
J. Parallel Distrib. Comput. 66 (2006) 1233–1240
www.elsevier.com/locate/jpdc

Virtual Leashing: Creating a computational foundation
for software protection�

Ori Dvira, Maurice Herlihyb,∗, Nir N. Shavitc

aComputer Science Department, Tel Aviv University, Ramat Aviv 69978, Israel
bComputer Science Department, Brown University, Providence, RI 02912, USA
cComputer Science Department, Tel Aviv University, Ramat Aviv 69978, Israel

Received 17 December 2005; received in revised form 31 March 2006; accepted 10 April 2006
Communicated by Weisong Shi, Cheng-Zhong Xu, Xiabo Zhou

Available online 14 June 2006

Abstract

We introduce Virtual Leashing,1 a new technique for software protection and control. The leashing process removes small fragments of code,
pervasive throughout the application, and places them on a secure server. The secure server provides the missing functionality, but never the
missing code. Reverse engineering the missing code, even with full tracing of the program’s execution and its communication with the server,
is computationally hard. Moreover, the server provides the missing functionality asynchronously: the application’s performance is independent
(within reason) of the secure server’s speed. For example, the server might reside on a slow inexpensive chip or a remote Internet server.
Leashing makes only modest demands on communication bandwidth, space, and computation.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Digital rights management; Virtual leashing

1. Introduction

Software piracy is an enormous economic problem, reaching
by some estimates a worldwide level of 40% in 2001 [2]. More
importantly, piracy is a key obstacle in the way of electronic
distribution of software, especially models such as software
rental, secure try-before-buy, and so on. Existing technologies
for protecting and controlling software using tamper-resistant
hardware and software are based on a variety of cryptographic
means, from wrapping (encrypting) parts of the code, to plant-
ing calls to cryptographic authentication modules. These tech-
nologies offer protection against only casual piracy. Software
must be unwrapped before it can be executed, and can then be

�A preliminary version of this paper appeared in the 25th International
Conference on Distributed Computing Systems (ICDCS, 2005), 6–10 June
2005, Columbus, OH, USA.

∗Corresponding author.
E-mail addresses: oridvir@hotmail.com (Ori Dvir),

herlihy@cs.brown.edu (M. Herlihy), shanir@cs.tau.ac.il (N.N. Shavit).
1 The techniques described in this paper are protected by U.S. patents,

both granted and pending.

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.04.013

captured, and cryptographic tests can be removed using widely
available tools. These technologies fail to provide software with
the same degree of protection (security based on computational
hardness), that cryptography provides for communication.

A conceptually simple and appealing way to introduce
“computational hardness” into software protection is software-
splitting: remove small but essential components from the
application and place them on a secure server, either on a
secure coprocessor or across the Internet. The server provides
the missing functionality, but never the missing components. If
reverse engineering the components from the functionality is
hard, the server will have absolute control over the conditions
under which the software can be used.

Simple as it sounds, the software-splitting approach to secu-
rity faces formidable technical obstacles. One obstacle is how to
identify functionality that cannot easily be reverse-engineered.
Another potential show-stopper is communication latency.
Suppose the server is running on a secure coprocessor. Any co-
processor is likely to be substantially slower than the main pro-
cessor, and the need to buffer data and to share a system bus with
other activities (such as memory access) implies that communi-
cation delays can be substantial and unpredictable. Moreover,

http://www.elsevier.com/locate/jpdc
mailto:oridvir@hotmail.com
mailto:herlihy@cs.brown.edu
mailto:shanir@cs.tau.ac.il

1234 Ori Dvir et al. / J. Parallel Distrib. Comput. 66 (2006) 1233–1240

for the foreseeable future secure coprocessors will have lim-
ited memory, so programs and data will have to be swapped
in and out of memory, further increasing communication delay
and uncertainty. Similar problems arise if the server is running
across a network, since network delays can be long and unpre-
dictable. Either way, it is unacceptable for the application to
block waiting for a response from the server. This non-blocking
requirement is particularly compelling for highly reactive ap-
plications such as games, where any perceptible delay will be
unacceptable to users.

In this paper, we propose the first technique that makes
software-splitting a practical and effective defense against soft-
ware piracy. We claim that this technique, called virtual leash-
ing, is both efficient and secure in the computational sense.

