Chapter 23

Applications of Algebraic Topology to Concurrent
Computation

Maurice Herlihy
Nir Shavit

Editorial preface

All parallel programs require some amount of synchronization to coor-
dinate their concurrency to achieve correct solutions. It is commonly
known that synchronization can cause poor performance by burdening
the program with excessive overhead. This chapter develops a connection
between certain synchronization primitives and topology. This connec-
tion permits the theoretical study of concurrent computing with all the
mathematical tools of algebraic and combinatorial topology.

This article originally appeared in STAM News, Vol. 27, No. 10, December
1994. It was updated during the summer/fall of 1995. :

A4y

Today, the computer industry is very good at making computers run faster:
speeds double roughly every two years. Eventually, however (and perhaps as
early as the turn of the century), fundamental limitations, such as the speed
of light or heat dissipation, will make further speed improvements increasingly
difficult. Beyond that point, the most promising way to make computers more
effective is to have many processors working i in parallel the approach known
as multiprocessing.

The hard part of multiprocessing is getting the individual computers to
coordinate effectively with one another. As a typical coordination problem, if
two computers, possibly far apart, both try to reserve the same airline seat,
care must be taken that exactly one of them succeeds. Coordination problems
arise at all scales in multiprocessor systems—at a very small scale, processors
within a single supercomputer might need to allocate resources, and at a very
large scale, a nationwide distributed system, such as an “information highway,”
might need to allocate communication paths over which large quantities of data
will be transmitted.

Coordination is difficult because multiprocessor systems are inherently

255



256 Applications on Advanced Architecture Compnters

asynchronous: processors can be delayed without warning for a variety of
reasons, including interrupts, preemption, cache misses, and communicatjoy,
delays. These delays can vary enormously in scale: a cache miss might delay
a processor for fewer than ten instructions, a page fault for a few mil)jg,
instructions, and operating system preemption for hundreds of milliong of
instructions. Any coordination protocol that does not take such delays int,
account runs the risk that a sudden delay of one process in the middle of a
coordination protocol may leave the others in a state where they are unable t,
make progress.

The need for effective coordination has long been recognized as a funds.
mental aspect of multiprocessor architectures. As a result, modern processors
typically provide hardware mechanisms that facilitate coordination. Until re.
cently, these mechanisms were chosen in an ad hoc fashion, but it is becoming
increasingly clear that some kind of mathematical theory is needed if the im-
plications of such fundamental design choices are to be understood.

In this article, we focus on some new mathematical techniques for anal yzing
and evaluating common hardware synchronization primitives. Aside from its
inherent interest to the computer science community, we believe this work may
be of interest to the mathematical research community because it establishes
a (perhaps unexpected) connection between asynchronous computability and
a number of well-known results in combinatorial topology.

In many multiprocessor systems, gprocessors communicate by applying
certain operations, called synchronization primitives, to variables in a shared-
memory. These primitives may simply be reads and writes, or they may include
more complex constructs, such as test-and-set, fetch-and-add, or compare-and-
swap. The test-and-set operation atomically writes a 1 to a variable and returns
the variable’s previous contents. The fetch-and-add operation atomically adds
a given quantity to a variable and returns the variable’s previous contents.
Finally, the compare-and-swap operation atomically tests whether a variable
has a given value and, if so, replaces it with another given value.

Over the years, computer scientists have proposed and implemented a
variety of different synchronization primitives, and their relative merits have
been the subject of a lively debate. Most of this debate has focused on the ease
of implementation and ease of use of the primitives. More recently, however, it
has emerged that some synchronization primitives are inherently more powerful
than others, in the sense that every synchronization problem that can be
solved by primitive A can also be solved by primitive B, but not vice versa.
This article describes the new conceptual tools that are making it possible
to provide a rigorous analysis of the relative computational power of different
synchronization primitives. This emerging theory could provide the designers
of computer networks and multiprocessor architectures with mathematical
tools for recognizing when problems are unsolvable, for evaluating alternative
synchronization primitives, and for making explicit the assumptions needed to
make a problem solvable.




