
TLRW: Return of the Read-Write Lock

Dave Dice
Sun Labs at Oracle
One Network Drive

Burlington, MA 01803-0903, USA
dave.dice@oracle.com

Nir Shavit
Tel-Aviv University & Sun Labs at Oracle

Tel-Aviv 69978, Israel
shanir@cs.tau.ac.il

ABSTRACT
TL2 and similar STM algorithms deliver high scalability
based on write-locking and invisible readers. In fact, no
modern STM design locks to read along its common execu-
tion path because doing so would require a memory synchro-
nization operation that would greatly hamper performance.

In this paper we introduce TLRW, a new STM algorithm
intended for the single-chip multicore systems that are quickly
taking over a large fraction of the computing landscape. We
make the claim that the cost of coherence in such single chip
systems is down to a level that allows one to design a scal-
able STM based on read-write locks. TLRW is based on
byte-locks, a novel read-write lock design with a low read-
lock acquisition overhead and the ability to take advantage
of the locality of reference within transactions. As we show,
TLRW has a painfully simple design, one that naturally pro-
vides coherent state without validation, implicit privatiza-
tion, and irrevocable transactions. Providing similar prop-
erties in STMs based on invisible-readers (such as TL2) has
typically resulted in a major loss of performance.

In a series of benchmarks we show that when running
on a 64-way single-chip multicore machine, TLRW delivers
surprisingly good performance (competitive with and some-
times outperforming TL2). However, on a 128-way 2-chip
system that has higher coherence costs across the intercon-
nect, performance deteriorates rapidly. We believe our work
raises the question of whether on single-chip multicore ma-
chines, read-write lock-based STMs are the way to go.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Algorithms

General Terms
Algorithms, Performance

Keywords
Multiprocessors, Transactional Memory, Read-Write Locks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

1. INTRODUCTION
STM design has come a long way since the first STM al-

gorithm by Shavit and Touitou [27], which provided a non-
blocking implementation of static transactions (see [4, 7,
10, 15, 19, 21, 22, 24, 26, 27, 28]). A fundamental pa-
per by Ennals [7] suggested that on modern operating sys-
tems, deadlock avoidance is the only compelling reason for
making transactions non-blocking, and that there is no rea-
son to provide it for transactions at the user level. Lock-
based STMs typically outperform the fastest lock-free ones,
even those that avoid indirection in accessing shared trans-
actional metadata [10, 29, 18]. Deadlocks and livelocks are
dealt with using timeouts and the ability of transactions
to request other transactions to abort. Ennals’s view was
quickly seconded by Dice and Shavit [5] and by Saha et al
[26]. The final barrier to the acceptance of such lock-based
algorithms was removed with the introduction of global clock
based consistency by Dice, Shalev, and Shavit [4] (the idea
of using a global clock for internal consistency was indepen-
dently proposed by Reigel, Felber, and Fetzer in the context
of their non-blocking Snapshot Isolation STM and LSA al-
gorithms[24, 25]).

Today, most, if not all new lock-based STMs use a varia-
tion of the TL2/LSA style global-clock algorithm using in-
visible reads. When we say invisible reads, we mean that the
STM does not know how many readers might be accessing
a given memory location. The drawback of invisible read
based STMs are the overheads associated with maintaining
and validating a read-set of locations [4], and the unaccept-
ably high cost of providing implicit privatization [21] and
proxy privatization1 [15, 17]. One should note that STMs
that use centralized data structures, such as RingSTM [28]
or compiler assisted coarse grained locking schemes [21], can
provide implicit privatization without the need for explicit
visible readers.

Despite these drawbacks, using invisible reads is com-
pelling since visible reads require that the number of read-
ers, or at the very least, the existence of readers, be recorded
per memory location. This is a task that on the face of it
requires a relatively expensive synchronization per read op-
eration. There are novel mechanisms such as the scalable
non-zero indicators (SNZI) of Ellen et al [6], that greatly
reduce the synchronization overhead of detecting readers.

1Proxy privatization is the case of implicit privatization
where one thread’s transaction privatizes an object that is
then used privately by another thread. This might, in some
cases, turn out to be harder than privatizing for a thread’s
own use.

Unfortunately, SNZI at the very least requires a CAS per in-
crement or decrement operation. Moreover, when contended
it requires a distributed tree of cache-line independent nodes
leading to the “indicator” location. This is an unacceptable
space complexity in practice.

1.1 Our New Approach
In this paper, we examine STM design in the context of

multicore systems-on-a-chip, a class of architectures that is
already common in the server space and is rapidly taking
over the desktop computing space. For such systems, we
claim that the cost of coherence is down to a level that
suggests another way to approach the problem: designing
visible-reader based STMs using read-write locks.2. We call
our new read-write lock based STM design TLRW, and its
key algorithmic technique, the byte-lock.

Why design an STM based on read-write locking? Be-
cause the overall design is significantly simpler and more
streamlined than invisible read based STMs like TL2, TinySTM
[8], or McRT [26], in which one locks only written locations
and validates coherence of the ones being read. In contrast,
in a read-write lock-based STM, a transaction locks every
location before either reading or writing. Then, upon com-
pletion, it releases all the locks. This simple design confers
amazing benefits:

• No costly validation of the read and write set (what
you lock is what you get).

• Stronger progress properties (especially for long trans-
actions) than invisible read based STMs such as TL2.

• Implicit privatization including implicit proxy privati-
zation.

• Support for irrevocable transactions [30].

The TLRW design provides the latter two properties natu-
rally and with virtually no overhead.

Read-write lock based STMs like TLRW have been sug-
gested in the past [23, 26], but dismissed because of the
overhead of performing a costly synchronization operations
per read access (empirically measured to slowdown STMs
by several orders of magnitude on some benchmarks [26]).
Even on multicore chips, existing read-write lock designs
that count readers simply do not scale because of these syn-
chronization overheads. To overcome this problem, we intro-
duce byte-locks, a new class of high performance read-write
locks designed to deliver scalable performance in the face of
high levels of read-lock acquisition.

