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Abstract

This paper introducessolo-valency, a variation on the valency proof technique originated by Fis-
cher, Lynch, and Paterson. The new technique focuses on critical events that influence the responses of
solo runs by individual operations, rather than on criticalevents that influence a protocol’s single deci-
sion value. It allows us to derive

√
n lower bounds on the time to perform an operation for lock-free

implementations of concurrent objects such as linearizable queues, stacks, sets, hash tables, counters,
approximate agreement, and more. Time is measured as the number of distinct base objects accessed
and the number of stalls caused by contention in accessing memory, incurred by a process as it performs
a single operation.

We introduce theinfluence levelmetric that quantifies the extent to which the response of a solo
execution of one process can be changed by other processes. We then prove the existence of a rela-
tionship between the space complexity, latency, contention and influence level of all lock-free object
implementations. Our results are broad in that they hold forimplementations that may useanycollection
of read-modify-write operations in addition to read and write, and in that they apply even if base objects
have unbounded size.

1 Introduction

The design of concurrent data structures for shared-memory multiprocessor machines is an important area
of research. There has been extensive work on lower bounds for concurrent data structures, and the reader
can find a survey in [17]. The majority of the time lower bounds obtained for concurrent data structures
only count the number ofsteps performed by processes (some examples are [1, 2, 7, 14, 38]). Each step
consists of local computation and anevent, which is an application of a synchronization primitive, such as
read, write or read-modify-write, to a base object.

However, the number of steps performed is not the only factor that contributes to the time complexity
of concurrent data structures. In practice, the performance of concurrent data structures is often limited
by memory contention, the extent to which multiple processes access widely-shared memory locationssi-
multaneously. The degradation in performance that is caused by contentionis the result of limitations on
the bandwidth of both memory and processor-to-memory interconnect. Reducing memory contention has
been the focus of both hardware architecture design [21, 22, 31] andthe design of concurrent data structures
[5, 6, 19, 20, 27, 30, 35].
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Thus, a metric for the time complexity of shared memory concurrent data structures that does not take
contention into consideration may be unrealistic. As an example, consider the question of implementing a
concurrent counter. If the hardware supports afetch&incrementsynchronization primitive, then there is a
straightforwardn-process implementation: all processes share a single base object. To geta number from the
counter, a process simply performs afetch&incrementoperation on that object. If only steps are counted, this
implementation has worst-case operation time-complexity of1. The implementation is, however, essentially
sequential: if all processes access the single shared object simultaneously, then the last process to succeed
will incur a time delay linear inn while waiting for all other processes to complete their operations.

In 1993, Dwork, Herlihy and Waarts [13] introduced a formal model to capture the phenomenon of
memory contention in shared memory machines. Using FLP-style valency arguments, they proved that
there are inherent tradeoffs between contention and the number of stepstaken by a process in concurrent
data structure design. Their work was extended in several directions, most notably in the context of mutual
exclusion [3, 4, 11] and counting networks [8, 9].

This paper presentssolo-valency, a variation of the valency proof technique of Fischer et. al (FLP)
[18], and uses it to continue the above work in deriving contention-aware time complexity lower bounds for
concurrent objects. As surveyed by Lynch [34] and by Fich and Ruppert [17], there are numerous elegant
extensions and reformulations of the FLP-style valency technique. The maindifference between the solo-
valency arguments we use in this work and FLP-style arguments is in the problems to which they may be
applied. Whereas FLP-valency arguments are applied todecision problemssuch asconsensus, in which the
operations of all processes must return the same response, solo-valency arguments can be applied to objects
such as counters, stacks and queues, where different operations are allowed, in general, to return different
responses.

The time metric we use, which we callmemory steps, counts both the number ofdistinct base objects
accessed by a process and the total number of memory stalls due tocontention in writingincurred by it, as
it performs a single operation. The number of distinct base objects accessed by a process is a lower bound
on the number of accesses the process does that cannot be served from its local cache. This follows from
the fact that when a process accesses a base object for the first time it incurs a cache-miss.

Similarly, stalls incurred by contention in writing cause a delay that is proportional to the number of con-
tending processes in both distributed shared memory (DSM) and cache-coherent multiprocessor machines.
This is not true for contention in reading, since in shared-bus cache-coherent systems the caches of all the
processes that read the same base object simultaneously can be updated ina single bus cycle.

Thus the memory steps metric is stricter than the one used by [13], as the latter counts all shared memory
references and also counts memory stalls due to contention in reading. Our metric is similar to thecom-
munication costmetric used by Cypher [11] and to theremote memory referencesmetric used by Anderson
and Yang [3], and by Anderson and Kim [4], in that a single unit of both metrics corresponds to a shared
memory reference that cannot be served by a local cache. For DSM systems, however, the communication
cost and the remote memory references metrics are stricter than the memory steps metric, since they do not
count references to a process’ local segment of shared memory, whereas such referencesmaybe counted by
our metric.

We use solo-valency arguments to derive a collection of tradeoffs and lower bound results. Specifically,
we are able to show anΩ(

√
n) time-complexity lower bound on lock-free implementations of objects in

a class we callInfluence(n), a wide class of concurrent objects in which an operation of one process can
be simultaneously influenced by operations ofΩ(n) other processes.Influence(n) includes objects such
as linearizable queues and double-ended queues [12, 36, 37, 39, 42], stacks [41], counters [26, 27], hash
tables [23, 40], sets and multi-sets [32], and approximate agreement [7].Our results are the first known
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time complexity lower bounds for implementing these objects usinganyRMW operation. Before listing our
results in detail, let us now describe our proof technique.

