
Hopscotch Hashing

Maurice Herlihy

Brown University

and

Nir Shavit

Tel-Aviv University

and

Moran Tzafrir

Tel-Aviv University

We present a new resizable sequential and concurrent hash map algorithm directed at both uni-
processor and multicore machines. The algorithm is based on a novel hopscotch multi-phased
probing and displacement technique that has the flavors of chaining, cuckoo hashing, and linear
probing, all put together, yet avoids the limitations and overheads of these former approaches.
The resulting algorithm provides a table with very low synchronization overheads and high cache
hit ratios.

In a series of benchmarks on a state-of-the-art 64-way Niagara II multicore machine, a concurrent
version of the new algorithm proves to be highly scalable, delivering in some cases 2 or even 3 times
the throughput of today’s most efficient concurrent hash algorithm, Lea’s ConcurrentHashMap from
java.concurr.util. Moreover, in tests on both Intel and Sun uni-processor machines, a sequential
version of the algorithm consistently outperforms the most effective sequential hash table algo-
rithms including cuckoo hashing and bounded linear probing.

The most interesting feature of the new hopscotch algorithm is that it continues to deliver good
performance when the table is more than 90% full, increasing its advantage over other algorithms
as the table density grows.

0Contact author is Moran Tzafrir: morantza@gmail.com. This is a Regular paper. Moran is
a full time student and the paper is eligible for the best student paper award.

1. INTRODUCTION

Hash tables are one of the most widely used data structures in computer science.
They are also one of the most thoroughly researched, because any improvement in
their performance can benefit millions of applications and systems.

A typical resizable hash table is a continuously resized array of buckets, each
holding an expected constant number of elements, and thus requiring an expected
constant time for add(), remove(), and contains() method calls [1]. Typical usage
patterns for hash tables have an overwhelming fraction of contains() calls [7], and
so optimizing this operation has been a target of many hash table algorithms.

This paper introduces hopscotch hashing, a new type of open addressed resizable
hash table that is directed at cache-sensitive machines, a class that includes most,
if not all, of the state-of-the-art uniprocessors and multicore machines. On such
machines it provides a contains() method that runs in deterministic constant time,
and in practice requires two cache loads (Lemma 3.3).

1.1 Background

Chained hashing [5] is closed address hash table scheme consisting of an array
of buckets each of which holds a linked list of items. Though closed addressing
is superior to other approaches in terms of the time to find an item, its use of
dynamic memory allocation and the indirection makes for poor cache performance
[8]. It is even less appealing for a concurrent environment as dynamic memory
allocation typically requires a thread-safe memory manager or garbage collector,
adding overhead in a concurrent environment.

Linear probing [5] is an open-addressed hash scheme in which items are kept in a
contiguous array, each entry of which is a bucket for one item. A new item is inserted
by hashing the item to an array bucket, and scanning forward from that bucket until
an empty bucket is found. Because the array is accessed sequentially, it has good
cache locality, as each cache line holds multiple array entries. Unfortunately, linear
probing has inherent limitations: because every contains() call searches linearly for
the key, performance degrades as the table fills up (when the table is 90% full, the
expected number of locations to be searched until a free one is found is about 50 [5]),
and clustering of keys may cause a large variance in performance. After a period of
use, a phenomenon called contamination [2], caused by deleted items, degrades the
efficiency of unsuccessful contains() calls.

Cuckoo hashing [8] is an open-addressed hashing technique that unlike linear
probing requires only a deterministic constant number of steps to locate an item.
Cuckoo hashing uses two hash functions. A new item x is inserted by hashing the
item to two array indexes. If either slot is empty, x is added there. If both are full,
one of the occupants is displaced by the new item. The displaced item is then re-
inserted using its other hash function, possibly displacing another item, and so on.
If the chain of displacements grows too long, the table is resized. A disadvantage of
cuckoo hashing is the need to access sequences of unrelated locations on different
cache lines. A bigger disadvantage is that Cuckoo hashing tends to perform poorly
when the table is more than 50% full because displacement sequences become too
long, and the table needs to be resized.

Lea’s algorithm [6] from java.util.concurrent, the JavaTM Concurrency Package,
is probably the most efficient known concurrent resizable hashing algorithm. It is
a closed address hash algorithm that uses a small number of high-level locks rather
than a lock per bucket. Shalev and Shavit [10] present another high-performance

1

2 ·

lock-free closed address resizable scheme. Purcell and Harris [9] were the first to sug-
gest a nonresizable open-addressed concurrent hash table based on linear probing.
A concurrent version of cuckoo hashing can be found in [3].

