
Work Dealing

[Extended Abstract]

Danny Hendler
∗

Tel-Aviv University

hendlerd@post.tau.ac.il

Nir Shavit
†

Tel-Aviv University

shanir@cs.tau.ac.il

ABSTRACT
This paper introduces work-dealing, a new algorithm for ”lo-
cality oriented” load distribution on small scale shared mem-
ory multi-processors. Its key feature is an unprecedented low
overhead mechanism (only a couple of loads and stores per
operation, and no costly compare-and-swaps) for dealing-
out work to processors in a globally balanced way. We be-
lieve that for applications in which work-items have process
affinity, especially applications running in dedicated mode
(”stand alone”), work-dealing could prove a worthy alterna-
tive to the popular work-stealing paradigm.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Miscellaneous

General Terms
Algorithms, Theory

Keywords
distributed, wait-free, load-balancing

1. INTRODUCTION
The need to improve the locality of thread execution in

shared memory multiprocessors has long been a goal of al-
gorithm designers. Recently, attempts have been made to
analyze and improve the locality of work-stealing based al-
gorithms [1, 12]. This paper presents work-dealing, a new al-
gorithm for ”locality oriented” load distribution. It is based
on a novel, non-blocking way of dealing-out work items to
processes as the items are created, rather than rely on pro-
cesses to steal work from others when they become idle.

∗The first author’s work was supported in part by a grant
from Sun Microsystems.
†Part of this work was performed while the second author
was at Sun Microsystems Laboratories.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’02,August 10-13, 2002, Winnipeg, Manitoba, Canada.
Copyright 2002 ACM 1-58113-529-7/02/0008 ...$5.00.

1.1 Background
Work-stealing, and specifically the work-stealing algorithm

of Arora et al. [2] has been shown in [2, 3, 6, 11] to be
an effective alternative to load-sharing [9, 13] for balancing
work load on shared memory multiprocessors. Work steal-
ing allows each process to maintain a local work queue, and
steal an item from others if its queue becomes empty. The
philosophy behind work-stealing is that the high cost of syn-
chronizing (using a Compare-and-Swap (CAS) operation) to
move items from one work queue to another, will fall on the
processes without work, thus minimizing the delay of the
processes with work, the ones most likely on the computa-
tion’s critical path. The beauty of the Arora et al. algo-
rithm [2] rests in a scheme for stealing an individual item
from a bounded size queue, while minimizing the need for
costly CAS synchronization operations when fetching items
locally.

In recent years, it has become clear that in addition to
good load balancing, good data locality is essential in ob-
taining high performance from modern parallel systems [1].
A recent paper by Acar et al. [1] shows how one can im-
prove the ”data locality” of thread distribution in the Arora
et al. algorithm by adding ”process affinity” information to
threads. The algorithm has, in addition to the work-stealing
queue, a special ”mailbox” queue to each process, and works
by adding, per thread, a pointer in the mailbox of the ”pro-
cess of highest affinity” so that it will be more likely to steal
that thread.

Though it improves data locality, the Acar et al. algo-
rithm introduces a significant overhead over the Arora et
al. algorithm: several costly synchronization operations are
necessary in handling each and every thread. Unlike in the
Arora et al. algorithm, this costly synchronization is per-
formed whenever a new thread is generated. In other words,
it is not restricted to the stealing processes that have no
work, but is performed by all processes, including ones that
are potentially on the execution’s critical path.

But there is an even bigger issue here. Even with an
efficient locality-oriented stealing mechanism, the very na-
ture of work stealing implies that threads will preferably be
executed by the generating local process, even if their affin-
ity is for another remote process. Such affinity for remote
processes can be found in popular applications such as par-
allel garbage collection [5], where for some subtasks work is
equally split among all processes in terms of locality, but is
generated by processes with little locality.

This paper argues that given the above limitations, there
is room to consider a work-distribution methodology in which

164

work, rather than being added to a local work-pile and only
rarely stolen to another higher-locality process, is dealt-out
a-priory to processes based on locality considerations. Fol-
lowing such a heuristic, while preserving a global overall
work balance, would potentially allow great locality in work
items execution. However, to enable such a scheme, one
would have to figure out a way to place work created by one
process into the work-pile of another with little synchroniza-
tion overhead.

1.2 Work Dealing
We introduce work dealing, a new load sharing algorithm

that has minimal overhead for distributing items among
processes. In fact, the algorithm requires only a couple of
loads and stores, and no costly synchronization operations,
to push or pop an item onto a work-pile, be it local or re-
mote.

The algorithm is intended for small scale shared memory
machines running applications in dedicated mode (as op-
posed to multiprogrammed mode), but has a variant that
will work in multiprogrammed mode as well. In addition to
its low synchronization overhead, the algorithm is dynamic
in its memory use, that is, work-piles do not need to be
fixed size arrays as in [1, 2], thus avoiding the need to build
specialized ”overflow” mechanisms [5].

In work-dealing, each process, as it generates work items,
will distribute them to other processes based on a pre-agreed
distribution policy. This can be a simple policy such as
Round Robin, or a more sophisticated ”locality guided” ap-
proach.