1.1 Solo-Valency

Valency arguments, introduced by Fischer et. al [18], have been usedextensively to derive impossibility
results and lower bounds for decision problems such as consensus (see [10, 13, 24, 33] for some examples).
In the consensus problem, participating processes are required to eventually agree on asingle protocol
decision value. FLP-style valency classifies system configurations according to whether they areunivalent
or multivalent. A configuration is univalent if the protocol’s decision value is the same in allthe executions
that start from the configuration and multivalent otherwise. The valency technique looks at critical events
after which the system shifts from a multivalent configuration to a univalentone. Valency arguments are
then applied with regard to these critical events to derive impossibility results orlower bounds.

Our technique focuses on the responses of solo executions rather thanon a single protocol decision
value. Assume that, after some executionE, a solo execution of an operationOp returns responsev; then
we say that the solo-valency ofOp after E is v. The basic idea behind our solo-valency technique is to
consider a class of critical events that are different from those used by FLP-style arguments. We name these
eventsmodifying events. A modifying event is an event by some process that atomically changes the solo-
valency of an operation by another process. Thus, modifying events influence the responses ofindividual
operationsrather than a protocol’s single decision value. Our results are obtained by arguing about the order
of these events and the base objects they are about to modify.

To be more concrete, we now explain how our technique is applied in the context of a one-time counter.
A one-timeobject is an object to which every process can only apply a single operation. Consider an
implementation of a one-timen-process linearizable counter object allowingfetch&incrementoperations.
Starting from an initial configuration, any process may start a solo execution that returns1. In other words,
the valency of afetch&incrementoperation by any process in the initial configuration is1.

Let E be an execution in which some processp does not participate, and assume some other process
q completes itsfetch&incrementoperation inE. Then the solo-valency ofp’s operation afterE must be
bigger than1. We identify the critical modifying events - write or RMW events inE - following which the
solo-valency ofp’s operation changes to a value bigger than1. Our proof technique constructs executions in
which such modifying events are outstanding and shows that the operationswhose responses are about to be
atomically modified by these events must read all the base objects on which they are outstanding, otherwise
we can construct executions that violate object semantics.

An additional key difference between FLP-style valency arguments and solo-valency arguments is the
following. FLP-style valency considers critical events that havepermanenteffect on a protocol’s single
decision value: before the critical event is executed, there exist two different execution extensions that yield
two different decision values; after the critical event is executed,all execution extensions yield the same
protocol decision value. Modifying events, on the other hand, have, in general, areversibleeffect on the
response of an operation, since they only influence the responses of operations that are performed insolo
executions. Let us explain what we mean by ‘reversible effect’, by continuing the example of a one time
counter. Assume that, in configurationC, processq has an outstanding modifying event,e, that will modify
the solo-valency of an operation by processp. Then a solo execution of thefetch&incrementoperation byp
from C returns some responsev but, if e is performed afterC, then a solo execution byp that immediately
follows e returns a different response. The evente has a reversible effect in the sense that ife is followed by
steps taken by processes other thanp, then the solo-valency ofp’s operation may change tov again.
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One may wonder why FLP-style critical events cannot be used directly forbounding the complexity of
individual operations. A natural attempt to generalize FLP to this end might beto try and use critical events
that have a permanent influence on the response of an operation: before the event is executed, there exist
two different execution extensions in which the operation returns two different responses. After the event is
executed, the operation returns the same response in all execution extensions.

This approach, however, does not seem to work. Consider again the example of ann-process imple-
mentation of a one-time counter. Letp be a process. Notice that even if the operations of up ton − 2 other
processes complete, no such critical event may have taken place with regard top. This is because as long as
there is at least one additional process whosefetch&incrementoperation did not start, thefetch&increment
operation byp may still return different responses in different execution extensions.Hence, FLP-style criti-
cal events fail to capture the influence that thesen−2 operations may have on the response ofp’s operation.
This is not the case for implementations of decision problem, where an individual operation cannot return
its response before the protocol’s single decision value is determined.

1.2 Our Results

To characterize the coordination requirements of shared objects, we introduce theinfluence levelmetric I,
informally defined as the maximum number of processes whose operations can simultaneously influence the
response of an operation by another process. For example, in an execution of a linearizable shared counter,
the response of a given operation can be influenced byn − 1 others: if it is performed solo from an initial
configuration it will return response1, but if an operation of any of then− 1 other processes precedes it, its
response will be different.

1.2.1 New Fundamental Tradeoffs

We prove that the following fundamental relationships exist for all lock-free implementations. LetP be a
lock-free implementation of a shared object with influence levelI. Let L(P) denote the maximum number
of distinct objects accessed by a process as it performs a single operation (the maximum taken over all of
P ’s executions). LetS(P) denoteP ’s space complexity. Also, letC(P) denoteP ’s write contention, namely
the maximum number of processes that can simultaneously have outstanding write or RMW events about to
access the same object (the maximum taken over all ofP ’s executions). Then the following tradeoffs hold.

L(P) ≥ I/C(P), S(P) ≥ I/C(P) (1)

For linearizable counting, this tradeoff strengthens a result of Herlihy etal. [27], which try to capture
contention via a static measure ofcapacity: the maximum number of processes,c(P ), that access any
particular base object (the maximum taken over all executions). They prove the existence of the tradeoff
L(P) ≥ (n-1)/c(P) between the number of distinct base-objects accessed and the capacity of linearizable
counter implementations. However, they note that high capacity does not necessarily imply high contention.
Our tradeoff captures a stronger relationship between the number of distinct objects accessed and the actual
write-contention for a broad class of objects. Specifically, for linearizable shared counters our tradeoffs
imply the desired relationshipL(P) ≥ (n-1)/C(P).