Applications typically perform two kinds of tasks: active
tasks must be executed immediately, while lazy tasks may be ex-
ecuted at any point within a reasonable duration. Virtual Leash-
ing splits an application into two new programs: a large client
program carries out the original application’s active tasks, while
a much smaller server program carries out the lazy tasks. As
the names suggest, the client program is executed directly by
the end-user, while the server program is executed on a secure
platform, either off-site or on a secure coprocessor.

The client and server programs communicate as follows.
Whenever the original application would execute a lazy task,
the client sends a message to the server, who executes that task
and returns the results to the client. Because the offloaded tasks
are lazy, the client is still able to react to interactive demands,
even in the presence of some asynchrony in the client–server
communication.

To make software-splitting practical we must identify a class
of lazy tasks present in a wide variety of applications. There
must be an effective way to split the application into client and
server components without a detailed understanding of the ap-
plication itself. Moreover, it must be difficult for a pirate to
reverse-engineer the missing tasks by inspecting the client pro-
gram, and by eavesdropping or tampering with the client/server
message traffic. Finally, executing the missing tasks at the
server should place modest demands on server computation and
client/server bandwidth.

How do we propose to solve this problem? Two words:
malloc() and free(). Allocating memory is an eager task:
an application that calls malloc() needs that memory im-
mediately. By contrast, freeing memory is lazy: an application
that calls free() will not block if there is a reasonable delay
between the free() call and the time when that memory ac-
tually becomes available for reuse. This asymmetry lies at the
heart of Virtual Leashing.

Virtual Leashing splits the original application’s memory
management activities between the client and server. Where
the original application would have allocated a memory block,
the client also allocates the block, but sends a message to the
server. Where the original application would have freed a mem-
ory block, the client simply sends a message to the server. The
client also sends the server a large number of “decoy” mes-
sages, ignored by the server, that are indistinguishable from the
allocation and free messages. The server maintains an image of

which parts of the client’s memory are in use, and periodically
sends the client a message releasing unused memory. As long
as the client and server remain in communication, the client
will be able to allocate memory without delay. Without such
communication, however, the client program will quickly run
out of memory.

The key to leashing’s security is the practical difficulty of
figuring out when memory can be freed. (We are all familiar
with stories of programmers who spend inordinate amounts of
effort fixing memory leaks in programs they themselves de-
vised.) We will argue that even though one can disassemble
the client code, eavesdrop on client–server message traffic, and
even tamper with that traffic, in the end, a would-be pirate
faces the problem of building a memory-reclamation algorithm
for an application whose dynamic memory structure is not
just unknown, but actively designed to frustrate “conservative”
collectors.

We now give a schematic description of how Virtual Leashing
makes free() calls hidden from the client but made known
to the server (a more detailed description appears below). The
key idea is that as we augment and replace native memory
management calls with message transmissions, we construct a
table on the side that records the meaning of each message.
This table is then encrypted off-line using a key known only
to the server. 2 When a leashed application starts up, it sends
the encrypted leashing table to the server. This technique is
secure because the client never sees the decrypted table. It is
also scalable, because the server does not need to maintain a
database of all leashing tables, only the ones in use at that
moment.

Every call of the form
p = malloc(size)

is replaced by
p = malloc(size); ...; send(m);

Sometime after the malloc() call, the client sends a message
m containing the current line number and a randomly permuted
list of local variable values that includes p and size. A leash-
ing table entry instructs the server that each message with the
given line number reports a malloc() call, and also indi-
cates for certain types of frees which permuted arguments cor-
respond to the allocated address and size. Next, every free()
call is replaced by a send(m) call, where m is a message in-
distinguishable from the one before, containing the current line
number and a permuted list of local variable values. A Leash-
ing Table entry instructs the server that each message with the
given line number replaces a free() call, and also indicates
which permuted argument is the freed address.

Next, we add lots of decoy message transmissions to the
program. These messages are indistinguishable from the mal-
loc and free messages: each has a line number and a list of
local variable values. Their leashing table entries instruct the
server to ignore them. Decoy messages provide steganographic
protection for the free messages, making it computationally

2 Either symmetric or asymmetric (public-key) encryption can be used,
although asymmetric encryption protects the server against corrupt leashing
programmers who might leak a symmetric key.