The idea behind byte-locks is in itself very simple, and we
ourselves were surprised at the scalable performance they
deliver in the context of TLRW transactions. In a nutshell,
in a byte-lock, we split the lock record into an array of bytes,
one per thread. On modern AMD, Intel, and Sun processors,
these bytes can be written individually and read in batches.
Each thread is assigned a byte, which it uses as a flag in-
dicating it is reading the location. The byte is set using a
simple store followed by a store-load memory barrier. This
has the advantage of avoiding CAS operations that typically
have excessive local latency, can be interfered with and re-
quire a retry, and on systems such as Niagara, may incur

2The trend with new multicore processors by all main man-
ufacturers seems to be towards lower synchronization and
coherence costs.

a cache invalidation [3]. As we show, the benefit of this
design is scalable performance in the common case. The
lock-word also contains a 32 bit counter that is incremented
or decremented using CAS by all reader threads that were
not assigned a byte in the byte-array. On current architec-
tures one can use 48 bytes that align on a single cache line
(or 112 that align on two cache lines with little performance
loss).

We support our thesis, that read-write lock-based STMs
are a viable approach on state-of-the-art single chip multi-
core systems, through a series of benchmarks. These are,
unfortunately, standard micro benchmarks and not real ap-
plications, but we hope they will suffice to convince the
reader of the benefits and drawbacks of our design. We
tested TLRW on single chip UltraSPARC R© T2 (Niagara II)
and Core R© i7 (Nehalem) multicore machines. Our results
indicate that TLRW, which always provides implicit privati-
zation, often matches and sometimes outperforms TL2, and
always outperforms a version of TL2 with implicit privati-
zation. In some cases, such as for long transactions, TLRW
has stronger progress properties than TL2 because the only
source of aborts are time-outs, so chances are better that
a transaction does not abort after much of it has already
completed.

We also tested TLRW on a 128-way Enterprise T5140 R©
server (Maramba) machine, a 2-chip Niagara system, which
has relatively high inter-chip coherence costs. Here, as ex-
pected, the performance of TLRW was consistently inferior
to that of TL2, though in some cases it matched that of TL2
with privatization. Our conclusion, as we hope the reader
will agree, is that TLRW suggests a new design direction
for lock-based STMs. We believe this direction will become
increasingly viable as the cost of coherence on multicore sys-
tems drops.

The next section describes our new TLRW algorithm in
detail. We then provide a performance section that analyzes
its behavior.

2. READ-WRITE LOCK BASED TRANSAC-
TIONAL LOCKING

The TLRW algorithm we describe here is a simple one
phase commit style algorithm using read-write locks. This
means that threads acquire locks for reading as well as for
writing. This approach, by its very nature, guarantees in-
ternal consistency [4] and implicit privatization [21]. As we
will show, it also allows for a simple implementation of ir-
revocable transactions [30]. Finally, it avoids some of the
performance overheads of invisible-read based STMs such
as TL2 [4] and TinySTM [8], since read sets do not record
values and there is no need for read-set validation.

Unfortunately, STMs using naive read-write locks have
abominable scalability since reading a location requires an
update of a “read counter,” which requires a CAS operation.
Thus, locations that are shared by multiple readers (such as
the root of a red-black tree) become hotspots and cause a
deterioration in performance.

The claim we wish to make in this paper is that on new
multicore machines, as long as one remains on chip (i.e. low
coherence costs), using read-write locks is a viable approach
if one can get low overhead read-write locks.

2.1 Read-write Byte-locks
The key idea in our new TLRW algorithm is the use of

a new class of read-write lock which we call a byte-lock.
The byte-lock is directed at minimizing read-lock acquisi-
tion overheads. The basic lock structure consists of 64 bytes
aligned across a single cache line and logically split into three
distinct zones: an owner field, a byte-array, and a read-
counter. The owner field is set to the thread id of the writer
owning the lock and is set to 0 if no writer holds the lock.
In the most basic implementation the byte array consists of
k = 48 bytes, one per reader thread with the lower k ids.
We will call these k threads the slotted threads and the re-
maining n−k (where n is the total number of threads in the
system) the unslotted threads. The algorithm will be highly
effective for slotted threads and have standard read-write
lock performance for the unslotted ones. The third field is a
32-bit reader-count of the number of current reader threads
used by unslotted reader threads.

Here is how the byte-lock is used to implement a read-
write lock by a thread i.

• To acquire a lock for writing : thread i uses a CAS
to set the owner field from 0 to i. If the field is non-0
there is another owner, so i spins, re-reading the owner
field until it is 0. Once the owner field is set to i, it
spins until all readers have drained out. To do so, if i
is slotted, it sets its reader byte to 0 (just in case it was
already a reader). If i is unslotted, it checks a local in-
dicator (such as a transaction’s read-set) to determine
if it is a reader and decrements its reader-count if it is.
In both cases, slotted and unslotted, i then spins until
all of the locations of the byte array and the reader-
count are 0. Spinning is efficient since one can read 8
bytes of the lock word at a time (on SPARC, more on
Intel). To release the write-lock simply store a 0 into
the owner field.

• To acquire a lock for reading : We implement the lock
following the flag principle [12]. Readers store their
own byte and then fetch and check the owner, while
writers CAS the owner field (we CAS to resolve writer
vs. writer conflicts) and then fetch all the reader bytes.
In detail:

– If the thread i is slotted then: if i is the owner
or the ith byte in the byte array is set, proceed.
Otherwise, store a non-zero value into the ith byte
and execute a memory write barrier (no use of
CAS). Sparc, Intel, and AMD architectures allow
byte-wise stores. If the owner field is non-0, store
0 into the ith byte and spin until the owner be-
comes 0. In other words, writers get precedence.
Repeat until the ith byte is set and no owner is
detected. To release, store a 0 to the ith byte
field. There is no need for a memory barrier in-
struction.

