Scalable Concurrent Priority Queue
Algorithms

Nir Shavit Asaph Zemach
October 24, 1998

Abstract

This paper addresses the problem of designing bounded range priority queues,
that is, queues that support a fixed range of priorities. Bounded range priority
queues are fundamental in the design of modern multiprocessor algorithms — from
the application level to lowest levels of the operating system kernel. While most of
the available priority queue literature is directed at existing small-scale machines,
we chose to evaluate algorithms on a broader concurrency scale using a simulated
256 node shared memory multiprocessor architecture similar to the MIT Alewife.
Our empirical evidence suggests that the priority queue algorithms currently avail-
able in the literature do not scale. Based on these findings, we present two sim-
ple new algorithms, LinearFunnels and FunnelTree, that provide true scalability
throughout the concurrency range.

1 Introduction

Priority queues are a fundamental class of data structures used in the design of modern
multiprocessor algorithms. Their uses range from the application level to lowest levels of
the operating system kernel [34]. The most effective concurrent priority queue algorithms
currently available in the literature [4, 17, 6, 8, 16, 18, 29, 36] use ingenious heap based
implementations to support an unbounded range of allowable priorities. Unfortunately,
as we will show, their scalability is rather limited. This may be part of the reason
why many highly concurrent applications are designed using sequential priority queue
implementations [5, 26], or alternatively, by avoiding the use of priorities altogether.
Though hard to quantify, there is reason to believe that the availability of effective
concurrent priority queue implementations will ultimately simplify application design,
making prioritization possible without having to take steps to limit concurrent access to
the priority queue.

This paper addresses the problem of designing scalable priority queue structures. We
concentrate on the design of bounded range priority queues, that is, queues that support
a fixed range of priorities, as can be found for example in operating systems schedulers
[26, 5]. By concentrating on queues with a fixed range of priorities, we can offer new
algorithmic approaches that avoid the use of tightly synchronized structures such as
priority heaps, search trees, and skip-lists [4, 17, 6, 8, 16, 18, 27, 29, 36].

We began our research by evaluating the performance of representative bounded
range priority queue implementations based on algorithms from the literature in the
context of a shared memory multiprocessor architecture with minimal hardware support.
We used only the most common synchronization primitives such as register-to-memory-
swap and compare-and-swap'. The representative algorithms, described in Section 2,
included those of Hunt et al. [17], a variant of the skip lists of Pugh [27], and “list of bins”
and “tree of bins” structures using the MCS locks of Mellor-Crummey and Scott [24].

IThe load-linked/store-conditional pair or full/empty bits can also be used

We evaluated the above structures by running a series of simple synthetic benchmarks
using the well accepted Proteus simulator [10] of Brewer et. al. We used Proteus to
simulate a 256 processor ccNUMA multiprocessor similar to the Alewife of Agarwal et
al. [1] with realistic memory bandwidth and latency. Though this is not a real 256
node machine, we note that previous research by Della-Libera [11] has shown that with
appropriate scaling, Proteus simulates a 32 node Alewife machine? accurately for the
kinds of data structures tested in this paper.

Our empirical evidence, presented in Section 4, indicates that the concurrent heap
of Hunt et. al [17] and the skip lists of Pugh [27] have performance problems even
at low concurrency levels.®> On the other hand, the simple “list of bins” and “tree of
bins” structures using MCS-locks perform exceptionally well at low concurrency levels.
Unfortunately, for each of the above algorithms, there is a point on the concurrency
scale at which contention becomes so high that performance degrades and the algorithm
becomes unusable.

Based on our findings, we present in Section 3 two simple new algorithms, Linear-
Funnels and FunnelTree. These are variants of the “list of bins” and “tree of bins”
structures that use new forms of the combining funnel coordination mechanism of Shavit
and Zemach [33] in place of MCS locks [24] in the “bins” and tree “nodes.” Combining
funnels are a randomized variant of software combining trees [15, 13, 35] that support
efficient parallel fetch-and-increment operations.* Our new versions of combining funnel
structures allow us to support a novel bounded fetch-and-decrement operation. Though
other structures like diffracting trees [32] and counting networks [3] provide efficient
implementations of fetch-and-increment, their operations cannot be readily transformed
into the new bounded fetch-and-increment required for our priority queues.

As the research of Lim and Agarwal [22, 23], Della-Libera and Shavit [12], and Kar-
lin et al. [19] has shown, the key to delivering good performance over a wide range of
concurrency levels, is the ability of a data structure to adapt to the load actually en-
countered. The adaption techniques of Lim and Agarwal [22] use a centralized form of
coordination that replaces one entire data structure by another, say, an MCS queue-
lock with a combining-tree, in order to handle higher (respectively, lower) load. Our
approach here is to avoid replacing one complete structure with another, as this would
require a more centralized (as opposed to distributed) algorithmic solution and strong
coordination. Instead, to achieve adaptability, we construct the parts of our data struc-
tures that are potential hot-spots (their “internal nodes” and “bins”) using a localized
adaptive mechanism — combining funnels. In Section 3.1 we describe combining funnels
in more detail and outline the new variant of the funnels we use in our constructions.

The final part of our paper, in Section 4, compares the performance of the new
adaptive LinearFunnels and FunnelTree algorithms to former methods. Our conclusion is
that they have the potential of being the first algorithms to provide scalable performance
throughout the concurrency range.

2 Concurrent Priority Queue Implementations

We begin evaluating the performance of priority queue alternatives by testing imple-
mentations of various published methods and other methods which we consider natural
choices. Our implementation of these structures was optimized to the best of our ability
while still maintaining the characteristics of the original. By comparing algorithms from

2Though Alewife was designed to scale to hundreds of processors, the largest machine currently
available has 32 nodes.

3Keep in mind however that they are “general” algorithms, designed to allow an unbounded range
of priorities.