Ori Dvir et al. / J. Parallel Distrib. Comput. 66 (2006) 1233–1240 1235

difficult for a pirate intent on traffic analysis to distinguish
between real and decoy messages.

The application’s malloc() calls are still present in the
leashed executable, but its free() calls have been removed
and replaced with message transmission calls. The leashed
client is unable to free memory by itself, so instead, it lis-
tens for messages from the server that instruct the client which
blocks of memory to free. The server tracks the client’s mem-
ory usage, and releases enough memory to keep the client
running. We discuss the security aspects of this arrangement
in the sequel.

2. How to leash an application

In this section we describe how to leash an application. We
focus on the problem of retrofitting virtual leashing to an ex-
isting application for which we have the source code. Our
goal is to minimize the degree to which the leashing program-
mer must understand the application’s structure. This prob-
lem is harder than leashing an application under development
(where the developers understand the application’s structure
in detail).

Our experience suggests that a combination of extensive test-
ing, tracing, and trace analysis can alleviate the need for a deep
understanding of the application being leashed.

First, profile the application to discover how it manages
memory. Identify the application’s allocate and free calls, and
wrap them with macros that record their activities in a trace
file. This step requires little expertise, but much patience.

Second, analyze the trace files (we use Perl scripts) and gen-
erate reports. These reports identify which memory manage-
ment calls to leash, as well as the most effective way to leash
them. This step requires expertise in leashing, but little or no
specialized knowledge of the application itself.

Third, add decoy messages to the leashed application to frus-
trate traffic analysis. This step, too, requires expertise in leash-
ing (to maximize obfuscation while conserving bandwidth), but
no specialized knowledge of the application.

Finally, before deploying, debug and optimize the results of
the previous steps. This step, if needed, does require some un-
derstanding of the application. As recounted below in Section
5, our experience leashing three unfamiliar applications yielded
no non-trivial debugging problems, but did yield a few inter-
esting technical and performance problems. In our prototype,
all trace file analysis, source preprocessing, and source post-
processing were accomplished by surprisingly uncomplicated
Perl scripts.

The first step is to understand how the application man-
ages free storage. Replace each of the application’s native
memory calls, and “wrap” each one in a macro that logs
each call in a trace file. Each log entry includes (1) the ac-
tual native call, (2) a timestamp, (3) the call’s source file and
line number, and (4) all arguments and results. Run the ap-
plication long enough to generate sufficiently complete trace
files.

Next, analyze the trace files to identify matching malloc()
and free() calls. It is common for a malloc() call to match

multiple free() calls, and vice-versa. For example, we can
replace the following matching calls:
p = malloc(size); ...; free(p);
by something like
p = malloc(size); VL_SEND_MALLOC(p, size);

...; VL_SEND_FREE(p);
The VL_SEND_MALLOC expression accompanies the alloca-
tion call, while the VL_SEND_FREE expression replaces the
free call. These expressions are not function calls; instead they
are expanded by a preprocessor into message transmission calls,
as described below. The programmer in charge of leashing the
code may provide optional decoy message arguments to help
disguise which arguments are real. (Otherwise, decoy argu-
ments are chosen by the preprocessor.)

A free() call is static if it always frees the address most re-
cently allocated by a particular malloc() call. A malloc()
call is static if all its corresponding free() calls are static.
Static allocations are indistinguishable at run-time from regu-
lar allocations, but the message that reports a static free need
not contain the address being freed.
p = malloc(size); ...; free(p);
becomes
p=malloc(size); ...; VL_STATIC_MALLOC
(p, size, TAG);
VL_STATIC_FREE(TAG);
Here, TAG is a unique string recognized by the preprocessor,
not a program variable.

The file is then preprocessed to yield two outputs: a C (or
C++)-language file in which the virtual leashing expressions are
replaced by tracing and message-transmission calls, and a table
fragment that identifies the meaning of each call. If we compile
and link the preprocessed files, the result is a running program
in which some free calls have been replaced with message
transmissions to the server. As part of the compilation process,
the table fragments are combined, encrypted, and compiled into
the application.