– If thread i is unslotted then: if i is the owner or a
local indicator (such as a transaction’s read-set)
indicates it is a reader, then proceed. Otherwise,
increment the reader-count by 1 using a CAS.
Check the owner, and if it is non-0 use a CAS
to decrement the read-counter by 1. Repeat until
after the reader-count is incremented, no owner is

detected. To release, decrement the reader count
field using a CAS.

Finally, we note that we allow read-write locks to time-out
while attempting to acquire the lock. If lock acquisition
times out the thread aborts the transaction and returns an
appropriate indication.

The size of the byte-array is based on 64 byte AMD, Sun,
or Intel architectures. One can extend k to 112 threads by
allowing the lock to extend into a second cache line at the
cost of an additional cache access upon read (to be explained
later).

The important feature of the new byte-lock is that unlike
standard read-write locks, for all slotted threads, reading a
location protected by a byte-lock requires a store followed
by a memory barrier instruction. It thus avoids a CAS on
the same location for any of the k slotted threads. CAS has
typically high local latency. More importantly perhaps, it
is optimistic and can be interfered with and require a retry
(one thread’s success is bound to cause the next thread to
fail), and on systems such as Niagara, may incur a cache
invalidation [3]. For unslotted readers, the byte-lock behaves
like a normal read-write lock, with threads CASing the same
read-counter.

Notice that for slotted threads, there are additional perfor-
mance benefits. There is no need for a writer to separately
track if it is a reader, which means that when used in an
STM, it will not have to traverse the read set except to re-
lease locks at the end of a transaction. There is also no need
for second memory barrier instruction to set the read byte
to 0, a thread can simply wait for the processor’s pipeline
flush. This saves a CAS in many cases relative to standard
read/write locks.

2.2 CAS-less Byte-locks
While slotted readers avoid using a CAS, all writer threads,

slotted or not, still execute a CAS operation per access. We
can actually remove the use of a CAS for any of the slotted
threads, both for reading and for writing.

The changes in order to do so are as follows. The lock data
structure will have, in addition to the owner field indicating
which thread owns the lock for writing, an atomically ac-
cessible owner lock field for slotted threads. Each byte will
now contain one bit that indicates a read state, and one that
indicates a write state. So for example, a byte may be in a
state in which both the read and write states are 1, both 0,
or only one of them is 0.

Slotted readers behave as in the algorithm above, with
the small change of releasing the lock by storing a 0 into
the read-bit of their slot’s byte. Unslotted readers are un-
changed.

To acquire write permission, a slotted writer will first use
the slots and owner lock field to acquire the lock for writing
as follows:

• Store a non-zero value into the write bit in the assigned
slot in the lock’s array (leave the read bit unchanged);
Execute a memory write barrier instruction to make
sure the store is globally visible before the following
read or write.

• Scan through the array and owner lock field to check if
there is another slot with the write bit set to 1 or if the
owner lock field is set to 1. If true, lower the write bit

(no need for a memory write barrier) and retry from
Step 1 (One can add a backoff scheme to this retry).

• Otherwise, there is no other slot with its write bit set
and the owner lock is free. Set the owner field to your
thread ID (to let readers know there is a writer and
cause them to drain out) and store 0 into the read bit of
your slot. Execute a memory write barrier instruction
to make sure the write of the owner field is visible to
all readers. You now have acquired write permission.

• Wait for all currently active readers to depart and re-
linquish reader access. That is, wait until the read
indicator field is 0 and the read bits have been ob-
served as 0 and for all slots of the array (you already
lowered your own).

• Enter the critical section and start writing.

• To release the lock, set the owner field to null and then
set the write-bit in the associated slot to 0. No need
for a store-load memory barrier.

One can add tests if the owner field is null as optimizations
before the first and third steps.

We next describe how unslotted threads acquire the lock
for writing.

Unslotted writes perform an algorithm similar to the above
use a CAS to acquire the write-lock. They then scan through
the array in a manner similar to the slotted writers. If there
is no other slot with its write bit set, set the owner field
to your thread ID (notifying readers that they must drain
out). Execute a memory write barrier instruction to make
sure the write of the owner field is visible to all readers. You
now have acquired write permission.. If you are also a reader
use a CAS to decrement the read-indicator counter.

Now, as with a slotted write, wait for all currently active
readers to depart and relinquish reader access, then enter
the critical section and start writing. To release the lock set
the owner field to null and then release the owner-lock (store
0 into it). No need for a memory write barrier.

2.3 The Basic TLRW byte-lock Algorithm
In our TLRW design, we associate a byte-lock with ev-

ery transacted memory location (one could alternately use a
byte-lock per object). We stripe the locks across the mem-
ory, so that multiple locations share the same lock. This
saves space but can lead to false write conflicts in a man-
ner similar to [4, 31]. We maintain thread local read- and
write-sets as linked lists. These sets track locations on which
locks are held. The write set contains undo values since our
algorithm will store new values in-place, but it should be
noted that our algorithm could support a redo log as well,
in which case read-locks would be acquired during the spec-
ulative execution phase and write-lock acquisition would be
deferred until commit-time.

We now describe the basic TLRW algorithm. Unlike TL2,
TLRW does not require safe loads. The following sequence of
operations is performed by a transaction, one that performs
both reads and writes to the shared memory.

1. Run through an execution: Execute the transac-
tion code. Locally maintain a read-set of addresses
loaded and an undo write set of address/value pairs

stored. This logging functionality is implemented sim-
ply by augmenting loads with instructions that record
the read address and replacing stores with code record-
ing the address and value to-be-written in case the
transaction must abort.3

The transactional read attempts to acquire a location’s
read-lock. (As an optimization it can delay waiting
for a bus lock to be released). If the acquisition is
successful, it reads the location, records the location in
the read-set and returns the location’s value. Similarly,
a transactional write acquires the location’s write lock,
records the current value in the undo set, and writes
the value to the location.

