Timing-Based Mutual Exclusion®

Nancy Lynch’

Abstract

Known asynchronous n-process deadlock-free mutual
exclusion algorithms require O(n) read/write registers
and O(n) operations to access the critical region, ren-
dering them impractical for large scale applications.
Burns and Lynch have shown that »n registers are nec-
essary for solving this problem, in the asynchronous
setting.

This paper examines the benefits that can be ob-
tained by using timing information in mutual exclu-
sion algorithms. First, a simple and efficient timing-
based mutual exclusion algorithm is given. This algo-
rithm always guarantees mutual exclusion (i.e., even
when run asynchronously), and also avoids deadlock in
case certain (realistic) inexact timing constraints are
met. The algorithm uses only two shared read/write
registers (a total of logn + 1 bits), thus “overcom-
ing” the n register lower bound for asynchronous al-
gorithms. It is proved that the problem cannot be
solved with only one shared register, so that this algo-
rithm is optimal in terms of the number of registers.

Second, a lower bound is proved for the time com-
plexity of any deadlock-free mutual exclusion protocol,
as a function of the number of shared registers it em-
ploys. This bound shows that the algorithm described
above is near optimal, in terms of time complexity. Fi-
nally, it is shown that two natural ways of weakening
the timing assumptions lead (unfortunately) to an n
register lower bound.

*This work was supported by ONR contracts N00014-
85-K-0168 and N00014-91-J-1046, by NSF grants CCR-
8611442 and CCR-8915206, by DARPA contracts N00014-
87-K-0825 and N00014-89-J-1988, and by Draper Labora-
tories grant DL-H-441640

tLaboratory for Computer Science, MIT, Cambridge,
MA 02139.

‘Laboratory for Computer Science, MIT, and Tel-Aviv
University, Tel-Aviv 69978, Israel.

1052-8725/92 $3.00 © 1992 IEEE

Nir Shavit?

1 Introduction

Although current-day multiprocessors provide so-
phisticated synchronization primitives for mu-
tual exclusion, situations that require a register-
based exclusion algorithm continue to arise [1, 2].
Known mutual exclusion algorithms {3, 15, 16, 18]
require that both the number of read/write regis-
ters and the number of operations a process per-
forms to access the critical region be at least equal
to the total number of processes in the system.
The lower bound of Burns and Lynch [3] implies
that this linear complexity is optimal for deter-
ministic algorithms, even if multi-writer registers
are used. This implies that such algorithms can-
not be expected to perform well in systems that
support thousands of concurrent processes [1, 2].

Recently, several researchers [4, 5] have pro-
posed ways of overcoming the linear lower bound
on the number of operations a process needs to
perform. For example, employing operating sys-
tem support in a sophisticated way at process cre-
ation time, Merritt and Taubenfeld provide an al-
gorithm that limits the number of operations by
a process to depend only on the number of pro-
cesses concurrently accessing the critical region.
However, in both of these cases, the number of
shared registers the algorithm requires is still at
least equal to the total number of processes in the
system. Also, using randomization, and based on
the work of Lynch and Saias [13], Kushilevits and
Rabin [14] offer a new (but rather involved) al-
gorithm that employs randomization to achieve
fair mutual exclusion using a single O(loglogn)-
bit shared register. However, this solution uses a
powerful n-process Test-and-Set shared variable,
not a read/write register.

In this paper, we consider the mutual exclusion
problem in a real-time setting. More particularly,

we examine the benefits that can be obtained by
using available timing information in mutual ex-
clusion algorithms.

Fischer [10] appears to have been the first
to propose overcoming the Burns-Lynch lower
bound of n shared registers for deadlock-free mu-
tual exclusion by assuming timing constraints.
He has presented a truly simple mutual exclusion
algorithm that uses only a single shared multi-
writer register. However, his algorithm has a ma-
jor drawback: it fails to guarantee mutual exclu-
sion if the timing constraints are not met. This
is also the drawback of the elegant timing-based
algorithm of Alur and Taubenfeld [6]. Ideally,
a timing-based algorithm should not depend on
its timing constraints to guarantee basic safety
properties, but only to ensure liveness and per-
formance properties.