In our prototype, client-to-server messages are 8 words (32
bytes) long. The first word is a message id, which is actually
the offset of its entry in the application’s leashing table. The
remaining seven argument slots contain both actual and decoy
arguments, randomly permuted. Each message’s type and per-
mutation are recorded only in the encrypted leashing table, and
appear nowhere in the application code itself.

The next phase is to add decoy messages and to fine-tune
the rate at which memory is allocated. Decoy messages make it
harder to guess which messages correspond to free() calls.
They provide a kind of “bodyguard of lies” making it diffi-
cult for pirates to separate signal from noise. Here, one can
apply common-sense rules: to maximize protection, the num-
ber of decoy message calls should be at least as much as
the number of free and malloc calls, and similarly for their
frequency.

Once we are satisfied that the leashed application has a good
ratio of decoy-to-free messages, that the bandwidth consump-
tion is not too high, and the memory consumption rate is not
too low, then we can build the production version simply by
disabling tracing.

1236 Ori Dvir et al. / J. Parallel Distrib. Comput. 66 (2006) 1233–1240

3. Client and server prototypes

Both the client and the server represent the leashed heap as a
skiplist [8], where each list element contains a block’s size and
starting address. The client-side interface provides the client
an allocation call (which takes a size and returns an address),
and it provides the server a release call (which takes a starting
address and a size). Not all memory calls are leashed. The client
can allocate and free non-leashed memory in the usual way.

The skiplist representation makes it easy for the client to
locate the block containing an arbitrary address. For example,
the client might allocate 1000 bytes starting at address 100, and
the server might later instruct the client to release 900 blocks
starting at location 200. In a similar way, when the client sends
a free message, it can send any address within the block being
freed, and the server knows to free the block containing that
address.

To ensure that the interactions between the application and
the server are asynchronous, the client runs in a thread paral-
lel to the application’s main thread (all applications we have
leashed are single-threaded). The client thread and server com-
municate over a TCP connection. When a client creates a new
connection, the server creates a new thread to handle it. The
client and the server threads execute a simple handshake in
which the client sends the encrypted leashing table to the client.
All malloc, free, and decoy messages are 32 bytes. The first
word is the offset of that message’s entry in the leashing ta-
ble, and the other seven are the permuted message arguments.
(While a multithreaded server works well for our prototype, an
industrial-scale server might have to be single-threaded.)

The server keeps track of memory that the client has implic-
itly freed, but that has not yet been explicitly released to the
client. When that amount exceeds a threshold, the server sends
the client an 8-byte release message containing the addresses
and size of the memory to be released. To conserve bandwidth,
the server merges adjacent free blocks.

4. Computational basis for security

We cannot provide a mathematical proof that Virtual Leash-
ing is secure. Instead, we make our case by inexact analogy to
the RSA [9] encryption protocol. RSA is based on a Hard Prob-
lem (factoring) widely believed to be intractable. It requires
hard instances, choosing “good” keys and avoiding “bad” keys.
The algorithm is public: security depends on a particular se-
cret key, not the algorithm, which is known to all. Finally, no
algorithm, however clever, is immune to a protocol attack that
exploits an environment that “leaks” information [5].

The heart of Virtual Leashing is the following memory recla-
mation problem (MRP).

Given a program that allocates but never frees memory and
the ability to run, trace, and modify it on a machine with
unbounded memory, devise an equivalent program (in terms
of output and performance) that runs on a machine with only
bounded memory.

We summarize our security claims for Virtual Leashing as
follows.

First, we believe that the MRP is inherently hard (at the very
least in the practical sense) although we do not know how to
prove this claim. Second, it requires hard instances, choosing
a program for which the MRP does not have a trivial solution
(for example, programs for which “conservative” garbage-
collectors are ineffective). Third, the leashing algorithm itself
is public (to anyone who reads this paper), but a leashed ap-
plication’s security relies entirely on keeping the application-
specific leashing table private. Finally, we offer pragmatic
arguments why the client/server message protocol does not
leak information to pirates.

To solve MRP, one could simply avoid ever having to free al-
located memory. For example, run the application with enough
physical memory so that it never needs to free anything. (This
attack is limited by the size of the physical memory, not the vir-
tual memory, since the application will thrash once its working
set substantially exceeds physical memory.)