The key algorithmic idea behind the scheme is very sim-
ple. We begin by noting that the design of a fixed size
non-blocking (in fact, wait-free) producer-consumer buffer
(PCB) for one consumer and one producer is a matter of
folklore [8]. For our algorithm, we designed a dynamically
sized non-blocking PCB with similar properties for one pro-
ducer and one consumer. Our construction is such that each
produce or consume operation requires at most a couple of
loads and stores, with the added advantage that produc-
ers need only access a head pointer while consumers need
only access a separate tail pointer. Now, imagine that each
process i’s work-pile consists of n such PCBs with i as the
consumer and each of the n processes j ∈ {1 . . . n} as a pro-
ducer. For n processes, we have a total of n2 such PCBs
in the system, each initially consisting of a head and tail
pointer and a dummy item-record. The dynamic memory
used by PCBs can be provided by the system if lock-free
memory management is provided [4, 7]. Alternately, in
Section 2.2 we provide a simple dynamic memory recycling
scheme with very low synchronization overhead: in practice
it will amount to an uncontended CAS operation per several
thousands of recycle operations.

How are the PCBs used? Figure 1.2 shows the dealing-out
of work-items according to a simple work dealing policy. Ac-
cording to this policy, each process creating items distributes
them in Round Robin fashion, one per work-pile, into the
appropriate PCB for which it is a producer. To consume
items, a process goes through the PCBs where it is a con-
sumer, draining one and moving on to the next in a Round
Robin fashion. Thus, in a loaded system, no matter how im-
balanced the actual work generation is, the amortized cost
of working on an item, that is, pushing and popping it, is a
couple of loads and stores, and no matter how imbalanced

the actual work generation is, there are no costly synchro-
nization operations. In an unloaded system, a process might
have to go through several of its PCBs before finding an item
to work on. For small scale machines, given that the traver-
sal involves no synchronization operations, only the reading
of some locally cached variables, this overhead is negligible.1

A more sophisticated locality guided policy, has the same
consumption policy as simple, but deals out work based on
process-affinity information available for each work item. In
a nutshell, an item generated by a given process i is placed in
the appropriate PCB in the work-pile of the highest-affinity
process, unless by doing so the overall balance among the
number of items placed by i in all work piles is invalidated.
A typical choice for an overall balance is that any local
work-pile did not receive more than L times the average
distributed by i to all others, for some L > 2. If the balance
is invalidated, the item is placed in Round Robin fashion in
the next work-pile PCB that has received from i less than
twice the average it distributed to all others. The locality-
guided policy is described in detail in Section 3.

We also present an adaptive policy intended for multipro-
grammed environments. One can combine the adaptive and
locality guided policies in a natural way. For lack of space
we leave the detailed description and analysis of this policy
to the full paper.

1.3 Performance Analysis
In Section 4 we analyze the system balance, memory over-

head, and execution time of work-dealing. It is shown that
work-dealing with simple and locality-guided policy asymp-
totically distributes work optimally (up to a constant) - and
consequently its execution-time can be shown to also be
asymptotically optimal-up-to-a-constant - with probability
that increases as the number of produced items increases.

Let A be an application, let Optimal(A) denote the ex-
ecution time of A with optimal speed-up, and let WD(A)
denote execution-time using work-dealing under the simple
policy. We show that for every 0 ≤ p < 1 and α > 0 there is a
number K(p, α), such that if A produces more than K(p, α)
items, and the item-generation pattern allows a high degree
of parallelism, the following inequality holds:

P
�

WD(A)
Optimal(A)

≤ 3 + α
�
≥ p

A similar result is obtained for the locality-guided policy
under the assumption that work-items have affinity to all
processes with equal probability.

The locality guided policy tries to increase the number of
items which are executed by the process to which they have
affinity, while preventing the system from getting too imbal-
anced. An important question is: What is the probability
for any item i to be executed by the process to which it has
affinity? We call this probability, the affinity hit-ratio of the
scheme. In the analysis we prove, that under reasonable as-
sumptions, the locality guided policy with parameter L has
affinity hit-ratio of at least 1− 1

L
.

Assume a bound M is known a-priori on the maximal
number of items which may exist simultaneously in the sys-
tem. We show that work-dealing using our RS recycling-

1Note that after traversing and finding all of its n work-
pile PCBs empty, a process becomes idle and initiates a
termination detection protocol. For lack of space we do not
describe this protocol in the manuscript.

165

..

.
..
.

..

.
..
.

1

2

3

4

(1,1) (1,3) (1,4)(1,2) (2,3) (2,4)(2,2)(2,1) (3,1) (3,3) (3,4)(3,2) (4,1) (4,3) (4,4)(4,2)

Work−pile 1 Work−pile 2 Work−pile 3 Work−pile 4

Figure 1: Work dealing with 4 processes: simple policy. Process i’th work-pile includes its 4 consume-PCBs.
The ordered pair above a PCB contains its indices in the pcbs array. The bottom of the figure shows the
distribution of the next 4 items process 3 produces. They are distributed to process 3 produce-PCBs: 3, 4,
1 and 2, respectively.

scheme can completely avoid memory overflow, with mem-
ory overhead of at most (2n + 1)G work items, where G is
the granularity 2 with which items are recycled by the RS
scheme and n is the number of processes. This is an im-
provement over the work-stealing algorithms of [1, 2] which
by nature are designed for a fixed size array and thus incur
a much larger memory-overhead if memory-overflows are to
be completely avoided. For extremely imbalanced applica-
tions, work stealing may require Ω(nM) memory, hence the
use of specialized overflow mechanisms [5].

