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Abstract. Lock-free algorithms are not required to guarantee a bound
on the number of steps an operation takes under contention, so we cannot
use the usual worst-case analysis to quantify them. A natural alternative
is to consider the worst-case time complexity of operations executed in
the more common uncontended case.

Many state-of-the-art lock-free algorithms rely on compare-and-swap
(CAS) or similar operations with high consensus number to allow effec-
tive interprocess coordination. Given the fundamental nature of consen-
sus operations to interprocess coordination, and the fact that instructions
such as CAS are usually significantly more costly than simple loads and
stores, it seems natural to consider a complexity measure that counts the
number of operations with higher consensus number.

In this paper we show that, despite its natural appeal, such a mea-
sure is not useful. We do so by showing that one can devise a wait-
free implementation of the universal compare-and-swap operation, with
a “fast path” that requires only a constant number of loads and stores
when the CAS is executed without contention, and uses a hardware CAS
operation only if there is contention. Thus, at least in theory, any CAS-
based algorithm can be transformed into one that does not invoke any
CAS operations along its uncontended “fast path”, so simply counting
the number of such operations invoked in this case is meaningless.

1 Introduction

Compare-and-swap (CAS)—an operation with infinite consensus number in the
wait-free/lock-free hierarchy [9]—has been used in implementing numerous non-
blocking data structures and operations. Recently, it has been used to implement
non-blocking work-stealing deques [1, 8], linked lists [6, 23], hash tables [23, 26],
NCAS [7, 10], and software transactional memories [14]. The implementations of
these data structures adopt an optimistic approach, in which an operation com-
pletes quickly in the absence of contention but may incur a significant perfor-
mance penalty when it encounters contention. The assumption in this approach
is that contention is generally low, so most operations will complete without
incurring the penalty.

Some useful non-blocking progress conditions, such as lock-freedom and the
recently proposed obstruction-freedom condition [12], are not required to provide
a worst-case bound on operation time complexity in the contended case. There-
fore, standard worst-case analysis is not applicable to such algorithms. An alter-
native is to count the various types of synchronization operations executed in the



presumably common uncontended executions, extending an approach taken by
Lamport [19], who counted the number of loads and stores on the uncontended
“fast path” of a mutual exclusion algorithm.

The cost of executing a hardware CAS operation has been estimated to be
anywhere from 3 to 60 times higher than that of a simple load or store, depending
on the architecture [2, 17], and this relative cost is expected to grow [16]. Thus,
it is natural to consider a complexity measure that counts the number of CAS
operations invoked on the uncontended path.

This paper shows that, however natural, such a complexity measure is not
useful. We achieve this by presenting a linearizable, wait-free implementation
of a shared variable that supports load, store3 and CAS operations that do
not invoke expensive hardware synchronization operations (such as CAS) in the
uncontended case. We call our implementation fast-CAS.

Fast-CAS variables implemented using our algorithm can be allocated and
deallocated dynamically. Unlike many non-blocking algorithms, our algorithm is
population-oblivious [13]; that is, it does not require knowledge of a bound on
the number of threads that access it. When there are V fast-CAS variables and
T threads, our algorithm requires O(T + V ) space. Therefore, the incremental
space overhead for each new variable and each new thread is constant.

The key to our fast-CAS implementation is the understanding that one can
build a mechanism to detect contention and default to using hardware CAS only
in that case, in a way that allows for a fast-path consensus mechanism that
uses only a constant number of multi-writer shared registers when there is no
contention. We explain this construction in stages, first exposing the intricacies
of building a wait-free one-shot fast-path consensus algorithm (Section 3), and
then presenting our reusable fast-path CAS implementation in detail (Section 4).

Our fast-CAS object is widely applicable because it fully complies with the
semantics of a shared variable on which atomic load, store, and CAS operations
can be performed repeatedly. As such, it can be used as a “black box” in any
CAS-based algorithm in the literature. Thus, it implies the following theorem:

Any CAS-based concurrent algorithm, blocking or non-blocking, can be
transformed to one that does not invoke hardware CAS operations if
there is no contention.