In the short term, we can churn the application’s memory
usage. One simple way is to overallocate memory for short-
lived objects. Another is to move stack objects into the heap,
allocating them when a procedure is called, and freeing them
asynchronously after the procedure returns (these allocations
are static).

We nevertheless discovered that with simple profiling tools,
we can tune the application to consume memory at a rate that
guarantees that the application will exhaust the resources on
an ordinary machine quickly enough to render the adversary’s
experience unsatisfactory, but not so quickly that the leashing
server cannot keep up. Of course, a pirate willing to pay for an
extraordinary amount of memory will be able to run longer, but
such piracy is expensive, and does not affect the security of the
application on standard machines. Eventually, falling memory
prices will lower the barrier to this kind of attack. Nevertheless,
the value of the protected software is falling as well. By the
time memory prices have fallen enough that a pirate can afford
to run the application long enough to be usable, the software
itself may well no longer be worth protecting.

Another way to solve MRP is to add a memory manage-
ment system based on a conservative garbage collector (for ex-
ample, [4]). In a leashed application one would first rip out
the native memory management and then add the conservative
collector. Conservative collectors, however, assume that both
the programmer and the program behave themselves. The pro-
grammer should not “hide” pointers, and the program should
leave around few pointers to “dead” memory. It is easy to vio-
late both assumptions, frequently and deviously, even without
understanding the application in detail. We think that any such
attack would be prohibitively expensive, because each small
incremental defense on the part of the leasher will require a
much larger incremental response on the part of the pirate.

A pirate might analyze and tamper with message traffic and
contents of a leashed application. Recall that a malloc message
contains the address and size of the block being allocated (al-
though a constant-size malloc can store the size in the leash-
ing table). A dynamic free message contains the address of the
block being freed, or at least a pointer into that block. (Note
however, that any such pointer will most likely also appear as a

Ori Dvir et al. / J. Parallel Distrib. Comput. 66 (2006) 1233–1240 1237

decoy argument in other messages.) A static free message does
not include the address of the block being freed (the server re-
constructs that address from the encrypted leashing table and
the history of malloc messages). Note that it would not be dif-
ficult to combine two or more logical messages into a single
physical message.

One class of attack tries to identify when memory becomes
free by using a debugger to single-step through the applica-
tion, eavesdropping on client/server message traffic. The server
“ages” memory before releasing it, making it difficult to corre-
late the server-to-client release message with any prior client-
to-server message. The server never releases more than a fixed
percent of its free memory, to guard against an attack where
the pirate pretends to be low on memory. Finally, the order in
which the server releases memory is unrelated to the order in
which that memory was either allocated or freed.

Recording and replaying the server’s messages will not help
a pirate because any application complex enough to be valu-
able will behave differently each time it is run, especially an
interactive application, and there will easily be an exponential
number of such possible combinations. One is thus no better
off than with MRP.

Here is the most effective attack we have been able to devise.
Given two statements:
p = malloc(size); ...; send(m);
we can test the hypothesis that the message transmission
replaces the call free(p) by inserting a free(p) call
immediately after the message transmission, and then exhaus-
tively testing the application. If it ever crashes, the hypothesis
is wrong. If it does not crash, the hypothesis is probably correct
(assuming the effectiveness of your test suite).

Naturally, testing any single message transmission is not
enough. The would-be pirate must identify all matching
free() calls, because allocated memory must be freed
in all possible executions along all control paths. Given m
malloc() calls and n message transmission calls, this attack
requires m · n exhaustive tests, a formidable barrier. For exam-
ple, given an application with 100 malloc() calls and 300
message transmission calls, the pirates will have to run 30,000
exhaustive tests. If each test takes a half-hour, then running
the tests will take about two years.

This attack, expensive as it is, does not detect dynamic
malloc() calls in which the address being freed is a func-
tion of the execution. For these messages, we can insert a
malloc() call for each of the message arguments, requiring
another O(n) exhaustive tests. Both attacks are complicated
by the observation that it is not uncommon for a malloc()
call to match multiple free() calls, and vice-versa, so the
pirate cannot rest after finding one putative match.

A pirate might attempt to gain information by tampering
with the client/server message traffic. For example, a pirate
might omit a message containing a particular address, and
then watch to see if that address is freed. If that address is not
freed, then the missing message may be a free message. This
kind of attack faces the same kind of computational barrier
as the attacks we have already considered. In fact, tampering
attacks are weaker yet, because they can often be detected.

Once tampering is detected, the server can mislead the pirate.
For example, the server could ignore a later free() mes-
sage, misleading the pirate into thinking that the omitted mes-
sage was one of the ignored free() messages. Even if the
server can detect only some tampering, the pirate can never
be sure whether the server’s reaction to a message is real
or misleading.

Some tampering can be detected easily. For example, if
the client tries to free an address that was never allocated,
then we can deduce that the client omitted the malloc mes-
sage. We have devised other ways of introducing dependencies
among messages in a way that ensures probabilistically that
the server is likely to detect omitted or spurious messages. The
same arguments apply to attacks in which message contents
are altered.

Leashing is secure even if the leashing protocol is completely
public. All that matters is the correspondence between messages
and free() calls, a correspondence that appears only in the
leashing table. The leashing table itself is encrypted with a key
known only to the server, and compiled into the application. In
this way, Virtual Leashing is scalable because servers do not
need a database of leashing tables. Moreover, an application
can be leashed by any server, either across the Internet or on a
secure coprocessor.

Virtual Leashing provides “defense in depth”. Even if a pirate
learns somehow that a particular message corresponds to a free
statement, that knowledge does not make it any easier to locate
other missing free statements in that application. Even if a pirate
is able to crack one application (say, by stealing the leashing
table from the developer), that knowledge does not make it any
easier to crack other applications.

5. Leashed applications

To evaluate the performance implications of Virtual Leash-
ing, we leashed three sample applications from different
domains: 3 Quake II, a popular game, Abiword, a word-
processing program similar to Microsoft Word, and Mozilla,
a browser. All three are written in C or C++, and are avail-
able in open-source releases. Our discussion here focuses
on performance and resource use. Security itself is hard to
test empirically, especially when the programs at hand are
open-source.

Fig. 1 shows the numbers of calls expressed in terms of
source code lines. We leashed almost all the memory calls in
Abiword and Quake, but only the Javascript engine of Mozilla
(a much larger program).

We tested each leashed application against a server running
on the same machine (at 127.0.0.1), and against a server running
on a remote workstation accessed over the Internet. The remote
server was located on a 1 GHz machine at Brown University
in the Eastern United States. Abiword and Mozilla were tested
on a 660 MHz machine in Israel (ping 170 ms) while Quake
was tested from a 400 MHz home workstation in Boston (ping
28 ms). None of the applications is compute-bound. Leashing

3 www.idsoftware.com, www.abisource.com, and www.mozilla.org.

mailto:www.idsoftware.com
mailto:www.abisource.com
mailto:www.mozilla.org

1238 Ori Dvir et al. / J. Parallel Distrib. Comput. 66 (2006) 1233–1240

Static malloc Static free Dynamic malloc Dynamic free Decoys

Abiword 35 (1%) 36 (1%) 41 (33%) 61 (48%) 24 (14%)

Mozilla 13 (3%) 12 (3%) 20 (44%) 20 (41%) 9 (9%)

Quake II 13 (3%) 17 (3%) 12 (3%) 11 (0%) 8 (89%)

Fig. 1. Numbers of source statements and percentage of run-time traffic.

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800

Fig. 2. Bandwidth (Kbits) consumed by Quake II, local (left) and remote (right) servers plotted against time in seconds.

Local Mean Max Remote Mean Max

Abiword 36.5 418.3 36.2 294.4

Mozilla 30.9 262.7 30.1 260.1

Quake II 43.3 445.2 36.5 181.6

Fig. 3. Bandwidth in Kbits/s.

itself is not computationally demanding: profiling shows that
when Abiword is actively being leashed, the leashing client
consumes no more than 5% of the CPU cycles, some of which
would have been consumed anyway by native memory man-
agement.