2. THE WORK DEALING ALGORITHM
Figure 2 shows the data structures used by the algorithm.

The main data-structure used by the algorithm is the pcbs

shared bi-dimensional array of Producer-Consumer-Buffers
(PCBs). The first dimension designates the consumer-process
and the second dimension designates the producer-process;
e.g., pcbs[2][5] is the PCB where items produced by process
5 are added, so that they can be consumed by process 2.
A PCB is represented by a head and tail ITEM pointers.
The PCB’s producer links new items to the tail of the PCB,
while the PCB’s consumer removes items from the head of
the PCB. An item is composed of an opaque VALUE and a
next pointer, that is either null or points to the next item.

2.1 High-level Methods Description

2.1.1 PCB data-structures, variables and methods
The methods with which PCB structures can be manipu-

lated are shown in Figure 2. The createPCB method creates
a new PCB and initializes its head and tail pointers to
a dummy item whose value is never used. The PCBEmpty

method receives a PCB pointer as its parameter and re-
turns a boolean value indicating whether or not that PCB
is empty. A PCB is empty if and only if the next pointer
of the item pointed at by the PCB’s head pointer is null.
The produce method receives a PCB-pointer and an item-
pointer as its parameters and chains the item to the tail of
the PCB. It then modifies the PCB’s tail to point at the new
item. Finally, the consume method receives a pointer to a

2See section 2.2

non-empty PCB as its parameter. The method unlinks the
item pointed at by the PCB’s head-pointer from the PCB
and recycles its memory; it then modifies the head-pointer
so that it points to the next item, and returns that item’s
value as its return-code.

2.1.2 putItem

The putItem method is shown in Figure 3. A new item
is created by calling the newItem method, which allocates
space for a new item and returns a pointer to it.

The new item’s value is set to the value received as the
method-parameter, and then a putOracle (whose implemen-
tation depends on the policy) is called, to determine to which
consume-PCB the item should be added. Finally, the item
is added to the chosen PCB by calling the produce method.

2.1.3 getItem

The getItem method is shown in Figure 3. It tries to
retrieve an item from one of the PCBs of the calling con-
sumer. It consists of a loop, each iteration of which checks a
single PCB. A getOracle is called in each iteration to deter-
mine which PCB should be checked. If a non-empty PCB is
found, the consume method is called to retrieve the value of
the first item in the queue. The loop continues, until either
a non-empty PCB is found, or the getOracle detects the
termination of the algorithm.

2.2 Recycling Item Records
The linked-list implementation of PCBs used by the work-

dealing algorithm calls the newItem and recycleItem meth-
ods for allocating a new item and for recycling it, respec-
tively. This requires the availability of an effective dis-
tributed mechanism, preferably non-blocking, for recycling
item records. If the work-dealing algorithm is implemented
on top of a multiprocessing platform that has an adequate
dynamic-memory implementation available [4], then that
implementation can be used; the availability of an adequate
dynamic-memory implementation is not guaranteed, how-
ever.

In this section we present a simple and efficient item-
record recycling scheme, which we call the Recycling Scheme
(RS, for short). The RS is simple, non-blocking, and allows

166

//
// types and variables
//
typedef structure
{

ITEM *next;
VALUE val;

} ITEM;

typedef structure
{

ITEM *head;
ITEM *tail;

} PCB;

shared PCB pcbs[P_NUM][P_NUM];
unsigned int localId;

//
// methods
//
PCB* createPCB()
{
1 PCB *PCB = (PCB *) malloc (sizeof PCB);
2 ITEM *i=newItem();
3 i.next=null;
4 PCB.head=PCB.tail=i;
5 return PCB;
}

void produce(PCB *PCB, ITEM *i)
{
1 PCB.tail->next=i;
2 PCB.tail=i;
}

boolean PCBEmpty(PCB *PCB)
{
1 if (PCB.head->next==null)
2 return true;
3 else
4 return false;
}

VALUE consume(PCB *PCB)
{
1 ITEM *tmp=PCB.head;
2 PCB.head=PCB.head->next;
3 recycleItem(tmp);
4 return PCB.head.val;
}

Figure 2: PCB data-structures, variables and meth-
ods

to control the tradeoff between memory-overhead and con-
tention.

The RS maintains a pool of linked-item-lists, which are
allocated to processes dynamically. We call these lists RS
item-lists, or just item lists. All allocated linked-lists ini-
tially contain the same number of items - ALLOC-SIZE,
which is a parameter of the algorithm. We call the ALLOC-
SIZE parameter the allocation’s granularity. Another pa-
rameter of the algorithm, is the number of item lists that
are generated during the RS initialization - LISTS-NUM.