4Though we chose to use funnels, one can alternately use adaptive mechanisms such as [22] on a local
level. However, their peak performance under high load is that of an optimal combining tree, which is
not as efficient as a combining funnel [33].

widely varying “families,” we hope to minimize the role of the actual implementation
properties of the algorithms themselves. The following section describes the priority
queue algorithms studied in this paper. For each we provide pseudo-code which de-
fines the algorithm’s behavior and illustrates important implementation issues. A dis-
cussion of different consistency conditions as they apply to priority queues appears in
Appendix B.

SingleLock This is a heap based priority queue implemented as an array with a single
MCS lock [24] on the entire data structure, as shown in Figure 11 in Appendix A. This
algorithm supports arbitrary priorities and is linearizable. It is a representative of the
class of centralized lock-based algorithms.

HuntEtAl This is the priority queue implementation of Hunt et al. [17]. In this
algorithm (see Figure 11 in Appendix A.) there is a single lock which protects a variable
holding the size of the heap. All processors must acquire it in order to begin their
operations, but unlike the previous data structure it is not held for the duration of
the operation. Rather, the heap’s size is updated, then a lock on either the first or
last element of the heap is acquired and then the first lock is released. In order to
increase parallelism insertions traverse the heap bottom-up while deletions proceed top-
down, insertions also employ a novel bit-reversal technique which allows a series of
insertion operations to proceed up the heap independently without getting in each other’s
way. The implementation is based on the code from the authors’ FTP site, optimized
for Proteus. This algorithm supports arbitrary priorities, and is linearizable. It is a
representative of a class of algorithms such as that of Rao and Kumar [29], Ayani [4]
and Yan and Zhang [36], that use centralized locking but are sophisticated in terms of
minimizing the number and duration of lock-access while traversing the shared heap
structure.

2.1 Bin and counter based algorithms

The priority queue algorithms in the sequel use two shared data structures which we
call counter and bin. A counter is a shared object that holds an integer and supports
fetch-and-increment (FaI) and fetch-and-decrement (FaD) operations on it. Increment or
decrement operations may optionally be bounded meaning they will not update the value
of a counter beyond some specified bound (BFal and BFaD). A bin (sometimes called a
bag or a pool) is an object which holds arbitrary elements, and supports insertion of
a specified element (bin-insert), an emptiness test (bin-empty), and removal of an
unspecified element (bin-delete). Simple code for implementing these data structures
appears in Figure 1. The code of bin-insert and bin-delete uses locks explicitly, but
the implementation of FaI and BFal uses the atomically{} operator to stress that we
do not implement them with locks: we either execute these operations in hardware or
implement them using combining funnels.

SkipList This is a priority queue algorithm based on Pugh’s skip list structure [27],
and optimized for a fixed set of priorities, as seen in Figure 12 in Appendix A. We
pre-allocated N links where each link contains a bin which stores items with the link’s
priority. To insert an element of priority ¢, processor p adds the item to the bin in
the i-th link. If the link is not currently threaded into the skip list it inserts it using
Pugh’s concurrent skip list insertion algorithm [28]. For deletion we follow the ideas of
Johnson [18], by setting aside a special “delete bin.” Delete operations first attempt to
remove items from this bin. The first processor to find the bin empty unlinks the first
bin in the skip list and sets the delete buffer to point to it. This lowers contention in
the deletion phase.

//fetch-and-increment bin-insert (bin b, elem_type e)

int FaI(counter p) {
{ acquire(b.lock)
atomically { if (b.size < MAXSIZE)
old = p.val b.elems[b.size++] = e
p.val++ release(b.lock)
} }
return old
} bin-empty(bin b)
{
//bounded fetch-and-decrement return (b.size == 0)
int BFaD(counter p, int bound) }
{
atomically { bin-delete(bin b)
old = p.val {
if (old > bound) p.val-- acquire (b.lock)
} if (not bin-empty (b))
return old e = b.elems[--b.size]
} release(b.lock)
return e
}

Figure 1: Right: code for shared counter operations; Left: simple bin implementation.

Skip lists have been shown to have the same complexity and better empirical per-
formance than search-tree based methods [28], and so we use this algorithm to repre-

sent the performance delivered by the class of search-tree based priority queue algo-
rithms [6, 8, 16, 18].

SimpleLinear As shown in Figure 2, the algorithm maintains an array of bins. To
insert an item with priority ¢ a processor simply adds it to the ¢-th bin. The delete-min
operation scans bins from smallest to largest priority and attempts to delete an element
from non-empty bins it encounters. The scan stops when an element is found. When
the bins are implemented as in Figure 1, this data structure is linearizable.

SimpleTree An algorithm based on binary trees of counters illustrated in Figure 3.
The tree has IV leaves where the i-th leaf holds items of priority i. N —1 shared counters

bin Bins[MAXPRI] delete-min ()
{
insert(elem_type e) for(i=0; i<MAXPRI;i++)
{ if (not bin-empty(Bins[i])) {
bin-insert (Bins[e.pri] , e) e = bin-delete(Bins[i])
} if (e != NULL) return e
}
return e
}

Figure 2: SimpleLinear: code for a simple bounded range priority queue algorithm
with a linear layout.

tree_leaf Leaves[MAXPRI] delete_min()

tree *Root {

n = Root

insert (elem_type e) while(not leaf(n)) {

{ i = BFaD(n->counter , 0)
n = Leaves[e.pri] if (1> 0) n = n->left_child
bin-insert(n->bin, e) else n = n->right_child
while(not root(n)) { }

p = n->parent e = bin-delete(n->bin)
if (n == p->left_child) return e
FaI(p->counter) }
n=p
}
}

Figure 3: SimpleTree: code for a simple bounded range priority queue algorithm with
a binary tree layout showing associated counter operations.

in the tree’s internal nodes count the total number of items in the all the leaves of the
subtree rooted in a node’s left (lower priority) child. delete-min operations start at
the root and descend to the smallest priority non-empty leaf by examining the counter
at each node. They go right if it is zero and decrement it and go left otherwise. This
decision is implemented using a bounded fetch-and-decrement operation (BFaD). Since
processors can overtake each other, insertions must not proceed in the same top-down
manner or incorrect executions can occur. Instead, insertions of an item with priority i
traverse the tree bottom-up from the i-th leaf. When ascending from the left child, the
parent’s counter is incremented using a fetch-and-increment operation.