Dwork et al. [13] pose the question of whether there exists a tradeoff between contention and the number
of distinct objects accessed for the approximate agreement problem. The above tradeoff answer this question
in the affirmative.
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1.2.2 New Time Complexity Lower Bounds

We identify Influence(n), a broad class of objects with influence levelI ∈ Ω(n). This class includes well-
known objects such as linearizable counters, queues, stacks, hash-tables, sets, approximate agreement, and
consensus. We are actually not aware of any “natural” concurrent objects that do not belong to this class. We
prove a lower bound ofΩ(

√
n) memory steps on lock-free implementations of all objects inInfluence(n).

All our results hold even if implementations can use any combination of read, write, and RMW syn-
chronization primitives and without any assumptions on the size of the base objects used. These results
are obtained by considering executions in which every process performs at most a single operation. Conse-
quently they hold also for the one-time versions of all the objects inInfluence(n).

Though our bounds seem higher than Jayanti’s interestingΘ(log n) time bounds [29] on similar objects,
they are in fact orthogonal. This is because Jayanti’s time metric counts only steps and does not count stalls
caused by memory contention. Unlike our results, Jayanti’s bounds are also restricted to implementations
that can only use the write,load-locked/store-conditional, move and swapsynchronization primitives..

Finally, we show that there exists an object inInfluence(n), which we nameFirst Generation, for which
our bound is tight, that is, it hasΘ(

√
n) memory steps complexity. However, we believe that the tight

bounds on even the one-time versions of many well-known objects inInfluence(n), such as counters, stacks
and queues, are higher.

2 Preliminaries

2.1 Shared Memory System Model

We consider a standard model of an asynchronous shared memory system in which a set of deterministic
processes, which are sequential threads of control, communicate through deterministic shared data structures
calledobjects. Each process has a set of possiblestatesand each object has atype, that determines the set
of valuesit can assume and the set ofoperationssupported by it. These operations provide the only means
to manipulating the object. Each such operation may receive a number ofinput parametersand returns a
single value called the operation’sresponse. A configurationdescribes the value of each object and the state
of each process.

The system makes available a set ofprimitives base objects, which are the building blocks from which
higher-level objects may be constructed. Animplementationof an object provides a specific data-representation
for the object from a set of more basic shared base objects, and algorithms for the processes to apply each
operation to the implemented object. The base objects used by an implementation may be either primitive
base objects, or objects that are implemented (either directly or indirectly) from primitive base objects.

The application of an operation to an object may change both the value of the object to which the
operation is applied and the state of the process that applies it. We call the application of a specific operation
by a specific process to a specific base object with (optional) specific input parameters anevent. We say that
an event is anapplicationof an operation to a base object. We also say that an event isissued bya process
and that the eventaccessesthe base object. An event returns the response of the operation applied by it to
the calling process.

We consider base objects that may supportread, write andread-modify-writeoperations. Read events do
not receive an input parameter. A read evente, issued by processp, that accesses a base objecto atomically
reads the value ofo and returns that value as its response top. A write evente with a single input parameter
w, issued by processp, that accesses base objecto atomically writes the valuew to o and returns response
ack. We model read-modify-write operations similarly to [15]. A read-modify-write operation applied by
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processp to base objecto with a (possibly empty) input parameters listwl atomically updates the value ofo
with a new value, which is a functiong(v,wl)of the base object’s value just before the operation is applied,
v, and ofwl, and returns a response,h(v, wl), to the calling process. We callg andh theupdate function
and theresponse functionof the operation, respectively.

Fetch&add is an example of a read-modify-write operation. It receives a single inputparameter. Its
update function isg(v, w) = v + wl[1] (wherewl[i] denotes thei’th component ofwl) and its response
function isv. Compare&swapis another example of a read-modify-write operation. Informally, thecom-
pare&swapoperation receives two parameters,old andnew. If the value of the base object to which it is
applied equalsold, the operation atomically changes the object’s value tonewand returns a response of
success. Otherwise, the value of the base object is not modified and the operation returns a response of
failure. More formally, the update functiong(v, wl) of the compare-and-swapoperation atomically does
the following: if v 6= wl[1] (namely the base object’s value does not equalold), theng(v, wl) returnsv,
implying that the value of the base object to which the operation is applied is not modified. Otherwise,
g(v, wl) returnswl[2], implying that the value of the base object is modified tonew. The response function
of thecompare-and-swapoperation,h(v, wl), returnssuccessif v = wl[1] andfailure otherwise.

An execution-fragmentis a (finite or infinite) sequence of events in which each process issues events and
changes state (based on the responses it receives from these events) according to the algorithm specified by
the implementation. Anexecutionis an execution-fragment that starts from aninitial configuration, in which
all base objects have their initial values and all processes have their initial states. Any prefix of an execution
is also an execution. We let≺ denote the prefix relation between executions. For any finite executionE and
sequence of eventsE′ we letEE′ denote the concatenation of the events inE andE′. EE′ may or may
not be an execution. We denote byE|p the subsequence ofE that includes all the events ofE that were
issued by processp. If E|p is the empty sequence we say thatE is p-free. A solo execution fragmentis an
execution fragment all of whose events are issued by a single process.We say that an evente is outstanding
after a finite executionE if Ee is an execution. Two executions areindistinguishableto a processp, if p
issues the same sequence of events and gets the same responses from these events in both executions and
the values of all base objects are the same after these executions. Even though two events that appear in an
execution may have the same input parameters (i.e. they are applications by thesame process of the same
operation with the same parameters to the same base object), we assume that all events that comprise an
execution are unique. That is, an event in an execution may be thought ofas tagged by its ordinal place in
the execution.

