch�and�add becomes faster since it does not incur bounds�
checking overhead�

operations are not commutative� For example� consider a counter whose value is � and
two operations� bounded�fetch�and�decrement �with bound��� and fetch�and�increment�
that are applied to it� If the decrement is applied �rst� both operations return �� and
the counter�s value changes to 	� If operations are applied in the opposite order� the
increment returns � and the decrement 	� and the counter ends up with the value ��
Because the order in which we apply operations is important� problems arise when trying
to apply an entire tree of operations at once and determining what each processor�s
return value should be� in parallel� The way we overcome these di�culties is by forcing
our trees to be homogeneous� that is� contain only one kind of operation� Because all
operations are the same� we need only know how many there are to determine the �nal
value of the counter�

� Performance

Our tests were performed on a simulated �� processor distributed�shared�memory mul�
tiprocessor similar to the MIT Alewife machine �	� of Agarwal et al� The simulator
used is Proteus�� a multiprocessor simulator developed by Brewer et al� ��� 	��� In our
benchmarks processors alternate between performing some local work and accessing the
priority queue� When accessing the queue processors choose whether to insert a random
value or apply a delete�min operation based on the result of an unbiased coin �ip� In all
the experiments we show here local work was kept at a small constant and the queue was
initially empty� In each experiment we measured latency� the amount of time �in cycles�
it takes for an average access to the object� Each series of experiments either keeps the
concurrency constant while changing the number of priorities or varies the concurrency
while keeping the number of priorities constant� We ran a set of preliminary benchmarks
using �� processors and a queue of two priorities to �nd the set of funnel parameters
�layer width� depth of funnel� delay times� etc�� which minimized latency� We used this
set of parameters in all our funnels for both counters and stacks�
Our experiments show that at low concurrency levels simple algorithms are best�

The total number of priorities determines whether one should use SimpleLinear �for few
priorities� or SimpleTree �for a large number of priorities�� As concurrency increases

�Version ��� dated February ��� �����

�

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 14 16

L
at

en
cy

Processors

HuntEtAl
SingleLock

SkipList
SimpleLinear

SimpleTree
LinearFunnels

FunnelTree

0

1000

2000

3000

2 4 6 8 10 12 14 16

L
at

en
cy

Processors

SimpleLinear
SimpleTree

LinearFunnels
FunnelTree

Figure �� Latency of di�erent priority queue implementations with 	� priorities at low
concurrency levels� On the right is a close�up of the bottom part of the graph on the
left�

contention begins to undermine the e�ectiveness of these implementations� Thus at ��
processors with � or less priorities� a linear arrangement of combining funnel based stacks
�LinearFunnels� is the most e�ective priority queue� Again� supporting more priorities
favors a binary tree layout� so FunnelTree is the method of choice for � priorities and
above� at high concurrency levels�

��� Experimental results

The graphs in Figure � compare latency of operations at low concurrency levels �	�
processors or less� for 	� priorities� The two unbounded algorithms SingleLock and
HuntEtAl display a linear increase in latency as concurrency rises� with the algorithm
of Hunt et al� performing slightly better� These results are expected and match those
of �	
�� The queue contains relatively few items at any time� so the fact that the
HuntEtAl algorithm allows more parallelism in the access to the queue itself is of little
bene�t � processors spend most of their time trying to acquire the initial lock� The
SkipList algorithm fairs slightly better due to its e�cient insertion method and delete
bu�er� The right�hand�side of Figure � allows a closer look at the algorithms with lower
latency� All four have roughly equal slopes� but the SimpleLinear method with its low
overhead� especially for insertion is the clear leader� LinearFunnels is about �� times
slower� mostly due to the overhead of funnels versus MCS locks �see ���� for details��
The two tree based methods� FunnelTree and SimpleTree� have nearly the same latency�
with FunnelTree being about 	�� slower� and both methods about ������ slower than
SimpleLinear� Though both SimpleTree and HuntEtAl contain a serial bottleneck the
former is faster since it only performs a FaI or BFaD at the root� while the latter must
acquire another lock during the initial critical section�
At low concurrency levels overhead is the critical performance factor� As the number

