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Abstract

This paper introducesolo-valency a variation on the valency proof technique originated ks Fi
cher, Lynch, and Paterson. The new technique focuses atatstents that influence the responses of
solo runs by individual operations, rather than on criteants that influence a protocol’s single deci-
sion value. It allows us to derivg/n lower bounds on the time to perform an operation for loclefre
implementations of concurrent objects such as linearizghkues, stacks, sets, hash tables, counters,
approximate agreement, and more. Time is measured as thieenwhdistinct base objects accessed
and the number of stalls caused by contention in accessingpmyeincurred by a process as it performs
a single operation.

We introduce thenfluence levemetric that quantifies the extent to which the response ofl@a so
execution of one process can be changed by other processeshewW prove the existence of a rela-
tionship between the space complexity, latency, conterdiod influence level of all lock-free object
implementations. Our results are broad in that they holihiplementations that may usaycollection
of read-modify-write operations in addition to read andtgyrand in that they apply even if base objects
have unbounded size.

1 Introduction

The design of concurrent data structures for shared-memory multggo@cmachines is an important area
of research. There has been extensive work on lower boundsificuorent data structures, and the reader
can find a survey in [17]. The majority of the time lower bounds obtained dacerrent data structures
only count the number ddtefs performed by processes (some examples are [1, 2, 7, 14, 38]. skge
consists of local computation and ament which is an application of a synchronization primitive, such as
read write or read-modify-writeto a base object.

However, the number of steps performed is not the only factor that cateslio the time complexity
of concurrent data structures. In practice, the performance ofucerd data structures is often limited
by memory contentigrthe extent to which multiple processes access widely-shared memory locgitions
multaneously. The degradation in performance that is caused by contentfmresult of limitations on
the bandwidth of both memory and processor-to-memory interconnect. Rgdauemory contention has
been the focus of both hardware architecture design [21, 22, 3Xharaksign of concurrent data structures
[5, 6, 19, 20, 27, 30, 35].
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Thus, a metric for the time complexity of shared memory concurrent data seac¢hat does not take
contention into consideration may be unrealistic. As an example, considenglséan of implementing a
concurrent counter. If the hardware supporfetah&incrementsynchronization primitive, then there is a
straightforwardq-process implementation: all processes share a single base objectafwgaber from the
counter, a process simply performfetch&incremenbperation on that object. If only steps are counted, this
implementation has worst-case operation time-complexity dhe implementation is, however, essentially
sequential: if all processes access the single shared object simultgnédwarsthe last process to succeed
will incur a time delay linear im while waiting for all other processes to complete their operations.

In 1993, Dwork, Herlihy and Waarts [13] introduced a formal model tptage the phenomenon of
memory contention in shared memory machines. Using FLP-style valency amtgjrtigey proved that
there are inherent tradeoffs between contention and the number oft@kesby a process in concurrent
data structure design. Their work was extended in several directiorss notbly in the context of mutual
exclusion [3, 4, 11] and counting networks [8, 9].

This paper presentsolo-valency a variation of the valency proof technique of Fischer et. al (FLP)
[18], and uses it to continue the above work in deriving contention-@tigie complexity lower bounds for
concurrent objects. As surveyed by Lynch [34] and by Fich andoRrid17], there are numerous elegant
extensions and reformulations of the FLP-style valency technique. Thedif@rence between the solo-
valency arguments we use in this work and FLP-style arguments is in the mobdewhich they may be
applied. Whereas FLP-valency arguments are applig@tision problemsuch asonsensuysn which the
operations of all processes must return the same response, soloyvalgaments can be applied to objects
such as counters, stacks and queues, where different operatioalfosved, in general, to return different
responses.

The time metric we use, which we cafiemory stepscounts both the number distinctbase objects
accessed by a process and the total number of memory stalls doptemtion in writingincurred by it, as
it performs a single operation. The number of distinct base objects accbgsa process is a lower bound
on the number of accesses the process does that cannot be semeétsfliocal cache. This follows from
the fact that when a process accesses a base object for the first time st dncache-miss.

Similarly, stalls incurred by contention in writing cause a delay that is prop@itiorthe number of con-
tending processes in both distributed shared memory (DSM) and cabke=aob multiprocessor machines.
This is not true for contention in reading, since in shared-bus cadhereat systems the caches of all the
processes that read the same base object simultaneously can be updatiegjia bus cycle.

Thus the memory steps metric is stricter than the one used by [13], as the lattes ath shared memory
references and also counts memory stalls due to contention in reading. @iarisieimilar to thecom-
munication costnetric used by Cypher [11] and to thremote memory referencegetric used by Anderson
and Yang [3], and by Anderson and Kim [4], in that a single unit of botlricee corresponds to a shared
memory reference that cannot be served by a local cache. For DSkhsy, however, the communication
cost and the remote memory references metrics are stricter than the mememnetap, since they do not
count references to a process’ local segment of shared memomgast®ich referencesaybe counted by
our metric.

We use solo-valency arguments to derive a collection of tradeoffs arad lmowund results. Specifically,
we are able to show afi(,/n) time-complexity lower bound on lock-free implementations of objects in
a class we calinfluencén), a wide class of concurrent objects in which an operation of one Eaaes
be simultaneously influenced by operationsXff.) other processeslnfluencén) includes objects such
as linearizable queues and double-ended queues [12, 36, 37,]39ta&ks [41], counters [26, 27], hash
tables [23, 40], sets and multi-sets [32], and approximate agreemenD[if]results are the first known



time complexity lower bounds for implementing these objects uaimydRMW operation. Before listing our
results in detail, let us now describe our proof technique.