Algebraic Topology and Concurrent Computation 257

Our discussion focuses on a simple but important class of coordination
tasks called decision problems. At the start with such problems, processors
are assigned private input values (perhaps transmitted from outside). The
processors communicate by applying operations to a shared-memory, and
eventually each process chooses a private output value and halts. The decision
problem is characterized by (1) the set of legitimate input value assignments
and (2) for each input value assignment, the set of legitimate output value
assignments. For example, consider the following renaming problem: as input
values, each processor is assigned a unique identifier taken from a large range
(like a social security number). As output values, the processors must choose
unique values taken from a much smaller range. (Renaming is an abstraction
of certain resource allocation problems.) '

To solve a decision problem, a processor executes a program called a
protocol. Because processors are subject to sudden delays, and because halting
one processor for an arbitrary duration should not prevent the others from
making progress, we require that each processor finish its protocol in a fixed
number of steps, regardless of how its steps are interleaved with those of other
processors. Such a protocol is said to be wait-free, since it implies that no
processor can wait for another to do anything.

23.1. Simplicial-Complexes

A decision problem has a simple geometric representation. Assume we'have
n + 1 processes, each assigned a different color. A processor’s state before
starting a problem is represented as a point in a high-dimension Euclidian
space. This point, called an input vertez, is labeled with a process color and
an input value. Two input vertices are compatible if (1) they have distinct colors
and (2) there exists a legitimate input value assignment that simultaneously
assigns those values to those processes. For example, in the renaming problem
described earlier, input values are required only to be distinct, so two input
vertices are compatible if and only if they have distinct colors and distinct input
values. We join any two compatible input vertices with a line segment, any
three with a solid triangle, and any four with a solid tetrahedron. In general,
any set of k compatible input vertices spans an input k-simplez in k-dimensional
space. The set of all possible input simplexes forms a mathematical structure,
called a simplicial complez. We call this structure the problem’s input complez.

The notions of an output vertez, output simplezx, and the problem’s output
complex are defined analogously, simply replacing input values with output
values. The decision problem itself is defined by a relation A that carries each
input n-simplex to a set of output n-simplexes. This relation has the following
meaning: if S is an input simplex, 7" is an output simplex, and the processors
start with their respective input values from S, then it is acceptable for them
to halt with their respective output values from T

For example, consider the instance of the renaming problem in which three
processors are assigned unique input values in some large range and must




258 Applications on Advanced Architecture Compytop,

coordinate to choose unique output values in the range 0 to 3. Here, an outpy;
simplex is a triangle whose vertices are labeled with distinct colors and distint
input values in the range 0 to 3. There are 4-3-2 = 24 distinct output triangleg.
and it is not difficult to draw them on a sheet of paper. The result, shown iy,
Figure 23.1, is topologically equivalent to a torus.

Fic. 23.1. Three-process renaming with four names.

Having shown how to specify a decision problem with a geometric model,
we now do the same for the protocols that solve such problems. Recall that a
protocol is a program: each processor starts out with its input value in a private
register, applies a sequence of operations to variables in the shared-memory.
and then chooses an output value based on the results of the computation.
We can view any such protocol as accumulating a history of shared-memory
operations—when the protocol has “seen enough,” it computes its output value
by applying a decision map to its history.

Any execution of a protocol generates a set of histories, one for each
processor. The set of all possible executions also defines a simplicial complex:
each vertex is labeled with a processor color and a history, and two vertices




Algebraic Topology and Concurrent Computation - 259

are compatible if they are labeled with distinct colors and if in some protocol
execution, they see those two histories. We call this the full-information
complez for the protocol. More precisely, for every input simplex S, any
protocol induces a corresponding full-information complex F(S). The union
of these complexes is the full-information complex for the protocol.

What does it mean for a protocol to solve a decision problem? Recall that a
decision map ¢ carries each history h to the output value chosen by the protocol
after observing h. The decision map induces a map from the full-information
complex to the output complex: §((P,h)) = (P,6(h)). We are now ready to
give a precise geometric statement of what it means for a protocol to solve
a decision problem: given a decision problem with input complex Z, output
complex O, and relation A, a protocol solves a decision problem if and only if,
for every input simplex S € 7 and every full-information simplex T' € F(S),
STy

This definition is simply a formal way of stating that every execution of
the protocol must yield an output value assignment permitted by the decision
problem specification. Roundabout as this formulation of this property might
seem, it has an important and useful advantage. We have moved from an
operational notion of a decision problem, expressed in terms of computations
unfolding in time, to a purely combinatorial description expressed in terms
of relations among topological spaces. It is typically easier to reason about
static mathematical relations than about ongoing computations, but, #ore
importantly, this model allows us to exploit classical results from the rich
literature on algebraic and combinatorial topology.