of processors increases� the e�ects of contention� serialization and parallelism play an
ever increasing role� This is evident in the graph in Figure
 which compares the four
most promising methods� SimpleLinear� SimpleTree� LinearFunnels� and FunnelTree
for levels of concurrency between and �� processors at 	� priorities� SimpleTree is
the slowest method at high concurrency levels since contention at the root increases the
time to perform counter operations there� SimpleLinear is fastest till about � processors
and still performs relatively well at 	� processors� This might seem surprising till we
notice that insertions are independent and have low overhead� and deletions perform at
most 	� reads and only attempt to lock promising bins� Only at 	� processors does
contention at individual bins begin to play a major role� The LinearFunnels algorithm

�

0

4000

8000

12000

16000

20000

2 4 8 16 32 64 128 256

L
at

en
cy

Processors

SimpleLinear
SimpleTree

LinearFunnels
FunnelTree

Figure
� Latency of more scalable priority queue implementations with 	� priorities
�top� at high concurrency levels�

SimpleLinear SimpleTree LinearFunnels FunnelTree
N P Ins� Del� All Ins� Del� All Ins� Del� All Ins� Del� All
�� �� �� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ���
��� �� �� ��� ��� ��� ��� ��� �� ���� ��� ��� ��� ���
�� �� �� ��� ��� ��� ��� ��� �� ��� ��� �� ��� ���
��� �� �� ��� ��� �� ��� ��� �� ���� ���� ��� ��� ��
�� ��� ��� ���� ���� ���� ���� ���� �� ���� ��� ��� ��� ���
��� ��� �� ��� ��� ���� ��� ���� �� ���� ���� ��� ��� ���

Figure �� Latencies �in thousands of cycles� for insert and delete�min in several
bounded range priority queue implementations� N is the number of priorities and P

is the number of processors�

avoids this contention and increases parallelism at a price of higher overhead� this pays
o� only at 	� processors and above� The FunnelTree method traverses less funnels and
starts paying�o� earlier� at �� processors� where it becomes the performance leader� As
concurrency increases� the parallelism inherent in the funnels and their ability to avoid
contention cause the gap between FunnelTree and the other methods to widen� so that
at �� processors this method is � times faster than SimpleTree and � times faster then
SimpleLinear�
Figure � o�ers a break�down of latency �gures into cost of insert and delete�min�

Generally� increasing the number of priorities increases the size of the data structure�
This may mean more work is required to update the data structure � increasing latency�
conversely� since processor are spread over more memory there is less contention � re�
ducing latency� In SimpleLinear� for example� at 	� processors work is the dominant
factor and going from 	� to 	� priorities increases latency by over ��� The same
change at �� processors �when contention is more important� reduces latency by 	��
Funnel based methods are less susceptible to contention� so the added overhead of more
funnels �to support more priorities� is the dominant factor in determining performance�
For both tree based methods� insert is cheaper than delete�min because on average
insertions update half as many counters along the path to the root�
The graphs in Figure � demonstrate the behavior of di�erent algorithms as the range

of priorities goes from to �	 at �� and �� processors� In SimpleLinear the interplay
between increased work �which a�ects mostly delete�min� and decreased contention
�bene�ts insert� explains the �u� shaped curve� LinearFunnels slows linearly with each
added priority since the overhead of each new funnel outweighs the saving in contention�
The SimpleTree algorithm shows an almost constant latency for �� processors �it was