1.1 Solo-Valency

Valency arguments, introduced by Fischer et. al [18], have beenaxedsively to derive impossibility
results and lower bounds for decision problems such as consensy&@sé3, 24, 33] for some examples).
In the consensus problem, participating processes are required tuaieagree on aingle protocol
decision value. FLP-style valency classifies system configurationsdaegdo whether they arenivalent
or multivalent A configuration is univalent if the protocol’s decision value is the same ithalexecutions
that start from the configuration and multivalent otherwise. The valerabynique looks at critical events
after which the system shifts from a multivalent configuration to a univalaet Valency arguments are
then applied with regard to these critical events to derive impossibility resutbsver bounds.

Our technique focuses on the responses of solo executions rathesrtteasingle protocol decision
value. Assume that, after some executiona solo execution of an operati@yp returns response; then
we say that the solo-valency 6Ip after E' is v. The basic idea behind our solo-valency technique is to
consider a class of critical events that are different from those usetlB-style arguments. We name these
eventsmodifying eventsA modifying event is an event by some process that atomically changeslthe s
valency of an operation by another process. Thus, modifying eventeité the responses ioflividual
operationgrather than a protocol’s single decision value. Our results are obtainegdlop@about the order
of these events and the base objects they are about to modify.

To be more concrete, we now explain how our technique is applied in thextofie one-time counter.
A one-timeobiject is an object to which every process can only apply a single opera@onsider an
implementation of a one-time-process linearizable counter object allowifiegch&incremenbperations.
Starting from an initial configuration, any process may start a solo execthtib returnd. In other words,
the valency of detch&incremenbperation by any process in the initial configuration.is

Let £ be an execution in which some procesdoes not participate, and assume some other process
g completes itdetch&incrementbperation inE. Then the solo-valency gf's operation afterF must be
bigger thanl. We identify the critical modifying events - write or RMW eventsiih- following which the
solo-valency ofp’s operation changes to a value bigger tha®ur proof technique constructs executions in
which such modifying events are outstanding and shows that the openatioss responses are about to be
atomically modified by these events must read all the base objects on whichré¢hmytstanding, otherwise
we can construct executions that violate object semantics.

An additional key difference between FLP-style valency arguments @loevalency arguments is the
following. FLP-style valency considers critical events that hagemanenteffect on a protocol’s single
decision value: before the critical event is executed, there exist twarelift execution extensions that yield
two different decision values; after the critical event is execuddidexecution extensions yield the same
protocol decision value. Modifying events, on the other hand, havegiergl, areversibleeffect on the
response of an operation, since they only influence the responseermations that are performed $olo
executions. Let us explain what we mean by ‘reversible effect’, byilcoimg the example of a one time
counter. Assume that, in configuratiéh process; has an outstanding modifying eveatthat will modify
the solo-valency of an operation by proces3hen a solo execution of tHetch&incremenbperation byp
from C returns some responséut, if e is performed aftet”, then a solo execution kythat immediately
follows e returns a different response. The evehts a reversible effect in the sense thatig followed by
steps taken by processes other thatihen the solo-valency gfs operation may change toagain.



One may wonder why FLP-style critical events cannot be used directlyoi@nding the complexity of
individual operations. A natural attempt to generalize FLP to this end migiut fog and use critical events
that have a permanent influence on the response of an operatiome befoevent is executed, there exist
two different execution extensions in which the operation returns twordiffeesponses. After the event is
executed, the operation returns the same response in all executiornangens

This approach, however, does not seem to work. Consider agaixadingpte of ann-process imple-
mentation of a one-time counter. Lgbe a process. Notice that even if the operations of up-to2 other
processes complete, no such critical event may have taken place witt tegaThis is because as long as
there is at least one additional process wheseh&incremenbperation did not start, thetch&increment
operation byp may still return different responses in different execution extensidaace, FLP-style criti-
cal events fail to capture the influence that these2 operations may have on the responsg’'®bperation.
This is not the case for implementations of decision problem, where an indivigeration cannot return
its response before the protocol’s single decision value is determined.

1.2 Our Results

To characterize the coordination requirements of shared objects, wdln&dheinfluence levemetricl,
informally defined as the maximum number of processes whose operatiosisradtaneously influence the
response of an operation by another process. For example, in artiereaf a linearizable shared counter,
the response of a given operation can be influenced byl others: if it is performed solo from an initial
configuration it will return responsk but if an operation of any of the — 1 other processes precedes it, its
response will be different.

1.2.1 New Fundamental Tradeoffs

We prove that the following fundamental relationships exist for all loglefimplementations. Le? be a
lock-free implementation of a shared object with influence Iévélet L(P) denote the maximum number
of distinct objects accessed by a process as it performs a single opdtaganaximum taken over all of
P’s executions). Le§(P) denoteP’s space complexity. Also, |&E(P) denoteP’s write contentionnamely
the maximum number of processes that can simultaneously have outstanigngr®MW events about to
access the same object (the maximum taken over dfoéxecutions). Then the following tradeoffs hold.