To prove that certain decision problems cannot be solved by certain classes
of protocols, it is enough to show that no decision map exists. We can derive a
number of impossibility results by exploiting basic properties that any decision
map must have. In particular, any decision map is a simplicial map: it carries
vertices to vertices, but it also carries simplexes to simplexes. Simplicial maps
are also continuous: they preserve topological structure. If we can show that a
class of protocols generates full-information complexes that are “topologically
incompatible” with the problem’s output complex, then we have established
impossibility. Conversely, if we can prove that the decision map exists, then
we have shown that a protocol exists.

A complex has no holes if any sphere embedded in the complex can be
continuously deformed to a point. (More technically, the complex has trivial
homotopy groups.) It has no holes up to dimension d if the same property holds
for spheres of dimension d or less. (Notice that when d is zero, this condition
means the complex is connected.) For example, a two-dimensional disk (e.g.,
a plate) has no holes, and a two-dimensional sphere (e.g., a basketball) has
no holes up to dimension one, because any loop (e.g., a rubber band) on the
sphere can be deformed to a point. By contrast, a torus has no holes only up
to dimension zero—it is connected, but not every 1-sphere (loop) placed on
the surface can be deformed to a point.




el E AT s At R e e

260 Applications on Advanced Architecture Compuygop

23.2. Read/Write Protocols

The simplest interesting synchronization primitives are atomic reads and writey
to variables in shared-memory. We recently used this simplicial model to give
a complete combinatorial characterization of the decision problems that cay
be solved by read/write protocols [8].

The full-information complexes for read/write protocols have a remarkahle
property: for any input simplex S, the full-informaticon complex F(S) has
no holes. This property holds for any read/write protocol, no matter how
many variables it uses or how long it runs. This property is a powerful tool
for proving impossibility results. A careful analysis of the renaming problem
shows that if there are fewer than 2n-+1 possible output values, then the output
complex has a hole. Moreover, any decision map must “wrap” a particular
sphere in the full-information complex around that hole in such a way that
the image of the sphere cannot be continuously deformed to a single point.
Because the full-information complex has no holes, however, that sphere can
be continuously deformed to a point in the full-information complex. Becausc
the decision map is continuous, the image of that sphere can also be contracted
to a point, and we have a contradiction. The same kind of analysis shows that
a variety of fundamental synchronization problems have no wait-free solutions
in read/write memory.

This topological model also yields a,universal” algorithm that can be used
to solve any problem that can be solved by a wait-free read/write protocol.
Any decision problem can be considered as a kind of “approximate agreement”
problem in which each processor chooses a vertex in the output complex,
and the processors negotiate among themselves to ensure that all processors
choose vertices of a common simplex. This problem, which we call “simplex
agreement,” provides a simple normal form for any decision task protocol.

We can combine these two notions to give a complete characterization of
the decision problems that can be solved by wait-free read/write protocols.
Because the exact conditions require some technical definitions beyond the
scope of this“article, the focus here is on the underlying intuition. A decision
problem has a wait-free read/write protocol if and only if the relation A can
be “approximated” by a continuous map on its underlying point set, in the
following sense. Given the input complex Z, construct a new complex, o(Z),
by subdividing each simplex in Z into smaller simplexes. If v is a vertex in
o(T), define carrier(v) to be the smallest simplex in Z that contains v. The
decision problem is solvable in read/write memory if and only if there exists
a subdivision ¢(Z) and a simplicial map p : o(Z) — O such that for each
vertex v € o(Z), p(v) € A(carrier(v)). Informally, this condition states that it
must be possible to “stretch” and “fold” the input complex so that each input
simplex can cover its corresponding output simplexes.

This condition is shown schematically in Figure 23.2. The top half of the
figure illustrates the relation A for a generic decision problem, and the bottom
half shows how A can be approximated by a simplicial (continuous) map .




Algebraic Topology and Concurrent Computation 261

A
T ™

task spec

i

simplicial
map

#g'

Fic. 23.2. Egistence condition for read/write protocols.

23.3. Other Kinds of Protocols

Although read /write protocols have considerable theoretical interest, real mul-
tiprocessors typically provide more powerful synchronization primitives. The
topology of full-information complexes for such protocols is more complicated.
For example, Figure 23.3 shows the full-information complexes for two simple
protocols in which processors communicate by applying test-and-set operations
to shared variables. Casual inspection shows that these full-information com-
plexes differ from their read/write counterparts in one fundamental respect:
they have one-dimensional holes. Nevertheless, they do resemble them in an-
other respect: they are connected. In general, any protocol in which (n + 1)
processors communicate by pairwise sharing of test-and-set variables has a
full-information complex with no holes up to dimension |7/2].