In the following section we present two combining funnel based implementations of
the latter two algorithms, LinearFunnels and FunnelTree.

3 The New Funnel Based Algorithms

The counter and bin implementations provided in Figure 1 are not scalable [31, 32, 33]
and will be sources of contention [25] if simultaneously accessed by many processors
in both SimpleLinear and SimpleTree. To create our LinearFunnels and FunnelTree
priority queues, we replace the simple data structures in these potential trouble spots
with combining funnel based implementations. Specifically, we employ combining funnel
based counters in the inner tree nodes of SimpleTree and combining funnel based stacks
to implement the bins in both algorithms.

3.1 Combining funnel basics

The following section outlines the key elements of the combining funnel data struc-
ture. The interested reader can find further details in [33]. The funnel is composed
of a (typically small) number of combining layers, implemented as arrays in memory.
These are used by processors accessing the same serial object to locate each other and
combine. As processors pass through a layer, they read a PID (processor ID) from a
randomly chosen array element, and write their own in its place. They then attempt to
collide with the processor whose ID they read. A successful collision allows a processor
to exchange information and update its operations. For example, assume processors
p and ¢ attempt to access a bin object concurrently with operations bin-insert(A)
and bin-insert (B) respectively. Both processors pass through the first of the bin’s

Figure 4: Example of processors going through a funnel. On the left we see p,q,r and ¢
as they go through the first layer where p collides with ¢ and ¢ with r, then ¢ and r wait
while p and ¢ advance to the second layer where they collide. On the right side we see
how combining trees are dynamically formed by collisions, when the waiting processor
becomes the child of the advancing processor.

combining layers and p reads ¢’s ID. If p manages to collide with ¢, it updates its op-
eration to bin-insert({A,B}), while ¢ changes its operation to “wait for B to be
inserted”. Since p is now doing both operation it is considered ¢’s parent. When
the parent completes its operations, it informs its children of the results. Processor p
can now continue to the next layer, if it exists. Suppose it collides with some other
processor 7 who is doing bin-insert (C) and p becomes the child. Now, r’s operation
will be bin-insert ({A,B,C}), while p changes its operation to “wait for A and B to
be inserted”. When r’s operation is complete, it informs p, who in turn will inform
q. After passing through all funnel layers, a processor is said to exit the funnel, and
may now try to apply its (updated) operation on the object, in our example, the bin.
Figure 4 illustrates this process.

In the scenario just given, suppose p’s operation was bin-delete () when it collides
with ¢. Since p wishes to remove an item, while ¢ wants to add one, it is natural to
have p return ¢’s item, thereby satisfying both requests, without either p or ¢ needing to
access the bin itself. This process is called elimination [31], as it allows operation with
reversing semantics to be eliminated in the early stages of funnel traversal. Elimination
improves performance since it allows some operations to complete sooner and reduces
contention.

Finally, funnels support adaption. By having each processor decide locally how many
combining layers to traverse before applying its operation to the object, it can trade-off
overhead (going through more layers) for increased chances of collision. Under high load,
the extra overhead of more layers is justified, but under low load there is no contention
so it is better to simply apply the operation and be done.

3.2 Priority queues using funnels

In order to construct combining funnel variants of SimpleLinear and SimpleTree, we
need to provide implementations of some basic primitives using funnels. The paper
of Shavit and Zemach [33] contains detailed pseudo-code for constructing a combining
funnel based counter which supports the fetch-and-increment operation, we use that

implementation where Fal is needed. In section 3.3 we present a novel construction for
implementing the BFaD operation, which cannot be directly implemented using either
diffracting trees or counting networks. Together these two primitives provide for all the
needed counter support. To implement the bins we use the stack construction of [33].
Thus our bin-insert is actually push, bin-delete is pop, and bin-empty reads the
current value of the stack’s pointer and compares it to zero. Like the funnels that
implement them, these priority queues support quiescent consistency.

We chose to use stacks in place of bins since their funnel implementation is simple,
linearizable and supports elimination. However, this can cause unfairness (and even star-
vation) among items of equal priority, as later insertions occlude earlier ones. Whether
or not this matters is application dependent. If it does, one could either use FIFO queues
(and give up elimination) or use a hybrid data structure which supports elimination in
the funnel, but queues items internally in FIFO order.

LinearFunnels Returning to figure 2 we see that SimpleLinear requires only bins,
which we implement using funnel based in the most straightforward manner. However,
there is one point that should be stressed: the delete-min operation queries each bin to
see if it is empty before trying to remove a value. This is crucial to the performance of
LinearFunnels, since testing for emptiness is much faster (requires only one read) than
actually going through the funnel trying to remove an element.

FunnelTree As in the previous case we replace the bin operations with stack opera-
tions. The calls to Fal and BFaD are replaced by funnel based implementation, but only
for counters at the top four levels of tree, for counters below that we use MCS locks. We
do not require funnels at the deeper levels since contention (traffic) there is much lower
than at the top. Our experiments show that, at a cost of about 5% in performance we
could have avoided making the cut-off decision and used funnels throughout the tree.
Those at the bottom would have automatically shrunk, adapting to prefer low overhead
and fewer combining layers. However, in our simulation this would have taken too long,
so we chose this approach instead (details in the full paper).

3.3 The scalable bounded counter algorithm using funnels

In Figure 10 in Appendix A we present pseudo-code for a bounded fetch-and-increment/decrement
counter using combining funnels. Note that for our priority queue scheme, we could get

by with a counter that supports only two operations: an (unbounded) increment, and a
bounded decrement that returns only an indication of whether the counter was decre-

mented or not. However, for the sake of completeness, we provide an implementation

that supports bounded-fetch-and-decrement (z,bound) whose pseudo-code definition

appears in Figure 1, and an analogous bounded-fetch-and-increment (x,bound).