In this paper, we give a simple and efficient
timing-based mutual exclusion algorithm that al-
ways guarantees mutual exclusion (i.e., even when
run asynchronously), and also avoids deadlock in
case certain inexact timing constraints are met.
Specifically, we assume that the times between
successive steps of the same process are always in
some known interval, [¢;, ¢;], of real times. This
assumption is realistic in the real-time setting,
if processes do not get swapped out during the
time when they are executing the protocol, or
even if they do get swapped out, but the un-
derlying processor scheduling algorithm ensures
approximately predictable execution speeds. (In
fact, the algorithms we present require that pro-
cesses do not get swapped out only between two
specific lines of code, and not throughout the
complete protocol.) The algorithm uses only two
shared read/write registers (a total of logn + 1
shared bits), thus “overcoming” the n register
lower bound for asynchronous algorithms. We
also prove that the problem cannot be solved with
only one shared register, so that our algorithm is
optimal in terms of the number of registers.

Next, we prove a lower bound for the time com-
plexity of any deadlock-free mutual exclusion pro-
tocol, as a function of the number of shared reg-
isters it employs. The proof uses the techniques

Process i:

repeat forever
remainder region
irying region
critical region
ezit region

end repeat;

Figure 1: Program of Process i.

of [3], extended to the real-time setting. This
bound shows that our algorithm is near optimal,
in terms of time complexity.

Finally, we show that two natural ways of
weakening the timing assumptions lead, unfor-
tunately, to an n register lower bound. Specifi-
cally, if we assume that the time bounds [¢;, ¢,
are fixed, and always hold, but are unknown to the
processes, or that the timing conditions are only
eventually met, then we obtain a lower bound of
n on the number of read/write registers required.

2 The Mutual Exclusion Prob-
lem

We consider a system of n sequential threads
of control called processes, which communicate
through shared multi-writer, multi-reader atomic
registers. Communication consists of read and
write operations, each of which is assumed in
this paper to be executed instantaneously. In the
usual model for atomic registers each operation is
separated into an invocation event and a response
event, concurrent invocations are allowed, and it
is assumed that every invocation eventually ter-
minates in a matching response, in such a way
as to produce the illusion of instantaneous oper-
ation. Our work applies to this setting, but we
do not need to deal with this extra complication
here.

Formally, we model each such system as a
single timed automaton (7] (A,b), where A is
a composition of I/0 automata [8], and b is a
boundmap. We keep the discussion in this ab-

stract informal and refer the interested reader to
(8, 9, 7, 20] for a complete presentation of the
model and its properties.

We view the program of every process as con-
sisting of two distinguished regions: a remain-
der region and a critical region. Each process al-
ternates between executing its remainder and its
critical region. No process remains forever within
any particular execution of its critical region, al-
though it may remain forever in its remainder re-
gion. The mutual ezclusion problem is to guaran-
tee that the system does not enter a global state
in which more than one process is executing its
critical region [15].

To coordinate the entrance to the critical re-
gion, a trying region and an exit region of code
are added to the program of each process as in
Figure 1.

The following safety property is required of any
solution to the problem.

Mutual Ezclusion: A system satisfies mutual ez-
clusion if in any reachable system state, at
most one user is in its critical region.

We also require that a process running alone
will always get access to the critical region.

Weak Deadlock-Freedom: A system is weakly
deadlock-free if in any execution, if a process’
trying region (resp. exit region) is concurrent
only with other processes’ remainder regions,
then its trying region (resp. exit region) ter-
minates.

The following property guarantees progress,
and will be required to hold only under certain
conditions.

Deadlock-Freedom: A system is deadlock-free if
the following are true in any execution.

1. If in some state, some user is in the try-
ing region and no user is in the critical
region, then subsequently some user en-
ters the critical region.

2. If in some state, some user is in the exit

region then subsequently some user en-
ters the remainder region.

z,y: shared registers, initially y = 0;

repeat forever
Ob: remainder_exit;

L: z:=14
1: if y # 0 then goto L;
2 y:=1;
3: if z #£ i then goto L;

da: critical_entry;
4b: critical_exit;

5: y:=0;

0a: remainder_entry;
end repeat;

Figure 2: Algorithm 1: Lamport Style Mutual
Exclusion - Code for Process 1.

We define a time-bounded version of the
deadlock-freedom property. This involves putting
an upper bound on the time processes can spend
executing the added trying and ezit regions of
code. We define a number b to be an upper
bound for a deadlock-free system providing that
the deadlock freedom definition above holds if we
replace “subsequently” with “within time at most

b.”