L(P) > I/C(P), S(P) > I/C(P) (1)

For linearizable counting, this tradeoff strengthens a result of Herlil®y. §27], which try to capture
contention via a static measure cdpacity the maximum number of processes$p), that access any
particular base object (the maximum taken over all executions). The phavexistence of the tradeoff
L(P) > (n-1)/c(P) between the number of distinct base-objects accessed and tleéycapénearizable
counter implementations. However, they note that high capacity does restsaaity imply high contention.
Our tradeoff captures a stronger relationship between the number ottmjects accessed and the actual
write-contention for a broad class of objects. Specifically, for lineakizabhared counters our tradeoffs
imply the desired relationship(P) > (n-1)/C(P).

Dwork et al. [13] pose the question of whether there exists a tradetwfElea contention and the number
of distinct objects accessed for the approximate agreement problembdveteadeoff answer this question
in the affirmative.



1.2.2 New Time Complexity Lower Bounds

We identify Influencén), a broad class of objects with influence leYet Q(n). This class includes well-
known objects such as linearizable counters, queues, stacks, bées)-&ets, approximate agreement, and
consensus. We are actually not aware of any “natural” concurlgetts that do not belong to this class. We
prove a lower bound df(,/n) memory steps on lock-free implementations of all objectafluencén).

All our results hold even if implementations can use any combination of reatd, \and RMW syn-
chronization primitives and without any assumptions on the size of the bgsetohsed. These results
are obtained by considering executions in which every process perfairmost a single operation. Conse-
quently they hold also for the one-time versions of all the objectsflnencén).

Though our bounds seem higher than Jayanti’s interegtigg n) time bounds [29] on similar objects,
they are in fact orthogonal. This is because Jayanti's time metric countsteplyand does not count stalls
caused by memory contention. Unlike our results, Jayanti’'s bounds areealsicted to implementations
that can only use the writégad-locked/store-conditional, move and swsmchronization primitives..

Finally, we show that there exists an objectnfluencén ), which we namd-irst Generation for which
our bound is tight, that is, it ha®(y/n) memory steps complexity. However, we believe that the tight
bounds on even the one-time versions of many well-known objedtslirencén ), such as counters, stacks
and queues, are higher.

2 Preliminaries

2.1 Shared Memory System Model

We consider a standard model of an asynchronous shared memony sysidich a set of deterministic
processeswvhich are sequential threads of control, communicate through determimigti&dsdata structures
calledobjects Each process has a set of poss#iktesand each object hastgpe that determines the set
of valuesit can assume and the setagerationssupported by it. These operations provide the only means
to manipulating the object. Each such operation may receive a numigsuifparametersand returns a
single value called the operatiom&ssponseA configurationdescribes the value of each object and the state
of each process.

The system makes available a sepdfitives base objectsvhich are the building blocks from which
higher-level objects may be constructed. ifkmplementatiomf an object provides a specific data-representation
for the object from a set of more basic shared base objects, and ahgefibh the processes to apply each
operation to the implemented object. The base objects used by an implementatioe githeb primitive
base objects, or objects that are implemented (either directly or indirectig)dronitive base objects.

The application of an operation to an object may change both the value objbet 0 which the
operation is applied and the state of the process that applies it. We call fleatipp of a specific operation
by a specific process to a specific base object with (optional) specificpapameters aavent We say that
an event is ampplicationof an operation to a base object. We also say that an evessiied bya process
and that the everdccesseshe base object. An event returns the response of the operation appliet b
the calling process.

We consider base objects that may suppeati write andread-modify-writeoperations. Read events do
not receive an input parameter. A read evenssued by procegs that accesses a base objeatomically
reads the value af and returns that value as its responsg.té write evente with a single input parameter
w, issued by procegs that accesses base objeatomically writes the valua to o and returns response
ack We model read-modify-write operations similarly to [15]. A read-modifytevoperation applied by



procesy to base object with a (possibly empty) input parameters list atomically updates the value of
with a new value, which is a functiag(v,wl) of the base object’s value just before the operation is applied,
v, and ofwl, and returns a response(v, wl), to the calling process. We calandh the update function
and theresponse functionf the operation, respectively.

Fetch&addis an example of a read-modify-write operation. It receives a single ipgmeter. Its
update function igj(v, w) = v 4+ wl[1] (Wherewl[i] denotes the&’th component ofwl) and its response
function isv. Compare&swaps another example of a read-modify-write operation. Informally,dive-
pare&swapoperation receives two parameteo] andnew If the value of the base object to which it is
applied equal®ld, the operation atomically changes the object’s valuadwand returns a response of
success Otherwise, the value of the base object is not modified and the operationgea response of
failure. More formally, the update functiog(v, wl) of the compare-and-swapperation atomically does
the following: if v # wi[1] (namely the base object’s value does not equd), theng(v, wl) returnsv,
implying that the value of the base object to which the operation is applied is ndifietb Otherwise,
g(v,wl) returnswl[2], implying that the value of the base object is modifiethéou The response function
of thecompare-and-swapperation/ (v, wl), returnssucces$ v = wi[1] andfailure otherwise.

An execution-fragmens a (finite or infinite) sequence of events in which each process isseets@and
changes state (based on the responses it receives from thesé ageatding to the algorithm specified by
the implementation. Aexecutioris an execution-fragment that starts fromi@itial configuration in which
all base objects have their initial values and all processes have their itates SAny prefix of an execution
is also an execution. We let denote the prefix relation between executions. For any finite exechitanm
sequence of events’ we let EE’ denote the concatenation of the event&imnd E’. EE’ may or may
not be an execution. We denote Bjp the subsequence @ that includes all the events @ that were
issued by process If E|p is the empty sequence we say tliats p-free A solo execution fragmerig an
execution fragment all of whose events are issued by a single praWessy that an eventis outstanding
after a finite executior if Fe is an execution. Two executions drglistinguishableto a proces9, if p
issues the same sequence of events and gets the same responsessianehts in both executions and
the values of all base objects are the same after these executions. Ewgin tlvo events that appear in an
execution may have the same input parameters (i.e. they are applicationsdayrtbég@rocess of the same
operation with the same parameters to the same base object), we assume tlattaltreat comprise an
execution are unique. That is, an event in an execution may be thoughttagged by its ordinal place in
the execution.

To avoid confusion between operations that are applied to base objectparations that are applied
to an implemented object, we call the lattegh-level operationsWe consider executions in which every
processperformsat most a single high-level operatiénlf an executionE is not p-free, we denote by
®(E, p) the single high-level operation performedbin £. We say thatb(E, p) occursin E. We say that
®(E,p) completesn E if the last event ofb(E, p) has been issued if. In this case, we call the value
returned by®(E, p) theresponseof @ in E. If p applies a read or read-modify-write operation to a base
objecto while performing®(E, p), we say thatb(FE, p) reads o We denote byR(E, p) the number of
distinct base objects thatreads inE. Let ®(F, p) and®(E, q) be two high-level operations that complete
in an executiorE. We say that®(E, p) precedesb(E, q) in E if all the events ofF|p precede all the events
of Elg.

We say that an execution dgliescenif all the operations that occur i complete inE. A historyis
a sequence of high-level operations that are applied to an object dntedponses are consistent with the
semantics of the object. For a histafl/of an object and a sequence of high-level operations on the object,

IClearly, this assumption can only strengthen our tradeoffs and lowedsou



H', we letH H' denote the concatenation Bf and H'. The sequencé& H’ may or may not be a history of
the object. Thesequential specificatioof an object is the set that contains all of the object histories.

We say thap has arenabled operatio® after F/, if p has an outstanding evenafter F thatp is about
to issue as it performs the algorithm implementing the high-level operadtioklVe also say that is an
outstanding event ob. In other wordsp has an enabled operatidnafter £, if the next event thap will
issue after’ is an evenp issues while executing.

We only consider executions in which every process performs at mosjla predetermined operation,
as this suffices to obtain our results. Hence; Ifas not completed its operation i\ thenp has a single
enabled operation afte?.

The safety property that is required from the implementations we consides ipatper idinearizability
[28]. An execution idinearizableif every high-level operation that completes in it appears to occur atomi-
cally at some point between when its first event is issued and when it cosipléte liveness requirement
from the implementations we consider is lock-freedom [25]. An implementatiloclksfree if it guarantees
that whenever a process issues some finite number of events, somssprogmletes a high-level operation.

2.2 Memory Steps

Our time complexity metric counts the worst-case numbenefory stepthat a single high-level operation
may incur. Our metric counts both the number of distinct base objects ad@@sséhe number dftallsthat
are incurred when multiple processes concurrently attempt to apply wrigadrmodify-write operations
to the same base object. Formal definitions follow.

Definition 2.1 Let E' be an execution and let, . .., e;, for somed > 1, be a maximal sequence of consec-
utive write and RMW events ifi that are issued by distinct processes and access the same base bbject.
p be the process that issues eveptfor somej € {1,--- ,1}. We say thafb(E, p) incursj — 1 stalls in £

on account ot;. Lete be an event oF issued by procegs We denote bytalls(E, e) the number of stalls
incurred by®(E, p) in E on account ot.

The above definition of stalls captures the fact that in shared memory muéigsos, when a group
of processes have outstanding write and read-modify-write eventsaait tbaccess the same base object,
these events can be “released” simultaneously, thus causing the pglatdssued the second event to incur
a single stall, the process that issued the third event to incur two stalls, and%o

Definition 2.2 Let E be an execution and Igtbe a process that issues at least one eveit.imhememory
steps complexitpf ®(E, p), denotednem _steps(E, p), is defined as follows.

mem_steps(E,p) = R(E, p) + Z stalls(e)
ecE|p

Thememory steps complexity of an implementatisthe maximum over the memory steps complexity
of all the high-level operations that occur in all of the implementation’setens.

2This definition of stalls doesot assume that concurrently outstanding write and read-modify-writes@dout to access the
same base object are serviced in a first-come-first-served orderawy other specific order.



3 Thelnfluence Metric for Coordination Level

In this section we define a metric which is a measure of the coordination legehatirrent object imple-
mentations. More specifically, thefluence leveetric is a measure of the extent to which concurrently
executing high-level operations can influence the response of a highelgeration performed by another
process. To get a feel for this metric, considerraprocess implementation of a linearizable stack that
supports theush andpop operations. Consider a quiescent executiBnjn which the high-level opera-
tions performed by processgs. . . p;, for some; < n — 2, were completed. Assume that afféthe stack
contains a single item - the number Assume also that aftdr each of the processes, ; ...p,—1 has an
enabledoushoperation with inpu® and procesg,, has an enablegbp operation.