2. Time out abort: The only source of aborts is a time
out by some thread while attempting to acquire a lock.
In such a case, threads use the undo write log to return
all locations to their pre-transaction values. It then
releases all the read and write locks it holds.

3. Commit release the write locks and then the read
locks.

The beauty of this algorithm in comparison to most STM
algorithms in the literature, is its simplicity. The only reason
to abort transactions is deadlock avoidance, which makes
for a very strong progress property. Other more elaborate
schemes, such as detecting cycles in a ’waits for’ graph are
also possible and may be worthwhile in some contexts.

The following safety properties follow almost immediately
from the fact that a transaction holds locks on all loca-
tions it reads or writes. TLRW Transactions are internally
consistent (i.e. operate on consistent states [4, 9]), are ex-
ternally consistent (i.e. are serializable [13]), and provide
implicit privatization and implicit proxy privatization. In
terms of liveness, from the fact that byte-locks are deadlock-
free and eventually transactions time out, it follows that
TLRW Transactions never deadlock.

In terms of lockout-freedom, guarantees are similar to
those of the TL2 algorithm in the sense that livelocks can
happen only if transactions time-out again and again. How-
ever, notice that here transactions do not cause each other
to repeatedly abort by invalidating each other’s read set.
Livelocks can happen only if some threads are slow to re-
lease locks. To lower the chances of such livelocks, we use
an exponential backoff scheme on the completion time, the
delay before a transaction is timed-out. Notice that we add
spinning to byte-lock acquisition attempts only as an opti-
mization, while exponentially backing off on the completion
time is crucial.

2.4 Irrevocable Transactions
A further benefit of TLRW is that one can readily imple-

ment irrevocable transactions. Irrevocable transactions, in-
troduced by [30], are transactions that never abort, and can
be used in case the transaction contains an I/O operation or
is long and will never complete in an optimistic fashion (a
hash table resize or an iterator call on a search structure).
We use the “irrevocable transaction” approach best outlined

3Notice that there is no need for non-faulting loads or trap
handlers. In TL2 one had to use a non-faulting load as a
transaction fetch may have loaded from a just privatized
region that had been made unreachable.

in a paper by Welc et al [30, 23], albeit in a much simpler
fashion, and with a stronger progress guarantee.

The idea outlined by Welc et al is simple. We will guaran-
tee that there is always no more than one active irrevocable
transaction, allowing some active irrevocable transaction to
complete. This is done by maintaining a global irrevocable-
bit or, to guarantee stronger progress, an irrevocable-lock
consisting of a CLH queue-lock [2, 16]. Any irrevocable
transaction sets the bit (alternately attempts to acquire the
CLH lock) using a CAS. Once the bit is set (alternately
the CLH lock is acquired), the transaction proceeds without
ever timing out. If a deadlock situation arises, the revocable
transactions involved in it will eventually time out and free
the locations that will allow the single irrevocable trans-
action to proceed. Notice that by using a CLH lock, we
can guarantee FCFS order on the irrevocable transactions
so they are guaranteed to never starve. While such transac-
tions are in progress, all revocable transactions that do not
overlap in memory can proceed as usual.

The overhead of the irrevocable bit mechanism is minimal
since transactions are spinning locally, and if one deals with
long transactions, the CLH lock can be replaced by a moni-
tor style lock that allow transactions to sleep while they are
queued (the overhead of such a lock will be mitigated by the
transactions cost, say, the cost of an I/O operation or its
being long.

3. EMPIRICAL PERFORMANCE EVALU-
ATION

This section presents a comparison of our TLRW algo-
rithm using byte-locks to algorithms representing state-of-
the-art lock-based [7] STMs on a set of microbenchmarks
that include the now standard concurrent red-black tree
structure [11] and a randomized work-distribution bench-
mark in the style of [27].

The red-black tree was derived from the java.util.TreeMap
implementation found in the Java 6.0 JDK. That implemen-
tation was written by Doug Lea and Josh Bloch. In turn,
parts of the Java TreeMap were derived from the Cormen
et al [1]. We would have preferred to use the exact Fraser-
Harris red-black tree but that code was written to to their
specific transactional interface and could not readily be con-
verted to a simple form.

The red-black tree implementation exposes a key-value
pair interface of put, delete, and get operations. The put
operation installs a key-value pair or the value if it already
exists. The get operation returns an indication if the key
was present in the data structure. Finally, delete removes
a key from the data structure, returning an indication if
the key was found to be present in the data structure. The
key range of 2K elements generates a small size tree while
the range of 20K elements creates a large tree, implying a
larger transaction size for the set operations. We report the
aggregate number of successful transactions completed in
the measurement interval, which in our case is 10 seconds.

In the random-array benchmark each worker thread loops,
generating a random index into the array and then executes
a transaction having R reads, W writes, and RW read-
modify-write operations. (The order of the read, write, and
read-write accesses within a transaction is also randomized).
The index is selected with replacement via a uniform ran-
dom number generator. While overly simplistic we believe

our model still captures critical locality of reference prop-
erties found in actual programs. We report the aggregate
number of successful transactions completed in the measure-
ment interval, which in our case is 10 seconds.

For our experiments we used 64-way Sun UltraSPARC R©
T2 multicore machine running SolarisTM 10. This is a ma-
chine with 8 cores that multiplex 8 hardware threads each
and share an on chip L2 cache. We also used a 128-way En-
terprise T5140 R© server (Maramba) machine, a 2-chip Nia-
gara system. Finally, we used an Intel Core2 R© i7-920 (Ne-
halem) processor with 4 cores that each multiplex 2 hard-
ware threads.