2. THE NEW HOPSCOTCH ALGORITHM

Hopscotch hashing combines the advantages of these three approaches in the follow-
ing way. There is a single hash function h. The item hashed to an entry will always
be found either in that entry, or in one of the next H − 1 entries, where H is a con-
stant (in our implementation, H is 32, the standard machine word size). In other
words, a “virtual” bucket has fixed size and overlaps with the next H − 1 buckets.
Each entry includes a hop-information word, an H-bit bitmap that indicates which
of the next H − 1 entries contain items that hashed to the current entry’s virtual
bucket. In this way, an item can be found quickly by looking at the word to see
which entries belong to the bucket, and then scanning through the constant number
of entries (on most machines this requires at most two loads of cache lines).

Here is how to add item x where h(x) = i:

—Starting at i, use linear probing to find an empty entry at index j.

—If the empty entry’s index j is within H − 1 of i, place x there and return.

—Otherwise, j is too far from i. To create an empty entry closer to i, find an item
y whose hash value lies between i and j, but within H − 1 of j, and whose entry
lies below j. Displacing y to j creates a new empty slot closer to i. Repeat. If no
such item exists, or if the bucket already i contains H items, resize and rehash
the table.

In other words, the idea is that hopscotch “moves the empty slot towards the desired
bucket” instead of leaving it where it was found as in linear probing, or moving an
item out of the desired bucket and only then trying to find it a new place as in
cuckoo hashing. The cuckoo hashing sequence of displacements can be cyclic, so
implementations typically abort and resize if the chain of displacements becomes
too long. As a result, cuckoo hashing works best when the table is less than 50%
full. In hopscotch hashing, by contrast, the sequence of displacements cannot be
cyclic: either the empty slot moves closer to the new item’s hash value, or no such
move is possible. As a result, hopscotch hashing supports significantly higher loads
(see Section 4). Moreover, unlike in cuckoo hashing, the chances of a successful
displacement do not depend on the hash function h, so it can be a simple function
that is easily shown to be close to universal.

Hopscotch has the advantage of buckets with multiple items, but unlike in chain-
ing they have great locality since they are located in neighboring memory locations.
It also inserts items in constant expected time as in linear probing, but without
clustering and with the guarantee given by the hopscotch displacement scheme that
items are always found in their bucket in deterministic constant time.

Finally, notice that if more than a constant number of items are hashed by h into
a given bucket, the table needs to be resized. Luckily, as we show, for a universal
hash function h, the probability of this type of resize happening given H = 32 is
1/32!. 1 In practice, the hop information, 32 keys, and their pointers to data, all fit

1In our implementation we can actually use a pointer/displacement scheme instead of the easier
to explain hop-information word above, and so buckets can actually grow H dynamically.

· 3

x y z w

to add v to

location 6

location 6’s

hop info
location 10’s

hop info

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(a)

1 0 1 0 0 1 0 0

location 8’s

hop info

0 1 0 0

xy z w

can add v to

location 6

location 6’s

hop info
location 10’s

hop info

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(b)

0 0 1 1 0 0 0 1

location 8’s

hop info

0 0 0 1

Fig. 1. The blank entries are empty, all others contain items. Here, H is 4. In part (a), we add
item v with hash value 6. A linear probe finds entry 13 is empty. Because 13 is more than 4 entries
away from 6, we look for an earlier entry to swap with 13. The first place to look is H − 1 = 3
entries before, at entry 10. That entry’s hop information bit-map indicates that w at entry 11 can
be displaced to 13, which we do. Entry 11 is still too far from entry 6, so we examine entry 8.
The hop information bit-map indicates that z at entry 9 can be moved to entry 11. Finally, x at
entry is moved to entry 9. Part (b) shows the table state just before adding v.

in two cache lines, so a contains() incurs at most two cache invalidations. Figure 1
shows an example execution of the algorithm.

The concurrent version of the hopscotch algorithm maps a bucket to each lock.
This lock controls access to all table entries that hold items of that bucket. The
contains() calls are wait-free, they ignore the lock and simply traverse the hop
information and keys in the bucket, the while add() and remove() acquire the bucket
lock before applying modifications to the data. For lack of space, we provide the
detailed description and code in the appendix, and postpone the description of the
resize () method, which is rather straightforward, to the full version of the paper..

3. COMPLEXITY

We analyze the complexity properties common to both the sequential and concur-
rent versions of the hopscotch algorithm. Outlines of the necessary proofs of safety
and liveness for the concurrent implementation can be found in the appendix, to be
viewed at the committee’s discretion.

The most important property of a hash table is its expected constant time per-
formance. In all the lemmas below we assume that the hash function h is universal
and follow the standard practice of modeling the hash function as a uniform dis-

4 ·

tribution over keys [1]. As before, H is the maximal number of keys a bucket can
hold, a constant in our implementation, n is the number of keys in the table, m is
the table size, and α = n/m is density or load of the table.

Since H, the bucket size, is a predefined constant, the following is immediated
from the code:

Lemma 3.1. The contains() and remove() methods complete in constant time
(deterministic).

How large do we need to make this constant so that bucket overflows do not cause
repeated resize () calls?

Lemma 3.2. The expected number of items in a bucket is

f(m, n) = 1 +
1

4
((1 +

2

m
)n − 2

n

m
) ≈ 1 +

e2α − 1 − 2α

4

Proof. The expected number of items in a hopscotch bucket is the same as the
expected number of items in a chained-hashing bucket. The result follows from
Theorem 15 in Chapter 6.4 of [5].

The following shows that in hopscotch hashing, as in chained hashing, in the
common case there are very few items in a bucket.

Lemma 3.3. The maximal expected number of items in a bucket is constant.

Proof. Again, following [5], the function f(m, n) is increasing, and the maximal
value for n, the number of items, is m, so that the value the function evaluates to
approximately 2.1.

This implies that that typically there is very little work to be performed when
searching for an item in a bucket.

It is known that the worst case number of items in a bucket, even when using a
universal hash function, is not constant [5]. So what are the chances of a resize ()
due to overflow? It turns out that chances are low.

Lemma 3.4. The probability of having more then H keys in a bucket is 1/H !.

Proof. The probability of having H keys in a bucket is equal to the probability
of having a chain of length H in chained hashing. From section 3.3.10 of [2] it
follows that

Pr{H items in bucket} =
(n

H

) (m − 1)n−H

mn
=

n!

H !(n − H)!

(m − 1)n−H

mn
=

1

H !
n(n − 1) . . . (n − H + 1)

(m − 1)n−H

mn−HmH
≤

1

H !

We reach the last inequality by substituting n with m, since m is its maximal
value, and the function is monotonically increasing.

Thus, with uniform hashing, the probability of a resize () method call due to having
more than H = 32 items in a bucket is 1/32!.

It remains to be shown that:

Lemma 3.5. The add() method completes within expected constant time.

· 5

Proof. From [5] it follows that given an open-address hash table that is α =
n/m < 1 full, the expected number of entries until an open slot is found is at most
1/2(1+(1/(1−α))2) which is constant. Thus, the expected number of displacements,
which is bounded by the number of entries tested until an open slot is found is at
most constant.

For example, if the hash table is 50% full, the expected number of entries tested
until an open slot is found is at most 1/2(1 + (1/(1 − 0.5))2) = 2.5 and when it is
90% full, the expected number of entries tested is 1/2(1 + (1/(1 − 0.9))2) = 50.

In the full paper we will show that:

Lemma 3.6. The resize () method completes within O(n) time.

4. PERFORMANCE EVALUATION

This section empirically compares the performance of hopscotch hashing to the most
effective former algorithms in both concurrent (multicore) and sequential (unipro-
cessor) settings. Though in the future it would be great to evaluate our algorithm
in the context of real applications, here we use the standard approach taken in the
literature, using the micro-benchmarks similar to those used by recent papers in
the area [8; 10], but with much higher table-densities (up to 90%).

4.1 The Overall Benchmarking Setup

In our benchmarks we sampled each test point 10 times, and plotted the average.
To make sure that the table does not fit into the cache-line, and to make sure all
behavioral aspects of the data-structure are exposed, we used a table-size of approx
223 items. Each test used the same set of keys for all the hash-maps. All tested hash-
maps were implemented using C++, and were compiled using the same compiler
and settings. Closed-address hash-maps, like chained-hashing, dynamically allocate
list nodes, in contrast with open-address hash-maps like linear-probing. To prevent
any effects of memory-management scheme on performance, we show the results
for the closed-address hash-maps both with the (mtmalloc library, multi-threaded
malloc library) memory allocation library and with pre-allocated memory.