3 The Asynchronous Case

The following theorem is due to Burns and
Lynch [3].

Theorem 3.1 There is no asynchronous algo-
rithm providing mutual ezclusion with deadlock-
freedom for n > 2 processes, using fewer than n
shared read/write registers.

Since Theorem 3.1 rules out asynchronous so-
lutions for deadlock-free mutual exclusion with
fewer than n shared registers, we will consider
timing-based algorithms. A natural requirement
for a timing-based mutual exclusion algorithm
is that mutual exclusion and weak deadlock-
freedom be guaranteed always, even if the tim-
ing assumptions are violated. We thus begin
our development by showing that there exists an

asynchronous 2-register algorithm for n > 2, giv-
ing mutual exclusion and weak deadlock-freedom.
This algorithm, which we call Algorithm 1, has a
structure similar to some described by Lamport
in [17]. The algorithm uses two shared registers, z
and y. Each process P; writes its index ¢ into z, to
indicate that it wishes to enter the critical region,
and then checks register y to see if it might have
just overwritten the value of some other process
P; that is attempting to enter. If there is such
a process (i.e., if y = 1), P; gives up, otherwise,
it sets y for other processes and tests z to see if
it has not been overwritten by some later process
P; attempting to enter the critical region. If z is
still set to ¢, P; enters the critical region, setting
y to 0 before returning to the remainder region.

The code is presented in Figure 2, in a stan-
dard psuedo-code style. Translating this code
into timed automata is a straightforward but te-
dious exercise. The other algorithms in this paper
are also presented in the same style.

To aid in the proof, we describe the program
states as a combination of program counter values
as above, local variable values and shared register
values. In any state of the algorithm, we define:

F1: the set of process indices 7 such that z = ¢
and pe(i) = 2,

F2: the set of process indices 7 such that z = ¢
and pe(i) = 3,

CR: the set of process indices 7 such that pc(i) €
{4a,4b,5}.

RM: the set of process indices i such that pe(7) €
{0a, 0b}.

We prove the following lemma by induction on
the length of the execution.

Lemma 3.2 The following are true in any reach-
able state of Algorithm 1.

I1:|F1|+|F2|+|CR| < 1.
I2: If|[F2| +|{CR| > 0 theny = 1.

I3: If y =1 then some process i is not in RM.

By I1 of Lemma 3.2 we have:

Lemma 3.3 Algorithm 1 has the mutual exclu-
ston property.

The following lemma follows from I3 and the
fact that the executing the exit region takes a
bounded nember of steps.

Lemma 3.4 Algorithm 1 is weakly deadlock-free.

We now show that Algorithm 1 optimal in
terms of the number of registers.

Lemma 3.5 In any (timed or asynchronous) al-
gorithm providing mutual ezclusion and weak
deadlock-freedom for n > 2 processes, using a sin-
gle shared register, every process that moves from
its remainder to its critical region must perform
at least one read followed by a write.

The proof follows since if a process does not write,
other processes cannot tell that it has left the
remainder, and if it does not read, it cannot tell
if any one of them left the remainder. Both cases
would lead to a violation of mutual exclusion.

Theorem 3.6 There is no asynchronous al-
gorithm providing mutual ezclusion with weak
deadlock-freedom for n > 2 asynchronous pro-
cesses, using only one shared read/write register.

Proof: Assume by way of contradiction that
there exists a one register algorithm for the prob-
lem. Consider two processes, say 1 and 2. From
the system start state s, by the weak deadlock-
freedom property, either process must be able, on
its own, to complete an execution leading to a
state in which it is in the critical region; call these
executions e; and e, respectively. By Lemma 3.5,
each of the two processes must write the register
during its execution.

Now we construct a bad execution. Run pro-
cess 1 in e; just until the first state s’ at which
it is about to write the register, and let it pause
without doing so. States s and s’ differ only in the
internal state of process 1. Then extend the exe-
cution by ey, in which process 2 behaves just as if

z: shared register initially 0;
delay: positive integer constant;

repeat forever

0b: remainder.ezit;

L: if z #0 then goto L;
1: z:=14

2: pause(delay);

3: ifz #1 then goto L;
4a: critical_enter;

4b: critical_ezit;

5 z:=0;

O0a: remainder_enter;
end repeat;

Figure 3: Algorithm 2: Fischer’s Timed Mutual
Exclusion — Code for Process i.

it were on its own, eventually entering the critical
region. Next, process 1 continues its execution
of e,, first performing its write to the register,
which overwrites whatever process 2 has written.
Following this operation, the state of the system
differs from the corresponding state in e; only in
the internal state of process 2, and so process 1
goes critical, violating mutual ezclusion. This is
a contradiction. =

4 The Timing-Based Case

In this section, we consider the real-time ver-
sion of the problem, where we assume bounds in
the interval [¢;, ¢;} for the time between successive
steps of a process, when it is in its trying or exit
region. We assume that 0 < ¢; < ¢; < 00. Let
C = ca/e;; C is a measure of the timing uncer-
tainty. Define a process i to be slow (respectively,
fast) in an execution or execution fragment if the
time for any step when the process is in its trying
or exit region is exactly ¢, (resp., ¢;).

We begin by presenting, in Figure 3, a timing-
based mutual exclusion algorithm due to Mike
Fischer [10]; we call this Algorithm 2. Algorithm
2 has the property that if the timing constraints
are met, and the value of the delay parameter is

chosen to be strictly greater than the timing un-
certainty C, then mutual exclusion and deadlock-
freedom are guaranteed. However, it has the
drawback that if the constraints are not met, then
many processes may enter the critical region con-
currently.

The key idea behind Algorithm 2 is to delay
each process i for a period greater than C - ¢; af-
ter it has written z in Line 1 and before testing it
in Line 3. Thus, by the time process i has reached
Line 3, any process j that has passed the test in
Line L and might overwrite z = ¢ with z = j,
has already done so since C - ¢; > ¢;, the longest
time such a step might take. If i reads r = i
in Line 3, it can safely enter the critical region,
since all other processes are either before Line L
and will not pass it, or after Line 1 with their
index in z overwritten by process 7, so they will
fail the test on Line 3. To implement the delay,
the procedure pause(delay) causes the process to
delay by some number of steps, where a delay of
1 means skipping no steps at all, and a delay of
k amounts to doing k — 1 dummy steps. Specifi-
cally, let pause(k) be a shorthand for a sequence
of (k — 1) lines of code, each a no-op operation,
and let us accordingly assign program counter val-
ues 2.1,2.2,...,2.(k — 1) to those (k — 1) lines.

We now outline the correctness proof of the al-
gorithm. Let Algorithm 2’ be the same as Algo-
rithm 2 but asynchronous . The following lemma
follows by induction on the length of the execu-
tion.

Lemma 4.1 Then in any reachable state of Al-
gorithm 2’:

Ifz =i # 0 then pc; € {2,3,4a,4b,5}.

To aid in the main proof, let us define several
state components involving time: now, represent-
ing the current real time, and for each process
i, ftime(?) and Iltime(i), representing the first
and last (absolute) time that the next step of
process i is allowed to occur. From our def-
initions, it follows that if pc(i) ¢ {0b,4b} then
ltime(3) < now + ¢,.

Let CR be defined similarly to before. We
prove the following collection of invariants by in-

duction on the number of steps in an execution.
They are similar to those proposed in [19] for
a weaker form of the mutual exclusion problem.
Note that the only executions that are considered
here are those in which the timing assumptions
are satisfied; the timing assumptions are required
to guarantee these key properties.

Lemma 4.2 In any reachable state of Algorithm
2, the following are true.

I1: Ifi € CR then

1. z =1, and
2. for all j, pe(3) # 1.

I2: If pc(i) = 2.d, ¢ = 1 and pc(j) = 1 then
ltime(j) < ftime(i) + (delay — d)c,.

I3: If pc(t) = 3, z = i and pc(j) = 1 then
ltime(5) < ftime(z).

From I1 of Lemma 4.2 we have:

Lemma 4.3 Algorithm 2 has the mutual exclu-
sion property.

We prove the following based on Lemma 4.1.

Lemma 4.4 Algorithm 2’ is deadlock-free.

The following is an almost tight upper bound
on the time b for some process to enter the critical
region. (It can be made tighter by a slight modi-
fication to Algorithm 2, which we will describe in
the full version of the paper.)

Lemma 4.5 Suppose that delay = C + 1. Then
Algorithm 2 has an upper bound of (2C + T)c,.

The following theorem proves the near optimal-
ity of the time complexity of Algorithm 2. Our
original bound of C¢; was strengthened by Faith
Fich [11].

Theorem 4.8 There is no [c,c;] timed al-
gorithm providing mutual exclusion with weak
deadlock-freedom for n > 2 asynchronous pro-
cesses, that uses only one shared read/write reg-
ister, and that takes time b < (C + 3)c,.

Proof: (Sketch) Consider two processes, say 1
and 2. From the system start state s, by the weak
deadlock-freedom property, either process must be
able, on its own, to complete an execution lead-
ing to a state in which it is in the critical region.
Call these executions e; and e;, respectively. By
Lemma 3.5 each process must first read and then
write the shared register in its execution. Let r,
and 7, be the number of steps prior to the first
write of the shared register in e; and e,, respec-
tively (by Lemma 3.5, r, and r, are greater than
0).

Suppose that one of these executions, say e,
contains at most C steps after its first write to the
shared register. Let ¢t = max{ci(r1 + 1),¢5(r2)}
and consider the execution e formed by running
e, fast starting at time ¢ — ¢,(r; + 1) and running
e, slowly starting at time ¢ —¢5(r;). In e, the r5th
step of e, occurs at time ¢, followed immediately
(at the same real time) by the first write of e,
then the rest of e, until time ¢ + C¢; and finally
the rest of e,, starting with the first write in ej.

In e, all of e; occurs before the first write of
e,. Therefore process 1 cannot distinguish be-
tween executions e and e;. Furthermore, all of
the writes of e; occur between the first write of
e, and the read that precedes it. Thus process 2
cannot distinguish between executions e and e;.
But e violates mutual exclusion.

It follows that both e; and e, contain at least
C + 3 steps. Then if either execution is run slowly
by itself, at least (C + 3)c, time will elapse before
the critical region is entered. |

5 The Combined Algorithm

In this section we give our first main result:
we show how to overcome the drawbacks of the
Fischer algorithm, Algorithm 2, providing an al-
gorithm that always provides mutual exclusion
and weak deadlock-freedom, and also provides
deadlock-freedom if the timing constraints [¢;, ¢5]
are met. The algorithm that accomplishes this
uses only two shared registers and has a “nice”
time bound close to that of Algorithm 2.

By combining Algorithms 1 and 2, one can cre-

z,y: shared registers initially 0;
delay: positive integer constant;

repeat forever
Ob: remainder_ezit;
L: if z # 0 then goto L;
z =1
pause(delay);
if z # i then goto L;
% Start of Fischer Critical Region
if y # 0 then goto L;
y:=1
if z # i then goto L;
a: critical_enter;
b: critical_exit;
y:=0;
% End of Fischer Critical Region
9: z:=0;
Oa: remainder_enter;
end repeat;

W

PAJSOn

Figure 4: Algorithm 3: Combined Exclusion Al-
gorithm — Code for process .

ate an algorithm that uses three shared registers.
The way to do this is to replace the critical re-
gion of Algorithm 2, by Algorithm 1. However,
it is also possible to get a two register algorithm,
by combining the two algorithms in a more elab-
orate way, as seen in Figure 4. The construction
is based on the observation, implied immediately
by Lemma 4.2, that in Algorithm 2, once a pro-
cess ¢ enters the critical region, the register = re-
mains equal to z. This implies that the test of
in Algorithm 1 will not fail if it is embedded in
Algorithm 2’s critical region even if Algorithm 2
allows processes to set the same register.

To prove correctness of Algorithm 3, we let Al-
gorithm 3’ be the same as Algorithm 3, but with-
out the timing constraints. We show the following
by induction on the length of the computation.

Lemma 5.1 In any reachable state of Algorithm
&’, the following are true.

1. I1: If RM| =n thenz = y = 0.

2. I2: If all processes i ¢ RM have pc(i) = 9,
then y = 0.

Then we define a forward simulation mapping
[12] from Algorithm 3’ to Algorithm 1. From this
we prove that:

Lemma 5.2 Algorithm 3’ satisfies the mutual
ezxclusion and weak deadlock-freedom properties.

That is, Algorithm 3 has these properties even
if the timing constraints are not satisfied.

We prove the following two lemmas by defining
a timed forward simulation [12] from Algorithm 3
(with the timing constraints) to the Fischer algo-
rithm, Algorithm 2, and then proving it and the
following invariant by induction on the length of
the computation:

I3: If for all ¢, pe(z) € {6, 7a,7b,8} then y = 0.

Lemma 5.3 Algorithm 3 (with the timing con-
straints) is deadlock-free.

Lemma 5.4 Algorithm 3 (with the timing con-
straints) has an upper bound of (2C + 10)c, time.

6 Adding More Registers

In this section, we present our second main re-
sult, a lower bound on the time complexity of
any deadlock-free mutual exclusion algorithm, in
the timed setting. Our lower bound is expressed
as a function of the number & of shared regis-
ters used by the algorithm. Specifically, it is of
the form e(k)Cec,, where e(k) is a function of k.
The value of e(k) decreases rapidly with k. Thus,
the bound is probably only interesting when k
is small and when C, the timing uncertainty, is
large. Note that we do not yet have any cor-
responding upper bounds that decrease similarly
with increasing k; finding algorithms exhibiting
such upper bounds (or removing the dependency
of the lower bound on the number of registers)
remains as future work.

For a particular k, we define e(k) by means
of a recursive definition of a fast-growing func-
tion f(j,k), 1 < j < k. Specifically, we define

f(1,k) =1, and f(j +1,k) = ((}) + DfGr k) +
(;)(2j +1),1 £ j < k—-1. Then we define
e(k) = 1/(f(k,k) + 1). Thus, e(k) is a rapidly-
decreasing function of k.

Lemma 6.1 1> f(j,k)e(k)+e(k) forall j,1 <
i<k

Theorem 6.2 Suppose C > 2. There is no
[e1,¢2] timed algorithm providing mutual ezclu-
ston with deadlock-freedom for n > 2 asyn-
chronous processes, that uses only k < n shared
read/write register, and that takes time b <

e(k)Ce,.

Proof: (Sketch) Suppose there is such an algo-
rithm, with time bound b < e(k)Cec,. We fol-
low the main ideas of the construction of Burns
and Lynch [3], for the asynchronous impossibility
proof (of our Theorem 3.1) to construct a bad ex-
ecution. This time, however, the bad execution,
as well as the auxiliary executions used along the
way, must satisfy the timing constraints, which
makes the construction considerably harder than
before.

The construction we carry out involves only
k + 1 of the n processes, those numbered
DP1yD2y- -+ Pitl- For any j = 1,...,k, start-
ing from any configuration in which all processes
are in their remainder regions, we obtain a fi-
nite timed execution of py,...,p; only, satisfy-
ing the timing constraints, and leading to a point
at which py,...,p; “nullify” j distinct registers.
(The definition of a process p; “nullifying” a reg-
ister v is as in [3]: p; is about to write register v
at its next step, and moreover, anything process
p; has written since last leaving its remainder re-
gion has already been overwritten without being
read by other processes.) Moreover, the execu-
tion has the additional timing property that for
all i, 1 < ¢ < 4, ltime(t) > now + e(k)c, and
ftime(i) < now. That is, the timing constraints
permit process ¢ to wait at least time e(k)c; be-
fore taking its next step, but do not impose any
lower bound on the time at which it might take
that step. Furthermore, the total time required
for the execution is at most f(j, k)e(k)c,.

We apply this result for the special case where
j = k. Now let the last process, py,;, enter the
system, taking steps as fast as it can. We claim
it should be able to proceed to its critical region
before any of the other processes take their next
steps. This is because of the upper bound on the
algorithm, the fact that p,,, cannot tell that any
other process is outside its remainder region, and
the fact that ltime(i) > now + e(k)c; for all i,
1 < i < k. (The upper bound is e(k)Cec, for all
computations that satisfy the timing constraints;
we can stretch the given fast computation of p;4,
so that the time between its steps is always ¢,,
and an upper bound of e(k)Cec, for this slower
computation implies an upper bound of e(k)c,
on the fast computation.) But then we can let
Pi4+1 Temain in its critical region while the rest
of the processes proceed normally, still observing
the timing assumptions. We first allow all the
processes to write the registers they are nullify-
ing. Once they have done this, they have hidden
all information about p,,; being in the critical
region, so some other process will eventually pro-
ceed into its critical region, thereby violating mu-
tual exclusion. This is a contradiction.

It remains to carry out the recursive construc-
tion. Basis: j = 1. Just let p, enter, going fast.
Within time at most e(k)c,, it must go to the crit-
ical region, and in order to do so, it must write
some register, say v. Let p; stop at a partic-
ular point in this interval, when it is about to
write some v for the first time. It is hidden, and
ready to write, so it nullifies v. Moreover, stop-
ping just when time ¢, has elapsed after the prior
step ensures that ftime(l) < now, and since
{time(1) = now + ¢, — ¢, since C > 2 we also
have ltime(1) > now + e(k)cz. The total time re-
quired for this is at most e(k)c. = f(1, k)e(k)c,,
which suffices.

Inductive step: Suppose we have the result for
j<k-1 Starting from any configuration
in which all processes are in their remainder re-
gions, we wish to obtain the analogous timed ex-
ecution for py,...,pj41. Asin [3], we construct a
“spine” execution; this time, the spine execution
will satisfy the timing constraints. Constructing

the spine involves applying the inductive hypoth-
esis to get py, ..., p; nullifying j registers, with all
ltime values at least now+e(k)c; and all ftime at
most now, all within time at most f(j, k)e(k)c,.
Then we repeatedly do the following;:

Allow all of py,...,p; to write at time exactly
e(k)ec after the stopping point, with no other in-
tervening steps. Then use the deadlock-freedom
hypothesis to allow all these processes to proceed
to their critical regions, one at a time, and from
there, to their remainder regions. (Each will only
spend time 0 in the critical region.) Do this us-
ing a fast execution fragment, so the upper bound
for each process to go critical is e(k)c,, and then
to go to its remainder region is another e(k)c,.
After some time, all will be back in their remain-
der region. Then apply the inductive hypothesis
once again to get py,...,p; nullifying j registers,
with all ltime values at least now + e(k)c, and all
ftime values at most now, again within time at
most f(7,k)e(k)e,.

So, we repeatedly have p,,...,p; nullifying a
set of j registers. Sometime within the first (:‘) +1
times this happens, the same set of j registers will
be nullified. Call this set V. We claim that the
time until the second point where V is nullified is
at most (%) + 1) £(j, K)e(k)es + (4)(2 + e(k)es.
The first term in this sum describes the total time
taken for all the uses of the inductive hypothesis.
The second term describes the total time for the
processes to overwrite and then to proceed back
to their remainder regions. Note that by defini-
tion of f, this time bound expression is equal to
f(7 +1,k)e(k)ea.

Now we use this spine to help us construct
the desired execution of py,...,p;4+1. We run the
spine just until the first time V described above is
nullified. Then we insert some steps of p;;y, run-
ning fast, just until it is about to write something
not in V. This must happen within time e(k)c,,
since pj4+1 doesn’t know there is anyone else there
and must go critical by e(k)c, in a fast execution
in which it operates alone. It must write some-
thing not in V, since otherwise its writes could be
overwritten by the nullifying processes py,...,p;,
who would thereby hide p;4; in the critical region

and lead to a violation of mutual exclusion. Just
before it writes something not in V', we stop p; 41
and now allow the rest of the spine to proceed
as before, just until the second time that V is
nullified. We claim that we are allowed to stop
pj+1 for that length of time, because the length
of time for the spine is at most f(j + 1, k)e(k)ca,
the upper bound on step time for p;4, is ¢z, and
f(G + 1,k)e(k)cs < co. (This latter fact follows
from the fact that 1 > f(j + 1, k)e(k), which in
turn follows from Lemma 6.1.)

We claim that the resulting execution has the
required properties. The inductive hypothesis al-
ready tells us that the ftime and Iltime values
for processes py,...p; are as required. We must
show that the values for p;;, are also appropri-
ate. Since at least two steps have occurred for
some particular process since pj4; was stopped,
it must be that ftime(j + 1) < now. It remains
to consider the value of ltime(j + 1). To see that
ltime(j + 1) > now + e(k)c,, it suffices to show
that ¢ > f(7 + 1,k)e(k)ez + e(k)c,. But Lemma
6.1 implies that 1 > f(j + 1, k)e(k) + e(k), which
immediately implies this inequality. |

7 Weaker Timing Assumptions

We show that weakening the timing model by
assuming that the bounds ¢, ¢,] are unknown,
or that the timing conditions are only eventually
met, leads to a lower bound of » on the num-
ber of read/write registers required, just as in the
asynchronous case.