Testing each application against a local server reveals how
leashing works when available bandwidth is maximized, while
testing against a remote server reveals behavior when band-
width is limited. Fig. 2 contrasts the memory use for Quake
II running against the local and remote servers. Fig. 3 shows
maximum and mean bandwidth consumption for local and re-
mote servers as evaluated through the trace files. For each
application, the mean bandwidth consumed is essentially the
same for both the local and remote servers, while the maximum
bandwidth differs substantially for Abiword and Quake. These
observations suggest that the asynchronous nature of leashing
allows peak bandwidth demand to be smoothed out over time.
The application is not delayed when the bandwidth demanded
exceeds the bandwidth available because the client runs in its
own parallel thread. The application’s pool of unused memory
provides a cushion against the effects of message latency. In
all cases, the average bandwidth demands could be met by a
dial-up connection.

Leashing introduces a delay between when memory becomes
free and when that memory becomes available for reuse. This
delay shows up as increased memory use, which becomes par-
ticularly visible during an “allocation storm”, such as loading a
complex web page, or entering a new game level. An unleashed
application frees a number of blocks and then allocates new
blocks, resulting in a burst of activity, but little or no additional
memory consumption. A leashed application, by contrast, sends
a number of messages, and allocates the new memory before
it can reuse the old memory, resulting in short-lived spikes in
memory consumption. While bandwidth demand spikes can be
smoothed over by asynchronous communication, memory con-
sumption spikes simply require more memory.

To evaluate the extra memory consumption induced by leash-
ing, we analyzed traces of leashed applications to compute how
much memory that trace would have allocated had it not been
leashed. Specifically, we keep running leashed and unleashed
memory use totals. The unleashed total is decreased immedi-
ately when a free message is sent, while the leashed total is
decreased only when the server releases that memory. Figure
4 shows the memory use curves for the three applications run-
ning against a remote server. In each case, the leashed and
unleashed curves start out the same, but the server quickly es-
tablishes a distance between them. More generally, Fig. 5 dis-
plays the ratio of the maximum leashed memory allocation
over the maximum unleashed memory allocation, and the mean
leashed memory allocation over the mean unleashed memory
allocation. Leashed Abiword requires about one and a half times
as much memory, and the others need about twice as much.
Finally, Fig. 6 shows the rate at which the applications allocate
memory, giving a rough idea how long they would run discon-
nected from the server. These rates represent a modest effort
to churn the memory; a more aggressive effort could drive the
rates higher.

Ori Dvir et al. / J. Parallel Distrib. Comput. 66 (2006) 1233–1240 1239

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 25000 50000 75000 100000
0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 25000 50000 75000 100000 125000

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 500000 1E+06 1.5E+06 2E+06

Fig. 4. Memory use comparison for Abiword, Mozilla, and Quake, remote server (higher curve is leashed, lower unleashed).

Local mean max Remote mean max

Abiword 1.39 1.42 1.42 1.44

Mozilla 2.07 1.76 2.12 1.67

Quake II 1.97 2.09 2.00 1.74

Fig. 5. Memory use ratios (leashed/unleashed).

Abiword Mozilla Quake II

29.75MB 15.38MB 13.61MB

Fig. 6. Allocation rate per minute.

6. Related work

The most popular industrial software protection schemes are
software wrappers [6,10] and hardware-based dongles such as
HASP [1]. Techniques to break this protection are widely avail-
able on the web (for example, see [3]).

We are aware of two prior software-splitting schemes [7,11]
that explicitly remove code from the application and emulate
the missing instructions on the secure server. These approaches
are not asynchronous: the client application blocks waiting for
a response from the server. The removed code is not pervasive,
nor is there any evidence it is inherently difficult to reconstruct.
The remote emulator is platform-dependent.

References

[1] Aladdin Inc., HASP3 to HASP4—whitepaper, in: 〈ftp://ftp.ealaddin.com/
pub/hasp/new_releases/docs/hasp-3tohasp4.pdf〉, 2003.

[2] Business Software Alliance, Seventh annual BSA global software piracy
study, in: 〈http://www.bsa.org/usa/policyres/admin/2002-06-10.130.pdf〉,
2001.

[3] Crackmain, Dongle reverse engineering, in: 〈http://www.geocities.com/
SiliconValley/Ridge/1237/crackmain.html〉, 2003.

[4] D. Detlefs, Garbage collection and run-time typing as a c++ library, in:
C++ Conference, 1992, pp. 37–56.