In our benchmarks in all the algorithms each bucket had a pair of pointers to the
key and data (satellite key and data). This scheme is thus a general hash-map.

4.2 Concurrent Hash-Maps on Multicores

We begin by presenting a comparison of the concurrent version of hopscotch hash-
ing to the two best performing resizable concurrent hash-table algorithms in the
literature on a multicore machine.

—Lock-based Chained : This is the algorithm due to Lea[6].

—Lock-Free Chained : This is the lock-free split-ordered hash table of Shalev and
Shavit [10]. (The final paper would include this benchmark)

—New Hopscotch: we used the concurrent version of our algorithm with a hop-
information representation of the buckets.

Finally, to neutralize any effects of the choice of locks, we used the same type of
locks and the same lock structure, a lock per memory segment, in all the lock-based
concurrent algorithms.

We ran a series of benchmarks on a 64-way Sun UltraSPARC T2TM . This is
a multi-core machine based on the Niagara architecture that has 8 cores, each
supporting 8 multiplexed hardware threads.

6 ·

Fig. 2. The throughput as a function of concurrency at 40% table-density.

Fig. 3. Throughput at 64 thread concurrency with varying table density.

4.3 Concurrent Benchmark Results

In Figure 2, we analyzed the general throughput of the commonly found distribution
of actions: 90% contains(), 5% add(), and 5% remove() and the less common one of
60% contains(), 20% add(), and 20% remove(). We used table-densities of 40%, and
increased the concurrency up to 64 threads, the maximal number of actual hardware
threads supported by the machine. As can be seen, the new hopscotch throughput
scales better, and has about 2 times the throughput of the Lea’s chained algorithm.
There is still a significant gap between the algorithms even when we eliminate the
memory management and pre-allocate all the space the dynamic memory algorithms
require. Given that the locks are the same, and the memory management effects
were eliminated, what is seen in the graphs is the pure advantage of the Hopscotch
approach. The reason for this advantage is that it has better cache behavior: finding
an item takes two cache misses, proved at Lemma 3.3.

In Figure 3, we analyze the change in throughput as a function of the table density
at a high level of 64 thread concurrency, effectively the number of hardware threads
on the machine. In each sample point we maintained the table-density stable at a
given level. As can be seen, hopscotch has significantly superior performance at all
densities. as the density increases, the hopscotch

· 7

4.4 Sequential Hash-Maps on Uniprocessors

We selected the most effective known sequential hash-maps.

—Linear-Probing: we used an optimized version [5], that stores the maximal probe
length in each bucket.

—Chained : We used an optimized version of [5] that stores the first element of each
linked-list directly in the hash table.

—Cuckoo: Thanks to the kindness of the authors of [8], we obtained the original
cuckoo hash map code.

—New Hopscotch: we used the sequential version, and a list-like hop-information
representation, that enables us to test the performance at table-densities up to
99%.

4.5 Sequential Setup

We ran a series of benchmarks on two fundamentally different uniprocessor archi-
tectures: SPARC Architecture: a single core of a Sun UltraSPARC T1TM multicore
CPU running at 1.20GHz, and an INTEL Architecture: XeonTM CPU 3.00GHz.

Fig. 4. SPARC throughput as the table density changes.

Fig. 5. Intel throughput as the table density changes.

8 ·

Fig. 6. Intel lookup throughput as the table density changes.

4.6 Sequential Benchmark Results

The following graphs shows change in throughput, as function of the average table-
density. In Figure 3 we show the general throughput of a mix of actions. The
density range for these tests is from 10 to 90%. As can be observed the new
hopscotch-algorithm outperforms the other hash-maps, but the important point is
the high level of immunity to increases in table-density. We use neutralized versions
of the dynamic memory algorithms by having all their memory pre-allocated. Thus,
what is seen is the pure advantage of the Hopscotch approach. The reason for this
advantage is the better cache behavior: finding an item takes two cache misses, and
this is true even when the table is almost full. This is not the case for linear probing,
where as the table fills up, items are located further and further from their original
bucket. It is also not true of cuckoo hashing, whose theoretical analysis shows that
above 50% table density an insert can not find a valid arrangement that will allow
insertion of new keys.

In summary, hopscotch hashing has superior performance in both concurrent and
sequential settings, at times quite a significant one. This is due to its better cache
behavior.

5. CONCLUSION AND FUTURE WORK

We presented the new Hopscotch algorithm and showed its advantages over all
known algorithms, both sequential and concurrent. We note that the resize ()
method of hopscotch hashing can be parallelized in the same style as in [6], and plan
to do so in future work. It would also be interesting to evaluate the performance
of the algorithm in real applications, and to run cahce-miss benchmarks. Finally, it
would be interesting to formally analyze why hopscotch performs exceptionally well
at high table densities. This would amount to showing that even when the table is
full, the probability that all hash table buckets that start less than H away from
any given bucket i (such as the one found empty) have at least one item that was
hashed by h into this bucket (and could therefore be displaced to i).

6. ACKNOWLEDGMENTS

We thank Dave Dice for helping us with the execution of our algorithm on the N2
machine at Sun Labs. And Doug Lea for his guidance and insight.

· 9

REFERENCES

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms,
Second Edition. MIT Press, Cambridge, Massachusetts, 2001.

[2] Gonnet, G. H., and Baeza-Yates, R. Handbook of algorithms and data structures: in
Pascal and C (2nd ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1991.

[3] Herlihy, M., and Shavit, N. The Art of Multiprocessor Programming. Morgan Kaufmann,
NY, USA, 2008.

[4] Herlihy, M. P., and Wing, J. M. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3
(1990), 463–492.

[5] Knuth, D. E. The art of computer programming, volume 1 (3rd ed.): fundamental algo-
rithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

[6] Lea, D. Hash table util.concurrent.concurrenthashmap in java.util.concurrent the
Java Concurrency Package. http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/-
src/main/java/util/concurrent/.

[7] Lea, D. Personal communication, Jan. 2003.

[8] Pagh, R., and Rodler, F. F. Cuckoo hashing. Journal of Algorithms 51, 2 (2004), 122–144.

[9] Purcell, C., and Harris, T. Non-blocking hashtables with open addressing. In Lec-
ture Notes in Computer Science, Distributed Computing, Springer Berlin / Heidelberg
3724/2005 (October 2005), 108–121.

[10] Shalev, O., and Shavit, N. Split-ordered lists: Lock-free extensible hash tables. Journal of
the ACM 53, 3 (2006), 379–405.

10 ·

APPENDIX

A. CONCURRENT HOPSCOTCH HASHING

1 template <class KEY, class DATA>

2 class ConcurrentHopscotchHashSet {
3 private :
4 static const int HOP RANGE = 32;
5 static const int ADD RANGE = 256;
6 static const int MAX SEGMENTS = 1024;
7 static const int MAX TRIES = 2;
8 struct Bucket {
9 unsigned int volatile hop info ;

10 KEY∗ volatile key ;
11 DATA∗ volatile data ;
12 unsigned int volatile lock ;
13 unsigned int volatile timestamp;
14 void lock ();
15 void unlock ();
16 };
17 Bucket∗ segments ary[MAX SEGMENTS][];
18 unsigned int segment mask;
19 unsigned int bucket mask;

20 public :
21 bool contains (KEY ∗ key);
22 DATA∗ add(KEY ∗ key, DATA∗ data);
23 DATA∗ remove(KEY ∗ key);
24 };

Fig. 7. ConcurrentHopscotchHashSet and Bucket fields.

Figure 7 shows the fields of the hash table and buckets. As in Lea’s algorithm, the
segment array field is a two-dimensional array indexed by segment and by bucket.
Initially, there is only one segment: segment array[0] is a pointer to an array of
buckets whose size is a closest power of two to the user-requested capacity. Each
time the table is resized, the number of segments doubles, up to a maximum of
MAX SEGMENTS. The segment mask and bucket mask fields are used to map a
key’s hash value into these indexes.

The bucket hop info field is a bit-map indicating which of the HOP RANGE adja-
cent buckets have data that originally hashed to this bucket. The lock field is used
by the add() and remove() methods for mutual exclusion, and the timestamp field
is used by the contains() method to detect concurrent displacements. It must thus
be a volatile field.

The add() method (Figure 8) hashes the key, computes segment and bucket in-
dexes, and locks the bucket (Lines 2-6). If the key is present in that bucket, it
unlocks and returns it’s data. Otherwise, it scans through that segment trying
to change one bucket’s key from NULL to BUSY (Lines 13-18). If it fails to find
empty slot within ADD RANGE of the starting bucket (Line 14), it will have to
resize () the table (Line 32). The ADD RANGE can be determined dynamically and
is application dependent.

Otherwise, it proceeds to use the empty slot. If it succeeds (Line 19), and the
empty slot is within HOP RANGE of the starting bucket (Line 21), then it up-
dates the hop info and key fields. The update of the hop info must be before

· 11

1 DATA∗ add(KEY ∗ key, DATA∗ data) {
2 unsigned int hash = CalcHashFunc(key−>hashCode());
3 unsigned int iSegment = hash & segment mask;
4 unsigned int iBucket = hash & bucket mask;
5 Bucket∗ start bucket = segments ary[iSegment][iBucket];
6 start bucket −>lock();
7 if (contains (key)) {
8 DATA∗ rc = key’s data;
9 start bucket −>unlock();

10 return rc ;
11 }
12 Bucket∗ free bucket = start bucket ;
13 int free distance =0;
14 for (; free distance < ADD RANGE; ++free distance) {
15 if (NULL == free bucket−> key && NULL == ATOMIC CAS(&(free bucket−> key), NULL, BUSY)))
16 break;
17 ++free bucket;
18 }
19 if (free distance < ADD RANGE) {
20 do {
21 if (free distance < HOP RANGE) {
22 start bucket −> hopInfo |= (1 << free distance);
23 free bucket−> data = data;
24 free bucket−> key = key;
25 start bucket −>unlock();
26 return NULL;
27 }

28 find closer free bucket (&free bucket , & free distance);
29 } while (NULL != free bucket);
30 }
31 start bucket −>unlock();
32 resize (); return add(key, data);
33 }

Fig. 8. The add() method.

that of the key field, so it must be volatile (on some architectures one will need
to insert a memory barrier here). It then unlocks the bucket, and returns NULL
(Lines 21-26). If the empty slot is not within the HOP RANGE, it repeatedly calls
find closer free bucket () to displace the empty slot even closer to the starting

bucket (Line 28).
Figure 9 shows the find() method. It takes two arguments, both indirect pointers

used to return results. On entry, free bucket is an indirect pointer to the newly-
emptied bucket, and on exit, it either points to a newly-emptied bucket closer to
the starting bucket, or it is NULL, if no such bucket could be found. Similarly, on
entry, free distance points to the free bucket’s distance from the starting bucket,
and on exit, to the newly-emptied bucket’s distance from the starting bucket.

Starting at the bucket HOP RANGE−1 slots below the empty bucket, the method
examines each bucket in ascending order until it reaches the empty bucket (Lines 2-
35). For each bucket, it iterates through its hop info bit map, from lowest index
to highest, looking for an occupied bucket whose key can be moved to the empty
bucket (Lines 7-12). If it finds one, it moves the bucket’s key, updates its timestamp
to alert concurrent contains() calls of the update, and returns (Lines 13-32). If it

12 ·

1 void find closer free bucket (Bucket∗∗ free bucket , int∗ free distance) {
2 Bucket∗ move bucket = ∗free bucket − (HOP RANGE − 1);
3 for (int free dist = (HOP RANGE − 1); free dist > 0; −−free dist) {
4 unsigned int start hop info = move bucket−>hop info;
5 int move free distance = −1;
6 unsigned int mask = 1;
7 for (int i=0; i< free dist ; ++i, mask <<= 1) {
8 if (mask & start hop info) {
9 move free distance = i;

10 break;
11 }
12 }
13 if (−1 != move free distance) {
14 move bucket−>lock();
15 if (start hop info == move bucket−>hop info) {
16 Bucket∗ new free bucket = move bucket + move free distance;
17

18 move bucket−>hop info |= (1 << free dist);
19 free bucket−> data = new free bucket−> data;
20 free bucket−> key = new free bucket−> key;
21

22 ++(move bucket−> timestamp);
23

24 new free bucket−> key = BUSY;
25 new free bucket−> data = BUSY;
26 move bucket−>hop info &= ˜(1 << move free distance);
27

28 ∗ free bucket = new free bucket ;
29 ∗ free distance −= free dist ;
30 move bucket−>unlock();
31 return ;
32 }
33 move bucket−>unlock();
34 }
35 ++move bucket;
36 }
37 ∗ free bucket = NULL; ∗free distance = 0;
38 }

Fig. 9. The find closer free bucket () method.

is unable to find a bucket to swap, it sets free bucket to NULL and returns.
The contains() method (Figure 10) is wait-free. In the fast path section, which

we expect to be common, it tries MAX TRIES times to scan through the key’s range
without overlapping an add() that displaces the key (Lines 8-16). Concurrent add()
and remove() calls that do not displace an existing key will not cause the contains()
method to abandon the fast path.

Each scan starts by reading the lock’s timestamp to ensure that it views a con-
sistent state of the hop info field (Line 9). It then compares each slot marked by
hop info to the target key, and computes a tentative return value. If it found the key
it returns. If it did not find the key, then it rereads the lock’s timestamp (Line 17).
If the timestamp is unchanged, then it observed a consistent state, and returns the
tentative value.

If, after MAX TRIES attempts, the contains() method fails to observe a consistent

· 13

1 bool contains (KEY ∗ key) {
2 unsigned int hash = CalcHashFunc(key−>hashCode());
3 unsigned int iSegment = hash & segment mask;
4 unsigned int iBucket = hash & bucket mask;
5 Bucket∗ start bucket = segments ary[iSegment][iBucket];
6 unsigned int try counter = 0;
7 unsigned int timestamp;
8 do {
9 timestamp = start bucket−> timestamp;

10 unsigned int hop info = start bucket−> hop info;
11 for each check bucket in hop info {
12 if (key.equal(check bucket−> key))
13 return true ;
14 }
15 ++try counter;
16 } while (timestamp != start bucket−> timestamp && try counter < MAX TRIES)
17 if (timestamp != start bucket−> timestamp) {
18 Bucket∗ check bucket = start bucket ;
19 for (int i=0; i < HOP RANGE; ++i) {
20 if (key.equal(check bucket−> key))
21 return true ;
22 ++check bucket;
23 }
24 }
25 return false ;
26 }

Fig. 10. The contains() method.

state, then the method takes the slow path, which we expect to be rare (Lines17-25).
It simply scans all buckets within HOP RANGE, ignoring the hop info field, again
without locking.

The remove() method (Figure 11) locates the starting bucket and locks it (Lines 2-
6). It then scans through the buckets marked by the hop info field, checking for the
target key (Lines 8-18). If it finds the key, it sets that bucket’s key field to NULL,
unlocks the bucket. To avoid contamination [2] as in linear probing, it updates
the hop info field. Unlike with the add() method, the order in which the hop info
field and key field are updated does not matter. It then returns the previous data.
Otherwise it unlocks the bucket and returns NULL.

We postpone the description of the resize () method to the full version of the
paper.

B. CORRECTNESS OF THE CONCURRENT HOPSCOTCH ALGORITHM

This section contains a an outline of the proof that our concurrent hopscotch algo-
rithm has the desired properties of a resizable hash table.

Notice that the complexity analysis presented earlier holds for the concurrent
case, where the term expected time in the concurrent case means the expected
number of machine instructions in the worst case scheduling scenario, assuming a
hash function of uniform distribution. Notice that the theorems presented earlier
are true as is, except during a concurrent resize (), which could take O(m) time.
Moreover, we need to notice that the proof of Lemma 3.5 holds in the concurrent
case since overlapping add() calls cannot interfere with the displacements of one

14 ·

1 DATA∗ remove(KEY ∗ key) {
2 unsigned int hash = CalcHashFunc(key−>hashCode());
3 unsigned int iSegment = hash & segment mask;
4 unsigned int iBucket = hash & bucket mask;
5 Bucket∗ start bucket = segments ary[iSegment][iBucket];
6 start bucket −>lock();
7

8 unsigned int hop info = start bucket−>hop info;
9 for each check indx in hop info {

10 Bucket∗ check bucket = start bucket + check indx;
11 if (key.equal(check bucket−> key)) {
12 DATA∗ rc = check bucket−> data;
13 check bucket−> key = NULL;
14 check bucket−> data = NULL;
15 start bucket −> hop info &= ˜(1 << check indx);
16 start bucket −>unlock();
17 return rc ;
18 }
19 }
20 start bucket −>unlock();
21 return NULL;
22 }

Fig. 11. The remove() method.

another, so the overall expected time for an add() is constant as shown.
We now proceed to prove safety and liveness properties of the algorithm. Our

model of multiprocessor computation follows [4], though for brevity, we will use
operational style arguments. Our linearizable hash table data structure implements
an abstract set object in a lock-free way so that all operations take an expected
constant number of steps on average.