Though our algorithm is widely applicable, it should be viewed primarily as a
theoretical result, as it is unlikely to provide performance benefits in the common
shared-memory multiprocessor architectures in which we are most interested (the
“fast” part of the name relates more to the motivation than to the end result).
Our fast-CAS implementation—which requires up to six loads and four stores
in the absence of contention—is likely to be at least as expensive as invoking a
hardware CAS operation on such architectures. Moreover, the algorithm depends

3 In this paper, we show only how to implement load and CAS operations; store is a
straightforward extension of CAS.



on sequential consistency [18] for correctness, and must therefore be augmented
with expensive memory barrier operations on many modern architectures.4

Nevertheless, our result implies that it is never necessary to invoke a hard-
ware CAS operation if there is no contention, regardless of the non-blocking
progress condition considered. This has important consequences both for the
search for a separation between novel consistency conditions such as obstruction-
freedom [12] and stronger progress properties in modern shared-memory mul-
tiprocessors [9], and for guiding our thinking when designing and evaluating
non-blocking algorithms. Specifically, it shows that what we and others have
considered to be a natural measure—the number of CAS operations invoked by
an uncontended operation—is not a useful measure for either purpose.

Unrelated Work

Because CAS can be used to implement wait-free consensus, while loads and
stores alone are not sufficient, our result may seem counterintuitive to some
readers familiar with various impossibility results and lower bounds in the liter-
ature. In particular, using the bivalency proof technique of Fischer, Lynch and
Paterson [5], Loui and Abu-Amara [20] showed that no deterministic, wait-free
algorithm can implement consensus using only loads and stores. Furthermore,
Fich, Herlihy and Shavit [4] showed that even nondeterministic consensus al-
gorithms require Ω(

√
T ) space per consensus object for implementations from

historyless objects, where T is the number of participants. In contrast, our al-
gorithm is wait-free and deterministic, uses only constant space per fast-CAS
variable, and uses only loads and stores in the uncontended case.

This apparent contradiction can be resolved by understanding that the bad
executions at the core of these impossibility proofs rely on interleaving the steps
of multiple threads. Therefore, these results do not apply to our algorithm, which
can use CAS in these contended executions.

Organization of this paper: Section 2 presents some preliminaries. In Section 3,
we illustrate the intuition behind the key ideas in our CAS implementation
by presenting a much simpler one-shot wait-free consensus algorithm. Then,
in Section 4, we present our fast-CAS implementation in detail. We sketch a
linearizability proof in Section 5. Concluding remarks appear in Section 6.

2 Preliminaries

The correctness condition we consider for our implementations is that of lineariz-
ability [15]. Informally, a linearizable implementation of an object that supports
a set of operations guarantees that every execution of every operation can be
considered to take effect at a unique point between its invocation and response,
4 In simple performance experiments conducted with the help of Ori Shalev, our fast-

CAS implementation performed slightly worse than hardware CAS.



such that the sequence of operations taken in the order of these points is consis-
tent with the sequential specification of the implemented operations.

For the purposes of presentation, we consider a shared-memory multiproces-
sor system that supports linearizable load, store, and compare-and-swap (CAS)
instructions for accessing memory. A CAS(a,e,n) instruction takes three pa-
rameters: an address a, an expected value e, and a new value n. If the value
currently stored at address a matches the expected value e, then CAS stores the
new value n at address a and returns true; we say that the CAS succeeds in this
case. Otherwise, CAS returns false and does not modify the memory; we say
that the CAS fails in this case.

3 One-Shot Consensus

Before presenting our fast-CAS implementation in detail, we first illustrate the
key idea behind this algorithm by presenting a simple wait-free consensus algo-
rithm. In the consensus problem [5], each process begins with an input value,
and each process that terminates must decide on a value. It is required that
every process that decides on a value decides the same value, and that this value
is the input value of at least one process.

shared variables
val t V; // value
bool C; // contention
val t D; // decision value

initially
¬C ∧
D = ⊥ ∧
V = ⊥

val t propose(val) {
1: if splitter()
2: V = val;
3: if ¬C return val;

else
4: C = true;
5: if V 6= ⊥
6: val = V;
7: CAS(&D,⊥,val);
8: return D;

Fig. 1. Simple wait-free consensus algorithm.