To avoid confusion between operations that are applied to base objects and operations that are applied
to an implemented object, we call the latterhigh-level operations. We consider executions in which every
processperformsat most a single high-level operation.1 If an executionE is not p-free, we denote by
Φ(E, p) the single high-level operation performed byp in E. We say thatΦ(E, p) occursin E. We say that
Φ(E, p) completesin E if the last event ofΦ(E, p) has been issued inE. In this case, we call the value
returned byΦ(E, p) the responseof Φ in E. If p applies a read or read-modify-write operation to a base
objecto while performingΦ(E, p), we say thatΦ(E, p) reads o. We denote byR(E, p) the number of
distinct base objects thatp reads inE. Let Φ(E, p) andΦ(E, q) be two high-level operations that complete
in an executionE. We say thatΦ(E, p) precedesΦ(E, q) in E if all the events ofE|p precede all the events
of E|q.

We say that an execution isquiescentif all the operations that occur inE complete inE. A history is
a sequence of high-level operations that are applied to an object and their responses are consistent with the
semantics of the object. For a historyH of an object and a sequence of high-level operations on the object,

1Clearly, this assumption can only strengthen our tradeoffs and lower bounds.
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H ′, we letHH ′ denote the concatenation ofH andH ′. The sequenceHH ′ may or may not be a history of
the object. Thesequential specificationof an object is the set that contains all of the object histories.

We say thatp has anenabled operationΦ afterE, if p has an outstanding evente afterE thatp is about
to issue as it performs the algorithm implementing the high-level operationΦ. We also say thate is an
outstanding event ofΦ. In other words,p has an enabled operationΦ afterE, if the next event thatp will
issue afterE is an eventp issues while executingΦ.

We only consider executions in which every process performs at most a single predetermined operation,
as this suffices to obtain our results. Hence, ifp has not completed its operation inE, thenp has a single
enabled operation afterE.

The safety property that is required from the implementations we consider in this paper islinearizability
[28]. An execution islinearizableif every high-level operation that completes in it appears to occur atomi-
cally at some point between when its first event is issued and when it completes. The liveness requirement
from the implementations we consider is lock-freedom [25]. An implementation islock-free, if it guarantees
that whenever a process issues some finite number of events, some process completes a high-level operation.

2.2 Memory Steps

Our time complexity metric counts the worst-case number ofmemory stepsthat a single high-level operation
may incur. Our metric counts both the number of distinct base objects accessed and the number ofstallsthat
are incurred when multiple processes concurrently attempt to apply write or read-modify-write operations
to the same base object. Formal definitions follow.

Definition 2.1 LetE be an execution and lete1, . . . , el, for somel ≥ 1, be a maximal sequence of consec-
utive write and RMW events inE that are issued by distinct processes and access the same base object.Let
p be the process that issues eventej , for somej ∈ {1, · · · , l}. We say thatΦ(E, p) incursj − 1 stalls inE
on account ofej . Lete be an event ofE issued by processp. We denote bystalls(E, e) the number of stalls
incurred byΦ(E, p) in E on account ofe.

The above definition of stalls captures the fact that in shared memory multiprocessors, when a group
of processes have outstanding write and read-modify-write events all about to access the same base object,
these events can be “released” simultaneously, thus causing the processthat issued the second event to incur
a single stall, the process that issued the third event to incur two stalls, and soon. 2

Definition 2.2 LetE be an execution and letp be a process that issues at least one event inE. Thememory
steps complexityof Φ(E, p), denotedmem steps(E, p), is defined as follows.

mem steps(E, p) = R(E , p) +
∑

e∈E |p

stalls(e)

Thememory steps complexity of an implementationis the maximum over the memory steps complexity
of all the high-level operations that occur in all of the implementation’s executions.

2This definition of stalls doesnot assume that concurrently outstanding write and read-modify-write events about to access the
same base object are serviced in a first-come-first-served order, or in any other specific order.

7



3 The InfluenceMetric for Coordination Level

In this section we define a metric which is a measure of the coordination level ofconcurrent object imple-
mentations. More specifically, theinfluence levelmetric is a measure of the extent to which concurrently
executing high-level operations can influence the response of a high-level operation performed by another
process. To get a feel for this metric, consider ann-process implementation of a linearizable stack that
supports thepush andpop operations. Consider a quiescent execution,E, in which the high-level opera-
tions performed by processesp1 . . . pi, for somei ≤ n − 2, were completed. Assume that afterE the stack
contains a single item - the number1. Assume also that afterE each of the processespi+1 . . . pn−1 has an
enabledpushoperation with input2 and processpn has an enabledpop operation.

Clearly, the response of thepop operation bypn can be influenced by then − i − 1 push operations: if
pn performs thepop operation solo afterE then, from linearizability, it has to return1. On the other hand,
let E′ be apn-free execution-fragment that starts afterE such that somepushoperation by a process not in
{p1, . . . , pi} completes inEE′. Then - again from linearizability - a solo execution of thepopoperation by
pn that starts afterEE′ returns response2 or higher. Thus the number of concurrently enabled high-level
operations by different processes that can change the response ofpn’s popoperation afterE is n − i − 1.
Dependencies of this type are what we capture in the following definitions and lemmata.

Definition 3.1 LetE be an execution and letR be a high-level operation by processp that is enabled after
E. We define thesolo-valency of R after Eto be the response returned byR in the solo execution byp
that starts immediately afterE and ends whenp completesR. We letS(E, R) denote this value. If a solo
execution byp that starts immediately afterE does not terminate, we say that the solo-valency ofR afterE
is undefinedand writeS(E, R) = ⊥.

When confining attention to lock-free algorithms, a solo execution of a high-level operation always
terminates. We get the following.

Fact 3.1 LetE be an execution of a lock-free algorithm and letR be a high-level operation that is enabled
afterE, thenS(E, R) 6= ⊥ holds.

Definition 3.2 LetE be an execution and letR be a high-level operation by processp that is enabled after
E. We say thatR hasinfluence level K after E(and writeIA(E, R) = K) if K is the maximum such that
there existK high-level operations,W1 · · ·WK , that are enabled afterE by distinct processes other than
p, each of which has an enabled eventei such thatS(Eei, R) 6= S(E, R) holds. We call the eventsei

modifying events for R. We define theinfluence level after E, denoted byIA(E), as the maximum influence
level over all the high-level operations that are enabled after E. Formally:

IA(E) = max
{

IA(E, Op)|Op is enabled after E
}

It is easily seen that the influence level after any execution of ann-process implementation is always
between0 andn − 1.

Next, we extend the definition of influence level to concurrent object implementations.

Definition 3.3 Theinfluence level duringa finite executionE, denoted byI(E), is the maximum influence
level after all the prefixes ofE. Formally:

I(E) = max
{

IA(E′)|E′ ≺ E
}
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The influence levelof an implementationP , denoted byI(P ), is the maximum influence level during
all the executions that result when processes perform high-level operations using the algorithms of the
implementation.

Slightly abusing notation, we now define the influence level of concurrentobjects.

Definition 3.4 A concurrent objectO has influence levelI, if the influence level of every lock-free imple-
mentation ofO is at leastI.

Based on the above definitions, the next two lemmas show that we can determinea lower bound on the
influence level of lock-free linearizable object implementations based on theobject’s sequential specifica-
tion.

Lemma 3.2 LetP be lock-free implementation that has an executionE such that

• there is a process that has a high-level operationR enabled afterE with S(E, R) = v, and

• there areK other processes,pi1 . . . piK , each of which has a high-level operationWj , for j ∈
{1 . . . K}, that is enabled afterE so that for any executionEE′, whereE′ consists of events issued
bypi1 . . . piK and at least one ofW1 . . .WK completes inEE′, S(E, R) 6= v holds.

ThenP has influence levelK or more.

Proof
We iteratively construct an execution after which the influence level is at leastK as follows. We letE0

denote the empty execution. In iterationi, for i ≥ 1, we pick some high-level operationWj that has an
outstanding evente afterEi−1 that is not a modifying event forR, if such an operation exists. The following
cases exist.

1. Every process in{pi1 . . . piK} has an outstanding modifying event forR afterEi−1. From Definition
3.2, the influence level afterE is at leastK. The lemma now follows from Definition 3.3.

2. There exists a processpij , for somej ∈ {1, . . .K}, that has an outstanding event afterEi−1 that is
not a modifying event forR. We letEi = Ei−1e.

From assumptions, none of the operationsWj can complete before a modifying event is issued by a
process in{pi1 . . . piK}. However, asP is lock-free, one of these operations must complete after a finite
number of events is issued. Thus there exists a finitel so that the conditions of case(1) above hold afterEl.
The lemma follows. Q.E.D.

Lemma 3.3 LetO be an object and letH be a history ofO such that

• there exists a high-level operationR such thatHR is a history ofO and the response ofR in HR is v,
and

• there exist high-level operationsW1 . . .WK such that for any non-empty subset of indicesT ⊆
{1, · · · , K} and every permutationσT of T , HσT

= HWσT (1) · · ·WσT (|T |)R is a history ofO and
the response ofR in HσT

is notv.

Then any linearizable implementation ofO has influence levelK or more.

Proof Immediate from Lemma 3.2 and from the linearizability of the implementation. Q.E.D.
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4 Tradeoffs and Lower Bounds

In the proofs provided in this section, we consider a lock-free implementationP , shared byn > 1 processes,
that has influence levelK.

We let L(P) (respectivelyLR(P)) denote the maximum number of distinct base objects accessed (re-
spectively, read) by a process as it performs a single high-level operation, the maximum taken over all of
P ’s executions. We letS(P) denoteP ’s space complexity, namely the number of distinct base objects that
are accessed by all the events issued in all ofP ’s executions. We letC(P) denoteP ’s write contention,
namely the maximum number of concurrently outstanding write or RMW events about to access the same
base object, the maximum taken over all ofP ’s executions.

The following lemma proves that modifying events cannot be read events.

Lemma 4.1 All modifying events are either write or read-modify-write events.

Proof Let e be a modifying event for a high-level operationR after an executionE. Also, letp be the
process executingR. To obtain a contradiction, assume thate is a read event.

Sincee does not change the value of the base object which it accesses and sincee is not an event issued
by p, executionsE and Ee are indistinguishable top. It follows that S(E, R) =S(Ee, R) must hold.
However, from Definition 3.2, this implies thate is not a modifying event, a contradiction. Q.E.D.

We now prove a tradeoff between the space complexity and write contention of lock-free implementa-
tions.