The item lists are managed by the RS-pool, which is a
non-blocking concurrent pool. We do not specify the imple-
mentation of the pool, which could be implemented using a
variety of methods, one of which is the non-blocking FIFO
queue of Michael and Scott [10]. This queue requires a CAS
operation per insert or delete. Each process p maintains two
item-lists throughout execution:

VALUE getItem()
{
1 do
2 {
3 unsigned int nextPCB=getOracle();
4 if (nextPCB==TERMINATE)
5 exit();

6 PCB *PCB=pcbs[localId][nextPCB];
7 if (PCBEmpty(PCB))
8 continue;

9 return consume(PCB);
10 } forever;
}

void putItem(VALUE val)
{
1 ITEM *i = newItem();
2 i->val=val;
3 i->next=null;
4 unsigned int nextToPut=putOracle(val);
5 PCB *pcb=&pcbs[nextToPut][localId];
6 produce(pcb, i);
7 return;
}

Figure 3: putItem and getItem methods

• produceList - This list is used by the process to pro-
duce new items. Whenever p needs to produce a new
item, it unlinks the head item from the produceList,
stores the application value into its val field and in-
serts it to the selected consuming-process’ PCB. When
p needs a new item and its produceList is empty, a
new item list is retrieved from the RS-pool.

• consumeList - This list is being built by a process p
as it consumes items. When the list length becomes
ALLOC-SIZE, it is enqueued into RS-pool and p starts
to accumulate a new list.

Figure 4 shows how the various methods of the RS allow
item lists to be added from a process’ consumeList to the
shared pool once the process recycled enough items, and
similarly how a new list of unused item records is dequeued
from the shared pool and added to a process’ produceList
when it becomes empty. There is obviously a tradeoff be-
tween the number of items moved into the shared RS pool
at a time and the frequency of such operations. In general
though, based on the results of [10], on small scale machines
the granularity of the operations can be tuned such that the
frequency of allocations implies that concurrent CAS opera-
tions happen infrequently, eliminating any real synchroniza-
tion overhead. We do not elaborate on these methods which
are straightforward in their implementation. 3

2.3 Work-dealing Policies
The generic work-dealing algorithm that we presented uses

the putOracle and getOracle methods. A process p uses
these methods to determine which produce-PCB should re-
ceive p’s newly produced item, and from which consume-
PCB p should obtain the next item to consume, respectively.

3Note, that for the sake of presentation simplicity, the code
assumes that enough items are allocated initially to accomo-
date maximal load. The code can be extended in a stright-
forward manner so that this assumption would not be re-
quired.

167

void initialize() {
1 unsigned int i;
2 for (i=0;i<LISTS_NUM; i++)
3 enqueue(RS_pool,newItemList(ALLOC-SIZE)); }

void newItem() {

1 if (produceList->head == null)
{

2 recycle(produceList);
3 produceList = dequeue(RS_pool);

}
4 ITEM *i = produceList->head;
5 produceList->head = i->next;
6 produceList->itemsNum--;
7 return i; }

void recycleItem(ITEM *i) {
1 if (consumeList == null)

{
2 consumeList = new ITEM_LIST;
3 consumeList.itemsNum = 1;
4 consumeList.head = i;
5 i->next = null;

}
6 else

{
7 ITEM *head = consumeList.head;
8 i->next = head;
9 consumeList.head = i;
10 consumeList.itemsNum++;
11 if (consumeList.itemsNum == ALLOC_SIZE)
12 enqueue(RS_pool, consumeList);

} }

Figure 4: RS methods

We call a specific implementation of these oracle-methods a
work-dealing policy, or just policy for short.

Many different policies are conceivable, and they differ
with respect to their properties and to the architectures and
applications for which they are appropriate. In the follow-
ing, we present a high-level description of few possible poli-
cies by describing the putOracle and getOracle functions
of these policies.

• Simple policy : The simple policy is intended as an ex-
ample to the reader of the simplicity of the dealing
approach. Its put-oracle distributes process j ’s items
one by one, in a Round Robin fashion, to each of j ’s
production PCBs: the k’th item is added to pcbs[(j +
k) mod n][j]. In the simple policy’s get-oracle, which
is the same for the more sophisticated locality-based
policy below, a process p scans p’s consume-PCBs in
a Round Robin manner. Whenever a non-empty PCB
is found, the items in it are returned one by one, un-
til it is made empty. In the analysis we prove that it
makes sure that the work-distribution is optimal up-
to-a-constant. Moreover, if process-speeds are equal
(up to a constant) throughout execution, we prove that
asymptotic execution time is optimal up to a constant,
with high probability, provided enough items are pro-
duced.

• Locality-guided policy : The key advantage of work deal-
ing, the advantage that justifies the sacrifice of reduced
overhead of local execution by the generating process,
is the ability to have many work items executed by
the process for which they have affinity [1]. We follow
the process-affinity approach introduced by Acar et al.

[1]. According to this approach, it is desirable to allow
some way of specifying an item’s process-affinity and
to increase the probability that items are performed by
the ”preferred” process with the locality advantage. In
Section 3 we describe this policy in detail.