Our simple consensus algorithm, shown in Fig. 1, has the property that if a
single process p executes the entire algorithm without any other process starting
to execute it, then p reaches a decision using only read and write operations.
The high-level intuition about how this is achieved is the same as for several
read-write-based consensus algorithms in the literature. Specifically, if p runs
for long enough without any other process starting to execute, then p writes
information sufficient for other processes that run later to determine that p has
already decided on its own value, and then determines that no other process has
yet begun executing. In this case, p can return its own input value; processes
that run later will determine that it has done so, and return the same value.



From results mentioned in Section 1, we know that read-write-based consen-
sus algorithms cannot guarantee termination in bounded time in all executions.
Some such algorithms (e.g., the algorithm of Saks, Shavit and Woll [25]) use
randomization to provide termination with high probability. The algorithm in
Fig. 1 takes a different approach: in case of contention, it employs a CAS op-
eration to reach consensus. Below we briefly explain our algorithm and how it
avoids the use of CAS in the absence of contention, and employs CAS to ensure
that every process reaches a decision within a bounded number of steps in the
face of contention.

Central to our consensus algorithm is the use of a “splitter”5 function. The
splitter function has the following properties:

1. if one process completes executing the splitter function before any other
process starts, then that process “wins” the splitter (i.e., the function returns
true); and

2. at most one process wins the splitter.

In addition to the shared variables used to implement the splitter function,
the algorithm employs three other shared variables. V is used by the process (if
any) that wins the splitter to record its input value. C is used by processes that
detect contention by losing the splitter to indicate to any process that wins the
splitter that contention has been detected. D is used by processes that detect
contention to determine a consensus decision. C is initialized to false, and V and
D are both initialized to ⊥, a special value that is assumed not to be the input
value of any process.

Consider what happens if process p runs alone. By Property 1 above, p wins
the splitter (line 1), writes its input value to V (line 2), and then—because no
other process is executing—reads false from C and returns p’s input value. By
Property 2, any subsequent process q loses the splitter, sets C to true (line 4), and
then reads V. Because p completed before q started, q sees p’s input value (which
is not ⊥) in V, changes its input value to that value (line 6), and attempts to
CAS it into D (line 7). Because all such processes behave the same way, whether
q’s CAS succeeds or not, q returns p’s input value, which it reads from D (line 8).

Now suppose no process runs alone. If all processes return from line 8, it is
easy to see that they all return the same value. If any process p returns from
line 3, then it won the splitter, so all other processes lose the splitter and return
from line 8. Furthermore, p writes its input value to V before any process executes
line 4, so all other processes see p’s input value in V on line 5 and, as explained
above, return it from line 8.

In the algorithm presented in Fig. 1, all processes except possibly one invoke
a CAS operation. We can modify this algorithm so that, provided one process
completes before any other starts, none of the processes invoke CAS: Any process
5 Several variations on Lamport’s “fast path” mechanism for mutual exclusion [19]

have been used in wait-free renaming algorithms, beginning with the work of Moir
and Anderson [24]. These mechanisms have come to be known as splitters in the
renaming literature [3].



that would have returned from line 3 first writes its input value into D, and before
invoking CAS, all processes check whether D = ⊥, and if not, they instead
return the value found. Thus, this algorithm can replace a consensus object (or
a CAS variable that changes value at most once) in any non-blocking algorithm
without changing the asymptotic time or space complexity of the algorithm.
However, again, we do not believe such a substitution is likely to provide a
performance benefit in practice in current architectures; the immediate value
of our results is in their implications about useful complexity measures of non-
blocking algorithms, and in guiding results that attempt to establish a separation
between non-blocking progress conditions.

4 Wait-Free CAS Implementation

The one-shot consensus algorithm described in the previous section illustrates
the basic idea behind the fast-CAS implementation presented in this section:
we use a splitter to detect the simple uncontended case, and then use a hard-
ware CAS operation to recover when contention complicates matters. However,
because the CAS implementation is long-lived, supporting multiple changes of
value, it is more complicated. The first step towards supporting multiple changes
is showing that the splitter can be reset and reused in the absence of contention.
However, after contention has been encountered, we still have to allow value
changes, and also when the contention dies down, we want to be able to again
avoid the use of the hardware CAS operation.