Given a fetch-and-add operation, it is possible to construct this type of bounded
counter directly as Gottlieb et al. [15] have shown. For example, bounded fetch-and-
increment can be done by first applying a fetch-and-add(z,1) operation and if the
value returned is greater than the bound, applying a fetch-and-add(x,-1) operation
and returning the bound. Since this approach can potentially require two fetch-and-
add operations, which in our case would require two traversals of the combining funnel,
we will show how to avoid the extra overhead by incorporating the bounds checking
operation directly into the funnel algorithm. This approach also allows to integrate
elimination seamlessly into the algorithm. As seen in Figure 5, the performance gain
from using elimination can be as high as 250%.

At first blush it might seem that adding the bounds check is only a trivial departure
from the standard combining based fetch-and-add operation [13, 15, 33| since it appears
that one can combine as usual and perform the bounds check at the root of the combining
structure. Unfortunately, this approach is wrong due to the subtle fact that bounded

4000 = T T T T T T = T T T T T T

3600 |- Fetch-and-add < < 4000 | P
3200 BFaD with elimination -&-- M
B x] L = xR
2800 - x i 3200
> 2400 | X 1 3 B i
& 2000 | X 1 g T 5’ A
1600 - P o-BEE | 1600 |- D\E‘,. B
1200 - x 5B B 1
X g--BeEr
800 g3 b 800 |- Fetch-and-add - g
200 | _ BFaD with elimination -&--
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
4 8 16 32 64 128 256 0 20 40 60 80 100
Processors % of decrement operations

Figure 5: Comparison of latencies of combining funnel based fetch-and-add and bounded
decrement. With an equal number of increment and decrement operations at varying
degrees of concurrency elimination makes the bounded version substantially more effi-
cient (left). At 256 processors with varying distribution of operations (right) eliminations
are rarer and eventually fetch-and-add becomes faster since it does not incur bounds-
checking overhead.

operations are not commutative. For example, consider a counter whose value is 0 and
two operations: bounded-fetch-and-decrement (with bound=0) and fetch-and-increment,
that are applied to it. If the decrement is applied first, both operations return 0, and
the counter’s value changes to 1. If operations are applied in the opposite order, the
increment returns 0 and the decrement 1, and the counter ends up with the value 0.
Because the order in which we apply operations is important, problems arise when trying
to apply an entire tree of operations at once and determining what each processor’s
return value should be, in parallel. The way we overcome these difficulties is by forcing
our trees to be homogeneous, that is, contain only one kind of operation. Because all
operations are the same, we need only know how many there are to determine the final
value of the counter.

4 Performance

Our tests were performed on a simulated 256 processor distributed-shared-memory mul-
tiprocessor similar to the MIT Alewife machine [1] of Agarwal et al. The simulator
used is Proteus®, a multiprocessor simulator developed by Brewer et al. [9, 10]. In our
benchmarks processors alternate between performing some local work and accessing the
priority queue. When accessing the queue processors choose whether to insert a random
value or apply a delete-min operation based on the result of an unbiased coin flip. In all
the experiments we show here local work was kept at a small constant and the queue was
initially empty. In each experiment we measured latency, the amount of time (in cycles)
it takes for an average access to the object. Each series of experiments either keeps the
concurrency constant while changing the number of priorities or varies the concurrency
while keeping the number of priorities constant. We ran a set of preliminary benchmarks
using 256 processors and a queue of two priorities to find the set of funnel parameters
(layer width, depth of funnel, delay times, etc.) which minimized latency. We used this
set of parameters in all our funnels for both counters and stacks.

Our experiments show that at low concurrency levels simple algorithms are best.
The total number of priorities determines whether one should use SimpleLinear (for few
priorities) or SimpleTree (for a large number of priorities). As concurrency increases

5Version 3.00, dated February 18, 1993.

14000 | T thtE[Al| T T T T] }k] Ismplld_|nela|’ ,><,I, T T T T
SingleLock -%-- - 3000 | SimpleTree —+-]
12000 L SkipList -¢- - i LinearFunnels -8-- ..o
SimpleLinear - FunnelTree -&-- o ... E,«"E‘
| SimpleTree -+~ i EE =R
> 10000 LinearFunnels -o-- > 2000 _B""'E i
S 8000 | FunnelTree -&-- _ S
E 7 o E pemm AT iw%/:‘:/é
6000 JUNIDSELA S aem AT
4000 Lo i 1000 :@;:_fﬁ/"%" s X * B
L
,,,,, g8 e
2000 - s] X
g;i:;né&:f:ﬂ;&——:%:%?&:;:‘&"‘"‘ﬁ-’ =R
0 X ¥ 1 Il Il Il Il Il 0 Il Il Il Il Il Il Il Il
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Processors Processors

Figure 6: Latency of different priority queue implementations with 16 priorities at low
concurrency levels. On the right is a close-up of the bottom part of the graph on the
left.

contention begins to undermine the effectiveness of these implementations. Thus at 256
processors with 4 or less priorities, a linear arrangement of combining funnel based stacks
(LinearFunnels) is the most effective priority queue. Again, supporting more priorities
favors a binary tree layout, so FunnelTree is the method of choice for 8 priorities and
above, at high concurrency levels.

4.1 Experimental results

The graphs in Figure 6 compare latency of operations at low concurrency levels (16
processors or less) for 16 priorities. The two unbounded algorithms SingleLock and
HuntEtAl display a linear increase in latency as concurrency rises, with the algorithm
of Hunt et al. performing slightly better. These results are expected and match those
of [17]. The queue contains relatively few items at any time, so the fact that the
HuntEtAl algorithm allows more parallelism in the access to the queue itself is of little
benefit — processors spend most of their time trying to acquire the initial lock. The
SkipList algorithm fairs slightly better due to its efficient insertion method and delete
buffer. The right-hand-side of Figure 6 allows a closer look at the algorithms with lower
latency. All four have roughly equal slopes, but the SimpleLinear method with its low
overhead, especially for insertion is the clear leader. LinearFunnels is about 2-3 times
slower, mostly due to the overhead of funnels versus MCS locks (see [33] for details).
The two tree based methods, FunnelTree and SimpleTree, have nearly the same latency,
with FunnelTree being about 10% slower, and both methods about 40-50% slower than
SimpleLinear. Though both SimpleTree and HuntEtAl contain a serial bottleneck the
former is faster since it only performs a Fal or BFaD at the root, while the latter must
acquire another lock during the initial critical section.