In our benchmarks we “transactified” the data structures
by hand: explicitly adding transactional load and store oper-
ators, but ultimately we believe that compilers should per-
form this transformation. We did so since our goal is to
explore the mechanisms and performance of the underlying
transactional infrastructure and not the language-level ex-
pression of“atomic.” Our benchmarked algorithms included:

Mutex We respectively used the Solaris and Linux POSIX
threads library mutex as a coarse-grained locking mech-
anism.

TL2 The transactional locking algorithm of [4] using the
GV4 global clock algorithm that attempts to update
the shared clock in every transaction, but only once:
even if the CAS fails, it continues on to validate and
commit. We use the latest version of TL2 which (through
several code optimizations, as opposed to algorithmic
changes) has about 25% better single threaded latency
than the version used in in [4]. This algorithm is rep-
resentative of a class of high performance lock-based
algorithms such as [26, 30, 8].

TL2-IP A version of TL2 with an added mechanism to pro-
vide implicit privatization. Our scheme, which we dis-
covered independently in 2007, was also discovered by
Marathe et al. [20] who in turn attribute the idea to
Detlefs et al. It works by using a simplistic GV1 global
clock advanced with CAS [4] before the validation of
the read-set. We also add a new egress global vari-
able, whose value “chases” the clock in the manner of a
ticket lock. We opted to use GV1 so we could leverage
the global clock as the incoming side of a ticket lock.
In the transactional load operator each thread keeps
track of the most recent GV (global clock) value that
it observed, and if it changed since the last load, we re-
fresh the thread local value and revalidate the read-set.
That introduces a validation cost that is in the worst
case quadratic. These two changes – serializing egress
from the commit – and revalidation are sufficient to
give TL2 implicit privatization. These changes solve
both halves of the implicit privatization problem, the
1st half being the window in commit where a thread
has acquired write locks, validated its read-set, but
some other transaction races past and writes to a lo-
cation in the 1st thread’s read-set, privatizing a region
to which the 1st thread is about to write into. Serial-
izing egress solves that problem. The 2nd half of the
serialization problem is that one can end up with zom-
bie reader transactions if a thread reads some variable
and then accesses a region contingent or dependent on
that variable, but some other thread stores into that

variable, privatizing the region. Revalidating the read-
set avoids that problem by forcing the 1st thread to
discover the update and causing it to self-abort.

TLRW-IOMux A version of our read-write lock-based STM
with the byte-locks replaced by a pair of counters to
track read-lock acquisition. One counter is incremented
upon read lock access, and the other is decremented
once the read lock is released. We found this splitting
of the reader-count performed better than using a sin-
gle reader-count that is both incremented and decre-
mented.

TLRW-bytelock A version of our new byte-lock based TLRW
algorithm that has a lock spanning a single line with
k = 48. We used the simplest byte-lock form (in which
writers always perform a CAS). We also tried a lock
spanning two 64 byte cache lines with k = 112 which
we will call TLRW-bytelock-128. We plan to, but did
not, devise a dynamic switching mechanism between
the two forms though as the reader will see, the data
indicates such a mechanism would be beneficial.

Our algorithm uses early (encounter order) lock acqui-
sition and an undo write set.

TLRW-BitLock It is precisely the same as TLRW-ByteLock
except that we replace the a 48-byte reader array with
a 64-bit reader mask field. To keep things as similar
and comparable as possible we constrained the mask
field to supporting only 48 “slots,” with the unslotted
threads using the reader counter. Similarly, we padded
the lock records so they are the same length in both
TLRW-ByteLock and TLRW-BitLock. Stores of 0 or 1
into the reader array in TLRW-ByteLock code become
CAS-based loops that load and set or clear the bit as-
sociated with a slotted thread. What were previously
loads of a slot in the reader array now become loads
of the reader bitmask and a mask/test of the thread’s
bit.

We begin by noting that we implemented a version of
TLRW-ByteLock with lazy acquisition (instead of early ac-
quisition and an undo write set) but do not include the re-
sults as they were not better than those yielded by TLRW-
ByteLock with early acquisition.

Another issue we needed to resolve was to understand
which fraction of the performance benefit shown by TLRW-
ByteLock arises from CAS-avoidance and which fraction from
the fact that we have a very efficient test to determine if
a thread is already a member of the read-set for a given
stripe. Not surprisingly given spatial and temporal locality
it’s common to find a thread read a given stripe multiple
times within the same transaction. That is, read-after-read
is common. Without a fast thread-has-already-read-this-
stripe test we’d need to revert to Bloom filters, hash tables,
or simple scanning of the read-set to determine if thread
was already a member of the read-set for the stripe. (If the
thread was not already a reader of that stripe then we need
to atomically bump the read counter and add the stripe to
the thread’s local read set list). Similarly, such a fast read-
set membership test is also useful when upgrading a stripe
from read to write status (write-after-read is also very com-
mon).

Our benchmarking showed that TLRW-bitlock exhibits
awful performance when compared to TLRW-ByteLock, in

particular it melted down at a concurrency level beyond
30 threads, suggesting that CAS-avoidance is the key to
TLRW-bytelock performance.

Having ruled out possible benefits of these two variations
of TLRW, let us move on to compare its performance with
that of other the remaining algorithms listed above.

Consider the two benchmarks of Figure 1 of a Red-Black
Tree with 25% puts and 25% deletes when tree size is 2K
and 20K respectively, and the left side of Figure 2 when
the level of modifications is down to 10%. As can be seen,
the performance of TL2 and TLRW-bytelock, and TLRW-
bytelock-128 are about the same, with similar scalability
curves in both cases. This is encouraging since the red-
black tree is a particularly trying data structure for TLRW
because the transactions read sets tend to overlap at the top
of the tree: in effect, the root must be locked by all transac-
tions. As can be seen, the TLRW-bytelock slightly outper-
froms the TLRW-bytelock-128 up to about 50 threads, after
which the TLRW-bytelock-128 wins. This suggests that one
should dynamically switch between the two, which we hope
to investigate in the future.