These goals are achieved by introducing a level of indirection: we associate
with each implemented variable a fixed location which, at any point in time,
contains a pointer to a memory block; we call this block the current block for that
variable. Each block contains a value field V; under “normal” circumstances, the V
field of the current block contains the abstract value of the implemented variable.
A block is active when it becomes current, and remains active and current as
long as there is no contention. While the current block is active, operations can
complete by acting only on that block without using CAS or any other strong
synchronization primitives. When there is contention, an operation may make
the current block inactive, which prevents the abstract value from changing while
that block remains current. Once inactive, a block remains inactive. Therefore,
an operation that wishes to change the abstract value when the current block is
inactive must replace the block (using CAS) with a new active block.6

Data structures

The structure of a block and C-like pseudocode for WFRead and WFCAS are shown
in Fig. 2. For simplicity, we present the code for a single location L; it is straight-
forward to modify our code to support multiple locations.
6 As discussed later, this operation invokes CAS even it executes alone. However, once

the current block is replaced with an active block, no subsequent operation invokes
CAS until contention is again detected.



struct blk s {
pidtype X; // splitter
bool Y; // variables
val t V; // value
bool C; // contention
val t D; // decision value

} blk t

initially For some b,
L = b ∧
¬b→Y ∧
¬b→C ∧
b→D = ⊥ ∧
b→V = initial value

val t decide(blk t *b) {
1: v = b→V;
2: CAS(&b→D,⊥,v);
3: return b→D;
}

blk t *get new block(val t nv) {
4: nb = malloc(sizeof(blk t));
5: nb→Y = false;
6: nb→C = false;
7: nb→D = ⊥;
8: nb→V = nv;
9: return nb;
}

val t WFRead() {
10: blk t ∗b = L;
11: val t v = b→V;
12: if (¬b→C) return v; R1
13: return decide(b); R2
}

bool WFCAS(val t ev, val t nv) {
14: if (ev == nv) return WFRead()==ev; C1
15: blk t *b = L;
16: b→X = p;
17: if (b→Y) goto 27;
18: b→Y = true;
19: if (b→X 6= p) goto 27;
20: v = b→V;
21: if (b→C) goto 28;
22: if (v 6= ev)

b→Y = false;
return false; C2

23: b→V = nv;
24: if (b→C)
25: if (decide(b) == nv) return true; C3

goto 28;
26: b→Y = false;

return true; C4
27: b→C = true;
28: if (decide(b) 6= ev) return false; C5
29: nb = get new block(nv);
30: return CAS(&L,b,nb); C6
}

Fig. 2. Wait-free implementation of WFRead and WFCAS. Statement labels indicate atom-
icity assumptions for proof, as explained in Section 5.

A block b has five fields: The C field indicates whether the block is active
(b→C holds when b is inactive, i.e., contention has been detected since b became
current), and the V field of the current block contains the abstract value while
that block is active. The D field is used to determine the abstract value while
the block is current but inactive. (The D field is initialized to ⊥, a special value
that is not L’s initial value, nor passed to any WFCAS operation.) The X and Y
fields are used to implement the splitter that is used to detect contention (the
splitter code is included explicitly in lines 16 to 19). For this algorithm, winning
the splitter is interpreted as reaching line 20; recall that a process always wins
the splitter if there is no contention. If the splitter does detect contention, then
the operation branches to line 27, where it makes the block inactive.

Below we describe the WFCAS and WFRead operations in more detail. These
descriptions are sufficient to understand our algorithm, but do not consider all
cases. We sketch a formal correctness proof in Section 5.



The WFCAS operation

A WFCAS operation whose expected and new values are equal is trivially reduced
to a WFRead operation (discussed below); WFCAS simply invokes WFRead in this
case (line 14). This is not simply an optimization; it is needed for wait-freedom,
as explained later. Henceforth, assume the expected and new values differ.