• Adaptive policy : A drawback of the above policies is
that if the system becomes imbalanced, there is no
mechanism to re-balance it. Consequently, it is not
appropriate for multi-programmed systems where pro-
cess execution quota’s may vary. For such systems, an
adaptive policy can provide more assurance that sys-
tem balance can be maintained over time. For this pol-
icy, each PCB is extended with 2 counters: Produced
counter - which stores the number of items inserted
into the PCB by its producer, and Consumed counter
- which stores the number of items retrieved from this
PCB by its consumer. The adaptive policy ’s getOra-
cle scans each process p’s consume-PCBs in a Round
Robin fashion, until it finds a non-empty PCB from
which the next item to be consumed by p is retrieved.
The adaptive policy ’s putOracle, by using the Produced
and Consumed counters associated with every PCB,
balances the load dynamically over p’s produced-PCBs
based on the number of items counted in each PCB at
the given time, as opposed to the total number ever
placed in it. For lack of space we do not elaborate on
this policy.

2.4 Correctness
In [14], Shavit and Touitou formally define the semantics

of a pool data structure. A pool is an unordered queue,
a concurrent data structure that allows each processor to
perform sequences of push and pop operations with the usual
semantics. In the full paper we prove that:

Theorem 1. The work-dealing scheme with RS recycling,
with operations getItem and putItem, is a non-blocking im-
plementation of a pool data structure.

We note that our work-dealing algorithms, like the work-
stealing algorithms of Arora et al. [2] are not fault tolerant,
in the sense that process failures, though non-blocking, can
cause the loss of items.

3. THE LOCALITY-GUIDED POLICY
In this section we describe work-dealing under the locality-

guided policy. The policy fits applications where the work
represented by any work-item i can be executed more effi-
ciently on a specific process affil(i) than on other processes.

The policy uses an algorithm-parameter L, L > 2, that
represents the extent of distribution-imbalance allowed. Let
us denote by dist(p,q,t) the number of items distributed by
process p to process q by time t; and let distAvg(p, t) de-
note the average number of items distributed by p to its
produce-PCBs (including p’s) by time t, then the locality-
guided policy distributes all items according to their affinity,
as long as the following invariant is not violated:

• L-balance invariance: At any time t, and for all p, q it
holds that:

dist(p, q, t) ≤ L · distAvg(p)

In the special case where all items are distributed accord-
ing to their affinity, L = ∞.

168

3.1 Implementation
The getOracle for the locality-guided policy is the same

as the simple policy ’s getOracle, as described in Section
2.3. Figure 5 shows the additional local variables required
to implement the locality-guided policy, and the code im-
plementing the putOracle.

// Local static memory
unsigned long dist[n];
unsigned long distAvg=1;
unsigned int nCount=0;
unsigned int nextPCB;

// The put Oracle
unsigned int putOracle(VALUE val)
{
1 unsigned int affin = val.affin;
2 if (++nCount == n)

{
3 nCount=0;
4 distAvg++;

}
5 if (dist[affin] < L*distAvg)

{
6 dist[affin]++;
7 return affin;

}
8 else
9 for (nextPCB = ++nextPCB % n;;nextPCB = ++nextPCB % n)
10 if (dist[nextPCB] < 2*distAvg)

{
11 dist[nextPCB]++;
12 return nextPCB;

}
}

Figure 5: Locality-guided policy variables and code

All values produced by the algorithm contain an affin

field, storing the index of the process to which they have
affinity. Each process p has an array dist; entry i stores the
number of items distributed by p to process i. The distAvg

long variable stores an approximation of the average num-
ber of items distributed by p. (It can easily be seen, that
this approximation always misses the average by at most 1.)
Finally, nextPCB is a Round Robin index.

The putOracle receives the produced-value val as its in-
put and returns the index of the process to whose PCB the
new value should be added. putOracle extracts from val

the id of the process to which it has affinity - affin. If the
number of items distributed by p to affin is less than L
times distAvg, then affin is returned, indicating that the
new value should be added to affin’s PCB; otherwise, so
as to balance the system, the dist array is scanned in a
Round Robin manner, until a process-id q is found to which
p distributed so far less than twice the average, and the func-
tion returns q. The nCount counter is incremented on every
activation and is used to increment distAvg every n items
produced, so as to eliminate the need for a divide-operation
for every item distributed.

4. PERFORMANCE ANALYSIS
In this section we analyze the performance of the work-

dealing algorithm. After providing some definitions and no-
tation, we analyze the memory overhead of the RS item
recycling scheme, which is utilized by all policies, and then
proceed with analysis of the simple policy followed by anal-
ysis of the locality guided policy.

4.1 Definitions and Notation
The computation is performed by a group of processes, Q,

of size n. We assume each process has a unique index in the
range [0..n-1] and we regard Q interchangeably as a group
of indexes and as a group of processes.

Denote by dist(t) the number of items distributed by the
computation up-to (and including) time t. We identify dist(t)
with the number of activations of putItem that finished ex-
ecution during the computation, up to time t. We denote
by dist(p,t) the number of items which have been put into
process p’s consume-PCBs (either by p itself or by other pro-
cesses) up to time t. Let i be an item. Initially we assume
that the execution of the work represented by i takes the
same time, no matter on which process it is executed, and
we denote this time by w(i). We relax this assumption later.
let W (p, t) denote the work represented by all the items that
have been distributed to p up-to (and including) time t; also
let W(t) denote the work represented by all the items that
have been distributed to all processes up-to (and including)

time t, and let WA(t) = W (t)
n

be average-work distributed
to a process. Finally, we say that the work-dealing by time
t is α− balanced, if the following holds:

∀q ∈ Q : |W (q, t)−WA(t)

WA(t)
| ≤ α

4.2 RS item recycling scheme
The following Theorem proves that by using the RS re-

cycling scheme, work dealing can completely avoid memory-
overflow while incurring only a small memory-overhead.