In a recent paper, Herlihy and Rajsbaum [6] analyzed the topological prop-
erties of full-information complexes for a family of synchronization primitives
called k-consensus objects, which encompasses many of the synchronization
primitives in use today. The larger the value of k, the more powerful is the
primitive. The full-information complex for any protocol in which processes




262 Applications on Advanced Architecture (‘m“mlll‘rc;
communicate via k-consensus objects has no holes up to dimension L-n./!cJ, S0 !
at one extreme, when k = 1, the complex has no holes at all, and at the other
extreme, the complex becomes disconnected. As k ranges from 1 to 4
holes appear first in higher dimensions and then spread to lower (‘limm]simmr
A surprising implication of this structure is that there exist simple synchroniz,.
tion primitives that are incomparable: it is impossible to construct a wait-fyee
implementation of one from the other.

Fic. 23.3. Full-information complezes for some test-and-set protocols.

23.4. Related Work

The consensus problem is an idealized form of the transaction commitment pro-
tocols commonly used in distributed databases. In 1985, Fischer, Lynch, and
Paterson [5] showed that if processors communicate by exchanging messages,
then any consensus protocol has a “window of vulnerability” during which the
failure or delay of a single processor will cause the protocol itself to fail or
delay. This result showed that the notion of “asynchronous computability”
differs in important ways from conventional notions of computability. Since
then, a variety of research efforts have focused on characterizing the decision
problems that can be solved by particular synchronization primitives in the
presence of unpredictable failures and delays.

In 1988, Biran, Moran, and Zaks [1] gave a graph-theoretic characterization
of decision problems that can be solved in the presence of a single failure in
a message-passing system. This result was not substantially improved until
1993, when three independent research teams—Borowsky and Gafni [2, 3],
Saks and Zaharoglou [9], and Herlihy and Shavit [7]—succeeded in applying
combinatorial techniques to protocols that tolerate delays by more than one

.—1:‘




Algebraic Topology and Concurrent Computation 263

Processor.
We provided the complete characterization of read/write solvability in
two recent papers [7, 8]. The analysis of the topological properties of full-
information complexes for protocols using more powerful primitives appears in
a recent paper by Herlihy and Rajsbaum [6]. Recently, Chaudhuri et al. [4]
were able to use similar topological techniques to derive the first lower bounds
for a class of decision problems in a message-passing system in which processors
execute in lockstep, but in which a processor can fail at any time by halting.

23.5. Conclusions

We believe this topological approach has a great deal of promise for the
theory of distributed and concurrent computation, and that it merits further
investigation. It has already produced a number of new and unexpected results
and has illuminated an unexpected connection between the emerging theory
of concurrent computation and the well-established theories of algebraic and
combinatorial topology.

References

[1] O. BIRAN, S. MORAN, AND S. ZAKS, A combinatorial characterizalion of the
distributed tasks which are solvable in the presence of one faulty processor, in Proc.
7th Annual ACM Symposium on Principles of Distributed Computing, August,]988,
pp. 263-275.

[2] E. Borowsky AND E. GAFNI, Generalized flp impossibility result for t-
resilient asynchronous computations, in Proc. 1993 ACM Symposium on Theory of
Computing, May 1993.

[3] E. BOROWSKY AND E. GAFNI, Immediate atomic snapshots and fast renaming,
in Proc. 12th Annual ACM Symposium on Principles of Distributed Computing,
August 1993.

[4] S. CuaupHURI, M. HERLIHY, N. LyNCH, AND M.R. TUTTLE, A tight lower
bound for k-set agreement, in Proc. 34th IEEE Symposium on Foundations of
Computer Science, October 1993.

[5] M. FISCHER, N.A. LyNCH, AND M.S. PATERSON, Impossibility of distributed
commat with one faulty process, J. Assoc. Comput. Mach., 32(1985), pp. 374-382.
6] M.P. HERLIHY AND S. RAJSBAUM, Set consensus using arbitrary objects, in
Proc. 13th Annual ACM Symposium on Principles of Distributed Computing, August
1994.

[7] M.P. HERLIHY AND N. SHAVIT, The asynchronous computability theorem for t-
restlient tasks, in Proc. 1993 ACM Symposium on Theory of Computing, May 1993.
[8] M.P. HERLIHY AND N. SHAVIT, A simple constructive computability theorem for
wail-free computation, in Proc. 26th Annual Symposium on Theory of Computing,
May 1994, pp. 243-252.

[9) M. Saks AND F. ZAHAROGLOU, Wait-free k-set agreement is impossible:
The topology of public knowledge, in Proc. 1993 ACM Symposium on Theory of
Computing, May 1993.