Suppose a WFCAS operation reads b when it executes line 15—that is, b is
the current block at this time—and then goes through the splitter of block b
(lines 16 to 19), reaching line 20, and reads v from b→V. As long as b is the
current block, the splitter guarantees that until this operation resets the splitter
(by setting b→Y to false in line 22 or 26), no other operation executes lines 20
to 26 (see Lemma 1 in Section 5).

If b is active throughout this operation’s execution (checked on lines 21
and 24), then b→V contains the abstract value during that interval, so the op-
eration can operate directly on b→V. Specifically, if b→V does not contain the
operation’s expected value, the operation resets the splitter, and returns false
(line 22). Otherwise, the operation stores its new value in b→V (line 23). Because
the splitter guarantees that no other process writes b→V before the operation
completes, this store changes the abstract value from the operation’s expected
value to its new value (assuming b remains active throughout the operation).

If, after writing b→V, the operation discovers that b is no longer active
(line 24), then it does not know if its store succeeded in changing the abstract
value because the store may have occurred before or after b became inactive; no
process can ascertain the order of these events. Instead, processes that find (or
make) the current block inactive use a simple agreement protocol (by invoking
decide(b) in line 25 or 28) to determine the value that is the abstract value from
the moment that b becomes inactive until b is replaced as the current block; we
call this the decision value of b. Processes make this determination by attempt-
ing to change b→D from the special value ⊥ to a non-⊥ value read from b→V
(line 1). This is achieved using a CAS operation (line 2), so that all processes
determine the same decision value (line 3) for block b.

The decision value of block b is crucial to the correctness of our algorithm;
we must ensure that it is chosen such that the abstract value changes when
b becomes inactive if and only if a WFCAS operation executing at that point,
with expected and new values corresponding to the abstract values immediately
before and after the change, is considered to have taken effect at that point.

As described above, the tricky case occurs when a WFCAS operation by some
process p stores its new value to b→V—where b is the block it determined to
be current when it executed line 15—and then determines at line 24 that b has
become inactive.

If p’s store occurs before b becomes inactive, then the abstract value changes
at the store, and so the WFCAS operation must return true. This is ensured by
our algorithm because the decision value of b is a value read from b→V after b
becomes inactive, and the splitter ensures that no other value is stored into b→V
after p’s store and before p’s operation completes (Lemma 1).



On the other hand, if p’s store occurs after b becomes inactive then the
abstract value does not change at the time of the store because, as stated above,
from the time b becomes inactive until b is no longer current, the abstract value
is the decision value of b. However, if the decision value of b is p’s new value,
then p cannot determine the relative order of p’s store and b becoming inactive.
Therefore, p returns true (line 25) in this case too, which is correct because
the abstract value changes from p’s expected value to p’s new value when b
becomes inactive. (The properties of the splitter and the test in line 22 together
ensure that the abstract value is p’s expected value immediately before b becomes
inactive in this case.)

Otherwise, the decision value of b is not p’s new value (so p does not return
true from line 25). In this case, we argue that the decision value of b is the ab-
stract value immediately before b becomes inactive; that is, the abstract value
does not change when b becomes inactive. To see why, first observe that p exe-
cutes the store only after determining that b→V is its expected value (line 22).
Recall that the splitter guarantees that no process changes b→V between p ex-
ecuting statement 20 and the completion of p’s operation (Lemma 1). Thus,
because the decision value of b is a value read from b→V after b becomes inac-
tive, this decision value can only be p’s expected value or p’s new value.

Recall that, once the current block becomes inactive, the abstract value can-
not change until that block is replaced as the current block, as described next.

If a WFCAS operation finds that b is inactive and it has not changed the
abstract value—that is, either the test on line 21 succeeds or the one on line 25
fails—then the operation invokes decide(b) to determine the decision value of b
(line 28). This value is the abstract value from the time b became inactive until
b is replaced as the current block, and thus, in particular, it is the abstract value
at some time during the execution of this operation. If the decision value is not
the operation’s expected value, the operation returns false (line 28).

Otherwise, the operation prepares a new active block with its new value in
the V field (line 29), and attempts to replace b with this new block using CAS
(line 30). If the CAS succeeds, then the abstract value changes from the decision
value of b, which is the operation’s expected value, to the value in the V field
of the new block, which is the operation’s new value, so the operation returns
true. If the CAS fails, then at some point during the execution of this operation,
another WFCAS operation replaced b with its own block, whose V field contains
that operation’s new value, which is not the decision value of b (because that
operation’s expected value is the decision value of b, and is not, by the test on
line 14, the operation’s new value). Therefore, immediately after b is replaced,
the abstract value differs from the decision value of b, which is the expected value
of the WFCAS operation that failed to replace b, so that operation can return false.

The WFRead operation

It is now easy to see how a WFRead operation works. It first reads L to find the
current block (line 10), and then it reads the V field of that block (line 11). If
that block is active afterwards, then the value read was the abstract value when



line 11 executed, so the operation returns that value (line 12). Otherwise, it
returns the decision value of that block (line 13). If the block was active when
the operation read L, then its decision value was the abstract value when the
block became inactive. Otherwise, its decision value was the abstract value at
the time L was read in line 10.

Space overhead

At any point in time, our algorithm requires one fixed location and one block—
the current block—for each fast-CAS variable. In addition, deallocation of blocks
that were previously current may be prevented because slow threads may still
access them in the future, and some blocks may have been allocated but not
(yet) made current. (The determination of when a block can be safely freed can
be made using a non-blocking memory management scheme such as the one
described in [11].) Each one of these additional blocks is associated with at least
one thread, and each thread is associated with at most one block. Therefore, the
total space requirement of our algorithm when used to implement V variables
for T threads is O(T + V ); that is, there is a constant additional space cost for
each new fast-CAS variable and each new thread.

A note on contention

As we have stated, if there is no contention, the WFRead and WFCAS operations
do not invoke CAS. However, if there is contention, some operations may invoke
CAS—even operations that do not execute concurrently with that contention.
For example, a pair of concurrent WFCAS operations can leave the algorithm in
a state in which the current block is no longer active; in this case, a later WFCAS
operation that executes alone will have to execute a CAS in order to install a
new block. Unless contention arises again later, all subsequent operations will
again complete without invoking CAS.

5 Linearizability Proof Sketch

In this section, we sketch a proof that our algorithm is a linearizable implemen-
tation of WFRead and WFCAS. In the full paper, we present a complete and more
detailed proof [21]. Specifically, given any execution history, we assign each op-
eration a linearization point between its invocation and response such that the
value returned by each operation is consistent with a sequential execution in
which the operations are executed in the order of their linearization points.

To simplify the proof, we consider only complete execution histories (i.e.,
histories in which every operation invocation has a corresponding response).
Because the algorithm is wait-free, the linearizability of all complete histories
implies the linearizability of all histories. We assume that every newly allocated
block has never been allocated before, which is equivalent to assuming an envi-
ronment that provides garbage collection. Also, because blocks are not accessed



before initialization, we can assume that they already contain the values they
will be initialized with before they are allocated and initialized. Thus, for this
proof, initialization is a no-op. Finally, we assume that any sequence of instruc-
tions starting from one statement label in Fig. 2 and ending immediately before
the next statement label is executed atomically, except when that statement
calls decide or WFRead, in which case the actions of the invoked procedure oc-
cur before (and not atomically with) the action of the statement that invokes
that procedure.

Throughout the proof, references to “any block” or “all blocks” are quantified
only over those blocks that are at some time installed as the current block (i.e.,
the block pointed to by L); those that are never installed are accessed only during
initialization and so are of no concern.

All blocks evolve in a similar way, as shown in Fig. 3. Specifically, for any
block b, initially and until b is installed, ¬b→C and b→D = ⊥ hold. Because b→C
and b→D are changed only by lines 27 and 2 respectively, b→C and b→D = v for
any v 6= ⊥ are stable properties.7 Furthermore, we have the following properties:

1. b→D is set to a non-⊥ value by the first execution, if any, of line 2 within an
invocation of decide(b);

2. whenever decide(b) is invoked, b→C already holds; and
3. some invocation of decide(b) (i.e., the one on line 28) completes before b is

replaced as the current block (in line 30).

Recall that b is active if L = b and ¬b→C. We say that b is deciding if it is inactive
and b→D = ⊥, and that b is decided if b→D 6= ⊥. Following the discussion above,
a block is active when it is installed, and must become deciding and then decided
before it is replaced. For any block b, at most one non-⊥ value is written into
b→D; this value is returned by every invocation of decide(b).

Let δC(b) be the event, if any, that makes b inactive, δD(b) be the event, if any,
that makes b decided, and dv(b) be the non-⊥ value, if any, that is written into
b→D. For any block b other than the final block (i.e., the block that is current
at the end of the execution history), δC(b), δD(b) and dv(b) are well-defined. If
the final block is made inactive, it is decided before the operation that made it
inactive completes, so because we are considering only complete histories, either
δC, δD and dv(b) are all defined for the final block, or none of them are.

If b is the current block (i.e., L = b), the abstract value of L is

AV ≡
{

b→V if ¬b→C holds (i.e., b is active)
dv(b) otherwise.

Note that dv(b) is defined whenever b→C holds. While b is active, AV = b→V;
while b is current but inactive (either deciding or decided), AV = dv(b).

Linearization points

Below we specify the linearization point for each operation. We categorize oper-
ations by the statement from which they return, using the labels shown in Fig. 2.
7 That is, if either property holds in any state, it holds in all subsequent states.



pre-install active deciding decided replaced

L = b δD(b)δC(b) L = b′

b is current

L 6= b
¬b→C

b→D = ⊥

L = b
¬b→C

b→D = ⊥

L = b
b→C

b→D = ⊥

L = b
b→C

b→D 6= ⊥

L 6= b
b→C

b→D 6= ⊥

AV = b→V AV = dv(b) AV = dv(b)

Fig. 3. The evolution of block b. δC(b) and δD(b) are the events that change b→C and
b→D; dv(b) is the decision value of block b; and AV is the abstract value (see text).

In some cases, we have further subcases. We use o.k to denote the execution by
operation o of line k, and o.x to denote the value of the o’s local variable x after
it is set (an operation sets each local variable at most once).

R1 (returns o.v) Linearize to o.11.
R2 (returns dv(o.b)), o.b decided at o.10 Linearize to o.10.
R2 (returns dv(o.b)), o.b not decided at o.10 Linearize to δD(o.b).
C1 Linearize to the linearization point of the WFRead invoked on line 14.
C2 (returns false) Linearize to o.20.
C3 (returns true), o.b is active at o.23 Linearize to o.23.
C3 (returns true), o.b is not active at o.23 Linearize to δC(o.b).
C4 (returns true) Linearize to o.23
C5 (returns false), o.b is decided at o.15 Linearize to o.15.
C5 (returns false), o.b is not decided at o.15 Linearize to δD(o.b).
C6, returns true Linearize to o.30.
C6, returns false Sometime between o.15 and o.30, o.b is replaced as the cur-

rent block. If dv(o.b) 6= o.ev then linearize the operation immediately before
o.b is replaced; otherwise, linearize it immediately after o.b is replaced.

We first consider the operations that do not change the abstract value. With
one exception, it is easy to see, using Fig. 3, that the abstract value is consistent
with the operation executing atomically at its linearization point. For example,
if WFRead returns from R1, then o.b is active at o.12, so it is also active at the
operation’s linearization point o.11; at this point AV = o.b→V = o.v, as required.

The exception is when a WFCAS operation returns false from C6. In this case,
some other WFCAS operation o′ replaced o.b with o′.nb, and because of the tests
on lines 14 and 28, o′.nv 6= dv(o.b). AV = dv(o.b) holds immediately before o.b
is replaced, which is o’s linearization point if dv(o.b) 6= o.ev. Otherwise, o’s
linearization point is immediately after o.b is replaced, when AV = o′.nv 6= o.ev.

If a WFCAS operation o returns true from C6, the CAS on line 30 succeeds.
Thus, immediately before o.30, o.b is current and decided, so AV = dv(o.b) = o.ev
(see line 28), and immediately after o.30, AV = o.nb→V = o.nv.

For the final cases (when a WFCAS operation returns from C3 or C4), we use
the following lemma, which says that at most one process has won (and not
subsequently reset) the splitter of a block.



Lemma 1. For any block b, in any state of the history, there exists at most one
process p such that p.b = b and p has reached line 20 but has not subsequently
completed its WFCAS operation.

A WFCAS operation that returns from C3 or C4 has won the splitter for o.b.
Because o.b→V is changed only by line 23, Lemma 1 implies that after o.20 until
immediately before o.23, o.b→V = o.v, which is o.ev (see line 22). If o.b is active
at o.23, then AV = o.b→V at o.23, which changes o.b→V from o.ev to o.nv. Thus,
if a WFCAS operation o returns from C4 (Fig. 3 and the test at line o.24 imply
that o.b is active at o.23 in this case), or if it returns from C3 and o.b is active at
o.23, then o is correctly linearized at o.23. If the operation returns from C3 and
o.b is not active at o.23, then it is linearized to δC(o.b), which occurs between
o.21 and o.23. Immediately before δC(o.b), AV = o.b→V = o.ev, and immediately
after δC(o.b), AV = dv(o.b), which is o.nv (see line 25). Thus, AV changes from
o.ev to o.nv at δC(o.b).

Finally, we argue that AV changes only at the linearization points of WFCAS
operations that return true. This is the trickiest part of the proof, and depends
heavily on the observation the decision value of a block b must have been in b→V
while b was deciding.

Lemma 2. If dv(b) is defined, then b→V = dv(b) at some point between δC(b)
and δD(b).

There are only three ways in which AV may change:

L changes Only a successful CAS on line 30 changes L, which is done by a
WFCAS operation that returns true.

b→V changes while b is active Only o.23 for some WFCAS operation o changes
b→V. If b is active when o.24 is executed, then o returns from C4. Otherwise,
δC(b) occurs after o.23, so Lemma 1 implies that b→V = o.nv from δC(b) until
o completes. Because o invokes decide(b) in this case, δD(b) occurs before o
completes, so by Lemma 2, dv(b) = o.nv. Thus, o returns true from C3, and
is linearized to o.23 in this case.

b→C changes while b is current and b→V 6= dv(b) Only line 27 changes b→C;
this event is δC(b). By Lemma 2, dv(b) is stored by some process p into b→V
after δC(b). Because b is inactive when p executes line 23, its subsequent test
on line 24 succeeds. Therefore, p’s operation returns true from C3 in this
case. The linearization point of p’s WFCAS operation is defined to be δC(b) in
this case, as required.

6 Concluding Remarks

We have shown how to implement a linearizable shared variable supporting
constant-time read and CAS operations that do not invoke synchronization prim-
itives in the absence of contention. It is straightforward to extend our algorithm
to also support a store operation with the same property.



Because of the number of loads and stores performed by our algorithm—
even in the absence of contention—it is not clear that our algorithm would ever
provide a performance improvement in practice. Nonetheless, our results have
important implications for the way we measure non-blocking algorithms and
for the study of the differences between various non-blocking progress condi-
tions. Specifically, they show that any non-blocking algorithm (including wait-
free ones) that uses CAS can be transformed to one that does not invoke CAS
in the absence of contention. Thus, the measure of the number of CAS’s invoked
in the absence of contention should not be used when comparing algorithms and
is also not useful for establishing a separation between obstruction-freedom and
stronger progress conditions.

It is interesting to note that the abstract value of the implemented fast-CAS
location in a particular state cannot always be determined simply by examining
that state (because the abstract value in some states is determined by the deci-
sion value of the current block, which is only determined in the future by invoking
decide). This means that a formal automata-based proof would require a back-
ward simulation, rather than a more straightforward forward simulation [22].

Given the negative results with respect to establishing a separation between
obstruction-freedom and stronger non-blocking progress conditions, relevant fu-
ture work includes seeking alternative ways to achieve such a separation.
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