Theorem 4.2 LetO be an object with influence levelI and letP be a lock-free implementation ofO, then
the following holds:

S(P) ≥ ⌈I/C(P)⌉
Proof SinceP implementsO, from Definition 3.4 we haveI(P ) ≥ I. Consequently, from Lemma 4.1
and Definition 3.3,P has an execution after which there are at leastI write or RMW outstanding events.
The claim now follows from the fact that at mostC(P ) such events can be simultaneously outstanding on
any single base object. Q.E.D.

We next prove a tradeoff between the number of distinct base objects read by a process as it performs a
single high-level operation and between the write-contention of the implementation.

Theorem 4.3 LetO be an object with influence levelI and letP be a lock-free implementation ofO, then
the following holds:

L(P) ≥ LR(P) ≥ ⌈I/C(P)⌉
Proof The left-hand inequality is obvious from the definitions ofL(P) andLR(P). We now prove the
right-hand inequality. SinceP implementsO, from Definition 3.4, we haveI(P ) ≥ I. From Definition 3.3,
there is an executionE of P such that the influence level afterE is at leastI. LetR be a high-level operation
that has influence levelI or more afterE, letp be the process that performsR and letS(E, R) = v. Also let
e1 . . . eI beI outstanding modifying events forR afterE andB be the set of base objects that are accessed
by e1 . . . eI. Clearly,|B| ≥ ⌈I/C(P)⌉.

Let E′ be the execution fragment that results when we letp run solo as it performsR afterE. From
Definition 3.1, the response ofR in EE′ is v. We prove the theorem by showing thatE′ must include
read or read-modify-write events that access each of the base objects of B. Assume otherwise to obtain a
contradiction. Then there is an objecto ∈ B so that no read or read-modify-write event inE′ accesseso.
Let e be a modifying event forR that is outstanding afterE and accesseso. As R does not reado, EE′|p

10



andEeE′|p are the same. ConsequentlyS(EE′, R) = S(EeE′, R) must hold. This is a contradiction to
our assumption thate is a modifying event. Q.E.D.

Based on Theorem 4.3, we can now establish a lower bound on the memory steps complexity of concur-
rent objects, as a function of their influence level.

Theorem 4.4 LetO be an object with influence levelI and letP be a lock-free implementation ofO. Then
the memory steps complexity ofP is at least⌊

√
I⌋.

Proof Consider the write-contention ofP . The following two possibilities exist.

• C(P) ≥ ⌊
√

I⌋. In this case, from the definition of write contention, there is an executionE of P after
which there are⌊

√
I⌋ outstanding write and read-modify-write events, all of which about to access

the same base object. LetE′ be some ordering of these events, lete be the last event ofE′, let p be
the process that issuese, and leto be the base object accessed bye. From Definitions 2.1 and 2.2,
Φ(EE′, p) incurs⌊

√
I⌋ − 1 memory steps on account of the stalls incurred bye plus an additional

memory step on account of the access ofo.

• OtherwiseC(P) < ⌊
√

I⌋. From Theorem 4.3 we get thatLR(P) ≥ ⌈
√

I⌉. Hence there is an execution
E and a processp such thatR(E, p) ≥ ⌈

√
I⌉ and the claim follows.

Q.E.D.

4.1 TheInfluence(n)Objects Class

We now define theInfluence(n)class of concurrent objects, that contains objects for which every lock-free
n-process implementation has influence level inΩ(n). We then show that many well-known concurrent
objects belong to this class and thus have worst-case complexity ofΩ(

√
n) memory steps. We conclude this

section by presenting theFirst Generationobject. We prove that this object belongs to theInfluence(n)class
and that it has anO(

√
n) memory steps lock-free implementation. This proves that theΩ(

√
n) bound for

theInfluence(n)class is tight.3

Definition 4.1 A generic objectO is an object that is specified for any number of processes. Theinfluence
function of O, denotedIO, is defined as follows:IO(n) = K, if the influence level of every lock-free
n-process implementation ofO is at leastK.

Definition 4.2 Influence(n)is the objects class that contains all generic objectsO such thatIO is in Ω(n).

Influence(n)is a broad class and it is easily shown that the following objects are in it: linearizable
counters, stacks, queues and double-ended queues, hash-tables,sets, multi-sets, and approximate agree-
ment. Moreover, we are not aware of any “natural” shared objects thatdo not belong toInfluence(n). In
the following we prove that linearizable counters, queues, and approximate agreement objects belong to
Influence(n).

A concurrent counter object assumes values from the setN+ of the positive integers. It supports a
single operation calledfetch&increment. The responses offetch&incrementoperations are required to be
unique natural numbers. It is also required that the responses of all theoperations performed in any non-
empty quiescent execution constitute a contiguous range of natural numbers starting from1. Linearizable

3This does not imply, however, that the bound is tight forall the objects inInfluence(n).
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concurrent countersare also required to be linearizable, i.e. ifΦ(E, p) andΦ(E, q) are twofetch&increment
operations that complete in an executionE andΦ(E, p) precedesΦ(E, q) then the response ofΦ(E, p) is
smaller than that ofΦ(E, q).

Lemma 4.5 The linearizable concurrent counter object is inInfluence(n).

Proof We prove that any lock-free linearizablen-process counter implementation has influence level
n − 1. In the following we denote byΦi, for i ∈ {1, . . . , n}, a fetch&incrementoperation performed by
processpi. The sequential specification of the linearizable concurrent counter object contains a historyΦ1

where the response ofΦ1 is 1. Additionally, for any non-emptyT ⊆ {2 · · ·n}, and for any permutationσT

of T , the sequential specification contains the following history:HσT
= Φσ1

· · ·Φσ|T |
Φ1, and the response

of Φ1 in HσT
is bigger than1. Hence the conditions of Lemma 3.3 hold and the claim follows. Q.E.D.

A concurrent queue object supports two operations:enqueueanddequeue. Eachenqueueoperation
receives inputv from a non-empty set of valuesV. Eachdequeueoperation applied to a non-empty queue
returns a valuev ∈ V . The state of a queue is a sequence of itemsS = 〈v0, · · · , vk〉, each of which is
a value fromV. A concurrent queue implementation is required to be linearizable to a standard sequential
queue, whose operations are specified as follows.

• enqueue(vnew) changesS to be the sequenceS = 〈v0, · · · , vk, vnew〉.

• if S is not empty, adequeueoperation changesS to be the sequenceS = 〈v1, · · · , vk〉 and returnsv0.
If S is empty,dequeuereturns the special valueempty.

Lemma 4.6 The queue object is inInfluence(n).

Proof We prove that any lock-freen-process queue implementation has influence leveln − 1. In what
follows we denote by byDeq1 a dequeue operation byp1 and byEnqi, for i ∈ {2, . . . , n}, an enqueue
operation by processpi that enqueues some valuev ∈ V .

The sequential specification of a queue contains a historyDeq1 in which the response ofDeq1 is empty.
Additionally, for any non-emptyT ⊆ {2 · · ·n}, and for any permutationσT of T , the sequential specifica-
tion contains the following history:HσT

= Enqσ1
· · ·Enqσ|T |

Deq1, and the response ofDeq1 in HσT
is

notempty. Hence the conditions of Lemma 3.3 hold and the claim follows. Q.E.D.

An approximate agreement object supports a single operation calleddecidethat every process can per-
form at most once. Thedecideoperation receives a single real number as its input. An implementation of
approximate agreement is correct if the following two conditions hold for anyexecutionE.

Agreement : the responses of any twodecideoperations must differ by at mostǫ.

Validity : the response of anydecideoperation must be within the range of the inputs of all thedecideopera-
tions that occur in the execution.

Lemma 4.7 The approximate-agreement object is inInfluence(n).

Proof We prove that any lock-freen-process approximate-agreement implementation has influence level
n − 1. Consider the execution in which the input of thedecideoperation performed by processpi, for
i ∈ {1, · · ·n}, is 2(i − 1)ǫ. We now show that the empty execution meets the conditions of Lemma 3.2.
From the validity requirement, ifp1 runs solo as it performs itsdecideoperation starting from an initial
configuration it must get a response of0. On the other hand, consider ap1-free execution,E, in which a
decideoperation by a process other thanp1, Φ, completes. From the validity requirement, the response of
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Φ in E is in the range[2ǫ, 2(n − 1)ǫ]. Let E′ be an execution fragment that starts afterE, in whichp1 runs
solo as it performs itsdecideoperation. Then from the agreement requirement, the response ofp1’s decide
operation inEE′ is at leastǫ. Consequently, from Lemma 3.2, the influence level of anyn-process lock-free
implementation of approximate-agreement isn − 1. Q.E.D.

The proofs that linearizable stack, hash-table, double-ended queue,set and multi-set are inInfluence(n)
are almost identical to the proof of Lemma 4.6, and so we just state the result.

Lemma 4.8 The linearizable stack, hash-table, double-ended queue, set and multi-set objects are inInflu-
ence(n).

We next present theFirst Generationobject. We prove that it belongs toInfluence(n)and that it can be
implemented inΘ(

√
n) memory steps. Hence there are objects inInfluence(n)for which our bound is tight.

Let E be an execution andΦ(E, p) be a high-level operation that occurs inE. We say thatΦ(E, p) is in
the first generation ofE if it is not preceded by any other high-level operation inE.

Definition 4.3 A First Generationobject supports a single operation calledFirst. A process can perform
theFirst operation at most once. The operation returns a boolean value. Any correct implementation must
meet the following requirements for every non-empty executionE:

R1 : The response of aFirstoperation that completes inE and is not in the first generation ofE is false.

R2 : If all the First operations that are in the first generation ofE complete inE then the response of at
least one of them istrue.

Lemma 4.9 TheFirst Generationobject is inInfluence(n).

Proof Let E be a solo execution in which processp1 completes itsFirst operation. From requirementR2,
the response ofp1’s operation inE is true. Let E′ be ap1-free execution in which at least one of the other
n− 1 processes completes itsFirst operation and letE′′ be a solo execution fragment that starts afterE′, in
which p1 performs itsFirst operation to completion. From requirementR1, the response ofp1’s operation
in E′E′′ is false. The claim follows from Lemma 3.2. Q.E.D.

We now present a simpleΘ(
√

n) memory steps lock-freen-process implementation of aFirst Gener-
ation object. The implementation uses an array of⌈√n⌉ multi-reader multi-writer atomic registers named
mark. The entries of themark array are initialized tofalse. The code implementing theFirst operation is
shown in Figure 1. The unique identifier of each process that shares theimplementation is stored in a local
register calledmyId.

boolean First()
{

1: for (k=0; k< (sizeof mark); k++)
2: if (mark(k) == true)
3: return false;
4: mark[myId /sqrt(n)] = true;
5: return true;

}

Figure 1: First Operation Code
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In the following we prove that the code shown in Figure 1 is a correct implementation of theFirst
Generationobject.

Lemma 4.10 Let E be a non-empty execution of the implementation shown in Figure 1, such thatall the
First operations in the first generation ofE complete inE. Then at least one of these operations returns
responsetrue in line 5.