B.1 Correct Set Semantics

We begin by proving that the algorithm complies with the abstract set semantics.
We use the sequential specification of a “dynamic set with dictionary operations”
as defined in [1]. The add() method returns true if the key was successfully inserted
to the set, and false if that key already existed in the set. The contains() operation
returns true if the key is in the set, false otherwise. The remove() operation returns
true if the key was successfully deleted from the set and false if it was not found.
A resize () operation should have no effect on the set but its side effect is that the
maximal cardinality of the set is doubled.

Given a sequential specification of a set, our proof will provide specific lineariza-
tion points mapping operations in our concurrent implementation to sequential
operations so that the histories meet the specification.

Unsuccessful add() and remove() methods are linearized respectively at the points
where their internal contains() method calls are successful in finding the key (for
an add()) or unsuccessful (for a remove()). A successful add() is linearized when
it writes the key to the table. (Notice that before this successful writing of the
key the table may go through a resize). A successful remove() is linearized when it
removes (overwrites) the actual key from the table entry. A successful contains()
is linearized when it finds the searched key in the array entry. An unsuccessful

· 15

contains() can occur in one of two ways. One possibility is when it does not find
the searched key in the hop information locations and later finds the timestamp
in the entry’s lock has not changed. The other possibility is that it failed to see
the timestamp unchanged several times, following which it made a pass over all 32
possible locations to its right and did not find the searched key. In both cases we
can linearize to the last of these operations, unless there was a write of the searched
key by some concurrent add() method call, in which case the linearization point is
immediately before the last overlapping write of this key by an add().

The proof of most of these cases is straightforward because add() and remove()
are mutually exclusive on the the modified location’s. Moreover, the add() first
updates the hop info and only then writes the data and key. This means that if a
contains() call finds the added key, any subsequent contains() call will also find it,
and they can all be linearized after the add(). It also means that if a contains()
did not find the key based on the hop info, then if the key exists it is because of
a concurrent add(), and the contains() can correctly be linearized before it. The
remove() call removes the key, and independently of whether the hop info points to
its old entry or not, the contains() will fail once the key is removed.

The interesting case is when an add() dispalces an item concurrently with a
contains() call. The add() calls first copies the key to be moved from its old entry
i to its new entry j, then increments the timestamp, and only then erases the key
from entry i. Thus, if the contains() fails to read the key it can only be because
it used the old hop info to look in the entry i, and then failed to find the key in
entry i. However, this means that the timestamp field must have been incremented
between the reading of the old hop info and the reading of the empty entry i, and
the fast path will fail. The slow path of the contains() is immune to displacements
since these happen from left to right, and the slow path searches from left to right,
so if it missed the key in entry i it will find it in entry j.

B.2 Progress

Our algorithm uses loads, stores, and compareAndSet() operations to acquire locks.
As we will show, in terms of these primitive operations the algorithm’s contains()
method is wait-free, that is, each thread always completes in a finite number of
operations. Its add(), remove() and resize () use locks but are deadlock free.

The contains() method is wait-free by definition since its code contains no un-
bounded loops. Each array entry has an associated lock that protects the hop
information, and also has a kind of full-empty bit defined by the hash field of
free bucket . There are many entries that could potentially have the given entry
in their hop info, but, as we prove, there can only be one that actually has it at
any given point. To remove() an item, only one lock, the lock of the location with
the hop information is acquired. To add() and item, one lock is taken and then to
displace an item, while the lock is held, the full-empty hash field of free bucket of
the empty location is set (no thread ever spins on this full-empty information, so
it cannot be a source of deadlock) and then a key and its data are moved. This
requires acquiring a second lock, but the second lock is always to the right of the
first, and since all add() calls acquire the locks in this way, holding first the leftmost
and then a lock to its right, there cannot be a deadlock.

The algorithm is however not starvation-free: it trusts the natural distribution
of hashed values to prevent starvation, and if this distribution is unfair, one can
replace the simple locks we use with more expensive fair locks.