At low concurrency levels overhead is the critical performance factor. As the number
of processors increases, the effects of contention, serialization and parallelism play an
ever increasing role. This is evident in the graph in Figure 7 which compares the four
most promising methods: SimpleLinear, SimpleTree, LinearFunnels, and FunnelTree
for levels of concurrency between 2 and 256 processors at 16 priorities. SimpleTree is
the slowest method at high concurrency levels since contention at the root increases the
time to perform counter operations there. SimpleLinear is fastest till about 32 processors
and still performs relatively well at 128 processors. This might seem surprising till we
notice that insertions are independent and have low overhead, and deletions perform at
most 16 reads and only attempt to lock promising bins. Only at 128 processors does
contention at individual bins begin to play a major role. The LinearFunnels algorithm

[T T T T T : . /+ -
20000 SmpleLinear < /
SimpleTree —+-- .
16000 |- LinearFunnels -3-- ; |
Funnel Tree —&--- /
Z 12000 |
o .)
8
8000
4000
O g B'"“””E;_/;:.
R s
0 S L ‘Y?% I I I I
2 4 8 16 32 64 128 256
Processors

Figure 7: Latency of more scalable priority queue implementations with 16 priorities
(top) at high concurrency levels.

SimpleLinear SimpleTree LinearFunnels FunnelTree
N P | Ins. | Del. All | Ins. | Del All | Ins. | Del. All | Ins. | Del. | All
16 16 0.4 1.9 1.2 1.3 1.8 1.6 0.6 4.9 2.8 1.4 1.8 | 1.6
128 16 0.3 5.3 2.8 1.8 1.9 1.8 0.6 | 28.3 | 14.0 1.8 2.1 | 1.9
16 64 0.9 5.3 3.4 5.7 8.1 6.9 0.8 9.8 5.7 2.0 3.2 | 26
128 64 0.4 8.1 4.6 6.0 7.8 6.9 0.6 | 34.7 | 16.1 2.6 3.5 | 3.0
16 | 256 3.9 | 193 | 12.7 | 29.3 | 41.1 | 35.3 0.9 | 174 8.9 3.3 5.8 | 44
128 | 256 0.6 | 21.0 | 10.2 | 29.3 | 40.9 | 34.7 0.8 | 66.6 | 31.5 4.2 6.7 | 5.1

Figure 8: Latencies (in thousands of cycles) for insert and delete-min in several
bounded range priority queue implementations. N is the number of priorities and P
is the number of processors.

avoids this contention and increases parallelism at a price of higher overhead, this pays
off only at 128 processors and above. The FunnelTree method traverses less funnels and
starts paying-off earlier, at 64 processors, where it becomes the performance leader. As
concurrency increases, the parallelism inherent in the funnels and their ability to avoid
contention cause the gap between FunnelTree and the other methods to widen, so that
at 256 processors this method is 8 times faster than SimpleTree and 3 times faster then
SimpleLinear.

Figure 8 offers a break-down of latency figures into cost of insert and delete-min.
Generally, increasing the number of priorities increases the size of the data structure.
This may mean more work is required to update the data structure — increasing latency,
conversely, since processor are spread over more memory there is less contention — re-
ducing latency. In SimpleLinear, for example, at 16 processors work is the dominant
factor and going from 16 to 128 priorities increases latency by over 220%. The same
change at 256 processors (when contention is more important) reduces latency by 12%.
Funnel based methods are less susceptible to contention, so the added overhead of more
funnels (to support more priorities) is the dominant factor in determining performance.
For both tree based methods, insert is cheaper than delete-min because on average
insertions update half as many counters along the path to the root.

The graphs in Figure 9 demonstrate the behavior of different algorithms as the range
of priorities goes from 2 to 512 at 64 and 256 processors. In SimpleLinear the interplay
between increased work (which affects mostly delete-min) and decreased contention
(benefits insert) explains the “u” shaped curve. LinearFunnels slows linearly with each
added priority since the overhead of each new funnel outweighs the saving in contention.
The SimpleTree algorithm shows an almost constant latency for 64 processors (it was

10

T T T T T T é T T T T T T T T ’, T T T
16000 - SimpleLinear - 7 24000 | o u
SimpleTree —+-- ;
LinearFunnels -5-- ; | s i
12000 [~ FunnelTree —4--- R 20000 ¥ /SimpleLinear -x--
I / LinearFunnels -=--
> % ; z 16000 - /" FunnelTree -3
% 8000 |- . % . o
par e 8 12000 - e o x7]
X X a [
4000 |- X e s
»,_‘f@if? A DB B 4000 'i,,_/.é'*:"é”é/géf% A |
y oS
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512
Priorities Priorities

Figure 9: Latency of more scalable priority queue implementations with varying number
of priorities at 64 processors (left) and 256 processors (right).

off the graph for 256), since at this level of concurrency latency is determined almost
exclusively by the time to pass through the root. The growth in latency of FunnelTree
is less than logarithmic since deeper nodes have less traffic then higher ones. Thus the
funnels shrink, or we use MCS locks there. Together the two graphs in Figure 9 show
that at high concurrency levels the only method that consistently works well and is
better for nearly all priorities, is FunnelTree. Only when faced with a very small range
of priorities should one consider using the LinearFunnels method. In both cases we see
that the funnel based methods offer the best scalable solution to implementing parallel
bounded range priority queues.

5 Conclusions

We believe the results presented in this paper are very promising. They show that
simple, almost trivial, algorithms can sometimes work quite well in practice. More
importantly, they show that when performance degrades due to the appearance of hot
spots, it is possible to remedy the implementation using a general technique such as
our combining funnels. This is an indication that our combining funnels approach is an
effective embeddable technique. If borne out by further research and real applications
on large scale machines, it could mean that future parallel data structures could be
constructed using the well understood techniques of today, with contention reducing
parallelization methods used to “massage” the trouble spots.

6 Acknowledgments

We would like to thanks our colleague Dan Touitou for his numerous comments, and
his suggestion of the tree based priority queue structure [30] we used for the SimpleTree
and FunnelTree stuctures. We further wish to thank the anonymous referees.

References

[1] A. Agarwal, D. Chaiken, K. Johnson, D. Krantz, J. Kubiatowicz, K. Kurihara,
B. Lim, G. Maa, and D. Nussbaum. The MIT Alewife Machine: A Large-Scale
Distributed-Memory Multiprocessor. In Scalable Shared Memory Multiprocessors,
Kluwer Academic Publishers, 1991. Also as MIT Technical Report MIT /LCS/TM-
454, June 1991.

11

2]

T. Agerwala, J.L.. Martin, J.H. Mirza, D.C. Sadler, D.M. Dias and M. Snir. SP2
system architecture. IBM Systems Journal, 34(2):152-184, 1995.

J. Aspnes, M.P. Herlihy and N. Shavit. Counting Networks. Journal of the ACM,
Vol. 41, No. 5, September 1994, pp. 1020-1048.

R. Ayani. Lr-algorithm: concurrent operations on priority queues. In Proceedings
of the 2nd IEEE Symposium on Parallel and Distributed Processing pp. 22-25, 1991.

G. Alverson and S. Kahan — TERA Computer Company. Personal communication,
March 1998.

J. Biswas and J.C. Browne. Simultaneous Update of Priority Structures In Pro-
ceedings of the 1987 International Conference on Parallel Processing, August 1987,
pp- 124-131.

J. Biswas and J.C. Browne. Data Structures for Parallel Resource Management. In
IEEFE Transactions on Software Engineering, 19(7), pp. 672-686, 1993.

J. Boyar, R. Fagerberg and K.S. Larsen. Chromatic Priority Queues. Technical
Report, Department of Mathematics and Computer Science, Odense University,
PP-1994-15, May 1994.

E.A. Brewer, C.N. Dellarocas. PROTEUS User Documentation. MIT, 545 Technology
Square, Cambridge, MA 02139, 0.5 edition, December 1992.

E.A. Brewer, C.N. Dellarocas, A. Colbrook and W.E. Weihl. @ PROTEUS:
A High-Performance Parallel-Architecture Simulator. MIT Technical Report
/MIT /LCS/TR-561, September 1991.

G. Della-Libera. Reactive Diffracting Trees. Master’s Thesis, Massachusetts Insti-
tute of Technology, 1997.

G. Della-Libera and N. Shavit. Reactive Diffracting Trees. In Proceedings of the 9th
Annual Symposium on Parallel Algorithms and Architectures (SPAA), June 1997.

J.R. Goodman, M.K. Vernon, and P.J. Woest. Efficient Synchronization Primitives
for Large-Scale Cache-Coherent multiprocessors. In Proceedings of the Third In-

ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 64-75, April 1989.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer - designing an MIMD parallel computer. IEEE Transac-
tions on Computers, C-32(2):175-189, February 1984.

A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic techniques for the efficient
coordination of very large numbers of cooperating sequential processors. ACM
Transactions on Programming Languages and Systems, 5(2):164-189, April 1983.

Q. Huang. An Evaluation of Concurrent Priority Queue Algorithms. Technical
Report, Massachusetts Institute of Technology, MIT-LCS/MIT/LCS/TR-497, May
1991.

G.C. Hunt, M.M. Michael, S. Parthasarathy and M.L. Scott. An Efficient Algorithm
for Concurrent Priority Queue Heaps. In Information Processing Letters, 60(3):151—
157, November 1996.

T. Johnson. A Highly Concurrent Priority Queue Based on the B-link Tree. Tech-
nical Report, University of Florida, 91-007. August 1991.

12

[19]

A. Karlin, K. Li, M. Manasse and S. Owicki. Empirical Studies of Competitive Spin-
ning for A Shared Memory Multiprocessor. In 18th ACM Symposium on Operating
System Principles (SOSP), pp. 41-55, October 1991.

C.P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multiprocessors
with shared memory. In Fifth ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, August 1986.

M.P. Herlihy and J.M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems,
12(3):463-492, July 1990.

B.H. Lim and A. Agarwal. Reactive Synchronization Algorithms for Multiproces-
sors. In Sizth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI), pp. 25-35, 1994.

B.H. Lim and A. Agarwal. Waiting Algorithms for Synchronization in Large-Scale
Multiprocessors. In ACM Transactions on Computer Systems, 11(3):253-294, Au-
gust 1993.

J.M. Mellor-Crummey and M.L. Scott. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. ACM Transactions on Computer Systems,
9(1):21-65, Feb 1991.

G.H. Pfister and A. Norton. ‘Hot Spot’ contention and combining in multistage
interconnection networks. IEEE Transactions on Computers, C-34(11):933-938,
November 1985.

L. Rudolph. Personal communica-
tion regarding StarT-NG system. http://csg-www.lcs.mit.edu:8001/StarT-,
MIT, 1998.

W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. In Communi-
cations of the ACM, 33(6):668-676, June 1990.

W. Pugh. Concurrent Maintenance of Skip Lists. Technical Report, Institute for
Advanced Computer Studies, Department of Computer Science, University of Mary-
land, College Park, CS-TR-2222.1, 1989.

V. N. Rao and V. Kumar. Concurrent access of priority queues. IEEE Transactions
on Computers 37, 1657-1665, December 1988.

D. Touitou. Personal communication, June 1996.

N. Shavit, and D. Touitou. Elimination Trees and the Construction of Pools and
Stacks In Proceedings of the Tth Annual Symposium on Parallel Algorithms and
Architectures (SPAA), pages 54-63, July 1995.

N. Shavit and A. Zemach. Diffracting Trees. ACM Transactions on Computer
Systems, 14(4):385-428, November 1996.

N. Shavit and A. Zemach. Combining funnels. In Proceedings of the Seventeenth
Annual ACM Symposium on Principles of Distributed Computing, pages 61-70,
Puerto Vallarta, Mexico, June 28th — July 2nd 1998.

G. Alverson, S. Kahan and R. Korry. Processor Management in the Tera MTA
Computer System. Available via ftp from
http://www.tera.com/www/archives/library/processor.html.

13

[35] P.C. Yew, N.F. Tzeng, and D.H. Lawrie. Distributing Hot-Spot Addressing in
Large-Scale Multiprocessors. IEEE Transactions on Computers, C-36(4):388-395,
April 1987.

[36] Y. Yan and X. Zhang. Lock Bypassing: An Efficient Algorithm for Concurrently
Accessing Priority Heaps. ACM Journal of Ezxperimental Algorithmics, vol. 3, 1998.
http://www. jea.acm.org/1998/YanLock/

[37] A. Zemach. Distributed Coordinated Data Structures. Ph.D. dissertation, Tel-Aviv
University, March 1998.

14

A Appendix: Pseudo Code For Some Priority Queue
Implementations

The way in which we make sure all trees are homogeneous is by forcing all processors at
a given funnel layer to be roots of trees of the same size. Processors enter the first layer
of the funnel and are roots of trees of size 1 (themselves only). When processors with
like operations (both perform BFaD or Fal) combine one becomes the root of a tree of
size 2, and advances to the next funnel layer. If operations are reversing (one is a BFaD
and the other a FaI) they eliminate and exit the funnel at once. Processors only advance
to the next funnel layer after they have collided and combined with a processor who is
the root of a tree with the same size and operation. Colliding with trees of the same size
but opposing operations yields an elimination. Collisions between trees of different sizes
are not allowed. This scheme keeps all processors that are roots of trees of size 2¢ at the
i-th layer and makes sure collisions between trees of the same size are not rare. In the
case of elimination there is still some subtle interaction with the bounds checking, but
accounting for its effects can be made simple by assuming the operations from the trees
are interleaved, so that the counter never moves more than one away from its original
position.

The following is a walk-through of the code in Figure 10. We assume per-processor
public data is accessed through a my pointer, and that obj encapsulates data and func-
tions specific to the object.

The fields of my are:

Sum: The current sum of all operations combined with.

Location: The address of the funnel, and the layer number within the funnel, that this
processor is currently traversing. This value is set to NULL if the processor is not
in any funnel and thus is unavailable for collisions.

Result: Is set when the result of the operation is known. Holds two values, the first
is either ELIM or COUNT which indicates whether the operation was eliminated
part-way or acquired the obj. The second is the operation’s return value.

Adaption factor: An indication of load, which is used to modify the width of the
funnel layers in response to load variations.

The fields of obj are:

MainVal: The current value of the counter.
levels: The number of funnel layers.

attempts: The number of collision attempts a processor should try before accessing
MainVal.

width[]: An array holding the respective width values of funnel layers.
layer[1[1: A two dimensional array holding the elements of each funnel layer.

spin[]: An array holding the the respective amounts of time a processor should delay
at each layer.

Lines 1-2 set up the data structures for the operation. Lines 624 contain the
collision code. A processor p picks a random layer location, swaps its my pointer for
the one written there, ¢, and attempts to collide by locking itself and ¢ (lines 8-11).
If the collision succeeds, ¢ is either added to p’s list if their operation are the same
(lines 19-21), or an elimination occurs and p short-cuts to get the counter’s value (lines
12-18). If p discovers that it has been collided with (lines 25-26) it goes on to wait for
a value (line 39). Every obj->attempts collision attempts p tries to perform a bounded
decrement operation on the central counter using a compare-and-swap operation (line

15

O 00 ~NO Ol & WN =

DWW W WWWWWWWNNNNNNNDRNNDNKNER B B B R R e e
CO XN BEWNRLOWONODTEWNR,O©OOOWN®DT D™ WNDR O

41
42
43
44
45
46
47
48

int Bounded_Fetch_And_Decrement (fna_obj *obj)

my->Sum = total = -1
d=0 // initially at depth O
my->Location = < obj , d > // of funnel "obj"

mainloop: while(1) {
for(n=0; n<obj->attempts && d<obj->levels; n++) {
wid = my->Adaption_factor * obj->width[d]
r = random(0 , wid)
q = SWAP(obj->layer([d] [r], my) // read partner
if(q == NOBODY) continue
if (CaS(my->Location, <obj, d> , EMPTY)) // attempt
if (CaS(q->Location, <obj, d> , EMPTY)) { // collision

if (g->Sum + my->Sum == 0) { // opposites?
val = obj->MainVal // short-cut
if (val==B0OT) val++ // to counter
q->Result = < ELIM , val-1 > // and
my->Result = < ELIM, val > // eliminate
break mainloop
}
my->Sum += g->Sum // combine
my->Location = < obj, ++d > // advance layer
append q to list-of-children // add q as child
n=0
}
else my->Location = < obj, d >
for(i=0;i< obj->spin[d]; i++) // delay to combine
if (my->Location != <obj, d>) break mainloop
}
if (CaS(my->Location, <obj, d>, EMPTY)) {
val = obj->MainVal // calc new value
new = val + my->Sum // for central
if (new < BOT) new = BOT
if (CaS(obj->MainVal, val, new)) {
my->Result = < COUNT , val> // updated central
break mainloop // distribute results
}
my->Location = <obj, d>
}
}
while(my->Result == EMPTY) ; // wait for result
< event, val > = my->Result
foreach q in list-of-children { // iterate over children
if (event == ELIM) // if eliminated
q->Result = < ELIM, val > // all get same result
else {
q->Result = < COUNT , val + total >
total += g->Sum
}
}

Figure 10: Code for bounded fetch-and-decrement.

16

32). If this succeeds p, moves to the distribution phase. The distribution phase begins
with code that waits for a result (lines 39-40), and when it arrives p iterates over all its
children, handing out a value to each of them by setting their my->result field (lines
41-46). When distributing values it is important to know whether an elimination has
occurred since then we distribute the same value to all operations in the tree (due to
the interleaved ordering of the operations: inc, dec, inc, and so on).