	�

0

4000

8000

12000

16000

2 4 8 16 32 64 128 256 512

L
at

en
cy

Priorities

SimpleLinear
SimpleTree

LinearFunnels
FunnelTree

0

4000

8000

12000

16000

20000

24000

2 4 8 16 32 64 128 256 512

L
at

en
cy

Priorities

SimpleLinear
LinearFunnels

FunnelTree

Figure �� Latency of more scalable priority queue implementations with varying number
of priorities at �� processors �left� and �� processors �right��

o� the graph for ���� since at this level of concurrency latency is determined almost
exclusively by the time to pass through the root� The growth in latency of FunnelTree
is less than logarithmic since deeper nodes have less tra�c then higher ones� Thus the
funnels shrink� or we use MCS locks there� Together the two graphs in Figure � show
that at high concurrency levels the only method that consistently works well and is
better for nearly all priorities� is FunnelTree� Only when faced with a very small range
of priorities should one consider using the LinearFunnels method� In both cases we see
that the funnel based methods o�er the best scalable solution to implementing parallel
bounded range priority queues�

� Conclusions

We believe the results presented in this paper are very promising� They show that
simple� almost trivial� algorithms can sometimes work quite well in practice� More
importantly� they show that when performance degrades due to the appearance of hot
spots� it is possible to remedy the implementation using a general technique such as
our combining funnels� This is an indication that our combining funnels approach is an
e�ective embeddable technique� If borne out by further research and real applications
on large scale machines� it could mean that future parallel data structures could be
constructed using the well understood techniques of today� with contention reducing
parallelization methods used to �massage� the trouble spots�

� Acknowledgments

We would like to thanks our colleague Dan Touitou for his numerous comments� and
his suggestion of the tree based priority queue structure ���� we used for the SimpleTree
and FunnelTree stuctures� We further wish to thank the anonymous referees�

References

�	� A� Agarwal� D� Chaiken� K� Johnson� D� Krantz� J� Kubiatowicz� K� Kurihara�
B� Lim� G� Maa� and D� Nussbaum� The MIT Alewife Machine� A Large�Scale
Distributed�Memory Multiprocessor� In Scalable Shared Memory Multiprocessors�
Kluwer Academic Publishers� 	��	� Also as MIT Technical Report MIT�LCS�TM�
���� June 	��	�

		

�� T� Agerwala� J�L� Martin� J�H� Mirza� D�C� Sadler� D�M� Dias and M� Snir� SP
system architecture� IBM Systems Journal� �����	��	��� 	����

��� J� Aspnes� M�P� Herlihy and N� Shavit� Counting Networks� Journal of the ACM�
Vol� �	� No� �� September 	���� pp� 	���	����

��� R� Ayani� Lr�algorithm� concurrent operations on priority queues� In Proceedings
of the �nd IEEE Symposium on Parallel and Distributed Processing pp� ��� 	��	�

��� G� Alverson and S� Kahan � TERA Computer Company� Personal communication�
March 	����

��� J� Biswas and J�C� Browne� Simultaneous Update of Priority Structures In Pro�
ceedings of the ���� International Conference on Parallel Processing� August 	��
�
pp� 	��	�	�

�
� J� Biswas and J�C� Browne� Data Structures for Parallel Resource Management� In
IEEE Transactions on Software Engineering� 	��
�� pp� �
����� 	����

��� J� Boyar� R� Fagerberg and K�S� Larsen� Chromatic Priority Queues� Technical
Report� Department of Mathematics and Computer Science� Odense University�
PP�	����	�� May 	����

��� E�A� Brewer� C�N� Dellarocas� ProteusUser Documentation� MIT� ��� Technology
Square� Cambridge� MA �	��� ��� edition� December 	���

�	�� E�A� Brewer� C�N� Dellarocas� A� Colbrook and W�E� Weihl� Proteus�

A High�Performance Parallel�Architecture Simulator� MIT Technical Report
�MIT�LCS�TR���	� September 	��	�

�		� G� Della�Libera� Reactive Di�racting Trees� Master�s Thesis� Massachusetts Insti�
tute of Technology� 	��
�

�	� G� Della�Libera and N� Shavit� Reactive Di�racting Trees� In Proceedings of the �th
Annual Symposium on Parallel Algorithms and Architectures 	SPAA
� June 	��
�

�	�� J�R� Goodman� M�K� Vernon� and P�J� Woest� E�cient Synchronization Primitives
for Large�Scale Cache�Coherent multiprocessors� In Proceedings of the Third In�
ternational Conference on Architectural Support for Programming Languages and
Operating Systems 	ASPLOS
� pages ���
�� April 	����

�	�� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph� and M� Snir�
The NYU Ultracomputer � designing an MIMD parallel computer� IEEE Transac�
tions on Computers� C�����	
��	��� February 	����

�	�� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for the e�cient
coordination of very large numbers of cooperating sequential processors� ACM
Transactions on Programming Languages and Systems� ����	���	��� April 	����

�	�� Q� Huang� An Evaluation of Concurrent Priority Queue Algorithms� Technical
Report� Massachusetts Institute of Technology� MIT�LCS�MIT�LCS�TR���
� May
	��	�

�	
� G�C� Hunt� M�M� Michael� S� Parthasarathy and M�L� Scott� An E�cient Algorithm
for Concurrent Priority Queue Heaps� In Information Processing Letters� ������	�	�
	�
� November 	����

�	�� T� Johnson� A Highly Concurrent Priority Queue Based on the B�link Tree� Tech�
nical Report� University of Florida� �	���
� August 	��	�

	

�	�� A� Karlin� K� Li� M� Manasse and S� Owicki� Empirical Studies of Competitive Spin�
ning for A Shared Memory Multiprocessor� In ��th ACM Symposium on Operating
System Principles 	SOSP
� pp� �	���� October 	��	�

��� C�P� Kruskal� L� Rudolph� and M� Snir� E�cient synchronization on multiprocessors
with shared memory� In Fifth ACM SIGACT�SIGOPS Symposium on Principles
of Distributed Computing� August 	����

�	� M�P� Herlihy and J�M� Wing� Linearizability� A Correctness Condition for Con�
current Objects� ACM Transactions on Programming Languages and Systems�
	����������� July 	����

�� B�H� Lim and A� Agarwal� Reactive Synchronization Algorithms for Multiproces�
sors� In Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems 	ASPLOS VI
� pp� ����� 	����

��� B�H� Lim and A� Agarwal� Waiting Algorithms for Synchronization in Large�Scale
Multiprocessors� In ACM Transactions on Computer Systems� 		���������� Au�
gust 	����

��� J�M� Mellor�Crummey and M�L� Scott� Algorithms for Scalable Synchronization
on Shared�Memory Multiprocessors� ACM Transactions on Computer Systems�
��	��	���� Feb 	��	�

��� G�H� P�ster and A� Norton� �Hot Spot� contention and combining in multistage
interconnection networks� IEEE Transactions on Computers� C����		����������
November 	����

��� L� Rudolph� Personal communica�
tion regarding StarT�NG system� http	

csg�www�lcs�mit�edu	����
StarT��
MIT� 	����

�
� W� Pugh� Skip Lists� A Probabilistic Alternative to Balanced Trees� In Communi�
cations of the ACM� �����������
�� June 	����

��� W� Pugh� Concurrent Maintenance of Skip Lists� Technical Report� Institute for
Advanced Computer Studies� Department of Computer Science� University of Mary�
land� College Park� CS�TR��	� 	����

��� V� N� Rao and V� Kumar� Concurrent access of priority queues� IEEE Transactions
on Computers �
� 	��
�	���� December 	����

���� D� Touitou� Personal communication� June 	����

��	� N� Shavit� and D� Touitou� Elimination Trees and the Construction of Pools and
Stacks In Proceedings of the �th Annual Symposium on Parallel Algorithms and
Architectures 	SPAA
� pages ������ July 	����

��� N� Shavit and A� Zemach� Di�racting Trees� ACM Transactions on Computer
Systems� 	������������ November 	����

���� N� Shavit and A� Zemach� Combining funnels� In Proceedings of the Seventeenth
Annual ACM Symposium on Principles of Distributed Computing� pages �	�
��
Puerto Vallarta� Mexico� June �th � July nd 	����

���� G� Alverson� S� Kahan and R� Korry� Processor Management in the Tera MTA
Computer System� Available via ftp from
http	

www�tera�com
www
archives
library
processor�html�

	�

���� P�C� Yew� N�F� Tzeng� and D�H� Lawrie� Distributing Hot�Spot Addressing in
Large�Scale Multiprocessors� IEEE Transactions on Computers� C���������������
April 	��
�

���� Y� Yan and X� Zhang� Lock Bypassing� An E�cient Algorithm for Concurrently
Accessing Priority Heaps� ACM Journal of Experimental Algorithmics� vol� �� 	����
http	

www�jea�acm�org
��
YanLock

��
� A� Zemach� Distributed Coordinated Data Structures� Ph�D� dissertation� Tel�Aviv
University� March 	����

	�

A Appendix� Pseudo Code For Some Priority Queue

Implementations

The way in which we make sure all trees are homogeneous is by forcing all processors at
a given funnel layer to be roots of trees of the same size� Processors enter the �rst layer
of the funnel and are roots of trees of size 	 �themselves only�� When processors with
like operations �both perform BFaD or FaI� combine one becomes the root of a tree of
size � and advances to the next funnel layer� If operations are reversing �one is a BFaD
and the other a FaI� they eliminate and exit the funnel at once� Processors only advance
to the next funnel layer after they have collided and combined with a processor who is
the root of a tree with the same size and operation� Colliding with trees of the same size
but opposing operations yields an elimination� Collisions between trees of di�erent sizes
are not allowed� This scheme keeps all processors that are roots of trees of size i at the
i�th layer and makes sure collisions between trees of the same size are not rare� In the
case of elimination there is still some subtle interaction with the bounds checking� but
accounting for its e�ects can be made simple by assuming the operations from the trees
are interleaved� so that the counter never moves more than one away from its original
position�
The following is a walk�through of the code in Figure 	�� We assume per�processor

public data is accessed through a my pointer� and that obj encapsulates data and func�
tions speci�c to the object�
The �elds of my are�

Sum	 The current sum of all operations combined with�

Location	 The address of the funnel� and the layer number within the funnel� that this
processor is currently traversing� This value is set to NULL if the processor is not
in any funnel and thus is unavailable for collisions�

Result	 Is set when the result of the operation is known� Holds two values� the �rst
is either ELIM or COUNT which indicates whether the operation was eliminated
part�way or acquired the obj� The second is the operation�s return value�

Adaption factor	 An indication of load� which is used to modify the width of the
funnel layers in response to load variations�

The �elds of obj are�

MainVal	 The current value of the counter�

levels	 The number of funnel layers�

attempts	 The number of collision attempts a processor should try before accessing
MainVal�

width��	 An array holding the respective width values of funnel layers�

layer����	 A two dimensional array holding the elements of each funnel layer�

spin��	 An array holding the the respective amounts of time a processor should delay
at each layer�

Lines 	� set up the data structures for the operation� Lines ��� contain the
collision code� A processor p picks a random layer location� swaps its my pointer for
the one written there� q� and attempts to collide by locking itself and q �lines ��		��
If the collision succeeds� q is either added to p�s list if their operation are the same
�lines 	��	�� or an elimination occurs and p short�cuts to get the counter�s value �lines
	�	��� If p discovers that it has been collided with �lines ���� it goes on to wait for
a value �line ���� Every obj��attempts collision attempts p tries to perform a bounded
decrement operation on the central counter using a compare�and�swap operation �line