Clearly, the response of thep operation byp,, can be influenced by the — i — 1 push operations: if
pn, performs thepop operation solo afteE then, from linearizability, it has to returh On the other hand,
let £’ be ap,-free execution-fragment that starts affesuch that sompushoperation by a process not in
{p1,...,pi} completes inEE’. Then - again from linearizability - a solo execution of iep operation by
pn, that starts afteF E’ returns response or higher. Thus the number of concurrently enabled high-level
operations by different processes that can change the respopss pbp operation aftel isn — i — 1.
Dependencies of this type are what we capture in the following definitiocthéeammata.

Definition 3.1 Let E' be an execution and lét be a high-level operation by procegshat is enabled after
E. We define theolo-valency of R after Eo be the response returned I/ in the solo execution by
that starts immediately aftef’ and ends whep completesk. We letS(E, R) denote this value. If a solo
execution by that starts immediately aftef’ does not terminate, we say that the solo-valencii aefter £
is undefinedand writeS(E, R) = L.

When confining attention to lock-free algorithms, a solo execution of a higd-tgperation always
terminates. We get the following.

Fact 3.1 Let F be an execution of a lock-free algorithm and f&be a high-level operation that is enabled
after £, thenS(E, R) # L holds.

Definition 3.2 Let E' be an execution and lét be a high-level operation by procegshat is enabled after
E. We say thaf? hasinfluence level K after Eand writeIA(E, R) = K) if K is the maximum such that
there existK high-level operationsiV; - - - W, that are enabled afteF’ by distinct processes other than
p, each of which has an enabled eventsuch thatS(Ee;, R) # S(E, R) holds. We call the events
modifying events for RWe define thenfluence level after Edenoted by A (F), as the maximum influence
level over all the high-level operations that are enabled after E. Formally

IA(E) = max {IA(E, Op)|Op is enabled after

It is easily seen that the influence level after any execution of-pnocess implementation is always
betweerD andn — 1.
Next, we extend the definition of influence level to concurrent object impiatiens.

Definition 3.3 Theinfluence level during finite executior®, denoted byi(F), is the maximum influence
level after all the prefixes df’. Formally:

I(E) = max {IA(E')|E' < E}



Theinfluence levelof an implementatior?, denoted byi(P), is the maximum influence level during
all the executions that result when processes perform high-levehtipes using the algorithms of the
implementation.

Slightly abusing notation, we now define the influence level of concuaigiects.

Definition 3.4 A concurrent objecO hasinfluence levell, if the influence level of every lock-free imple-
mentation oD is at leastl.

Based on the above definitions, the next two lemmas show that we can detarlowner bound on the
influence level of lock-free linearizable object implementations based oobjleet’s sequential specifica-
tion.

Lemma 3.2 Let P be lock-free implementation that has an execufibsuch that
e there is a process that has a high-level operatidenabled afteZ with S(E, R) = v, and

e there are K other processesp;, ...p;,, each of which has a high-level operatid#i;, for j <
{1... K}, thatis enabled afteF’ so that for any executio”R'E’, whereE’ consists of events issued
by pi, ...pi, and at least one dfV’; ... Wy completes ilEE’, S(E, R) # v holds.

ThenP has influence levek or more.
Proof

We iteratively construct an execution after which the influence level isaat i€ as follows. We letF)
denote the empty execution. In iteratigrfor « > 1, we pick some high-level operatidiy; that has an
outstanding eventafter F;_; that is not a modifying event faR, if such an operation exists. The following
cases exist.

1. Every process ifip;, ... pi, } has an outstanding modifying event fBrafter E;_;. From Definition
3.2, the influence level aftdr is at least. The lemma now follows from Definition 3.3.

2. There exists a procegs;, for somej € {1,... K}, that has an outstanding event aftgr ; that is
not a modifying event foRR. We letE; = E;_je.

From assumptions, none of the operatid#is can complete before a modifying event is issued by a
process in{p;, ...pi, }. However, asP is lock-free, one of these operations must complete after a finite
number of events is issued. Thus there exists a firgtethat the conditions of casg) above hold aftef;.

The lemma follows. Q.E.D.

Lemma 3.3 LetO be an object and leff be a history oD such that

e there exists a high-level operatidd such thatHR is a history ofO and the response @t in HRis v,
and

e there exist high-level operationid’; ... Wy such that for any non-empty subset of indidésC
{1,---, K} and every permutationr of T', H,. = HW, ) W, ()R is a history ofO and
the response ak in H,,. is notw.

Then any linearizable implementation@fhas influence levek or more.
Proof Immediate from Lemma 3.2 and from the linearizability of the implementation. Q.E.D.

9



4 Tradeoffs and Lower Bounds

In the proofs provided in this section, we consider a lock-free implement&tighared by: > 1 processes,
that has influence levet .

We letL(P) (respectivelyLg(P)) denote the maximum number of distinct base objects accessed (re-
spectively, read) by a process as it performs a single high-levehtipey the maximum taken over all of
P’s executions. We le$(P) denoteP’s space complexitynamely the number of distinct base objects that
are accessed by all the events issued in alP&fexecutions. We leC(P) denoteP’s write contention
namely the maximum number of concurrently outstanding write or RMW eventg &baccess the same
base object, the maximum taken over allFdé executions.

The following lemma proves that modifying events cannot be read events.

Lemma 4.1 All modifying events are either write or read-modify-write events.

Proof Lete be a modifying event for a high-level operatighafter an executior. Also, letp be the
process executing. To obtain a contradiction, assume thas a read event.

Sincee does not change the value of the base object which it accesses amd isimot an event issued
by p, executionsE and Ee are indistinguishable tp. It follows thatS(E, R) =S(Ee, R) must hold.
However, from Definition 3.2, this implies thats not a modifying event, a contradiction. Q.E.D.

We now prove a tradeoff between the space complexity and write conteritiockefree implementa-
tions.

Theorem 4.2 Let O be an object with influence levehnd let P be a lock-free implementation 6f, then
the following holds:

S(P) = [I/C(P)]
Proof SinceP implementsO, from Definition 3.4 we havé(P) > I. Consequently, from Lemma 4.1
and Definition 3.3,P has an execution after which there are at I&astite or RMW outstanding events.
The claim now follows from the fact that at maSt P) such events can be simultaneously outstanding on
any single base object. Q.E.D.

We next prove a tradeoff between the number of distinct base objedi®yeaprocess as it performs a
single high-level operation and between the write-contention of the implemeantatio

Theorem 4.3 Let O be an object with influence levehnd let P be a lock-free implementation 6f, then
the following holds:

L(P) = Lr(P) = [I/C(P)]
Proof The left-hand inequality is obvious from the definitionslgfP) andLLg (P). We now prove the
right-hand inequality. Sinc® implements0, from Definition 3.4, we havé(P) > 1. From Definition 3.3,
there is an executioRl of P such that the influence level afteris at leasi. Let R be a high-level operation
that has influence levélor more afterZZ, letp be the process that performdsand letS(E, R) = v. Also let
e1 . .. er bel outstanding modifying events fdt after E and B be the set of base objects that are accessed
bye;...er Clearly,|B| > [I/C(P)].

Let £’ be the execution fragment that results when weplain solo as it performs: after E. From
Definition 3.1, the response @ in EE’ is v. We prove the theorem by showing th&t must include
read or read-modify-write events that access each of the base oljggtsAssume otherwise to obtain a
contradiction. Then there is an objece B so that no read or read-modify-write eventAl accesses.
Let e be a modifying event foR that is outstanding aftef’ and accesses As R does not read, EE'|p
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and EeE'|p are the same. ConsequenfiyEFE’, R) = S(FeE’, R) must hold. This is a contradiction to
our assumption thatis a modifying event. Q.E.D.

Based on Theorem 4.3, we can now establish a lower bound on the menpsgataplexity of concur-
rent objects, as a function of their influence level.

Theorem 4.4 LetO be an object with influence leveland let P be a lock-free implementation 6f. Then
the memory steps complexity®fis at least|/T].

Proof Consider the write-contention @f. The following two possibilities exist.

e C(P) > |VI]. In this case, from the definition of write contention, there is an execufion P after
which there arg+/I| outstanding write and read-modify-write events, all of which about tosacce
the same base object. LBt be some ordering of these events,ddte the last event of’, let p be
the process that issuesand leto be the base object accessedebyFrom Definitions 2.1 and 2.2,
®(EFE',p) incurs |vI] — 1 memory steps on account of the stalls incurrectplus an additional
memory step on account of the access.of

e OtherwiseC(P) < |v/1]. From Theorem 4.3 we get thag (P) > [/I]. Hence there is an execution
F and a procesg such thatR (E, p) > [v/T] and the claim follows.
Q.E.D.

4.1 Thelnfluence(n)Objects Class

We now define thénfluence(n)lass of concurrent objects, that contains objects for which everyfteek
n-process implementation has influence levellin). We then show that many well-known concurrent
objects belong to this class and thus have worst-case complex{s6i) memory steps. We conclude this
section by presenting thérst Generationobject. We prove that this object belongs to thituence(nxlass
and that it has a®(,/n) memory steps lock-free implementation. This proves thatthgn) bound for
the Influence(nxlass is tight2

Definition 4.1 A generic objecO is an object that is specified for any number of processesinfluence
function of O, denotedly, is defined as followslp(n) = K, if the influence level of every lock-free
n-process implementation 6f is at leastk'.

Definition 4.2 Influence(n)s the objects class that contains all generic obje&gtsuch thatly is in 2(n).

Influence(n)is a broad class and it is easily shown that the following objects are in it lirzdueiz
counters, stacks, queues and double-ended queues, hash4etdesnulti-sets, and approximate agree-
ment. Moreover, we are not aware of any “natural” shared objectddthabt belong tdnfluence(n) In
the following we prove that linearizable counters, queues, and apprtxiagaeement objects belong to
Influence(n)

A concurrent counter object assumes values from theéVsetof the positive integers. It supports a
single operation calletetch&increment The responses détch&incremeniperations are required to be
unique natural numbers. It is also required that the responses of a@p#rations performed in any non-
empty quiescent execution constitute a contiguous range of natural raisteding froml. Linearizable

3This does not imply, however, that the bound is tightdtithe objects innfluence(n)
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concurrent counterare also required to be linearizable, i.e?{fE, p) and®(E, q) are twofetch&increment
operations that complete in an executibrand ®(F, p) precedesb(F, ¢) then the response df E, p) is
smaller than that ob (£, q).

Lemma 4.5 The linearizable concurrent counter object isliriluence(n)

Proof We prove that any lock-free linearizabteprocess counter implementation has influence level
n — 1. In the following we denote byp;, fori € {1,...,n}, afetch&incremenbperation performed by
procesg;. The sequential specification of the linearizable concurrent counjectatbntains a historyp
where the response @f; is 1. Additionally, for any non-empt{” C {2---n}, and for any permutatios

of T', the sequential specification contains the following histdfy;. = ®,, Qg P, and the response
of ®; in H,,. is bigger tharl. Hence the conditions of Lemma 3.3 hold and the claim follows. Q.E.D.

A concurrent queue object supports two operatiogisqueueand dequeue Eachenqueueoperation
receives inpub from a non-empty set of valuag Eachdequeueperation applied to a non-empty queue
returns a value € V. The state of a queue is a sequence of itéms (v, --- ,vg), each of which is
a value fromV. A concurrent queue implementation is required to be linearizable to a stbselquential
gueue, whose operations are specified as follows.

e enqueue(vney) Changess to be the sequence = (vg, - -+ , Vg, Upew)-

e if S is not empty, alequeu®peration changes to be the sequence = (vy, - - -, vx) and returnsy.
If S'is empty,dequeueeturns the special valuempty

Lemma 4.6 The queue object is imfluence(n)

Proof We prove that any lock-free-process queue implementation has influence level1. In what
follows we denote by byDeq; a dequeue operation kpf and by Eng;, for i € {2,...,n}, an enqueue
operation by procegs that enqueues some values V.

The sequential specification of a queue contains a hidbery in which the response dbeq; is empty
Additionally, for any non-empty” C {2---n}, and for any permutatioa of 7', the sequential specifica-
tion contains the following historyH,, = Eng,, - - Engo, Dequ, and the response dbeq; in H,,. is
notempty Hence the conditions of Lemma 3.3 hold and the claim follows. Q.E.D.

An approximate agreement object supports a single operation ci@dethat every process can per-
form at most once. Thdecideoperation receives a single real number as its input. An implementation of
approximate agreement is correct if the following two conditions hold forexegutionE.

Agreement : the responses of any twiecideoperations must differ by at most

Validity : the response of armyecideoperation must be within the range of the inputs of alldeeideopera-
tions that occur in the execution.

Lemma 4.7 The approximate-agreement object idrifluence(n)

Proof We prove that any lock-free-process approximate-agreement implementation has influence level
n — 1. Consider the execution in which the input of thecideoperation performed by procegs, for

i€ {1,---n},is2(i — 1)e. We now show that the empty execution meets the conditions of Lemma 3.2.
From the validity requirement, if; runs solo as it performs itdecideoperation starting from an initial
configuration it must get a response(®fOn the other hand, considempa-free executionF, in which a
decideoperation by a process other thay) ®, completes. From the validity requirement, the response of
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® in E is in the rangd2¢, 2(n — 1)¢]. Let E’ be an execution fragment that starts afigiin which p; runs
solo as it performs itdecideoperation. Then from the agreement requirement, the responsé& afecide
operation inE'E’ is at least. Consequently, from Lemma 3.2, the influence level of aprocess lock-free
implementation of approximate-agreementis 1. Q.E.D.

The proofs that linearizable stack, hash-table, double-ended csesfuamd multi-set are imfluence(n)
are almost identical to the proof of Lemma 4.6, and so we just state the result.

Lemma 4.8 The linearizable stack, hash-table, double-ended queue, set andsetutibjects are itnflu-
ence(n)

We next present thEirst Generationobject. We prove that it belongs tofluence(njand that it can be
implemented irB(y/n) memory steps. Hence there are object®fluence(nfor which our bound is tight.

Let £ be an execution andl( E, p) be a high-level operation that occursiih We say thatb(E, p) is in
the first generation of if it is not preceded by any other high-level operatiorfin

Definition 4.3 A First Generatiorobject supports a single operation call€itst A process can perform
the First operation at most once. The operation returns a boolean value. Amgatdmplementation must
meet the following requirements for every non-empty execition

R1 : The response of Birstoperation that completes iff and is not in the first generation @ is false

R2 : If all the Firstoperations that are in the first generation Bfcomplete inF then the response of at
least one of them isue

Lemma 4.9 TheFirst Generatiombiject is ininfluence(n)

Proof Let E be a solo execution in which processcompletes it$-irst operation. From requiremeR#2,

the response qgf;’s operation inE is true. Let E’ be ap,-free execution in which at least one of the other
n — 1 processes completes Egst operation and leE” be a solo execution fragment that starts aff&rin
which p; performs itsFirst operation to completion. From requiremdRi, the response qf;’s operation

in E'E" is false The claim follows from Lemma 3.2. Q.E.D.

We now present a simpl®(,/n) memory steps lock-free-process implementation ofFirst Gener-
ation object. The implementation uses an array ¢fz] multi-reader multi-writer atomic registers named
mark The entries of thenark array are initialized tdalse The code implementing thiéirst operation is
shown in Figure 1. The unique identifier of each process that shar@aplementation is stored in a local
register callednyld

bool ean First()
{
for (k=0; k< (sizeof mark); k++)
if (mark(k) == true)
return fal se;
mar k[ myld /sqgrt(n)] = true;
return true;

}

AR

Figure 1: First Operation Code
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In the following we prove that the code shown in Figure 1 is a correct implétien of theFirst
Generationobject.

Lemma 4.10 Let E be a non-empty execution of the implementation shown in Figure 1, suchlltkize
First operations in the first generation @& complete inE. Then at least one of these operations returns
responséruein line 5.