The way in which we adaption fits into the funnel framework is by altering the
width of the funnel layers. In line 7 of Figure 10 a processor picks a random loca-
tion in its current layer not from the entire width obj->width[1] but from a fraction
my->Adaption factor of this width. By changing the value of Adaption factor be-
tween 0 and 1, processors can, at a purely local level, determine the size of the funnel
they will use. The decision is based on the actual load encountered, measured as the
ratio of successful collisions to collision attempts (passes through the loop in lines 5-27).
See [33] for more details.

B Appendix; Priority Queues in a Parallel Setting

In a sequential setting a priority queue is a data structure that supports two operations:
insert(z) which inserts the element z into the queue, where z has a certain priority
pri(z) from some well ordered set; and z =delete-min() which removes and returns the
element x whose priority is the smallest currently in the queue. A priority queue is said
to have a bounded range if the set of possible priorities of elements is finite. In this case
we map the priorities unto a the set of integers [1, N] and say that the queue is of range
N. Notice that the above definition refers to “the smallest priority element currently
in the queue.” This definition is not precise enough for the concurrent setting where
multiple operations may overlap in time, since it is not clear when an element is really
“in the queue.”

We will use two standard consistency conditions to capture the behavior of our
queues in a parallel environment, giving meaning to the notion of “the smallest priority
element currently in the queue.” The first condition, due to Herlihy and Wing, is
linearizability [21]. A data structure is said to be linearizable if for every concurrent
execution, one can associate with every operation a single time point within its actual
execution interval at which the operation is said to take place, such that the associated
execution is a valid sequential execution. Put differently, by compressing operations
to a single point in time we can place them all on a single time-line, and the resulting
execution must then conform to the object’s sequential specification. Linearizability for a
priority queue means that one can order all insert and delete-min operations consistently
with the real-time order in which they occured, so that the set of minimal priorities
according to this order is well defined.

Another consistency condition that is semantically weaker but allows more compu-
tational efficiency is Aspnes et. al’s quiescent consistency [3]. An object is said to be
quiescent at time ¢ if all operations which began before ¢ have completed, and no opera-
tion begins at t. An object is quiescently consistent if any operation performed on it can
be compressed into a single point in time somewhere between the latest quiescent point
before it began and the earliest quiescent point after it ends, so that it meets the ob-
ject’s sequential specification.® The main difference between quiescent consistency and
linearizability is that quiescent consistency does not require preservation of real-time
order: if an operation A completes before another operation B start, and there is an
operation C which overlaps both A and B, B may be reordered before A. However, the
priority guarantees of quiescently consistent priority queues are quite strong. Assume
the priority queue @ is quiescent at time tg and contains the set of elements E, each

5Though one can define infinite executions with no quiecense point, the fact that a quiescent point
may appear at any time in the execution imposes strong restrictions of the allowable implementations.

17

elem_type PriQ[MAXSIZE] insert (elem_type e)

int NumElems {
lock_t PQlock acquire (PQlock)
i = bit-reverse(NumElems++)
insert (elem_type e) acquire (PriQ[i].lock)
{ PriQ[i]l=e
acquire (PQlock) release(PQlock)
Priq[NumElems++]=e //propagate e up the heap
//propagate e up the heap //using local locks at each node
//using standard heap algorithm }
release(PQlock)
} delete-min ()
{
delete-min() acquire (PQlock)
{ acquire (PriQ[0].lock)
acquire (PQlock) save = PriQ[0]
save = PriQ[0] i = bit-reverse(--NumElems)
Priq[0]=PriQ[--NumElems] acquire (PriQ[i].lock)
//propagate PriQ[0] down the heap Priq[0]=PriQ[il
//using standard heap algorithm release (PQlock)
release (PQlock) //propagate e down the heap
return save //using local locks at each node
} return save
}

Figure 11: SingleLock: code for heap based priority queue using a single lock (left).
HuntEtAl: code for priority queue algorithm using the algorithm of Hunt et al [17]
(right). Error handling not shown.

skip_list *Head delete-min()
skip_list Link[MAXPRI] {
bin DelBin dof{
lock_t DelLock e = bin-delete(DelBin)
if (e == NULL && acquired(DelLock)) {
insert(elem_type e) s = Head
{ //delete the first element
bin-insert (Link[e.pri] .bin , e) //of the skip list using
if (Link[e.pri] .threaded == 0) { //Pugh’s algorithm
//insert Link[e.pri] into the DelBin = s->bin
//skip list using Pugh’s algorithm release(DelLock)
Link[e.pri].threaded = 1 }
¥ }while(e==NULL)
} }

Figure 12: SkipList: code for bounded range priority queue algorithm using skip lists.
Error handling not shown. The operation acquired does not block, it merely attempts
to acquire the lock and returns an indication of success.

18

with a different priority. If & delete-min operations are performed on () ending at time
t1, the returned elements are exactly the k£ elements of with the smallest priority,
which we denote by Min(E). This is exactly the same as with a linearizable priority
queue. However, if between ¢y and ¢, there also occur operations which insert a new set
of elements I into (), then the elements returned by the delete-min operations will be
from the set Ming (E) U Ming(E U I). 7 In other words, if during a sequence of deletes
new elements enter the queue, the set of returned minimal values may include minimum
elements from the joint set of new and old enqueued values, yet there will be no exact
timeline on which dequeue and enqueue operations can be ordered. Theoretically, this
means that if new items of the same or smaller priority than the old minimum item are
enqueued, they may be deleted in its place and it might remain in the queue. In many
real-world sytems this is not a problem, and might even be considered an advantage
since newly arrived smaller priority items can be serviced ahead of older low priority
ones.

7If some elements have the same priority, the formal definitions become somewhat more complex
as they must capture the uncertainty of choosing between elements with the same priority. Define
Prip(E) = {z € E|pri(z) < p}, let pl be the largest priority for which |Prip1(FE)| < k and p2 be
the smallest priority for which |Prip2(E)| > k. Thus in the case where k delete-min operations are
performed on a priority queue with no intervening insertion operations, the elements returned will be
those of the set Priyi(E), and a subset of size k — |Prip1 (E)| of the elements of priority p2.

19