	�

int Bounded�Fetch�And�Decrement�fna�obj �obj�

�

� my��Sum � total � ��

� d�� �� initially at depth �

� my��Location � obj
 d � �� of funnel �obj�

� mainloop� while��� �

� for�n��� nobj��attempts �� dobj��levels� n��� �

� wid � my��Adaption�factor � obj��width�d�

� r � random��
 wid�

� q � SWAP�obj��layer�d��r�
 my� �� read partner

� if� q �� NOBODY � continue

�� if� CaS�my��Location
 obj
 d�
 EMPTY� � �� attempt

�� if� CaS�q��Location
 obj
 d�
 EMPTY� � � �� collision

�� if � q��Sum � my��Sum �� � � � �� opposites

�� val � obj��MainVal �� short�cut

�� if�val��BOT� val�� �� to counter

�� q��Result � ELIM
 val�� � �� and

�� my��Result � ELIM
 val � �� eliminate

�� break mainloop

�� 	

�� my��Sum �� q��Sum �� combine

�� my��Location � obj
 ��d � �� advance layer

�� append q to list�of�children �� add q as child

�� n � �

�� 	

�� else my��Location � obj
 d �

�� for�i���i obj��spin�d�� i��� �� delay to combine

�� if�my��Location �� obj
 d�� break mainloop

�� 	

�� if� CaS�my��Location
 obj
 d�
 EMPTY� � �

�� val � obj��MainVal �� calc new value

�� new � val � my��Sum �� for central

�� if � new BOT � new � BOT

�� if� CaS�obj��MainVal
 val
 new�� �

�� my��Result � COUNT
 val� �� updated central

�� break mainloop �� distribute results

�� 	

�� my��Location � obj
 d�

�� 	

�� 	

�� while� my��Result �� EMPTY� � �� wait for result

�� event
 val � � my��Result

�� foreach q in list�of�children � �� iterate over children

�� if� event �� ELIM � �� if eliminated

�� q��Result � ELIM
 val � �� all get same result

�� else �

�� q��Result � COUNT
 val � total �

�� total �� q��Sum

�� 	

�� 	

	

Figure 	�� Code for bounded fetch�and�decrement�

	�

��� If this succeeds p� moves to the distribution phase� The distribution phase begins
with code that waits for a result �lines ������� and when it arrives p iterates over all its
children� handing out a value to each of them by setting their my��result �eld �lines
�	����� When distributing values it is important to know whether an elimination has
occurred since then we distribute the same value to all operations in the tree �due to
the interleaved ordering of the operations� inc� dec� inc� and so on��
The way in which we adaption �ts into the funnel framework is by altering the

width of the funnel layers� In line
 of Figure 	� a processor picks a random loca�
tion in its current layer not from the entire width obj��width�l� but from a fraction
my��Adaption factor of this width� By changing the value of Adaption factor be�
tween � and 	� processors can� at a purely local level� determine the size of the funnel
they will use� The decision is based on the actual load encountered� measured as the
ratio of successful collisions to collision attempts �passes through the loop in lines ��
��
See ���� for more details�

B Appendix� Priority Queues in a Parallel Setting

In a sequential setting a priority queue is a data structure that supports two operations�
insert�x� which inserts the element x into the queue� where x has a certain priority
pri�x� from some well ordered set� and x delete�min�� which removes and returns the
element x whose priority is the smallest currently in the queue� A priority queue is said
to have a bounded range if the set of possible priorities of elements is �nite� In this case
we map the priorities unto a the set of integers �	� N � and say that the queue is of range
N � Notice that the above de�nition refers to �the smallest priority element currently
in the queue�� This de�nition is not precise enough for the concurrent setting where
multiple operations may overlap in time� since it is not clear when an element is really
�in the queue��
We will use two standard consistency conditions to capture the behavior of our

queues in a parallel environment� giving meaning to the notion of �the smallest priority
element currently in the queue�� The �rst condition� due to Herlihy and Wing� is
linearizability �	�� A data structure is said to be linearizable if for every concurrent
execution� one can associate with every operation a single time point within its actual
execution interval at which the operation is said to take place� such that the associated
execution is a valid sequential execution� Put di�erently� by compressing operations
to a single point in time we can place them all on a single time�line� and the resulting
execution must then conform to the object�s sequential speci�cation� Linearizability for a
priority queue means that one can order all insert and delete�min operations consistently
with the real�time order in which they occured� so that the set of minimal priorities
according to this order is well de�ned�
Another consistency condition that is semantically weaker but allows more compu�

tational e�ciency is Aspnes et� al�s quiescent consistency ���� An object is said to be
quiescent at time t if all operations which began before t have completed� and no opera�
tion begins at t� An object is quiescently consistent if any operation performed on it can
be compressed into a single point in time somewhere between the latest quiescent point
before it began and the earliest quiescent point after it ends� so that it meets the ob�
ject�s sequential speci�cation�� The main di�erence between quiescent consistency and
linearizability is that quiescent consistency does not require preservation of real�time
order� if an operation A completes before another operation B start� and there is an
operation C which overlaps both A and B� B may be reordered before A� However� the
priority guarantees of quiescently consistent priority queues are quite strong� Assume
the priority queue Q is quiescent at time t� and contains the set of elements E� each