Proof Let ® be the first operation in the first generation /6fto exit the loop of linesl-3. Then®
returns respongeue in line 4. Assume otherwise to obtain a contradiction, tdereturns responsialsein
line 3. This implies that anotheFirst operation,®’, performed by another process, has set its entry in the
mark array befored has read this entry in line. Henced’ exits the loop of lined-3 before®. This is a
contradiction. Q.E.D.

Lemma4.11 Let E be a non-empty execution and {febe aFirstoperation that is not in the first genera-
tion of £. Then® does not return responseiein E.

Proof As @ is not in the first generation aof, there is another operatichl that precede® in E. The
following two possibilities exist.

e The response ob’ is true. Henced’ sets themarkflag in line 4 befored starts. Consequentiy
readstrue from that flag and returns resporfs¢sein line 3.

e The response ob’ is false Henced’ readstrue from at least one element of tmeark array; asd’
precede® so doesb. Hence® returns responsilsein line 3.
Q.E.D.

Lemma 4.12 The code shown in Figure 1 is a correct implementation offinst Generatiorobject and
has memory steps complexity®f,/n).

Proof Correctness stems from Lemmas 4.10, 4.11. As for the memory steps complexinged to
sum-up the worst case number of distinct registers accessed and sialiednoy a singld-irst operation.
The write contention of the implementation of Figure 1 is at mqst |. As every operation issues at most
asinglewrite event (in line4), an operation incurs at mos{/n| —1 stalls. Also, an operation performs at
most|/n | iterations of the loop in lines 1-3. Consequently no operation accessedhmatg,/n| distinct
registers. Q.E.D.

4.2 Memory Steps and Time

In most modern shared memory multiprocessors, different types of memoegses result in different time
delays. If processors have local caches, then an object whoseeunest value is stored in a processor’s
local cache can be accessed an order of magnitude faster than anvaijse value is not in the local
cache. This is because the values of objects that are not in a préséssalrcache need to be sent over the
relatively slow memory-to-processor interconnect. We call an accems olbject whose most recent value

is present (respectively not present) in the local cache of the mdlsasmakes the accessoaal access
(respectively anon-local accegs We now discuss how th@(,/n) memory steps lower bound obtained

in Section 4 for thdnfluence(n)class translates to a time lower bound. We show that if a multiprocessor
does not support multiple outstanding read/read-modify-write eventspeggsor, ouf2(,/n) lower bound
implies that, for objects itnfluence(n)the worst-case time complexity of performing a single operation is
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Q(y/n) times the time it takes to make a non-local access. If the multiprocessmsupport multiple
outstanding read/read-modify-write events per processor, then oar lmeund implies a worst-case time
complexity of2(y/n) local accesses.

In the proof of Theorem 4.4 we have shown that either an operationsiatigast /I — 1 consecutive
stalls or a process reads at leagfl| distinct base objects as it performs a single operation, whisréhe
influence level of the object to which the operation is applied. We now aadlgth cases.

¢ In any shared-memory multiprocessor, when multiple processors attempply \apte or read-
modify-write events to the same memory location simultaneously, these eventsirgesbrialized
and are serviced by the memory controller one after the other. Even ba-caberent multiproces-
sors,z consecutive stalls imply a delay of — 1 non-local accesses: if the cache schemwrige-
through then every write or read-modify-write access generates a cache frttes.cache scheme is
write-backthen, as the events are issued by different processors, none ofakeapt for possibly
the first) can be handled by just updating the local cache: they have toieithédate or update the
local caches of other processors.

¢ In all shared-memory multiprocessors, flist read or read-modify-write access of a memory location
made by a process cannot be resolved from the local cache of thesposdhat makes the access.
Consequently, if the multiprocessor does not support non-blockimts i@aread-modify-writes, then
the delay incurred by an operation that accessdistinct base objects is at least the time it takes to
make a non-local access, multiplied by If the multiprocessodoessupport multiple outstanding
read or read-modify-write events per processor, then, theoreticalyintie to access distinct base
objects may equal the time it takes to make a local access, multiplied by

5 Discussion and Further Research

This paper introduces solo-valency, a variation of the FLP valencynaggts that can be applied to im-
plementations of concurrent objects such as counters, stacks anesquealso introduces the influence
level metric for quantifying the extent to which the response of a high-lgvetation by one process can be
influenced by high-level operations performed by other processessiBg the influence level metric and
applying solo-valency arguments we obt&ify/n) time lower bounds for.-process lock-free implementa-
tions of a broad class of objects that we ¢afluencén). The time metric we use, which we nammemory
stepsis contention-aware: it counts the number of stalls caused by contentiaitiimgwin addition to the
number of distinct base objects accessed by a high-level operation.

We prove arf2(y/n) lower bound on the memory-steps complexity of the one-time versions of all the
objects in thdnfluencén) class. We also show that the bound is tight for at least one object in it.

In arecent paper by Fich, Hendler, and Shavit [16], a lower bo@imd-o1 stalls is proved for a class of
objects that includes counter and snapshot objects. They also praverdlound of. — 1 memory steps for
stacks and queues. These results do not hold, however, for thimomeersions of these objects. Finding
the tight time complexity for the one-time versions of these objects remains anstirigrepen problem.
Another interesting open question is that of finding a non-trivial lowembloon theaveragenumber of
memory steps incurred by high-level operations applied to these objects.
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