Theorem 2. Assume the maximal number of items which
would exist simultaneously in the system, M , is know a pri-
ori; then work-dealing under any policy, using RS with gran-
ularity G, and fixed lists number of dM

G
e + 2n, completely

avoids memory-overflow, with memory overhead of at most
(2n + 1)G items.

Proof. Any process p, at any time t, has a single pro-
duceList and a single consumeList, that can contain at most
2G unused items and so the maximal memory-overhead at
any time due to these lists is 2nG items. The round-up of
dM

G
e may contribute an additional overhead of less than G

items. All other items are either used or are available for use
of any process at the RS-pool, and thus no overflow would
occur.

Note that contrary to work-dealing, array-based work-
stealing must generally incur a much larger memory-overhead
if memory-overflows are to be completely avoided. For ex-
tremely unbalanced applications, Ω(nM) memory may be
required.

4.3 Simple-Policy Analysis
In the analysis of the simple policy, we assume that the

work represented by items generated by any process during
an execution can be modeled by a random variable R with
expectance µ and variance σ2. R’s coefficient-of-variance
(µ

σ
) is denoted by CV .
The following theorem states, that under the simple pol-

icy, generated-items are distributed equally between pro-
cesses.

169

Theorem 3. At any time t during the computation un-
der the simple policy, the numbers of items distributed to
different processes differ by at most n:

∀p, q, t : |dist(p, t)− dist(q, t)| ≤ n

Proof. With the basic policy, every process p distributes
the items produced by it in a round-robin manner. Con-
sequently, p’s contribution to a distribution-imbalance be-
tween any pair of processes at all times is at most 1.

We consider computations where the number of items gen-
erated throughout execution is much higher than n. We
analyze the system-load at time t, after a large number of
items has been produced, and we assume that at that time
the following holds:

∀p, q, t : dist(p, t) = dist(q, t). (1)

Theorem 3 guarantees that this is a good approximation.
The following theorem proves that the simple-policy makes

the work-distribution optimal up-to-a-constant with high-
probability, provided enough items are produced.

Theorem 4. For every p, 0 < p < 1 and α, α > 0,
there exists a number K(p, α) such that if more than K(p, α)
items have been distributed up to time t according to the
simple policy, the work-dealing by time t is α− balanced in
probability at least p. Moreover:

k(p, α) ≤ (CV)2n
1

(1− n
√

p)α2
(2)

Proof. Observe, that W (q, t) is the sum of a random-
sample of size dist(q, t) from a distribution with mean µ
and variance σ2. Consequently, at any time t and for any
process q, the following holds:

E[W (q, t)] = dist(q, t)µ, V ar[W (q, t)] = dist(q, t)σ2

(3)
By using Chebyshev’s inequality, we get the following:

P
�
|W (q, t)− dist(q, t)µ| ≤ k

p
dist(q, t)σ

�
≥ p (4)

Consequently:

P
�
∀q ∈ Q : |W (q, t)− dist(q, t)µ| ≤ k

p
dist(q, t)σ

�
≥ (1− 1

k2
)n

(5)
Note, that E[W (t)] = dist(t)µ, and so the optimal ex-

pected work-distribution is for each process to have received

items representing dist(t)µ
n

work.

Fix kp =
q

1
(1− n√p)

in Equation 5 to get a specific prob-

ability p. We now wish to make the relative deviation of
W (q, t) from the optimum smaller than α, for all processes,
with probability p.We get:

kp

√
dist(q,t)σ

dist(q,t)µ
≤ α =⇒ σ

µ

kp√
dist(q,t)

≤ α

=⇒ dist(q, t) ≥ (CV)2(
kp

α
)2

(6)

Noting that dist(q, t) = dist(t)
n

completes the proof.

If a work-distribution scheme has the property proven in
Theorem 4, we say the scheme is K(p, α) eventually fair.

Following the proof of Theorem 4, it is clear that we can
somewhat relax the assumption that all work-items take ex-
actly the same time on all processes and still prove eventual
fairness. The following theorem states just that.

Theorem 5. Let w(i, p) denote the time it takes process p
to execute the work represented by item i, and assume there
is a constant C such that the following holds for all items i:

∀p, q ∈ Q :
w(i, p)

w(i, q)
≤ C

Then for every p, 0 < p < 1 and α, α > 0, there ex-
ists a number K(p, α) such that if more than K(p, α) items
have been distributed up to time t according to the simple
policy, the work-dealing by time t is C(1 + α)− balanced in
probability at least p, with the same k(p, α) as in Theorem 4

The proof is almost identical to that of Theorem 4, except
that the random-variable R now represents the average −
time it takes to execute a work-item over all the processes.

