
Distrib. Comput. (2005)
DOI 10.1007/s00446-005-0144-5

SPECIAL ISSUE DISC 0 4

Danny Hendler · Yossi Lev · Mark Moir · Nir Shavit

A dynamic-sized nonblocking work stealing deque

Received: date / Accepted: date / Published online: 28 December 2005
C© Springer-Verlag 2005

Abstract The non-blocking work-stealing algorithm of
Arora, Blumofe, and Plaxton (hencheforth ABP work-
stealing) is on its way to becoming the multiprocessor
load balancing technology of choice in both industry and
academia. This highly efficient scheme is based on a collec-
tion of array-based double-ended queues (deques) with low
cost synchronization among local and stealing processes.
Unfortunately, the algorithm’s synchronization protocol is
strongly based on the use of fixed size arrays, which are
prone to overflows, especially in the multiprogrammed en-
vironments for which they are designed. This is a significant
drawback since, apart from memory inefficiency, it means
that the size of the deque must be tailored to accommo-
date the effects of the hard-to-predict level of multiprogram-
ming, and the implementation must include an expensive
and application-specific overflow mechanism.

This paper presents the first dynamic memory work-
stealing algorithm. It is based on a novel way of build-
ing non-blocking dynamic-sized work stealing deques
by detecting synchronization conflicts based on “pointer-
crossing” rather than “gaps between indexes” as in the
original ABP algorithm. As we show, the new algorithm
dramatically increases robustness and memory efficiency,
while causing applications no observable performance
penalty. We therefore believe it can replace array-based ABP
work stealing deques, eliminating the need for application-
specific overflow mechanisms.

This work was conducted while Yossi Lev was a student at Tel Aviv
University, and is derived from his MS thesis [1].

D. Hendler
Tel-Aviv University

Y. Lev (B)
Brown University & Sun Microsystems Laboratories
E-mail: levyossi@cs.brown.edu

M. Moir
Sun Microsystems Laboratories

N. Shavit
Sun Microsystems Laboratories & Tel-Aviv University

Keywords Concurrent programming · Load balancing ·
Work stealing · Lock-free · Data structures

1 Introduction

Scheduling multithreaded computations on multiprocessor
machines is a well-studied problem. To execute multi-
threaded computations, the operating system runs a collec-
tion of kernel-level processes, one per processor, and each
of these processes controls the execution of multiple com-
putational threads created dynamically by the executed pro-
gram. The scheduling problem is that of dynamically decid-
ing which thread is to be run by which process at a given
time, so as to maximize the utilization of the available com-
putational resources (processors).

Most of today’s multiprocessor machines run programs
in a multiprogrammed mode, where the number of proces-
sors used by a computation grows and shrinks over time.
In such a mode, each program has its own set of processes,
and the operating system chooses in each step which sub-
set of these processes to run, according to the number of
processors available for that program at the time. Therefore
the scheduling algorithm must be dynamic (as opposed to
static): at each step it must schedule threads onto processes,
without knowing which of the processes are going to be run.

When a program is executed on a multiprocessor ma-
chine, the threads of computation are dynamically gener-
ated by the different processes, implying that the scheduling
algorithm must have processes load balance the computa-
tional work in a distributed fashion. The challenge in de-
signing such distributed work scheduling algorithms is that
performing a re-balancing, even between a pair of processes,
requires the use of costly synchronization operations. Re-
balancing operations must therefore be minimized.

Distributed work scheduling algorithms can be clas-
sified according to one of two paradigms: work-sharing
or work-stealing. In work-sharing (also known as load-
distribution), the processes continuously re-distribute work
so as to balance the amount of work assigned to each [2]. In

D. Hendler et al.

work-stealing, on the other hand, each process tries to work
on its newly created threads locally, and attempts to steal
threads from other processes only when it has no local
threads to execute. This way, the computational overhead of
re-balancing is paid by the processes that would otherwise
be idle.

The ABP work-stealing algorithm of Arora, Blumofe,
and Plaxton [3] has been gaining popularity as the multi-
processor load-balancing technology of choice in both in-
dustry and academia [3–6]. The scheme implements a prov-
ably efficient work-stealing paradigm due to Blumofe and
Leiserson [7] that allows each process to maintain a local
work deque,1 and steal an item from others if its deque be-
comes empty. It has been extended in various ways such
as stealing multiple items [9] and stealing in a locality-
guided way [4]. At the core of the ABP algorithm is an effi-
cient scheme for stealing an item in a non-blocking man-
ner from an array-based deque, minimizing the need for
costly Compare-and-Swap (CAS)2 synchronization opera-
tions when fetching items locally.

Unfortunately, the use of fixed size arrays3 introduces
an inefficient memory-size/robustness tradeoff: for n pro-
cesses and total allocated memory size m, one can tolerate
at most m/n items in a deque. Moreover, if overflow does
occur, there is no simple way to malloc additional memory
and continue. This has, for example, forced parallel garbage
collectors using work-stealing to implement an application-
specific blocking overflow management mechanism [5, 10].
In multiprogrammed systems, the main target of ABP work-
stealing [3], even inefficient over-allocation based on an ap-
plication’s maximal execution-DAG depth [3, 7] may not al-
ways work. If a small subset of non-preempted processes
end up queuing most of the work items, since the ABP algo-
rithm sometimes starts pushing items from the middle of the
array even when the deque is empty, this can lead to over-
flow.4

This state of affairs leaves open the question of design-
ing a dynamic memory algorithm to overcome the above
drawbacks, but to do so while maintaining the low-cost syn-
chronization overhead of the ABP algorithm. This is not a
straightforward task, since the the array-based ABP algo-
rithm is unique: it is possibly the only real-world algorithm
that allows one to transition in a lock-free manner from the
common case of using loads and stores to using a costly
CAS only when a potential conflict requires processes to

1 Actually, the work stealing algorithm uses a work stealing deque,
which is like a deque [8] except that only one process can access one
end of the queue (the “bottom”), and only Pop operations can be in-
voked on the other end (the “top”). For brevity, we refer to the data
structure as a deque in the remainder of the paper.

2 The CAS (location, old-value, new-value) operation atomically
reads a value from location, and writes new-value in location if and
only if the value read is old-value. The operation returns a boolean
indicating whether it succeeded in updating the location.

3 One may use cyclic array indexing but this does not help in pre-
venting overflows.

4 The ABP algorithm’s built-in “reset on empty” mechanism helps
in some, but not all, of these cases.

Fig. 1 The original ABP deque structure a vs. that of the new dynamic
deque b. The structure is after 9 PushBottom operations, 4 success-
ful PopTop operations, and 2 PopBottom operations. (In practice the
original ABP deque uses cell indexes and not pointers as in our illus-
tration.)

synchronize. This transition rests on the ability to detect
these boundary synchronization cases based on the relative
gap among array indexes. There is no straightforward way of
translating this algorithmic trick to the pointer-based world
of dynamic data structures.

1.1 The new algorithm

This paper introduces the first lock-free5 dynamic-sized ver-
sion of the ABP work-stealing algorithm. It provides a near-
optimal memory-size/robustness tradeoff: for n processes
and total pre-allocated memory size m, it can potentially tol-
erate up to O(m) items in a single deque. It also allows one
to malloc additional memory beyond m when needed, and as
our empirical data shows, it is far more robust than the array-
based ABP algorithm in multiprogrammed environments.

An ABP-style work stealing algorithm consists of a col-
lection of deque data structures with each process perform-
ing pushes and pops on the “bottom” end of its local deque
and multiple thieves performing pops on the “top” end. The
new algorithm implements each deque as a doubly linked list
of nodes, each of which is a short array that is dynamically
allocated from and freed to a shared pool; see Fig. 1. It can
also use malloc to add nodes to the shared pool in case its
node supply is exhausted.

The main technical difficulties in the design of the new
algorithm arise from the need to provide performance com-
parable to that of ABP. This means the doubly linked list
must be manipulated using only loads and stores in the com-
mon case, resorting to using a costly CAS only when a po-
tential conflict requires it; it is challenging to make this tran-
sition correctly while maintaining lock-freedom.

The potential conflict that requires CAS-based syn-
chronization occurs when a pop by a local process and a
pop by a thief might both be trying to remove the same
item from the deque. The original ABP algorithm detects
this scenario by examining the gap between the Top and
Bottom array indexes, and uses a CAS operation only when
they are “too close.” Moreover, in the original algorithm,
the empty deque scenario is checked simply by checking
whether Bottom≤ Top.

A key algorithmic feature of our new algorithm is the
creation of an equivalent mechanism to allow detection of
these boundary situations in our linked list structures us-
ing the relations between the Top and Bottom pointers, even

5 Our abstract deque definition is such that the original ABP algo-
rithm is also lock-free.

A dynamic-sized nonblocking work stealing deque

though these point to entries that may reside in different
nodes. On a high level, our idea is to prove that one can re-
strict the number of possible ways the pointers interact, and
therefore, given one pointer, it is possible to calculate the
different possible positions for the other pointer that imply
such a boundary scenario.

The other key feature of our algorithm is that the dy-
namic insertion and deletion operations of nodes into the
doubly linked-list (when needed in a push or pop) are per-
formed in such a way that the local thread uses only loads
and stores. This contrasts with the more general linked-list
deque implementations [11, 12] which require a double-
compare-and-swap synchronization operation [13] to insert
and delete nodes.

1.2 Performance analysis

We compared our new dynamic-memory work-stealing al-
gorithm to the original ABP algorithm on a 16-node shared
memory multiprocessor using the benchmarks of the style
used by Blumofe and Papadopoulos [14]. We ran several
standard Splash2 [15] applications using the Hood scheduler
[16] with the ABP and new work-stealing algorithms. Our
results, presented in Sect. 3, show that the new algorithm
performs as well as ABP, that is, the added dynamic-memory
feature does not slow the applications down. Moreover, the
new algorithm provides a better memory/robustness ratio:
the same amount of memory provides far greater robust-
ness in the new algorithm than the original array-based
ABP work-stealing. For example, running Barnes-Hut us-
ing ABP work-stealing with an 8-fold level of multipro-
gramming causes a failure in 40% of the executions if
one uses the deque size that works for stand-alone (non-
multiprogrammed) runs. It causes no failures when using the
new dynamic memory work-stealing algorithm.

2 The algorithm

2.1 Basic description

Figure 1b presents our new deque data-structure. The
doubly-linked list’s nodes are allocated from and freed to
a shared pool, and the only case in which one may need to
malloc additional storage is if the shared pool is exhausted.
The deque supports the PushBottom and PopBottom opera-
tions for the local process, and the PopTop operation for the
thieves.

The first technical difficulty we encountered is in detect-
ing the conflict that may arise when the local PopBottom and
a thief’s PopTop operations concurrently try to remove the
last item from the deque. Our solution is based on the ob-
servation that when the deque is empty, one can restrict the
number of possible scenarios among the pointers. Given one
pointer, we show that the “virtual” distance of the other, ig-
noring which array it resides in, cannot be more than 1 if the
deque is empty. We can thus easily test for each of these sce-

Fig. 2 The different types of empty deque scenarios. a Simple:
Bottom and Top point to the same cell. b Simple Crossing: both the
left and right scenarios are examples where Bottom passed over Top
by one cell, but they still point to neighboring cells. c Non-Simple
Crossing (with the reset-on-empty heuristic): both the left and right
scenarios are examples of how pointers can cross given the reset-on-
empty heuristic, between the reset of Bottom to the reset of Top

narios. (Several such scenarios are depicted in parts (a) and
(b) of Fig. 2).

The next problem one faces is the maintenance of the
deque’s doubly-linked list structure. We wish to avoid us-
ing CAS operations when updating the next and previous
pointers, since this would cause a significant performance
penalty. Our solution is to allow only the local process to
update these fields, thus preventing PopTop operations from
doing so when moving from one node to another. We would
like to keep the deque dynamic, which means freeing old
nodes when they’re not needed anymore. This restriction im-
mediately implies that an active list node may point to an
already freed node, or even to a node which was freed and
reallocated again, essentially ruining the list structure. As we
prove, the algorithm can overcome this problem by having
a PopTop operation that moves to a new node free only the
node preceding the old node and not the old node itself. This
allows us to maintain the invariant that the doubly-linked list
structure between the Top and Bottom pointers is preserved.
This is true even in scenarios such as that depicted in parts b
and c of Fig. 2 where the pointers cross over.

2.2 The implementation

C++-like pseudocode for our deque algorithm is given in
Figs. 3–5. As depicted in Fig. 3, the deque object stores
the Bottom and Top pointers information in the Bottom and
Top data members. This information includes the pointer
to a list’s node and an offset into that node’s array. For
the Top variable, it also includes a tag value to prevent the
ABA problem [17]. The deque methods uses the EncodeBot-
tom, DecodeBottom, EncodeTop and DecodeTop macros to

D. Hendler et al.

Fig. 3 Data types and classes used by the dynamic deque algorithm

encode/decode this information to/from a value that fits in
a CAS-able size word.6 Underlined procedures in the pseu-
docode represent code blocks which are presented in the de-
tailed algorithm presentation used for the correctness proof
in Sect. 4. We now describe each of the methods.

2.2.1 PushBottom

The PushBottom method begins by reading Bottom and stor-
ing the pushed value in the cell it’s pointing to (Lines 1–2).
Then it calculates the next value of Bottom linking a new
node to the list if necessary (Lines 3–14). Finally the method
updates Bottom to its new value (Line 15). As in the original
ABP algorithm, this method is executed only by the owner
process, and therefore regular writes suffice (both for the
value and Bottom updates). Note that the new node is linked
to the list before Bottom is updated, so the list structure is
preserved for the nodes between Bottom and Top.

2.2.2 PopTop

The PopTop method begins by reading the Top and Bottom
values, in that order (Lines 16–18). Then it tests whether
these values indicate an empty deque, and returns EMPTY if
they do7 (Line 19). Otherwise, it calculates the next posi-
tion for Top (Lines 20–31). Before updating Top to its new
value, the method must read the value which should be re-
turned if the steal succeeds (Line 32) (this read cannot be
done after the update of Top because by then the node may
already be freed by some other concurrent PopTop execu-
tion). Finally the method tries to update Top to its new value
using a CAS operation (Line 34), returning the popped value
if it succeeds, or ABORT if it fails. (In the work stealing algo-
rithm, if a thief process encounters contention with another,

6 If the architecture does not support a 64-bit CAS operation, we
may not have the space to save the whole node pointer. In this case,
we might use the offset of the node from some base address given
by the shared memory pool. For example, if the nodes are allocated
continuously, the address of the first node can be such a base address.

7 This test may also return ABORT if Top was modified, since then
it is not guaranteed that the tested values represent a consistent view of
the memory.

it may be preferable to try stealing from a different deque;
returning ABORT in this case provides the opportunity for the
system to decide between retrying on the same deque or do-
ing something different.) If the CAS succeeds, the method
also checks whether there is an old node that needs to be
freed (Line 36). As explained earlier, a node is released only
if Top moved to a new node, and the node released is not the
old top node, but the preceding one.

2.2.3 PopBottom

The PopBottom method begins by reading Bottom and up-
dating it to its new value (Lines 43–55) after reading the
value to be popped (Line 54). Then it reads the value of Top
(Line 56), to check for the special cases of popping the last
entry of the deque, and popping from an empty deque. If the
Top value read points to the old Bottom position (Lines 58–
63), then the method rewrites Bottom to its old position, and
returns EMPTY (since the deque was empty even without this
PopBottom operation). Otherwise, if Top is pointing to the
new Bottom position (Lines 64–78), then the popped entry
was the last in the deque, and as in the original ABP algo-
rithm, the method updates the Top tag value using a CAS,
to prevent a concurrent PopTop operation from popping out
the same entry. Otherwise there was at least one entry in
the deque after the Bottom update (lines 79–83), in which
case the popped entry is returned. Note that, as in the orig-
inal ABP algorithm, most executions of the method will be
short, and will not involve any CAS-based synchronization
operations.

2.2.4 Memory management

We implement the shared node pool using a variation of
Scott’s shared pool [18]. It maintains a local group of g
nodes per process, from which the process may allocate
nodes without the need to synchronize. When the nodes in
this local group are exhausted, it allocates a new group of
g nodes from a shared LIFO pool using a CAS operation.
When a process frees a node, it returns it to its local group,
and if the size of the local group exceeds 2g, it returns g
nodes to the shared LIFO pool. In our benchmarks we used

A dynamic-sized nonblocking work stealing deque

Fig. 4 Pseudocode for the PushBottom and PopTop operations

a group size of 1, which means that in case of a fluctuation
between pushing and popping, the first node is always local
and CAS is not necessary.

2.3 Enhancements

We briefly describe two enhancements to the above
dynamic-memory deque algorithm.

2.3.1 Reset-on-Empty

In the original ABP algorithm, the PopBottom operation uses
a mechanism that resets Top and Bottom to point back to the
beginning of the array every time it detects an empty deque
(including the case of popping the last entry by PopBottom).
This reset operation is necessary in ABP since it is the only
“anti-overflow” mechanism at its disposal.

D. Hendler et al.

Fig. 5 Pseudocode for the PopBottom operation

Our algorithm does not need this method to prevent over-
flows, since it works with the dynamic nodes. However,
adding a version of this resetting feature gives the potential
of improving our space complexity, especially when work-
ing with large nodes.

There are two issues to be noted when implementing the
reset-on-empty mechanism in our dynamic deque. The first
issue is that while performing the reset operation, we create
another type of empty deque scenario, in which Top and Bot-
tom do not point to the same cells nor to neighboring ones
(see part c of Fig. 2). This scenario requires a more com-
plicated check for the empty deque scenario by the PopTop
method (Line 19). The second issue is that we must be care-
ful when choosing the array node to which Top and Bottom

point after the reset. In case the pointers point to the same
node before the reset, we simply reset to the beginning of
that node. Otherwise, we reset to the beginning of the node
pointed to by Top. Note, however, that Top may point to the
same node as Bottom and then be updated by a concurrent
PopTop operation, which may result in changing on-the-fly
the node to which we direct Top and Bottom.

2.3.2 Using a base array

In the implementation described, all the deque nodes are
identical and allocated from the shared pool. This introduces
a trade-off between the performance of the algorithm and
its space complexity: small arrays save space but cost in

A dynamic-sized nonblocking work stealing deque

allocation overhead, while large arrays cost space but reduce
the allocation overhead.

One possible improvement is to use a large array for the
initial base node, allocated for each of the deques, and to use
the pool only when overflow space is needed. This base node
is used only by the process/deque it was originally allocated
to, and is never freed to the shared pool. Whenever a Pop
operation frees this node, it raises a boolean flag, indicating
that the base node is now free. When a PushBottom operation
needs to allocate and link a new node, it first checks this flag,
and if true, links the base node to the deque (instead of a
regular node allocated from the shared pool).

3 Performance

We evaluated the performance of the new dynamic mem-
ory work-stealing algorithm in comparison to the original
fixed-array based ABP work-stealing algorithm in an envi-
ronment similar to that used by Blumofe and Papadopoulos
[14] in their evaluation of the ABP algorithm. Our results
include tests running several standard Splash2 [15] appli-
cations using the Hood Library [16] on a 16 node Sun
EnterpriseTM 6500, an SMP machine formed from 8 boards
of two 400MHz UltraSparc� processors, connected by a
crossbar UPA switch, and running the SolarisTM 9 operating
system.

Our benchmarks used the work-stealing algorithms as
the load balancing mechanism in Hood. The Hood package
uses the original ABP deques for the scheduling of threads
over processes. We compiled two versions of the Hood li-
brary, one using an ABP implementation, and the other us-
ing the new implementation. In order for the comparison to
be fair, we implemented both algorithms in C++, using the
same tagging method.

We present here our results running the Barnes Hut and
MergeSort Splash2 [15] applications. Each application was
compiled with the minimal ABP deque size needed for a
stand-alone run with the biggest input tested. For our deque
algorithm we chose a base-array size of about 75% of the
ABP deque size, a node array size of 6 items, and a shared
pool size such that the total memory used (by the deques and
the shared pool together) is no more than the total memory
used by all ABP deques. In all our benchmarks the number
of processes equaled the number of processors on the ma-
chine.

Figure 6 shows the total execution time of both algo-
rithms, running stand-alone, as we vary the input size. As
can be seen, there is no real difference in performance be-
tween the two approaches. This is in spite of the fact that
our tests show that the deque operations of the new algo-
rithm take as much as 30% more time on average than those
of ABP. The explanation is simple: work stealing accounts
for only a small fraction of the execution time in these (and
in fact in most) applications. In all cases both algorithms had
a 100% completion rate in stand-alone mode, i.e. none of the
deques overflowed.

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000

Input size

E
xe

cu
ti

o
n

 t
im

e
(s

ec
s)

Original

Dynamic

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Input size (x1M)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
s)

Original

Dynamic

Fig. 6 Barnes Hut Benchmark on top and MergeSort on the bottom

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 2 4 6 8 10 12

Multi programming Level

C
o

m
p

le
ti

o
n

 R
at

io
 (

%
)

Original (%)

Dynamic (%)

Fig. 7 Barnes Hut completion ratio vs. level of multiprogramming

Figure 7 shows the results of running the Barnes Hut
[15] application (on the largest input) in a multiprogrammed
fashion by running multiple instances of Hood in parallel.
The graph shows the completion rate of both algorithms as a
function of the multiprogramming level (i.e. the number of
instances run in parallel). One can clearly see that while both
versions perform perfectly at a multiprogramming level of 2,
ABP work-stealing degrades rapidly as the level of multipro-
gramming increases, while the new algorithm maintains its
100% completion rate. By checking Hood’s statistics regard-
ing the amount of work done by each process, we noticed
that some processes complete 0 work, which means much
higher workloads on the others. This, we believe, caused the
deque size which worked for a stand-alone run (in which the
work was more evenly distributed between the processes), to
overflow in the multiprogrammed run. We also note that as
the workload on individual processes increases, the chances
of a “reset-on-empty” decrease, and the likelihood of over-
flow increases. In the new dynamic version, because 25% of
the memory is allocated in the common shared pool, there
is much more flexibility in dealing with the work imbalance
between the deques, and no overflow occurs.

D. Hendler et al.

Our preliminary benchmarks clearly show that for the
same amount of memory, we get significantly more robust-
ness with the new dynamic algorithm than with the origi-
nal ABP algorithm, with a virtually unnoticeable effect on
the application’s overall performance. It also shows that the
deque size depends on the maximal level of multiprogram-
ming in the system, an unpredictable parameter which one
may want to avoid reasoning about by simply using the new
memory version of the ABP work stealing algorithm.

4 Correctness proof

4.1 Overview

The full version of this paper [19] contains a detailed proof
that the algorithm in Sect. 2 implements a lock-free lineariz-
able deque.8 While a work stealing system generally uses
several deques, our proof concentrates on a single deque. For
brevity, this section only contains the outline of the proof.
All omitted proofs and claims can be found in the full ver-
sion of the paper [19]. To make it easier for the reader, we
kept the numbering of the claims the same as in the full ver-
sion.

We first define notation and terminology and present a
detailed version of the algorithm’s pseudocode that we use
throughout the proof. In Sects. 4.2–4.6 we present various
properties of the algorithm, which are used later in the lin-
earizability proof. Section 4.7 specifies the sequential se-
mantics of the implemented deque and then shows that the
deque is linearizable to this specification. Finally, Sect. 4.8
shows that the algorithm is lock-free.

4.1.1 Notation

Formally, we model the algorithm by a labelled state-
transition system, where the labels are called actions. We
write s

a−→ s′ if the system has a transition from s to s′ la-
belled a; s is called the pre-state, s′ the post-state. We say
that an action a is enabled in a state s if there exists an-
other state s′ such that s

a−→ s′. An execution is a sequence
of transitions such that the pre-state of the first transition is
the initial state, and the post-state of any transition (except
the last) is the pre-state of the next transition.

We use s and s′ for states, a for actions, and p, p′ and p′′
for processes. We use p@X to mean that process p is ready
to execute statement number X. We use p@〈X1, X2, ..., Xn〉
to denote p@X1 ∨ p@X2 ∨ ... ∨ p@Xn . If process p is not
executing any operation then p@0, holds. Thus, p@0 holds
initially for all p, statements of process that return from any
of the operations establish p@0, and if p@0 holds, then
an action of process p is enabled that nondeterministically
chooses a legal operation and parameters, and invokes the

8 As noted previously, the data structure we implement is not strictly
speaking a deque. The precise semantics of the implemented data
structure is specified in Sect. 4.7.1.

Fig. 8 Deque Constructor

Fig. 9 The PushBottom Method

operation, thereby setting p’s program counter to the first
line of that operation, and establishing legal values for its
parameters. We denote a private variable v of process p by
p.v.

For any variable v, shared or local, s.v denotes the value
of v is state s. For any logical expression E , s.E holds if and
only if E holds in state s.

4.1.2 Pseudocode

Figures 8–12 present the detailed pseudocode of the deque
implementation. The EncodeTop, DecodeTop, EncodeBottom
and DecodeBottom macros are described in Sect. 4.2.2. The
Ordered variable used in the pseudocode is an auxiliary vari-
able; its use is described in Sect. 4.3. Auxiliary variables do
not affect the behavior of the algorithm, and are used only
for the proof: they are not included in a real implementation.

We consider execution of the algorithm beginning at one
numbered statement and ending immediately before the next
numbered statement to be one atomic action. This is justi-
fied by the fact that no such action accesses more than one
shared variable (except auxiliary variables), and atomicity of
the actions is consistent with available operations for mem-
ory access. Note that we can include accesses to auxiliary
variables in an atomic action because they are not included
in a real implementation, and therefore are not required to
comport with the atomicity constraints of a target architec-
ture.

As a concrete example, consider the action labelled 17 in
Fig. 10, when executed by process p. This action atomically
does the following. First, the action reads Top and compares

A dynamic-sized nonblocking work stealing deque

Fig. 10 The PopTop Method

the value read to p.currTop. If Top �= p.currTop, then the
action changes p’s program counter to 20. Otherwise, the
action stores p.newTopVal to Top, removes the rightmost el-
ement from Ordered if p.nodeToFree �= NULL, and changes
p’s program counter to 18.

4.1.3 Proof method

Most of the invariants in the proof are proved by induction
on the length of an arbitrary execution of the algorithm. That
is, we show that the invariant holds initially, and that for any
transition s

a−→ s′, if the invariant holds in the pre-state s,
then it also holds in the post-state s′. For invariants of the
form A ⇒ B, we often find it convenient to prove this by
showing that the consequent (B) holds after any statement
execution establishes the antecedent (A), and that no state-
ment execution falsifies the consequent while the antecedent
holds.

It is convenient to prove the conjunction of all of the
properties, rather than proving them one by one. This way,
we can assume that all properties hold in the pre-state when
proving that a particular property holds in the post-state. It
is also convenient to be able to use other properties in the
post-state. However, this must be done with some care, in
order to avoid circular reasoning. It is important that there is
a single order in which we prove all properties hold in the

post-state, given the inductive assumption that they all hold
in the pre-state, without using any properties we have not yet
proved. However, presenting the proofs in this order would
disturb the flow of the proof from the reader’s point of view.
Therefore, we now present some rules that we adopted that
imply that such an order exists.

The properties of the proof (Invariants, Claims, Lemmas
and Corollaries) are indexed by the order in which they
are proved. In some cases, we state an invariant without
proving it immediately, and only provide its proof after
presenting and proving some other properties. We call such
invariants Conjectures to clearly distinguish them from
regular properties, which are proved as soon as they are
stated. To avoid circular reasoning, our proofs obey the
following rules:

1. The proof of Property i can use any Property j in the
pre-state.

2. If Property i is not a Conjecture, its proof can use the
following properties in the post-state:
(a) All Conjectures.
(b) Property j if and only if j < i .

3. The proof of Conjecture i can use Conjecture j in the
post-state if and only if i < j .

Informally, these rules simply state that the proof of a non-
Conjecture property can use in the post-state any other

D. Hendler et al.

Fig. 11 The PopBottom Method

Fig. 12 The IndicateEmpty Macro

A dynamic-sized nonblocking work stealing deque

property that was already stated (because the only proper-
ties that were stated before it but with higher index are Con-
jectures), and that the proof of a Conjecture can use in the
post-state any other Conjecture that was not already proven.
In the full version of the paper [19] we show that our proof
method is sound.

To make the proof more readable, we also avoid using in
the pre-state properties that were not stated yet.

4.2 Basic notation and invariants

4.2.1 The deque data structure

Our deque is implemented using a doubly linked list. Each
list node contains an array of deque entries. The structure has
Bottom and Top variables that indicate cells at the two ends
of the deque; these variables are discussed in more detail in
Sect. 4.2.2. We use the following notation:

• We let N j denote a (pointer to a) deque node, and Ci
denotes a cell at index i in a node. Ci ∈ N j denotes that
Ci is the i th cell in node N j .

• We let Node(Ci) denote the node of cell Ci . That is:
Node(Ci) = N j ⇔ Ci ∈ N j .

• The Bottom cell of the deque, denoted by CB , is the
cell indicated by Bottom. The Bottom node is the node
in which CB resides, and is denoted by NB .

• The Top cell of the deque, denoted by CT , is the cell
indicated by Top. The Top node is the node in which CT
resides, and is denoted by NT .

• If N is a deque node, than N → next is the node pointed
to by N’s next pointer, and N → prev is the node
pointed to by its previous pointer.

The following property models the assumption that
only one process calls the PushBottom and PopBottom
operations.

Invariant 1. If p@〈1 . . . 7, 21 . . . 39〉 then:

1. p is the owner process of the deque.
2. There is no p′ �= p such that p′@〈1 . . . 7, 21 . . . 39〉.
Proof The invariant follows immediately from the require-
ment that only the owner process may call the PushBottom
or PopBottom procedures. �

4.2.2 The Top and Bottom variables

The Top and Bottom shared variables store information about
CT and CB , respectively, and they are both of a CASable
size. The Top variable also contains an unbounded Tag value,
to avoid the ABA problem as we describe in Sect. 4.2.3. The
structure of Top and Bottom variables is detailed in Fig. 3.

In practice, in order to store all the information on a
CASable word size even if only a 32-bit CAS operation is
available, we represent the node’s pointer by its offset from
some base address given by the nodes’ memory manager. In

this case, if the size of the node is of a power of two, we
can even save only the offsets to CT and CB , and calculate
the offsets of NT and NB by simple bitwise operations. That
way we save the space used by the cellIndex variable, and
leave enough space for the tag value.

In the rest of the proof we use the Cell operator to de-
note the cell to which a variable of type BottomStruct or
TopStruct points (for example, Cell (Top) = CT and Cell
(Bottom) = CB):

Definition 3 If TorBVal is a variable of type TopStruct or
BottomStruct then: Cell(TorBVal) = TorBVal.nodeP →
itsDataArr[TorBVal.cellIndex].

Our implementation uses the EncodeTop and Encode-
Bottom macros to construct values of type TopStruct and
BottomStruct, respectively, and similarly uses the Decode-
Bottom and DecodeTop macros to extract the components
from values of these types. For convenience, we use pro-
cesses’ private variables to hold the different fields of values
read from Top and Bottom. For example, after executing the
code segment:

oldBotVal = Bottom;
<oldBotNode,oldBotIndex> = DecodeBottom(oldBotVal);

using oldBotNode and oldBotIndex, as long as they are
not modified, is equivalent to using oldBotVal.nodeP and
oldBotVal.cellIndex, respectively.

Invariant 6.

1. p@〈2 . . . 7〉 ⇒ (NB = p.currNode ∧ CB =
C p.curr I ndex ∈ NB).

2. p@〈22 . . . 25, 30, 37〉 ⇒ Bottom= p.oldBotVal.
3. p@〈26 . . . 29, 31 . . . 36, 38 . . . 39〉 ⇒ Bottom =

p.newBotVal.

4.2.3 The ABA problem

Our implementation uses the CAS operation for all updates
of the Top variable. The CAS synchronization primitive is
susceptible to the ABA problem: Assume that the value A is
read from some variable v, and later a CAS operation is done
on that variable, with the value A supplied as the old-value
parameter of the CAS. If, between the read and the CAS, the
variable v has been changed to some other value B and then
to A again, the CAS would still succeed.

In this section, we prove some properties concerning
mechanisms used in the algorithm to avoid the ABA prob-
lem. We start by defining an order between different Top val-
ues:

Definition 7 Let TopV1 and TopV2 be two values of type
TopStruct. TopV1 � TopV2 if and only if:

1. TopV1.tag ≤ TopV2.tag, and
2. (TopV1.tag = TopV2.tag) ⇒ (TopV1.cellIndex >

TopV2.cellIndex).

D. Hendler et al.

Lemma 10 Let s
a−→ s′ be a step of the algorithm, and sup-

pose a writes a value to Top. Then s.T op � s′.T op.

Corollary 12 Consider a transition s
a−→ s′ where a writes

a value to Top. Then: ∀p s.p@〈9 . . . 20, 27 . . . 39〉 ⇒
s′.p.currT op �= s′.T op

4.2.4 Memory management

Our algorithm uses an external linearizable shared pool
module, which stores the available list nodes. The shared
pool module supports two operations: AllocateNode and
FreeNode. The details of the shared pool implementation are
not relevant to our algorithm, so we simply model a lin-
earizable shared pool that supports atomic AllocateNode and
FreeNode operations.

We model the shared pool using an auxiliary variable
Live, which models the set of nodes that have been allocated
from the pool and not yet freed:

1. Initially Live= ∅.
2. An AllocateNode operation atomically adds a node that

is not in Live to Live and returns that node.
3. A FreeNode(N) operation with N ∈ Liveatomically re-

moves N from Live.
4. While N ∈ Live, the shared pool implementation does

not modify any of N ’s fields.

The shared pool behaves according to the above rules
provided our algorithm uses it properly. The following con-
jecture states the rules for proper use of the shared pool. We
prove that the conjecture holds in Sect. 4.4.

Conjecture 30. Consider a transition s
a−→ s′ of our algo-

rithm.

• If N /∈ s.Live, then a does not modify any of N ’s fields.
• If a is an execution of FreeNode(N), then N ∈ s.Live.

Definition 13 A node N is live if and only if N ∈ Live.

4.3 Ordered nodes

We introduce an auxiliary variable Ordered, which consists
of a sequence of nodes. We regard the order of the nodes
in Ordered as going from left to right. Formally, the vari-
able Ordered supports four operations: AddLeft, AddRight,
RemoveLeft and RemoveRight. If |Ordered| = l, Ordered=
{N1, . . . , Nl} then:

• N1 is the leftmost node and Nl is the rightmost one.
• An Ordered.AddLeft(N) operation results in Ordered=

{N , N1, . . . , Nl}.
• An Ordered.AddRight(N) operation results in Ordered=

{N1, . . . , Nl , N }.
• A Ordered.RemoveLeft() operation results in Ordered=

{N2, . . . , Nl}, and returns N1.
• A Ordered.RemoveRight() operation results in Ordered

= {N1, . . . , Nl−1}, and returns Nl .

Definition 14 A node N is ordered if and only if N ∈
Ordered.

The following conjecture describes the basic properties of
the nodes in Ordered:

Conjecture 55. Let |Ordered| = n + 2, Ordered= {N0,
. . . , Nn+1}. Then:

1. ∀0≤i≤n Ni → next = Ni+1 ∧ Ni+1 → prev = Ni .
2. Exactly one of the following holds:

(a) n ≥ 0, N0 = NB, Nn = NT .
(b) n > 0, N1 = NB, Nn = NT .
(c) n = 0, N0 = NT , N1 = NB .

Corollary 15

1. |s.Ordered| ≥ 2.
2. NT is ordered and is the second node from the right in

Ordered.
3. NB is ordered and is either the first or the second node

from the left in Ordered.
4. NT → next is Ordered.

Proof Straightforward from Conjecture 55. �

The following invariants and lemmas state different proper-
ties of the nodes in Ordered.

Invariant 16. Exactly one of the following holds:

1. NB is the leftmost node in Ordered ∧
(p@〈26 . . . 34, 36 . . . 38〉 ⇒ p.oldBotNode = NB).

2. ∃p such that p@〈26 . . . 29, 31 . . . 34, 36, 38〉∧ NB �=
p.oldBotNode ∧ p.oldBotNode is the leftmost node in
Ordered.

Conjecture 29. All ordered nodes are live.

We now present various properties about the ordered nodes,
which we use later to prove Conjecture 29. The proof of
Conjecture 29 appears in Sect. 4.3.1.

Invariant 20. Suppose Ordered = {N0, . . . Nn+1}. Then
∀0≤i, j≤n+1, i �= j ⇒ Ni �= N j .

Invariant 24. If p@〈22 . . . 34, 36 . . . 38〉 then p.oldBot
Node ∈ Ordered, and it is the leftmost node there.

Invariant 25. If p@〈5 . . . 7〉 ∧ p′@18 ∧ p′ �= p ∧
p′.nodeToFree �= NULL then p.newNode �= p′.nodeToFree.

Invariant 26. If p@18 ∧ p′@18, then (p′.nodeToFree �=
p.nodeToFree)∨ (p.nodeToFree = p′.nodeToFree = NULL).

Conjecture 27. If p@18 ∧ p.nodeToFree �= NULL then
p.nodeToFree ∈ Live ∧p.nodeToFree /∈ Ordered.

Invariant 28. If p@〈5 . . . 7〉, then p.newNode ∈ Live.

A dynamic-sized nonblocking work stealing deque

4.3.1 Proof of Conjecture 29

Using the above invariants, we can now give the proof of
Conjecture 29.

Conjecture 29. All ordered nodes are live.

Proof Initially there are two live nodes in Ordered (deque
constructor pseudo code, depicted in Fig. 8), so the invariant
holds. Consider a transition s

a−→ s′, and suppose the invari-
ant holds in s, that is: s.Ordered⊆ s.Live. Clearly, the only
operations that may falsify the invariant are deallocation of a
node, or addition of a node to Ordered. Therefore, there are
three statements to consider:

1. p. 7 for some process p: Then s′.Live= s.Liveand by In-
variant 28 p.newNode ∈ s.Live. Therefore the invariant
still holds in s′.

2. p. 18 for some process p: Then a deallocates
p.nodeToFree if and only if p.nodeToFree �= NULL.
By Conjecture 27 p.nodeToFree �= NULL ⇒ p.node
ToFree /∈ s.Ordered, and since s′.Ordered= s.Ordered,
the invariant still holds in s′.

3. p. 34 or p. 38 for some process p: In this case, the state-
ment deallocates p.oldBotNode if and only if it also
removes the leftmost node from s.Ordered. By Invari-
ant 24, p.oldBotNode ∈ s.Orderedand it is the leftmost
node there, and therefore p.oldBotNode /∈ s′.Live⇒
p.oldBotNode /∈ s′.Ordered. �

4.4 Legality of shared pool usage

In this section we show that our algorithm uses the shared
pool properly, as stated by Conjecture 30.

Conjecture 30. Consider a transition s
a−→ s′.

• If N /∈ s.Live, then a does not modify any of N’s fields.
• If a is an execution of FreeNode(N), then N ∈ s.Live.

Proof We first show that a FreeNode operation is always
called on a live node. Suppose a is a FreeNode(N) opera-
tion. The only statements which call the FreeNode operation
are p.18, p.34 and p.38 for some process p. By Conjec-
ture 27, if a is an execution of p.18 then s.p.nodeToFree ∈
s.Live, and therefore a does not falsify the invariant. Oth-
erwise if a is an execution of p.34 or p.38, then by Invari-
ant 24 s.p.oldBotNode ∈ s.Ordered, and therefore by Con-
jecture 29 s.p.oldBotNode ∈ s.Live, and therefore a does
not falsify the invariant.

Next we show that a does not modify a field of node N if
N /∈ s.Live. The only statements that might modify node’s
fields are p.2, p.5 and p.6 for some process p. By Invari-
ant 28 p@5 implies that s.p.newNode ∈ s.Live, and by In-
variant 6 s.p@〈2, 6〉 implies that s.p.currNode = s.NB . By
Corollary 15 s.NB ∈ s.Orderedwhich implies by Conjec-
ture 29 that s.NB ∈ s.Live, and therefore a does not falsify
the invariant. �

4.5 Order on cells

Section 4.3 introduced the Ordered sequence, which defines
an order between a subset of these nodes. This section de-
fines an order between the cells of these nodes, and proves
some properties regarding this order.

Definition 31 For a node N ∈ Ordered, Pos(Ordered, N)
denotes the index of N in Ordered, where the leftmost node
in Ordered is indexed as 0. (Note that by Invariant 20,
Pos(Ordered, N) is well defined.)

Definition 32 For two nodes M and N , and two cells Ci ∈
M and C j ∈ N , we define the order ≺s between these cells
to be the lexicographic order 〈Node, Cell I ndex〉, where the
nodes are ordered by the Ordered series, and the indices by
the whole numbers order. Formally, Ci ≺s C j if and only
if M ∈ s.Ordered∧N ∈ s.Ordered∧(Pos(s.Ordered,M) <
Pos(s.Ordered, N) ∨ (M = N ∧ i < j)).

Note that the ≺s operator depends on the state s, since
it depends on the membership and order of the nodes in
Ordered. The following lemma implies that the order be-
tween two cells cannot be changed unless the node of one
of the cells is removed or added to Ordered:

Lemma 33 For any step of the algorithm s
a−→ s′: (Ci ≺s

C j) ⇒ ¬(C j ≺s′ Ci).

Proof If Ci and C j belongs to the same node this is obvi-
ous, since the order of cells inside a node is never changed.
Otherwise, suppose Ci ∈ N ∧ C j ∈ M ∧ (N �= M). The
only way the order between Ci and C j can be changed is if
the order between N and M in Ordered is changed. Since
the Ordered series only supports addition and removal of
nodes (and does not support any swap operation), the or-
der of nodes inside Ordered cannot be changed unless one
of the nodes is removed from Ordered first. Therefore N ∈
s′.Ordered∧M ∈ s′.Ordered⇒ (Ci ≺s′ C j). Otherwise by
the definition of ≺ we have: ¬(Ci ≺s′ C j) ∧ ¬(C j ≺s′ Ci).

�

In the remainder of the proof we sometimes omit the s

subscript from the ≺s operator when considering transitions
that do not modify Ordered. We are still required to show,
however, that cells’ nodes are in Ordered in order to claim
that the cells are ordered by ≺.

Definition 34 We define: Ci � C j ≡ (Ci = C j ∨Ci ≺ C j).

Definition 35 Let Ci ∈ Nk and C j ∈ Nl be two cells such
that Nk ∈ Ordered and Nl ∈ Ordered.

• Ci and C j are neighbors if and only if they are ad-
jacent with respect to ≺. We will use the predicate
Neighbors(Ci , C j) to indicate if Ci and C j are neigh-
bors. Neighbors(Ci , C j) is false if the order between
Ci and C j is not defined.

• Ci is the left neighbor of C j , denoted by Ci = Le f t
Neighbor(C j), if and only if Neighbors(Ci , C j) ∧
(Ci ≺ C j).

D. Hendler et al.

• Ci is the right neighbor of C j , denoted by Ci = Right
Neighbor(C j), if and only if C j = LeftNeighbor
(Ci).

Note that the LeftNeighbor and RightNeighbor are only
partial functions, that is they are not defined for all cells. By
the definition of Neighbors and the ≺ order, it is easy to see
that:

1. RightNeighbor(Ci) is defined if and only if Ci ∈ N ∈
Orderedand either N is not the rightmost node in Or-
dered, or i �= DeqeuNode :: ArraySize − 1.

2. LeftNeighbor(Ci) is defined if and only if Ci ∈ N ∈
Orderedand either N is not the leftmost node in Ordered,
or i �= 0.

4.5.1 The IndicateEmpty macro

The IndicateEmpty macro, called at Line 10, takes values
of type BottomStruct and TopStruct and indicates whether
the deque would be empty if these were the values of Top
and Bottom, respectively, in the state in which the macro is
invoked. The code for the macro is depicted in Fig. 12. The
following Lemma describe the properties of the macro:

Lemma 36 Let bottomV al and topV al be two variables
of type BottomStruct and T opStruct, respectively, and
suppose Cell(topV al) ∈ N ∈ Orderedand that N is
not the rightmost node in Ordered. Then IndicateEmpty
(bottomVal, topVal)=true if and only if (Cell(topV al)
= Cell(bottomV al)) ∨ (Cell(topV al) = LeftNeighbor
(Cell(bottomV al))).

We later prove why this property captures exactly the
empty deque scenario. Note that as long as bottomV al
and topV al are local process’s variables, the IndicateEmpty
macro does at most one read from the shared memory (that
is, the read of the next pointer of the node indicated by
topV al), and therefore is regarded as one atomic operation
when called at Line 10. Finally, there is no guarantee on
the return value of IndicateEmpty if Node(Cell(topV al))
is not in Ordered, or if it is the rightmost node there.

4.5.2 Crossing states

We say that the deque is in a crossing state when the cell
pointed by Top is to the left of the cell pointed by Bottom, as
depicted in Fig. 2b. As we later explain, these states corre-
spond to an empty deque.

Definition 37 The deque is in a crossing state if and only if
CT ≺ CB .

Note that if s.Orderedis in the state described by part c of
Conjecture 55, then the deque is in a crossing state (since NT
precedes NB in Ordered). The following is the main invari-
ant describing when and under what conditions the deque
may be in a crossing state:

Conjecture 54. If the deque is in a crossing state then:

1. CT and CB are neighbors.
2. ∃p such that p@〈26 . . . 29, 31 . . . 33, 36〉.
Note that by Conjecture 55 we already know that if the deque
is in a crossing state, then NT and NB are either the same
node, or adjacent nodes in Ordered. The following invariants
will be used for the proof of Conjecture 54, which is given
in Sect. 4.6.

Lemma 41 Consider a transition s
a−→ s′ where a is an ex-

ecution of p.7, then: s′.CB = LeftNeighbors′(s.CB).

Corollary 43 If s
a−→ s′, where a is an execution of p.33,

then: s′.CT = s.CT .

Based on Corollary 43, in the rest of proof we do not regard
Line 33 as one of the statements that may modify CT .

Invariant 44. If p@〈25 . . . 29, 31 . . . 34, 36 . . . 38〉, then
Cell(p.newBotVal) = RightNeighbor(Cell(p.oldBotVal))

Lemma 45 Let s
a−→ s′ be a step of the algorithm, and sup-

pose a is an execution of Line 29 or Line 36, then: s′.CB =
LeftNeighbors(s.CB) = LeftNeighbors′(s.CB).

Invariant 46. If p@〈10, 12 . . . 17〉 ∧ p.currT op = T op ∧
CT � CB then:

1. (p@10 ∧ (Cell(p.curr Bottom) = CT ∨ Cell(p.curr
Bottom) = RightNeighbor(CT))), or

2. (a) CT = CB, and
(b) ∃p′ such that: p′@26 ∨ (p′@〈27, 28, 31 . . . 33〉 ∧

p′.currT op = T op).

Corollary 47 p@〈12 . . . 17〉 ∧ CT ≺ CB ⇒ p.currT op �=
T op.

Proof Since p@〈12 . . . 17〉 ∧ CT ≺ CB , if p.currTop =
Top we can apply Invariant 46 and get CT = CB , which
contradict the assumption that CT ≺ CB . �

Invariant 50. If p@〈50, 17〉 ∧ (p.currTop = T op), then
Cell(p.newTopVal) = LeftNeighbor(Cell(p.currTop)).

Invariant 51. If p@〈27, 28, 31 . . . 33〉∧(p.currTop �= T op)
then ¬(CT ≺ CB) ∨ (Cell(p.currTop) = CB).

Invariant 52.

1. s.p@〈29, 30〉 ⇒ (Cell(s.p.currTop) = Cell(s.p.old
BotVal)).

2. s.p@〈31 . . . 39〉 ⇒ (Cell(s.p.currTop) �= Cell(s.p.
oldBotVal)).

3. s.p@〈32 . . . 37〉 ⇒ (Cell(s.currTop) = Cell(s.p.new
BotVal)).

4. s.p@〈38, 39〉 ⇒ (Cell(s.p.currTop) �= Cell(s.p.new
BotVal)).

Invariant 53. If p@〈15 . . . 17〉 ∧ p.currTop = T op then:
(p.nodeToFree �= NULL) ⇔ (p@15 ∨ p.currTopNode �=
p.newTopNode).

A dynamic-sized nonblocking work stealing deque

4.6 Proof of Conjecture 54

In this section we prove Conjecture 54, which is one of the
two main invariants of the algorithm. The proof for the other
main invariant, Conjecture 55, is given in the full version of
the paper [19], Later these invariants will be useful in the
linearizability proof.

As explained in Sect. 4.1.3, we must be careful to
avoid circular reasoning, because the proofs of some of the
invariants proved so far use Conjectures 54 in the post-state
of their inductive step. Accordingly, in the proof of Conjec-
ture 54, we use Conjecture 55 both in the induction pre-state
and post-state, but all other invariants and conjectures are
used only in the induction pre-state.

Conjecture 54. If the deque is in a crossing state then:

1. CT and CB are neighbors.
2. ∃p such that p@〈26 . . . 29, 31 . . . 33, 36〉.

Proof Initially the deque is constructed such that Cell
(Bottom) = Cell(Top) so the invariant holds. Consider a
transition s

a−→ s′, and suppose the invariant holds in s.
Note that by Conjecture 55, NT ∈ Ordered∧NB ∈ Or-
deredand therefore: ¬(CT ≺ CB) ⇔ CB � CT . That
also means that if we have, for example, s.CB �s
s.CT ∧ s′.CB ≺s′ s.CB ∧ s′.CT = s.CT , it implies that
s′.CB ≺s′ s′.CT , since neither s.CT nor s.CB can be
removed from Ordered by the transition, and therefore by
Lemma 33 the order between them cannot be changed.

• We first consider transitions that may establish the
antecedent. Then we have s.CB �s s.CT and s′.
CT ≺s′ s′.CB , which implies by Lemma 41 that a can-
not be the execution of Line 7, and by Lemma 45 that it
cannot be the execution of Line 29 or 36. Therefore we
have two statements to consider: Line 25 and Line 17.

1. If a is an execution of p.25: Then by Invariant 44
s′.CB = RightNeighbor(s.CB). Since s′.CT =
s.CT ∧ s′. Ordered= s. Ordered, then if the deque is
in crossing state in s′: ((s′.CT ≺s′ s′.CB)∧(s.CB �s
s.CT) ∧ (s′.CB = RightNeighbor(s.CB))) ⇒
s′.CT = LeftNeighbor(s′.CB). Also, s′.p@26 and
therefore the consequent holds in s′.

2. If a is an execution of p.17: Then by Invari-
ant 50 s′.CT = LeftNeighbors(s.CT). There-
fore if the deque is in crossing state in s′:
((s.CB �s s.CT) ∧ (s′.CT ≺s′ s′.CB)) ⇒ (s.CT =
s.CB = s′.CB ∧ s′.CT = LeftNeighbors(s.CB)) ⇒
s′.CT = LeftNeighbors′(s′.CB).e By Invariant 46,
(s.p@17 ∧ s.CT = s.CB) ⇒ ((s.p.currTop �=
s.Top) ∨ (∃p′ �= p p′@〈26 . . . 29, 31 . . . 33, 36〉)).
Therefore it is either that the CAS fails and a does
not modify Top (and therefore does not establish the
antecedent), or that the consequent holds in s′.

• We now consider transitions that may falsify the cons-
equent while the antecedent holds. Because the
antecedent and the invariant holds in s, ∃p s.p@〈26
. . . 29, 31 . . . 33, 36〉 ∧ s.CT = LeftNeighbors(s.CB),
and since the antecedent holds in s′, s′.CT ≺s′ s′.CB .
By Conjecture 55 if a falsifies CT = LeftNeighbor(CB)
then s′.CB �= s.CB ∨ s′.CT �= s.CT . Therefore
there are two types of transitions that might falsify
the consequent: A modification of CT or CB that
results in: s′.CT �= LeftNeighbors′(s′.CB)), or an
execution of a statement that results in ∀p¬s′.p@
〈26 . . . 29, 31 . . . 33, 36〉.

1. If a is a modification of CT or CB : Then
s.CT = LeftNeighbors(s.CB) ∧ s′.CT ≺s′ s′.CB
implies by Lemma 41 that a is not an execution of
Line 7, and by Lemma 45 that it is not an execution
of Line 29 or 36. Therefore it is left to consider
executions of Line 25 and 17.

By Invariant 1, s.p@〈26 . . . 29, 31 . . . 33, 36〉 ⇒
∀p′ ¬s.p′@25, and therefore a is not an execution of
Line 25. If a is an execution of p’.17, then by Corol-
lary 47 s.CT ≺s s.CB ∧ s.p′.17 ⇒ s.p′.currT op �=
s.T op, and therefore s′.CT = s.CT ∧ s′.CB = s.CB ,
a contradiction.

2. Otherwise, since a is not a modification of CT
or CB , then the only transitions that may falsify
p@〈26 . . . 29, 31 . . . 33, 36〉 are executions of p.31
or p.33.

– If a is an execution of p.31: Then a can
falsify the consequent only if s.CT ≺ s.CB
∧ s′.p@38. By Invariant 6 s. Bottom= s.p.new
BotV al. There are two cases to be considered:

(a) If s.p.currT op �= s.Top, then by Invari-
ant 51 s.CT ≺ s.CB ⇒ Cell(s.p.curr
T op) = s.CB = Cell(s.p.newBotV al),
and therefore s′.p@32 and the consequent
holds in s′.

(b) Otherwise, Cell(s.p.currTop) = s.CT .
By Invariant 52: Cell(s.p.currTop) �=
Cell(s.p.oldBotVal). By Invariant 44: Cell
(s.p.old BotV al) = LeftNeighbors(Cell
(s.p.newBotVal)) = LeftNeighbors(s.CB),
and therefore s.CT �= LeftNeighbors
(s.CB), a contradiction.

– If a is an execution of p.33: Then s′.CB =
s.CB and by Corollary 43: s′.CT = s.CT .
By Invariant 52 Cell(s.p.currT op) = Cell
(s.p.newBotV al). If s.p.currT op �= s.T op
then the CAS fails and s′.p@36, so a
does not falsify the consequent. Other-
wise, s.CT = Cell(s.p.currT op) = Cell
(s.p.newBotV al) = s.CB . Therefore s.CT =

D. Hendler et al.

s.CB , which implies s′.CT = s′.CB , so the
antecedent does not hold in s′. �

Conjecture 55. Let n = |Ordered| − 2, and Ordered=
{N0, . . . , Nn+1}. Then:

1. ∀0≤i≤n Ni → next = Ni+1 ∧ Ni+1 → prev = Ni .
2. Exactly one of the following holds:

(a) n ≥ 0, N0 = NB, Nn = NT .
(b) n > 0, N1 = NB, Nn = NT .
(c) n = 0, N0 = NT , N1 = NB.

4.7 Section: linearizability

In this section we show that our implementation is lineariz-
able to a sequential deque. We assume a sequentially consis-
tent shared-memory multiprocessor system9. For brevity we
will consider only complete execution histories:

Definition 56 A complete execution history is an execution
in which any operation invocation has a corresponding re-
sponse (that is, the history does not contain any partial exe-
cution of an operation).

Since we later show that our algorithm is wait-free, lin-
earizability of all complete histories implies linearizability
of all histories as well.

The linearizability proof is structured as follows: In
Sect. 4.7.1 we give the sequential specification of a deque,
to which our implementation is linearized. In Sect. 4.7.2 we
specify the linearization points, and in Sect. 4.7.3 we give
the proof itself.

4.7.1 The deque sequential definition

The following is the sequential specification of the imple-
mented deque:

1. Deque state: A deque is a sequence of values, called the
deque elements. We call the two ends of the sequence the
left end and the right end of the sequence.

2. Supported Operations: The deque supports the PushBot-
tom, PopTop and PopBottom operations.

3. Operations’ Sequential Specifications: The following
two operations may be invoked only by one process,
which we’ll refer to as the deque’s owner process:

• PushBottom(v): This operation adds the value v to
the left end of the deque, and does not return a value.

9 In practice, we have implemented our algorithm for machines pro-
viding only a weaker memory model, which required insertion of some
memory barrier instructions to the code.

• PopBottom: If the deque is not empty, then this
operation removes the leftmost element in the deque
and returns it. Otherwise, it returns EMPTY and
does not modify the state of the deque.

The following operation may be invoked by any process:

• PopTop: This operation can return ABORT, given
the rule stated by Property 57; if the operation
returns ABORT it does not modify the deque state.
Otherwise, if the deque is empty, the operation
returns EMPTY and does not modify the state of the
deque, and if the deque is not empty, the operation
removes the rightmost value from the deque and
returns it.

Property 57. In any sequence of operations on the deque,
for any PopTop operation that has returned ABORT, there
must be a corresponding Pop operation (i.e. a PopTop
or PopBottom operation), which has returned a deque
element. For any two different PopTop operations executed
by the same process that return ABORT, the corresponding
successful Pop operations are different.

We have permitted the PopTop operation to return
ABORT because in practical uses of work stealing deques,
it is sometimes preferable to give up and try stealing from
a different deque if there is contention. As we prove later,
our algorithm is wait-free. We also show that if the ABORT
return value is not allowed (that is, if the PopTop operation
retries until it returns either EMPTY or the rightmost ele-
ment in the deque), then our algorithm is lock-free.

4.7.2 The linearization points

Before specifying the linearization points of our algorithm
we must define the Physical Queue Content (henceforth
PQC): a subset of the ordered nodes’ cells (Sect. 4.3,
Definition 14), which as we later show, at any given state
stores exactly the deque elements.

Definition 58 The PQC is the sequence of cells that lie in
the half-open interval (CB · · · CT] according to the order ≺.

By the definition of the order ≺ (Definition 32), C ∈
P QC ⇒ Node(C) ∈ Ordered. By Corollary 15 Node
(CB) = NB ∈ Ordered∧Node(CT) = NT ∈ Ordered, and
therefore (CB � CT)∨ (CT ≺ CB) holds. Also note that the
PQC is empty if and only if CT � CB . Specifically, the PQC
is empty if the deque is in a crossing state (Definition 37).

The following claim is needed for the definition of the
linearization points:

Claim 59. Suppose that an execution of the PopTop opera-
tion does not return ABORT or EMPTY. Then the PQC was
not empty right after the operation executed Line 9.

A dynamic-sized nonblocking work stealing deque

Definition 60 Linearization Points:

PushBottom The linearization point of this method is the
update of Bottom at Line 7.

PopBottom The linearization point of this method depends
on its returned value, as follows:

• EMPTY: The linearization point here is the read of Top
at Line 26.

• A deque entry: The linearization point here is the up-
date of Bottom at Line 25.

PopTop The linearization point of this method depends on
its return value, as follows:

• EMPTY: The linearization point here is the read of
Bottom pointer at Line 9.

• ABORT: The linearization point here is the statement
that first observed the modification of Top. This is ei-
ther the CAS operation at Line 17, or the read of Top
at Line 11.

• A deque entry: If the PQC was not empty right before
the CAS statement at Line 17, then the linearization
point is that CAS statement. Otherwise, it is the first
statement whose execution modified the PQC to be
empty, in the interval after the execution of 9, and
right before the execution of the CAS operation at
Line 17.10

Claim 61. The linearization points of the algorithm are well
defined. That is, for any PushBottom, PopTop, or PopBot-
tom operation, the linearization point statement is executed
between the invocation and response of that operation.

Proof By examination of the code, all the linearization
points except the one of a PopTop operation that returns a
deque entry are well defined, since they are statements that
are always executed by the operation being linearized. In the
case of a PopTop operation, if the linearization point is the
CAS statement, then it is obvious. Otherwise, the PQC was
empty right before the execution of this successful CAS op-
eration, and by Claim 57 the PQC was not empty right after
the PopTop operation executed Line 9. Therefore there must
have been a transition that modified the PQC to be empty in
this interval, and this transition corresponds to the lineariza-
tion point of the PopTop operation. �

4.7.3 The linearizability proof

In this section we show that our implementation is lin-
earizable to the sequential deque specification given in
Sect. 4.7.1. For this we need several lemmas, including one
that shows how the linearization points of the deque opera-
tions modify the PQC, and one that shows that the PQC is
not modified except at the linearization point of some oper-
ation.

10 Note that the linearization point of the PopTop operation in this
case might be the execution of a statement by a process other then the
one executing the linearized PopTop operation. The existence of this
point is justified in Claim 59.

Lemma 64 Consider a transition s
a−→ s′ where a is a state-

ment execution corresponding to a linearization point of a
deque operation. Then:

• Case 1: If a is the linearization point of a PushBottom(v)
operation, then it adds a cell containing v to the left end
of the PQC.

• Case 2: If a is the linearization point of a PopBottom
operation: let R be the operation returned value:11

– If R is EMPTY, then the s.P QC = s′.P QC = ∅.
– If R is a deque entry, then R is stored in the leftmost

cell of s.P QC, and this cell does not belong to
s′.P QC.

• Case 3: If a is the linearization point of a PopTop
operation: let R be the operation return value:

– If R is EMPTY, then the s.P QC = s′.P QC = ∅.
– If R is a deque entry, then R is stored in the right-

most cell of s.P QC, and this cell does not belong to
s′.P QC.

Definition 68 A successful Pop operation is either a Pop-
Top or a PopBottom operation that did not return EMPTY
or ABORT.

Lemma 69 Consider a transition s
a−→ s′ that modifies the

PQC (that is, s.P QC �= s′.P QC), then a is the execution
of a linearization point of either a PushBottom operation, a
PopBottom operation, or a successful PopTop operation.

The following lemma shows that the ABORT property
holds:

Lemma 70 In any complete execution history, for any Pop-
Top operation that has returned ABORT, there is a corre-
sponding Pop operation (that is, a PopTop or PopBottom op-
eration), which has returned a deque element. For any two
different PopTop operations executed by the same process
that returned ABORT, the corresponding successful Pop op-
erations are different.

The Linearizablity Theorem: Using Lemmas 64, 69,
and 70, we now show that our implementation is linearizable
to the sequential deque specification given in Sect. 4.7.1:

Theorem 71 Any complete execution history of our algo-
rithm is linearizable to the sequential deque specification
given in Sect. 4.7.1.

Proof Given an arbitrary complete execution history of the
algorithm, we construct a total order of the deque operations
by ordering them in the order of their linearization points.
By Claim 61, each operation’s linearization point occurs af-
ter it is invoked and before it returns, and therefore the total

11 We can refer to the returned value of an operation since we’re deal-
ing only with complete histories.

D. Hendler et al.

order defined respects the partial order in the concurrent ex-
ecution.

It is left to show that the sequence of operations in
that total order respects the sequential specification given in
Sect. 4.7.1. We begin with some notation. For each state s
in the execution, we assign an abstract deque state, which is
achieved by starting with an empty abstract deque, and ap-
plying to it all of the operations whose linearization points
occurs before s in the order in which they occur in the exe-
cution.

We say that the PQC sequence matches the abstract
deque sequence in a state s, if and only if the length of
the abstract deque state and the length of the PQC (denoted
length(PQC)) are equal, and for all i ∈ [0..length(P QC)),
the data stored in the ith cell of the PQC sequence is the ith
deque element in the abstract deque state.

We now show that in any state s of the execution, the
PQC matches the abstract deque sequence in s:

1. Both sequences are empty at the beginning of the execu-
tion.

2. By Lemma 69, any transition that modifies the PQC is
the linearization point of a successful PushBottom, Pop-
Bottom, or PopTop operation, and therefore it also mod-
ifies the abstract deque state.

3. By Lemma 64, the linearization point of a PushBottom
operation adds a cell containing the pushed element to
the left end of the PQC, the linearization point of a suc-
cessful PopBottom operation removes the cell contain-
ing the popped element from the left end of the PQC,
and the linearization point of a successful PopTop op-
eration removes the cell containing the popped element
from the right end of the PQC.

Therefore by induction on the length of the execu-
tion, and the abstract deque operation specification given in
Sect. 4.7.1, the PQC sequence matches the abstract deque
sequence in any state s of the execution.

By Lemma 70 the ABORT property holds. By
Lemma 64 a PopBottom operation returns the leftmost value
in the PQC if it is not empty or EMPTY otherwise, and
if the PopTop operation does not return ABORT, then it
returns the rightmost value in the PQC if it is not empty,
or EMPTY otherwise. Therefore, since the PQC sequence
matches the abstract deque sequence, the operations return
the correct values according to the sequential specification
given in Sect. 4.7.1, which implies that our implementation
is linearizable to this sequential specification. �

4.8 The progress properties

Theorem 72 Our deque implementation is wait-free.

Proof Our implementation of the deque does not contain
any loops, and therefore each operation must eventually
complete. �

The reason our algorithm is wait-free is that we have
defined the ABORT return value as a legitimate one. How-
ever, in many cases we may want to keep executing the Pop-
Top operation until we gets either a deque element or the
EMPTY return value. The following theorem shows that our
implementation is lock-free even if the PopTop operation is
executed until it returns such a value.

Definition 73 A legitimate value returned by a Pop opera-
tion is either a deque element or EMPTY.

Theorem 74 Our deque implementation, where the PopTop
operation retries until it returns a legitimate value, is lock-
free.

Proof The Abort property proven by Lemma 70, implies
that every two different PopTop operations by the same pro-
cess that returned ABORT have two different Pop operations
that returned deque elements. Thus if a PopTop operation
infinitely retries and keep returning ABORT, there must be
an infinite number of Pop operations that returned a legit-
imate value. Therefore if a PopTop operation fails to com-
plete, there must be an infinite number of a successful Pop
operations. �

Theorem 75 Our algorithm is a lock-free implementation
of a linearizable deque, as defined by the sequential specifi-
cation in Sect. 4.7.1.

Proof Theorem 71 states that our implementation is lin-
earizable to the sequential specification given in Sect. 4.7.1.
Theorem 74 showed that the implementation is lock-free. �

5 Conclusions

We have shown how to create a dynamic memory version
of the ABP work stealing algorithm. It may be interesting
to see how our dynamic-memory technique is applied to
other schemes that improve on ABP-work stealing such as
the locality-guided work-stealing of Blelloch et. al. [4] or
the steal-half algorithm of Hendler and Shavit [9].

References

1. Lev, Y.: A Dynamic-Sized Nonblocking Work Stealing Deque.
MS thesis, Tel-Aviv University, Tel-Aviv, Israel (2004)

2. Rudolph, L., Slivkin-Allalouf, M., Upfal, E.: A simple load bal-
ancing scheme for task allocation in parallel machines. In Pro-
ceedings of the 3rd Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pp. 237–245. ACM Press (1991)

3. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling
for multiprogrammed multiprocessors. Theory of Computing Sys-
tems 34, 115–144 (2001)

4. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of
work stealing. In: ACM Symposium on Parallel Algorithms and
Architectures, pp. 1–12 (2000)

A dynamic-sized nonblocking work stealing deque

5. Flood, C., Detlefs, D., Shavit, N., Zhang, C.: Parallel garbage col-
lection for shared memory multiprocessors. In: Usenix Java Vir-
tual Machine Research and Technology Symposium (JVM ’01),
Monterey, CA (2001)

6. Leiserson, P.: Programming parallel applications in cilk.
SINEWS: SIAM News 31 (1998)

7. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded com-
putations by work stealing. Journal of the ACM 46, 720–748
(1999)

8. Knuth, D.: The Art of Computer Programming: Fundamental Al-
gorithms. 2nd edn. Addison-Wesley (1968)

9. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In:
Proceedings of the 21st Annual ACM Symposium on Principles
of Distributed Computing (2002)

10. Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-first
garbage collection. Technical report, Sun Microsystems – Sun
Laboratories (2004) To appear.

11. Agesen, O., Detlefs, D., Flood, C., Garthwaite, A., Martin, P.,
Moir, M., Shavit, N., Steele, G.: DCAS-based concurrent deques.
Theory of Computing Systems 35, 349–386 (2002)

12. Martin, P., Moir, M., Steele, G.: Dcas-based concurrent deques
supporting bulk allocation. Technical Report TR-2002-111, Sun
Microsystems Laboratories (2002)

13. Greenwald, M.B., Cheriton, D.R.: The synergy between non-
blocking synchronization and operating system structure. In: 2nd
Symposium on Operating Systems Design and Implementation,
pp. 123–136. Seattle, WA (1996)

14. Blumofe, R.D., Papadopoulos, D.: The performance of work steal-
ing in multiprogrammed environments (extended abstract). In:
Measurement and Modeling of Computer Systems, pp. 266–267
(1998)

15. Arnold, J.M., Buell, D.A., Davis, E.G.: Splash 2. In: Proceedings
of the Fourth Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 316–322. ACM Press (1992)

16. Papadopoulos, D.: Hood: A user-level thread library for multi-
programmed multiprocessors. In: Master’s thesis, Department of
Computer Sciences, University of Texas at Austin (1998)

17. Prakash, S., Lee, Y., Johnson, T.: A non-blocking algorithm for
shared queues using compare-and-swap. IEEE Transactions on
Computers 43, 548–559 (1994)

18. Scott, M.L.: Personal communication: Code for a lock-free mem-
ory management pool (2003)

19. Hendler, D., Lev, Y., Moir, M., Shavit, N.: A dynamic-sized non-
blocking work stealing deque. Technical Report TR-2005-144,
Sun Microsystems Laboratories (2005)