In the resilient timing model, we again con-
sider a fixed pair, [¢;, ¢}, of bounds for the time
between steps in the trying or exit region, as in
the timed model. However, now we only consider
those executions in which the time bounds hold
eventually. We prove the following theorem by a
variation of the [3] proof.

Theorem 7.1 There is no [c,,¢;] resilient algo-
rithm providing mutual ezclusion with deadlock-
freedom for n > 2 asynchronous processes that
uses fewer than n shared read/write registers.

In the unknown bound timing model, we con-

sider those executions in which there exist some
time bounds [¢;,¢3), 0 < ¢; £ ¢; < 00, that
hold throughout the execution. However, the
time bounds are allowed to be different in differ-
ent executions, in other words, unknown to the
processes. We prove the following theorem by a
reduction from the previous result.

Theorem 7.2 There is no unknown bound algo-
rithm providing mutual ezclusion with deadlock-
freedom for n > 2 asynchronous processes that
uses fewer than n shared read/write registers.

8 Acknowledgments

Many thanks go to Faith Fich for her inter-
est and attention, and for many helpful sugges-
tions on the results and proofs. We also thank
Victor Luchangco who helped with the proof of
Lemma 4.2.

References

{11 M. R. MacBlane. Source level atomic test-and-set for
the TUXEDO system source product. UNIX System
Laboratories, May 14, 1991.

TUXEDO System Release 4.0 — Product Overview.
AT&T, 1990.

(2]

[3] J. Burns and N. Lynch. Mutual exclusion using indi-
visible reads and writes. In Proceedings of 18th An-
nual Allerton Conference on Communications, Con-

trol and Computing, 1989, pages 833-842.

Improving fast mutual exclusion.

[4] E. Styer.

Manuscript.

M. Merritt and G. Taubenfeld. Speeding Lamport’s
fast mutual exclusion algorithm. Manuscript.

5]

R. Alur and G. Taubenfeld. Results about fast mu-
tual exclusion In Proceedings of Real Time Systems
Symposium, Pheonix, Arizona, 1992.

(6]

M. Merritt, F. Modugno and M. Tuttle. Time-
Constrained Automata. In Proceedings of 2nd CON-
CUR, Amsterdam, The Netherland, August, 1991,
Springer-Verlag LNCS 527, pp. 408-423.

(7]

N. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of
the 6th PODC, August 1987, pp. 137-151.

(8]

19

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

N. Lynch and M. Tuttle. An introduction to In-
put/Output Automata. CWI-Quarterly, No. 3, Vol.
2, September, 1989, pp. 219-246.

M. Fischer. Personal communication.
F. Fich. Personal communication.

N. Lynch and F. Vaandrager. Forward and backward
simulations for timing-based systems. In Proceedings
of REX Workshop “Real-Time: Theory in Practice,”
Mook, The Netherland, 1992. Springer-Verlag LNCS
600.

N. Lynch and I. Saias. Proving probabilistic correct-
ness statements: the case of Rabin’s algorithm for
mutual exclusion. In Proceedings of the 11th Annual
ACM Symposium on Principles of Distributed Com-
puting, 1992.

E. Kushilevits and M. Rabin. Randomized mutual
exclusion algorithms revisited. In Proceedings of the

11th PODC, 1992.

E.W. Dijkstra. Solution of a problem in concur-
rent programming control. Communications Of The
ACM, 8:165, 1965.

H. Katseff. A new solution to the critical section
problem. In Proceedings of the 10'* Annual ACM
Symposium on Theory of Computing, pages 86-88.
ACM, 1978.

L. Lamport. A fast mutual exclusion algorithm.
ACM Trans. on Comp. Systems, 5(1):1-11, Feb. 87.

L. Lamport. A new solution of Dijkstra’s concur-
rent programming problem. Communications of the
ACM, 78(8):453-455, 1974.

M. Abadi and L. Lamport. An old fashioned Recipe
for Real Time In Real Time: Theory in Practice,
REX Workshop, Springer Verlag, pp. 1-27, 1991,

H. Attiya and N. Lynch. Time bounds for real-time
process control in the presence of timing uncertainty.
In Proceedings of the 10th RTSS, Santa-Monica, De-
cember 1989, pp. 268-284.