Next, in Figure 2, we show what happens when we con-
sider transactions with smaller overlaps. If we compare
TLRW-bytelock with TL2-IP, the form of TL2 that pro-
vides implicit privatization, we can see that TLRW-bytelock
has a significant performance advantage. To convince our-
selves that the scalability of TLRW is due to the use of
byte-locks, consider the throughput of the TLRW-IOMux
algorithm. Here the same TLRW algorithm runs, with locks
implemented using the best reader counters we could invent.
As can be seen TLRW-IOMux performs poorly, essentially
collapsing as the level of concurrency increases beyond 32
threads.

The left side of Figure 2 shows that TLRW and TL2 con-
tinue to scale about the same on a smaller tree when the
level of modifications goes down, but for deferent reasons.
TL2 does well, as has been explained in other papers [4] de-
spite the high abort rate, because it locks the nodes at the
head of the tree only rarely and because the cost of a retry
is very low. To understand why TLRW-bytelock performs
well, consider that it has significantly lower abort rates than
TL2, as seen in Figure 2. This helps mitigate the cost of
locking the head of the tree.

Next, consider Figure 4, which contains a chart that de-
scribes the common execution path (fast-path) instruction
counts (assuming no concurrent activity) for transactional
load and store operations in the speculative phase. In the
table, Read-after-read, for instance, is a subsequent read to a
data stripe that’s already been read in the same transaction.
The number V is the variable-length look-aside time where
TL2 checks for a match in the write-set, and the number L
is the cost of scanning the read-set for a match in TLRW-
ByteLock.

We note that the low costs of coherence on Sun’s Nia-
gara architecture is not unique. The new Intel Core i7TM

Nehalem class X86 machines also have very low store-load
memory barrier and CAS costs (about 2 and 8 cycles respec-
tively). On the other hand, the computational overheads of
the TL2 algorithm are handled better by the Nehalem’s deep
pipeline. As an example, Figure 3 shows the results for the
same benchmark as in Figure 1 on the Nehalem.

As noted earlier, the read sharing at the top of the red-
black tree impacts TLRW performance. In Figure 5, we

0

1000

2000

3000

4000

5000

6000

7000

8000

 10 20 30 40 50 60 70

10
00

 X
 o

ps
/s

ec

threads

Niagara-2 D25U25 20000

Mutex
TL2

TL2+IP
TLRW-IOMux

TLRW-ByteLock
TLRW-ByteLock128

0

1000

2000

3000

4000

5000

6000

7000

 10 20 30 40 50 60 70

10
00

 X
 o

ps
/s

ec

threads

Niagara-2 D25U25 2000

Mutex
TL2

TL2+IP
TLRW-IOMux

TLRW-ByteLock
TLRW-ByteLock128

Figure 1: Throughput of Red-Black Tree with 25% puts and 25% deletes when tree size is 2K and 20K
respectively on a 64 thread Niagara II.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 10 20 30 40 50 60 70

10
00

 X
 o

ps
/s

ec

threads

Niagara-2 D10U10 2000

Mutex
TL2

TL2+IP
TLRW-IOMux

TLRW-ByteLock
TLRW-ByteLock128

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 10 20 30 40 50 60 70

ab
or

t r
at

e

threads

Niagara-2 D10U10 2000 Abort Rate

TL2
TL2+IP

TLRW-IOMux
TLRW-ByteLock

TLRW-ByteLock128

Figure 2: Throughput of Red-Black Tree with 10% puts and 10% deletes and its related abort rates (lower
abort rate is better.).

0

2000

4000

6000

8000

10000

12000

 1 2 3 4 5 6 7 8

10
00

 X
 o

ps
/s

ec

threads

Nehalem-1x4x2 D25U25 20000

Mutex
TL2

TL2+IP
TLRW-ByteLock

TLRW-ByteLock128
TLRW-IOMux

Figure 3: Throughput of Red-Black Tree with 25%
puts and 25% deletes when tree size is 20K on an 8
thread Nehalem processor.

show what happens when we consider transactions with less
read sharing. Our artificial random array benchmark, tries
to capture the behavior of data structures such as hash ta-
bles that are highly distributed. In the benchmark, there is
no inter-transaction locality, but within a given transaction
the benchmark on the left hand side exhibits strong spatial

locality (all accesses are at small offsets from the original
randomly selected index) and the one on the right exhibits
moderate spatial locality.

In the random array benchmark, all the TLRW algorithms
outperform TL2. The TLRW-IOMux is the best performer
since the cost of using CAS operations on the reader counters
is low given that the sets of locations accessed are mostly
disjoint and there are therefore few invalidations. Here one
can also see that TLRW-bytelock which aligns along one
cache line performs as well as TLRW-IOMux and outper-
forms TLRW-bytelock-128 that incurs an extra cache inval-
idation given that most locations are not shared by transac-
tions.

Next we present the results of benchmarking a real ap-
plication, the MSF (Minimum Spanning Forest) benchmark
introduced by Kang and Bader [14]. The MSF program
takes a graph file (we used the US Western roads system
as input, just as in [14]) and computes a minimum span-
ning forest. The algorithm is concurrent and the implemen-
tation by Kang and Bader uses transactional memory. A
purely sequential thread-unsafe version of the program with
no transactional overhead completes in 15.9 secs.

In Figure 6 we see the results of running the MSF ap-
plication (The application performs a fixed amount of work
and reports the duration it took). Bader and Kang reported
that TL2 scaled well but the absolute performance was poor.

Operation Under TL2 Under TLRW-ByteLock
1st read 39 + V 24 + 1Membar
1st write 18 31 + 1CAS

Read-after-read 39 + V 12
Read-after-write 39 + V 13
write-after-read 18 39 + 1CAS + L
write-after-write 18 13

Figure 4: A chart that describes the fast-path instruction counts for loads and stores in TL2 and TLRW-
bytelock transactions. Notice that we are not counting the commit time costs which are negligible for
TLRW-bytelock yet involve a CAS per written location in TL2. As can be seen, TLRW-ByteLock can
leverage intra-transaction spatial and temporal locality, that is, the fact that transactions re-access the same
locations one after the other in the same short intervals.

0

100

200

300

400

500

600

700

 10 20 30 40 50 60 70

10
00

 X
 o

ps
/s

ec

threads

Niagara-2 F=8-R0-W0-RW32 65536

Mutex
TL2

TL2+IP
TLRW-IOMux

TLRW-ByteLock
TLRW-ByteLock128

0

500

1000

1500

2000

2500

3000

3500

 10 20 30 40 50 60 70

10
00

 X
 o

ps
/s

ec

threads

Niagara-2 F=10-R0-W0-RW32 524288

Mutex
TL2

TL2+IP
TLRW-IOMux

TLRW-ByteLock
TLRW-ByteLock128

Figure 5: Throughput of the randomized work distribution benchmark on a 64 thread Niagara II. On the left
a small array of 60K locations and a pattern of strong intra-transaction spatial locality and on the right 500K
locations with moderate intra-transaction spatial locality. Sets of 32 locations are read and then written in
these arrays.

4

8

16

32

64

128

256

512

1024

 1 2 4 8 16 32 64

du
ra

tio
n

in
 s

ec
s

threads

Niagara-2 MSF

Mutex
TL2

TLRW-ByteLock
TLRW-IOMux

Figure 6: Latency (lower is better) of the transacti-
fied MSF application of Kang and Bader.

Our results recapitulate their findings with TL2, but also
show that TLRW-ByteLock both scales well and shows a
significant improvement over TL2 in terms of absolute per-
formance.

We now consider the case of irrevocable transactions. We
ran a benchmark in which in addition to put and remove,
we ran an iteration operator over the nodes of the tree (a
classical Java library operation).

For reference, the baseline score for TLRW-byteLock with-
out the iterator, as seen in Figure 1, is 5.5 million operations
per second. In a typical run, when 31 threads executed 25%
put and 25% removes, and there was one iterator thread that
did not execute in irrevocable mode (i.e., it is just a normal
thread) the throughput for the 31 threads dropped to 0.61
million and yet the iterator had 7718 successes and 3990
failures. In a typical TL2 run the iterator never succeeds.
This seems to support our claim that TLRW in general may
have better progress properties than TL2. But those prop-
erties come at a cost because the iterator (even though it is
revocable) badly degraded the performance of the other 31
threads. If we use 31 threads and the iterator thread oper-
ates in irrevocable mode, then throughput for the 31 threads
drops to 0.44 million operations, and the iterator thread im-
proves slightly to 8408 successes. However, now there are 0
failures. From our benchmarking of the irrevocable mode,
we conclude that it is a good tool for guaranteeing progress
(necessary in the case of I/O) but seems to have a negligible
benefit for throughput.

Finally, we demonstrate how badly the TLRW algorithms
perform on systems where write-sharing (coherency traffic)
is expensive, which is the basis of our we claim that TLRW-
bytelock should be viewed as an algorithm for single chip
systems. In Figure 7 we show the throughput of a red-black
tree with threads spread evenly across a 2-chip Maramba
machine. The threads are not bound to cores and the oper-

0

2000

4000

6000

8000

10000

12000

14000

 20 40 60 80 100 120 140

10
00

 X
 o

ps
/s

ec

threads

Maramba D25U25 20000

Mutex
TL2

TL2+IP
TLRW-IOMux

TLRW-ByteLock
TLRW-ByteLock128

Figure 7: Throughput of Red-Black Tree on a 128
thread Maramba machine with 25% puts and 25%
deletes when the tree size is 20K.

ating system spreads them out so that half the threads on
one chip communicate with threads on the other through
an interconnect that is typically twice as slow as an on chip
memory access. This proves to be an intolerable coherence
cost for the TLRW algorithms. Note that if threads are
restricted to one chip TLRW performs well.

4. CONCLUSIONS
This paper introduced TLRW, a new form of transactional

locking that is in an algorithmic sense orthogonal to the
invisible-readers based approach at the basis of all Ennals-
style lock-based algorithms [7]. It overcomes many of the
drawbacks of invisible-read based STMs, providing implicit
privatization without a performance loss. The key to the
new algorithm is the byte-lock, a new type of read-write
lock that supports high read acquisition levels with little
overhead. As our benchmarks show, TLRW using byte-locks
suggest a new direction in STM design for the case of sin-
gle chip multicore systems. Our hope is that others will
find new ways to carry this approach further. Examples of
possible directions are dynamically switching among the 64
and 128 array sizes, and perhaps scaling further to 3 and
4 cache lines. Also, one can think of more elaborate dead-
lock detection and resolution schemes, partial rollbacks of
locks in a transaction, more aggressive irrevocable transac-
tion schemes, multiplexed bytes in the byte-lock instead of
the reader count and so on.

Readers interested in TLRW code can email:
tlrw-feedback@oracle.com.

5. REFERENCES
[1] Cormen, T., Leiserson, C., Rivest, R., and

Stein, C. Introduction to Algorithms, second
edition ed. MIT Press, Cambridge, MA, 2001.

[2] Craig, T. Building FIFO and priority-queueing spin
locks from atomic swap. Technical Report TR
93-02-02, University of Washington, Department of
Computer Science, February 1993.

[3] Dice, D. Weblog: http://blogs.sun.com/dave/entry/
cas and cache trivia invalidate, 2008.

[4] Dice, D., Shalev, O., and Shavit, N. Transactional
locking II. In Proc. of the 20th International

Symposium on Distributed Computing (DISC 2006)
(2006), pp. 194–208.

[5] Dice, D., and Shavit, N. Understanding tradeoffs in
software transactional memory. In CGO ’07:
Proceedings of the International Symposium on Code
Generation and Optimization (Washington, DC, USA,
2007), IEEE Computer Society, pp. 21–33.

[6] Ellen, F., Lev, Y., Luchangco, V., and Moir, M.
Snzi: scalable nonzero indicators. In PODC ’07:
Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing
(New York, NY, USA, 2007), ACM, pp. 13–22.

[7] Ennals, R. Software transactional memory should
not be obstruction-free. www.cambridge.intel-
research.net/ rennals/notlockfree.pdf.

[8] Felber, P., Fetzer, C., and Riegel, T. Dynamic
performance tuning of word-based software
transactional memory. In PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming (New York, NY,
USA, 2008), ACM, pp. 237–246.

[9] Guerraoui, R., and Kapalka, M. On the
correctness of transactional memory. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming
(New York, NY, USA, 2008), ACM, pp. 175–184.

[10] Harris, T., and Fraser, K. Concurrent
programming without locks.

[11] Herlihy, M., Luchangco, V., Moir, M., and
Scherer, III, W. N. Software transactional memory
for dynamic-sized data structures. In Proceedings of
the twenty-second annual symposium on Principles of
distributed computing (2003), ACM Press, pp. 92–101.

[12] Herlihy, M., and Shavit, N. The Art of
Multiprocessor Programming. Morgan Kaufmann
Publishers, San Mateo, CA, 2008.

[13] Herlihy, M. P., and Wing, J. M. Linearizability: a
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

[14] Kang, S., and Bader, D. A. An efficient
transactional memory algorithm for computing
minimum spanning forest of sparse graphs. In PPoPP
’09: Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and practice of parallel
programming (New York, NY, USA, 2009), ACM. To
appear.

[15] Lev, Y., Luchangco, V., Marathe, V., Moir, M.,
and Olszewski, D. N. M. Anatomy of a scalable
software transactional memory. In Transact 2009
Workshop Submission (2008).

[16] Magnussen, P., Landin, A., and Hagersten, E.
Queue locks on cache coherent multiprocessors. In
Proceedings of the 8th International Symposium on
Parallel Processing (IPPS) (April 1994), IEEE
Computer Society, pp. 165–171.

[17] Marathe, V. Personal communication.

[18] Marathe, V. J., and Moir, M. Toward high
performance nonblocking software transactional
memory. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming (New York, NY, USA, 2008),
ACM, pp. 227–236.

[19] Marathe, V. J., Spear, M. F., Heriot, C.,
Acharya, A., Eisenstat, D., Scherer III, W. N.,
and Scott, M. L. Lowering the overhead of software
transactional memory. Tech. Rep. TR 893, Computer
Science Department, University of Rochester, Mar
2006. Condensed version submitted for publication.

[20] Marathe, V. J., Spear, M. F., and Scott, M. L.
Scalable techniques for transparent privatization in
software transactional memory. Parallel Processing,
International Conference on 0 (2008), 67–74.

[21] Menon, V., Balensiefer, S., Shpeisman, T.,
Adl-Tabatabai, A.-R., Hudson, R. L., Saha, B.,
and Welc, A. Single global lock semantics in a
weakly atomic stm. In Transact 2008 Workshop
(2008).

[22] Moir, M. HybridTM: Integrating hardware and
software transactional memory. Tech. Rep. Archivist
2004-0661, Sun Microsystems Research, August 2004.

[23] Ni, Y., Welc, A., Adl-Tabatabai, A.-R., Bach,
M., Berkowits, S., Cownie, J., Geva, R.,
Kozhukow, S., Narayanaswamy, R., Olivier, J.,
Preis, S., Saha, B., Tal, A., and Tian, X. Design
and implementation of transactional constructs for
c/c++. In OOPSLA 08: Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages and Applications (2008).

[24] Riegel, T., Felber, P., and Fetzer, C. A lazy
snapshot algorithm with eager validation. In 20th
International Symposium on Distributed Computing
(DISC) (September 2006).

[25] Riegel, T., Fetzer, C., and Felber, P. Snapshot
isolation for software transactional memory. In
TRANSACT06 (Jun 2006).

[26] Saha, B., Adl-Tabatabai, A.-R., Hudson, R. L.,
Minh, C. C., and Hertzberg, B. Mcrt-stm: a high
performance software transactional memory system
for a multi-core runtime. In PPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming (New
York, NY, USA, 2006), ACM, pp. 187–197.

[27] Shavit, N., and Touitou, D. Software transactional
memory. Distributed Computing 10, 2 (February
1997), 99–116.

[28] Spear, M. F., Michael, M. M., and von Praun,
C. Ringstm: scalable transactions with a single atomic
instruction. In SPAA ’08: Proceedings of the twentieth
annual symposium on Parallelism in algorithms and
architectures (New York, NY, USA, 2008), ACM,
pp. 275–284.

[29] Tabba, F., Moir, M., Goodman, J. R., Hay,
A. W., and Wang, C. Nztm: nonblocking
zero-indirection transactional memory. In SPAA ’09:
Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures (New
York, NY, USA, 2009), ACM, pp. 204–213.

[30] Welc, A., Saha, B., and Adl-Tabatabai, A.-R.
Irrevocable transactions and their applications. In
SPAA ’08: Proceedings of the twentieth annual
symposium on Parallelism in algorithms and
architectures (New York, NY, USA, 2008), ACM,
pp. 285–296.

[31] Zilles, C., and Rajwar, R. Transactional memory
and the birthday paradox. In SPAA ’07: Proceedings
of the nineteenth annual ACM symposium on Parallel
algorithms and architectures (New York, NY, USA,
2007), ACM, pp. 303–304.