Using Theorem 5, we can now prove that execution-time
under the simple policy approaches the optimum with high
probability, provided enough items are produced. We derive
this result for a category of applications defined as follows:

Let A be an application. We say that A has an (n,C)-
phased generation pattern if for any execution of A, either
serial or parallel, the items it generates can be inductively
partitioned as follows:

• A generates a total of K items, where nC ≤ K <
(n + 1)C.

• We denote by G0 the group of first C items gener-
ated by A. Let W represent the total time it takes to
process all the items A generates (if the execution is
parallel, execution times for all processes are summed),
and assume execution starts at time 0, then all of the
items in G0 are generated by time W

n
.

• Let Gi, 0 ≤ i ≤ (n− 2) be the i’th group of items. We
denote by Gi+1 the group of items generated through-
out the execution of the items in Gi. It holds that:
|Gi+1| ≥ C.

• We denote by Gn all the work-items that do not belong
to any of the groups Gi, 0 ≤ i ≤ (n − 1). Clearly,
|Gn| < C. Let W (Gn) denote the time it takes to
execute all of the items in Gn. It holds that W (Gn) <
W
n

.

The above definition captures the idea that many highly
parallel applications can be viewed as if work is generated
in a number of phases. In each phase, while some number C
of items are being processed, another amount C of items is
generated as a result of this processing. This kind of execu-
tion pattern implies that there is enough concurrency in the
sense that there are no prolonged ”idle periods”: while items
are worked on, sufficiently many new items are generated to
fill the processsing pipeline.

The following theorem proves that for applications that
have such an item-generation pattern, eventual fairness en-
sures asymptotic optimal performance.

170

Theorem 6. Assume a work-distribution scheme DS is
K(p, α) eventually-fair. Let A be an (n, K(q, α))-phased
application, where q > n

√
p. Let Optimal(A) and DS(A)

denote the optimal speed-up execution-time of A and the
execution-time under the DS scheme, respectively, in an n-
process system, then the following holds:

P
�

DS(A)
Optimal(A)

≤ 3 + α
�
≥ p

Proof. Assume execution starts at time 0. Since A is
(n, K(q, α))-phased, the items in G0 are generated by the
DS scheme by time W

n
at the latest. After that, execution

of all the items in any group Gi, 0 ≤ i ≤ (n − 1) takes

no more than (1+α)W (Gi)
n

time with probability at least q.
Consequently, all the items in groups Wi, 0 ≤ i ≤ (n−1) are

processed by DS in time less than (1+α)
n

P
0≤i≤n−1 W (Gi),

with probability at least qn ≥ p. Finally, all the items in Gn

are processed by DS in time no more than W
n

. It follows,
that the total execution time of A under DS is less than (3+
α)W

n
, with probability at least p. Noting that Optimal(A) ≥

W
n

finishes the proof.

We get as a corollary, that work-distribution under the
simple policy has asymptotic optimal performance:

Theorem 7. Let A be an (n, K(q, α))-phased application,
where q > n

√
p. Let Optimal(A) and WDS(A) denote the

optimal speed-up execution-time of A and the execution-time
under work-dealing with the simple policy, respectively, in an
n-process system, then the following holds:

P
�

WDS(A)
Optimal(A)

≤ 3 + α
�
≥ p

4.4 Locality-Guided-Policy Analysis
For the locality-guided -policy analysis, we assume that ev-

ery generated item i has a single process, affil(i), to which it
is affiliated. We analyze the policy with L = ∞, namely all
items are distributed to the process to which they are affili-
ated, and we make the following simplifying assumptions:

• For every item i generated during the computation,
i has affinity to all processes with equal probability,
namely:

∀i, ∀q ∈ Q : P (affil(i) = q) =
1

n

• As we did for the simple-policy, we assume that the
work represented by any item i can be modeled by a
random variable R with expectance µ and variance σ2

and we denote R’s coefficient-of-variance (µ
σ
) by CV .

We denote by distA(t) = dist(t)
n

the average number of
items distributed to a process by time t; we say that the
item-dealing by time t is α−balanced, if the following holds:

∀q ∈ Q : |dist(q, t)− distA(t)

distA(t)
| ≤ α

The following theorem proves, that the item-dealing is
asymptotically balanced.

Theorem 8. For every probability p, 0 < p < 1 and α, α >
0, there exists a number K(p, α) such that if more than
K(p, α) items have been distributed up to time t according
to their affinity, the item-dealing by time t is α - balanced
in probability at least p. Moreover:

K(p, α) ≤ n

α(1− n
√

p)
(7)

Proof. dist(q, t) is exactly the number of generated items
whose affinity process is q. Consequently, dist(q, t) is a bi-
nomial random variable with parameters (dist(t), 1

n
). It fol-

lows that:

E[dist(q, t)] = distA(t)
V ar[dist(q, t)] = distA(t)(1− 1

n
) = Θ(distA(t))

(8)

By applying Chebyshev’s inequality to Equations 8 we
get:

P
�
|dist(q, t)− distA(t)| ≤ k

p
distA(t)

�
≥ 1− 1

k2
(9)

It follows that:

P
�
∀q ∈ Q : |dist(q, t)− distA(t)| ≤ k

p
distA(t)