[5] M. Joye, J.-J. Quisquater, Cryptanalysis of rsa-type cryptosystems: a visit,
DIMACS Series in Discrete Mathemematics and Thoretical Computer
Science, 1998.

[6] M. Kaplan, IBM cryptolopes, superdistribution and digital
rights management, in: 〈http://www.research.ibm.com/people/k/kaplan/
cryptolope-docs/crypap.html〉, 2003.

[7] NetQuartz, Easyplatform 2.0 technical overview, in: 〈http://www.netquartz.
com/〉, 2003.

[8] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, in:
Workshop on Algorithms and Data Structures, 1989, pp. 437–449.

[9] R.L. Rivest, A. Shamir, L.M. Adelman, A method for obtaining
digital signatures and public-key cryptosystems, Technical Report
MIT/LCS/TM-82, MIT Press, Cambridge, MA, 1977.

[10] O. Sibert, D. Bernstein, D. Van Wie, The DigiBox: a self-protecting
container for information commerce, in: Proceedings of the first USENIX
Workshop on Electronic Commerce, 1995, pp. 171–183.

[11] Sospita, Schlumbergersema-sospita software protection, in: 〈http://
www.sospita.com/files/SchlumbergerSema_Sospita_WP.pdf〉, 2003.

Ori Dvir received his B.A. from the Ben Gurion University and his M.Sc.
from the Tel Aviv University, both in Computer Science. He has worked
for various software companies in the security area. He is now leading a
development team in Biosense Webster Inc. His areas of interest are: software
protection, compilation, and cryptography.

Maurice Herlihy’s research interests focus around practical and theoretical
aspects of designing, implementing, and reasoning about concurrent and

http://ftp.ealaddin.com/pub/hasp/newprotect LY1	extunderscore releases/docs/hasp-3tohasp4.pdf
http://ftp.ealaddin.com/pub/hasp/newprotect LY1	extunderscore releases/docs/hasp-3tohasp4.pdf
http://www.bsa.org/usa/policyres/admin/2002-06-10.130.pdf
http://www.geocities.com/SiliconValley/Ridge/1237/crackmain.html
http://www.geocities.com/SiliconValley/Ridge/1237/crackmain.html
http://www.research.ibm.com/people/k/kaplan/cryptolope-docs/crypap.html
http://www.research.ibm.com/people/k/kaplan/cryptolope-docs/crypap.html
http://www.netquartz.com/
http://www.netquartz.com/
http://www.sospita.com/files/SchlumbergerSemaprotect LY1	extunderscore Sospitaprotect LY1	extunderscore WP.pdf
http://www.sospita.com/files/SchlumbergerSemaprotect LY1	extunderscore Sospitaprotect LY1	extunderscore WP.pdf

1240 Ori Dvir et al. / J. Parallel Distrib. Comput. 66 (2006) 1233–1240

distributed systems. He has his A.B. in Mathematics from the Harvard
University and his Ph.D. in Computer Science from the MIT. He has been a
faculty member in the Computer Science Department at the Carnegie Mellon
University, and a member of research staff at Digital Equipment Corpora-
tion’s Cambridge Research Lab. In 1994, he joined the Computer Science
Deptartment at the Brown University. He has been awarded the 2004 Goedel
Prize for outstanding journal articles in theoretical Computer Science, and the
2003 Dijkstra Prize in Distributed Computing. He is a Fellow of the ACM.

Nir Shavit received his B.A. and M.Sc. from the Technion and his Ph.D.
from the Hebrew University, all in Computer Science. He was a Postdoctoral

Researcher at the IBM Almaden Research Center, Stanford University, and
MIT, and a Visiting Professor at the MIT. He joined the Computer Science
Department at the Tel-Aviv University in 1992 and became a Member of
Technical Staff at Sun Microsystems Laboratories in 2003. Dr. Shavit is the
recipient of the Israeli Industry Research Prize in 1993 and the ACM/EATCS
Godel Prize in Theoretical Computer Science in 2004. His research interests
include software aspects of Multiprocessor Synchronization, the design and
implementation of Concurrent Data-Structures, and the Theoretical Founda-
tions of Asynchronous Computability.