Proof Let Φ be the first operation in the first generation ofE to exit the loop of lines1-3. ThenΦ
returns responsetrue in line 4. Assume otherwise to obtain a contradiction, thenΦ returns responsefalsein
line 3. This implies that anotherFirst operation,Φ′, performed by another process, has set its entry in the
mark array beforeΦ has read this entry in line2. HenceΦ′ exits the loop of lines1-3 beforeΦ. This is a
contradiction. Q.E.D.

Lemma 4.11 LetE be a non-empty execution and letΦ be aFirst operation that is not in the first genera-
tion ofE. ThenΦ does not return responsetrue in E.

Proof As Φ is not in the first generation ofE, there is another operationΦ′ that precedesΦ in E. The
following two possibilities exist.

• The response ofΦ′ is true. HenceΦ′ sets themark flag in line 4 beforeΦ starts. ConsequentlyΦ
readstrue from that flag and returns responsefalsein line 3.

• The response ofΦ′ is false. HenceΦ′ readstrue from at least one element of themark array; asΦ′

precedesΦ so doesΦ. HenceΦ returns responsefalsein line 3.
Q.E.D.

Lemma 4.12 The code shown in Figure 1 is a correct implementation of theFirst Generationobject and
has memory steps complexity ofΘ(

√
n).

Proof Correctness stems from Lemmas 4.10, 4.11. As for the memory steps complexity,we need to
sum-up the worst case number of distinct registers accessed and stalls incurred by a singleFirst operation.
The write contention of the implementation of Figure 1 is at most⌊√n⌋. As every operation issues at most
a singlewrite event (in line4), an operation incurs at most⌊√n⌊−1 stalls. Also, an operation performs at
most⌊√n⌋ iterations of the loop in lines 1-3. Consequently no operation accesses morethan⌊√n⌊ distinct
registers. Q.E.D.

4.2 Memory Steps and Time

In most modern shared memory multiprocessors, different types of memory accesses result in different time
delays. If processors have local caches, then an object whose mostrecent value is stored in a processor’s
local cache can be accessed an order of magnitude faster than an object whose value is not in the local
cache. This is because the values of objects that are not in a processor’s local cache need to be sent over the
relatively slow memory-to-processor interconnect. We call an access ofan object whose most recent value
is present (respectively not present) in the local cache of the process that makes the access alocal access
(respectively anon-local access). We now discuss how theΩ(

√
n) memory steps lower bound obtained

in Section 4 for theInfluence(n)class translates to a time lower bound. We show that if a multiprocessor
does not support multiple outstanding read/read-modify-write events per processor, ourΩ(

√
n) lower bound

implies that, for objects inInfluence(n), the worst-case time complexity of performing a single operation is
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Ω(
√

n) times the time it takes to make a non-local access. If the multiprocessordoessupport multiple
outstanding read/read-modify-write events per processor, then our lower bound implies a worst-case time
complexity ofΩ(

√
n) local accesses.

In the proof of Theorem 4.4 we have shown that either an operation incurs at least⌊
√

I⌋− 1 consecutive
stalls or a process reads at least⌊

√
I⌋ distinct base objects as it performs a single operation, whereI is the

influence level of the object to which the operation is applied. We now analyze both cases.

• In any shared-memory multiprocessor, when multiple processors attempt to apply write or read-
modify-write events to the same memory location simultaneously, these events are being serialized
and are serviced by the memory controller one after the other. Even on cache-coherent multiproces-
sors,x consecutive stalls imply a delay ofx − 1 non-local accesses: if the cache scheme iswrite-
through, then every write or read-modify-write access generates a cache miss. If the cache scheme is
write-backthen, as the events are issued by different processors, none of them(except for possibly
the first) can be handled by just updating the local cache: they have to either invalidate or update the
local caches of other processors.

• In all shared-memory multiprocessors, thefirst read or read-modify-write access of a memory location
made by a process cannot be resolved from the local cache of the processor that makes the access.
Consequently, if the multiprocessor does not support non-blocking reads or read-modify-writes, then
the delay incurred by an operation that accessesx distinct base objects is at least the time it takes to
make a non-local access, multiplied byx. If the multiprocessordoessupport multiple outstanding
read or read-modify-write events per processor, then, theoretically, the time to accessx distinct base
objects may equal the time it takes to make a local access, multiplied byx.

5 Discussion and Further Research

This paper introduces solo-valency, a variation of the FLP valency arguments that can be applied to im-
plementations of concurrent objects such as counters, stacks and queues. It also introduces the influence
level metric for quantifying the extent to which the response of a high-leveloperation by one process can be
influenced by high-level operations performed by other processes. By using the influence level metric and
applying solo-valency arguments we obtainΩ(

√
n) time lower bounds forn-process lock-free implementa-

tions of a broad class of objects that we callInfluence(n). The time metric we use, which we namememory
steps, is contention-aware: it counts the number of stalls caused by contention in writing, in addition to the
number of distinct base objects accessed by a high-level operation.

We prove anΩ(
√

n) lower bound on the memory-steps complexity of the one-time versions of all the
objects in theInfluence(n) class. We also show that the bound is tight for at least one object in it.

In a recent paper by Fich, Hendler, and Shavit [16], a lower bound of n− 1 stalls is proved for a class of
objects that includes counter and snapshot objects. They also prove a lower bound ofn−1 memory steps for
stacks and queues. These results do not hold, however, for the one-time versions of these objects. Finding
the tight time complexity for the one-time versions of these objects remains an interesting open problem.
Another interesting open question is that of finding a non-trivial lower bound on theaveragenumber of
memory steps incurred by high-level operations applied to these objects.
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