�
≥ (1− 1

k2
)n

(10)

Fix Kp =
q

1
1− n√p

in Equation 10 to get a specific prob-

ability p. We now wish to make the relative deviation of
dist(q, t) from the average smaller than α, for all processes,
with probability p. We get:

kp

√
distA(t)

distA(t)
≤ α =⇒ distA(t) ≥ (

Kp

α
)2

=⇒ dist(t) ≥ n(
Kp

α
)2

=⇒ dist(t) ≥ n
α(1− n√p)

Based on Theorem 8 we get as corollary the following
theorem, corresponding to Theorem 4 for the simple policy :

Theorem 9. For every p, 0 < p < 1 and α, α > 0, there
exists a number K(p, α) such that if more than K(p, α) items
have been distributed up to time t according to the locality
guided policy with L = ∞, the work-dealing by time t is
α− balanced in probability at least p.

The proof is almost identical to that of Theorem 4. Fi-
nally, based on Theorems 9 and 6, we get the following as
corollary:

Theorem 10. Let A be an (n, K(q, α))-phased applica-
tion, where q > n

√
p. Let Optimal(A) and WDLG∞(A)

denote the optimal speed-up execution-time of A and the
execution-time under work-dealing with the locality-guided
policy with L = ∞, respectively, in an n-process system,
then the following holds:

P
�

WDLG∞(A)
Optimal(A)

≤ 3 + α
�
≥ p

171

An important question regarding a locality-guided distri-
bution scheme is: What is the probability for any item e to
be executed by the process to which it has affinity? We call
this probability, the affinity hit-ratio of the scheme. The
following theorem bounds the affinity hit ratio from below.

Theorem 11. The work-dealing algorithm, under the lo-
cality guided policy with parameter L, has expected affinity
hit-ratio of at least 1− 1

L

Proof. An item i produced by process p at time t is
distributed to affil(i), unless:

dist(p, affil(i), t) > L · distAvg(p)

Consequently there are at most n
L

processes to which i
cannot be distributed at time t. Since we assume that af-
fil(p) has a uniform distribution, the theorem follows.

5. ACKNOWLEDGMENTS
We wish to thank Yossi Azar, Dave Detlefs, Maurice Her-

lihy, Victor Luchangco, Mark Moir and Sivan Toledo for
their valuable comments. The key idea of applying our work-
dealing algorithm to improve the locality of work distribu-
tion was suggested to us by Dave Detlefs.

6. REFERENCES
[1] Acar, U. A., Blelloch, G. E., and Blumofe,

R. D. The data locality of work stealing. In ACM
Symposium on Parallel Algorithms and Architectures
(2000), pp. 1–12.

[2] Arora, N. S., Blumofe, R. D., and Plaxton,
C. G. Thread scheduling for multiprogrammed
multiprocessors. Theory of Computing Systems 34, 2
(2001), 115–144.

[3] Berenbrink, P., Friedetzky, T., and Goldberg,
L. A. The natural work-stealing algorithm is stable.
In Proceedings of the 42th IEEE Symposium on
Foundations of Computer Science (FOCS) (2001),
pp. 178–187.

[4] Detlefs, D. L., Martin, P. A., Moir, M., and
Jr., G. L. S. Lock-free reference counting. In
Proceedings of the 20th Annual ACM Symposium on
Principles of Distributed Computing (2001).

[5] Flood, C., Detlefs, D., Shavit, N., and Zhang,
C. Parallel garbage collection for shared memory
multiprocessors. In Usenix Java Virtual Machine
Research and Technology Symposium (JVM ’01)
(Monterey, CA, Apr. 2001).

[6] Hendler, D., and Shavit, N. Non-blocking
steal-half work queues. In Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed
Computing (2002).

[7] Herlihy, M., Luchangco, V., Martin, P., and
Moir, M. Dynamic-sized lockfree data structures,
2002. Technical Report TR-2002-110, Sun
Microrsystems Laboratories.

[8] Lamport, L. Specifying concurrent program modules,
1993.

[9] Luling, R., and Monien, B. A dynamic distributed
load balancing algorithm with provable good
performance. In ACM Symposium on Parallel
Algorithms and Architectures (1993), pp. 164–172.

[10] Michael, M. M., and Scott, M. L. Simple, fast,
and practical non-blocking and blocking concurrent
queue algorithms. In Symposium on Principles of
Distributed Computing (1996), pp. 267–275.

[11] Mitzenmacher, M. Analysis of load stealing models
based on differential equations. In ACM Symposium
on Parallel Algorithms and Architectures (1998),
pp. 212–221.

[12] Narlikar, G. J. Scheduling threads for low space
requirement and good locality. In ACM Symposium on
Parallel Algorithms and Architectures (1999),
pp. 83–95.

[13] Rudolph, L., Slivkin-Allalouf, M., and Upfal,
E. A simple load balancing scheme for task allocation
in parallel machines. In ACM Symposium on Parallel
Algorithms and Architectures (1991), pp. 237–245.

[14] Shavit, N., and Touitou, D. Elimination trees and
the construction of pools and stacks. Theory of
Computing Systems, 30 (1997), 645–670.

172