�Though one can de�ne in�nite executions with no quiecense point� the fact that a quiescent point
may appear at any time in the execution imposes strong restrictions of the allowable implementations�

	

elem�type PriQ�MAXSIZE�

int NumElems

lock�t PQlock

insert�elem�type e�

�

acquire�PQlock�

Priq�NumElems����e

��propagate e up the heap

��using standard heap algorithm

release�PQlock�

	

delete�min��

�

acquire�PQlock�

save � PriQ���

Priq����PriQ���NumElems�

��propagate PriQ��� down the heap

��using standard heap algorithm

release�PQlock�

return save

	

insert�elem�type e�

�

acquire�PQlock�

i � bit�reverse�NumElems���

acquire�PriQ�i��lock�

PriQ�i��e

release�PQlock�

��propagate e up the heap

��using local locks at each node

	

delete�min��

�

acquire�PQlock�

acquire�PriQ����lock�

save � PriQ���

i � bit�reverse���NumElems�

acquire�PriQ�i��lock�

Priq����PriQ�i�

release�PQlock�

��propagate e down the heap

��using local locks at each node

return save

	

Figure 		� SingleLock� code for heap based priority queue using a single lock �left��
HuntEtAl� code for priority queue algorithm using the algorithm of Hunt et al �	
�
�right�� Error handling not shown�

skip�list �Head

skip�list Link�MAXPRI�

bin DelBin

lock�t DelLock

insert�elem�type e�

�

bin�insert�Link�e�pri��bin
 e�

if�Link�e�pri��threaded �� �� �

��insert Link�e�pri� into the

��skip list using Pugh!s algorithm

Link�e�pri��threaded � �

	

	

delete�min��

�

do�

e � bin�delete�DelBin�

if � e �� NULL �� acquired�DelLock�� �

s � Head

��delete the first element

��of the skip list using

��Pugh!s algorithm

DelBin � s��bin

release�DelLock�

	

	while� e��NULL�

	

Figure 	� SkipList� code for bounded range priority queue algorithm using skip lists�
Error handling not shown� The operation acquired does not block� it merely attempts
to acquire the lock and returns an indication of success�

	�

with a di�erent priority� If k delete�min operations are performed on Q ending at time
t�� the returned elements are exactly the k elements of Q with the smallest priority�
which we denote by Mink�E�� This is exactly the same as with a linearizable priority
queue� However� if between t� and t� there also occur operations which insert a new set
of elements I into Q� then the elements returned by the delete�min operations will be
from the set Mink�E� �Mink�E � I�� � In other words� if during a sequence of deletes
new elements enter the queue� the set of returned minimal values may include minimum
elements from the joint set of new and old enqueued values� yet there will be no exact
timeline on which dequeue and enqueue operations can be ordered� Theoretically� this
means that if new items of the same or smaller priority than the old minimum item are
enqueued� they may be deleted in its place and it might remain in the queue� In many
real�world sytems this is not a problem� and might even be considered an advantage
since newly arrived smaller priority items can be serviced ahead of older low priority
ones�

�If some elements have the same priority� the formal de�nitions become somewhat more complex
as they must capture the uncertainty of choosing between elements with the same priority� De�ne
Prip�E� � fx � Ejpri�x� � pg� let p� be the largest priority for which jPrip��E�j � k and p� be
the smallest priority for which jPrip��E�j � k� Thus in the case where k delete�min operations are
performed on a priority queue with no intervening insertion operations� the elements returned will be
those of the set Prip��E�� and a subset of size k � jPrip��E�j of the elements of priority p��

	�

