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Algorithms for solid modeling, i.e., Computer-Aided Design (CAD) and computer graphics, are often specified
on real numbers and then implemented with finite-precision arithmetic, such as floating-point. The result is
that these implementations do not soundly compute the results that are expected from their specifications.

We present a new library, StoneWorks, that provides sound and robust solid modeling primitives. We
implement StoneWorks in MarshallB, a pure functional programming language for exact real arithmetic in
which types denote topological spaces and functions denote continuous maps, ensuring that all programs are
sound and robust. We developed MarshallB as an extension of the Marshall language.

We also define a new shape representation, compact representation (K-rep), that enables constructions such
as Minkowski sum and analyses such as Hausdorff distance that are not possible with traditional representa-
tions. K-rep is a nondeterminism monad for describing all the points in a shape.

With our library, language, and representation together, we show that short StoneWorks programs can
specify and execute sound and robust solid modeling algorithms and tasks.
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Point-set topology; •Theory of computation→ Categorical semantics; •Applied computing→ Computer-
aided design.
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1 INTRODUCTION
Computer-Aided Design (CAD) and computer graphics require solid modeling. Solid modeling is
the design and implementation of computer representations of geometric shapes and the oper-
ations to construct and analyze them. For example, a CAD tool enables to user to construct a
representation of mechanical system and verify that its constituent parts do not collide.

A solid modeling operation may return an incorrect answer because of the numerical error in-
herent in an implementation that uses floating-point arithmetic. Alternatively, an operation may
not be robust because of an unstable algorithm for computing geometric properties, such as inter-
section. For instance, a CAD tool for detecting collisions may declare that a mechanical system
is free of collisions, when in reality it is not. A ray-tracing algorithm may incorrectly cause thin
features to disappear [Flórez et al. 2007]. A CAD tool may create a representation of a shape whose

Authors’ addresses: Benjamin Sherman, MIT, USA, sherman@csail.mit.edu; Jesse Michel, MIT, USA, jmmichel@mit.edu;
Michael Carbin, MIT, USA, mcarbin@csail.mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART99
https://doi.org/10.1145/3341703

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 99. Publication date: August 2019.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3341703
https://doi.org/10.1145/3341703
https://doi.org/10.1145/3341703


99:2 Benjamin Sherman, Jesse Michel, and Michael Carbin

topological and geometric data are inconsistent, meaning no real shape could have such proper-
ties. Inaccuracy in solid modeling “can sometimes lead to system crashes, which is frustrating to
users, hinders productivity and automation efforts, and might result in costly expense” [Hu et al.
1996]. And “due to rounding errors many implementations of geometric algorithms crash, loop
forever, or in the best case, simply compute wrong results for some of the inputs for which they
are supposed to work” [Schirra 1998].

1.1 State of the Practice
Boundary representation (B-rep) is the dominant representation used by commercial CAD en-
gines. It represents faces, edges, and vertices, and the topological relations between them, with ex-
plicit geometric representations.The rich information provided by boundary representation allows
many operations to be performed, such as extrusion, chamfer, and blending. However, because of
the richness of the representation, sound implementations of these operations are not computable.
Moreover, best-effort implementations of these kernels are not robust.

For instance, consider the union of two squares whose edges are almost touching: if the edges
are touching, then the faces should be merged into a single one, whereas if they are disjoint, the
faces must not be merged. As a result, when this algorithm is implemented with floating-point
arithmetic, it is unsound: when applied to edges that are almost touching but not quite, floating-
point rounding error can cause the squares to be merged, even though they should not be. It is
also not robust, because a seemingly negligible change in the position of the squares could change
the decision of whether to merge.

Much effort has been devoted to approaches to improve the robustness of solid modeling and
geometric algorithms [Brönnimann et al. 2001; Fang et al. 1993; Flórez et al. 2007; Fortune 1996;
Guibas 1996; Hoffmann 1996; Hoffmann et al. 1988; Hu et al. 1996; Salesin et al. 1989; Sanjuan-
Estrada et al. 2003; Schirra 1998; Sharma and Yap 2017; Snyder 1992a; Yap 1997]. These approaches
vary in the shape representations used, types of numbers that may be represented (e.g., rational
or algebraic numbers), the methods used, and the problems solved.

1.2 Soundness and Robustness
We formally define soundness and robustness in terms of pair of a specification of an ideal operation,
f : A → B, and computer implementation of that operation, f : A -> B, together with relations
|=A⊆ A ×A and |=B⊆ B × B relating ideal objects (A, B) to their representations (A, B, respectively).

We define an implementation f on representations to be sound if the representations can be
related via |= to ideal objects such that those ideal objects are related by f . We define an imple-
mentation f to be robust if it is a sound implementation of a specification defined by a continuous
map.1 Continuity implies that, in order to approximate an output to any finite level of precision, it
suffices to inspect the input to a finite level of precision. For example, consider the representation
of the result of sin(π) as a stream of ever finer intervals with rational endpoints:
# sin pi;;
[-4.6410206775e-8, 5.3589793242e-8]
[-8.09780564485354663507e-10, 1.21542010130123852029e-10]
[-5.016557612668332023562e-20, 4.04453249759190146481e-21]
...

We know sin(π) = 0 and therefore soundness requires that each interval in the stream contains
0. Moreover, the computation is robust because the computation of each interval result of sin pi

1This definition is similar to Edalat and Lieutier [2002] who define a “robust algorithm” as “one whose correctness is proved
with the assumption of a realistic machine model.”
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needs only an interval approximation of pi.This is in contrast to the unsoundness of floating-point
computation that for many languages and CPUs returns 1.2246467991473532e-16, which is not
0 and does not itself indicate a larger range of possible values that includes zero.

Accordingly, to reason about the soundness and robustness of CAD operations, the key starting
point is to understand how to represent values – such as real numbers – and shapes – e.g., anything
from simple lines, rectangles, and spheres, to complicated compositions thereof – as computational
entities that can be soundly manipulated by computer programs.

1.3 Approach and Contributions
In this paper, we define several shape representations, define programs for sound and robust opera-
tions on them, and also demonstrate that some operations are discontinuous, and hence fundamen-
tally not robust. Our approach is language-based in that we use our pure functional programming
language, MarshallB, to develop StoneWorks, a library for sound and robust solid modeling.

We approach the representation problem through the lens of topology by identifying topological
spaces whose points are shapes that have sound representations that we can naturally execute in
MarshallB’s topological semantics. For example, the stream of intervals in the sin pi example
above illustrates the evaluation of sin(π) in the MarshallB REPL.

We have developed MarshallB by extending the Marshall language for exact real arithmetic
[Bauer 2008] to include polymorphism, a Boolean datatype, and Riemannian integration. A key
design of Marshall (and hence MarshallB) is that types denote topological spaces, functions de-
note continuous maps, and the language’s semantics is sound with respect to these denotations. By
developing a library for solid modeling in this language, we automatically ensure that all opera-
tions are sound and robust by the fact that all functions implemented in MarshallB are continuous.
We present the following contributions:

• We present MarshallB, an extension of Marshall with booleans and other operations de-
signed for solid modeling (e.g, integration to compute the volume of a shape).

• We present StoneWorks, a library for solid modeling that exposes solid modeling operations
on two shape representations:O-rep, a simplification of a well-known representation in solid
modeling (i.e., F-rep), and K-rep, a novel representation that we have developed.

• We present a new representation for shapes, compact representation (K-rep), that enables
specifying shapes and operations – such as Hausdorff distance and convex hull – that are
not possible to compute for all shapes represented with other representations (i.e., F-rep).

We also present three modeling case studies that we’ve developed with StoneWorks:
(1) We verify that the 3D mesh produced by a commercial CAD software system for a shape is

sufficiently accurate by computing the Hausdorff distance between the mesh and the shape.
(2) We produce a depth map for an image from a 3D scene represented by O-rep by implement-

ing a robust ray intersection program.
(3) We model a cam/piston system that has a parameterized angle of rotation and verify – as a

computable analysis in the language – that the system is always separated from its enclosure
for all possible rotation angles.

In total, StoneWorks demonstrates that it is possible to specify and execute solid modeling algo-
rithms – soundly and robustly – in just a few lines of code. These programs can then serve as
executable specifications to validate commercial or otherwise separately developed systems.

§2 demonstrates MarshallB and StoneWorks via a case study. §3 explains the syntax and seman-
tics of MarshallB. §4, §5, §6, and §7 describe StoneWorks’s shape representations, including K-rep.
We finish with additional case studies (§8), related work (§9), and a conclusion (§10).
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Fig. 1. Left: A cone (defined in Onshape). Right: A mesh that approximates the cone with 16 triangles (gen-
erated by Onshape).

let base : KShape (ℜ3) =
map {ℜ2} {ℜ3} (λ xy : ℜ2 ⇒ (xy[0], xy[1], 0)) unit_disk;;

let top : KShape (ℜ3) =
compact_union {ℜ} unit_interval {ℜ3} (λ z : ℜ⇒
compact_union {ℜ2} (scale z unit_circle) {ℜ3} (λ xy : ℜ2 ⇒
point {ℜ3} (xy[0], xy[1], 1 - z)));;

let cone : KShape (ℜ3) =
base `union3` top;;

Fig. 2. A MarshallB K-shape representing the ideal surface of a cone.

2 EXAMPLE: MESH VERIFICATION IN STONEWORKS
A solid modeling tool enables a user to model a solid and then generate an approximate polyhedral
mesh. For example, Fig. 1 presents a cone together with an approximate mesh, both of which we
generated using a CAD tool named Onshape. Such a mesh is useful for other end tasks, such as
3D printing, computer graphics, and finite element analysis.

Producing a mesh—or meshing—is a complex process for which soundness is a prominent con-
cern [Nandi et al. 2018]. In general, one may choose the mesh density, which determines the size
(and thus also number) of the polyhedra used in the approximation. Finer meshes are generally
more accurate, but also more computationally expensive to produce and to process in applications
that use the generated mesh. In general, it is difficult to assess the accuracy of a mesh with respect
to the ideal shape, because often the ideal solid is not exactly representable in solid modeling tools.

In contrast, StoneWorks makes it possible to verify the accuracy of a generated mesh, bounding
its Hausdorff distance from the ideal shape. Specifically, it is possible to encode in StoneWorks both
the ideal surface of a cone and the polygonal approximation generated by Onshape and verify that
their Hausdorff distance is at most a given value.

Like many solid modeling tasks, this verification task consists of first the construction of shapes—
in this case, the exact cone and its polygonal approximation—followed by their analysis.

2.1 Construction
Fig. 2 presents MarshallB code that uses StoneWorks to encode the ideal surface of the cone. The
cone is the union of its base with its top. The code represents each shape—the base, top, and to-
gether, the cone – by its compact representation in R3.

Compact Representation. A compact representation in R3 is a for-all quantifier KShape ℜ3 =
(ℜ3 → 𝔅) → 𝔅 that, when applied to a predicate P : ℜ3 → 𝔅, returns tt if P is true everywhere
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let cvx3 (c : ℜ) (x y : ℜ3) : ℜ3 =
(x[0] + c * (y[0] - x[0]), x[1] + c * (y[1] - x[1]), x[2] + c * (y[2] - x[2]));;

let triangle (x y z : ℜ3) : KShape (ℜ3) =
compact_union {ℜ} unit_interval {ℜ3} (λ a : ℜ⇒
compact_union {ℜ} unit_interval {ℜ3} (λ b : ℜ⇒ point {ℜ3} (cvx3 a x (cvx3 b y z))));;

let cone_mesh : KShape (ℜ3) =
triangle (-5.31758e-17,1.0,-6.14666e-16) (-0.707107,0.707107,-7.11643e-16)

(-1.2909e-16,0.0,1.0) `union3`
! ... 14 more triangles
triangle (0.0,0.0,-2.39314e-16) (-0.707107,-0.707107,-7.11643e-16)

(-1.0,0.0,-7.51812e-16);;

Fig. 3. A MarshallB K-shape representing the surface of a low-precision mesh generated for a cone.

in the shape and ff if P is false somewhere in the shape. For example, the unit interval on ℜ has
the compact representation given by the following code:
let unit_interval : KShape ℜ = λ P : ℜ→ 𝔅 ⇒
mkbool (forall_unit_interval (λ x : ℜ⇒ is_true (P x)))

(exists_unit_interval (λ x : ℜ⇒ is_false (P x)));;

This code creates a Belnap boolean (Section 3.4) via mkbool using two predicates: one that verifies
P to be true on the unit interval and one that computes if P is false on the unit interval. The Belnap
boolean value evaluates to tt or ff depending on validity of each of its predicates, respectively.
Both forall_unit_interval and exists_unit_interval are primitive quantifiers on ℜ made
available by MarshallB and are naturally computable in MarshallB’s semantics.

Simple Shapes. Building on unit_interval, StoneWorks additionally defines the simple shapes
used in the code to define the cone. For example, StoneWorks’s map operation enables any contin-
uous transformation to be applied to a shape, such as translation, rotation, and scaling. In concert
with unit_interval, StoneWorks can therefore provide a unit circle, defined as follows:
let unit_circle : KShape (ℜ2) =
map {ℜ} {ℜ2}
(λ t : ℜ⇒ let theta = twopi * t in (cos theta, sin theta))
unit_interval;;

StoneWorks’s compact_union operation computes the union of a family of K-shapes that varies
over points defined by another K-shape. In combination with unit_interval and unit_circle,
StoneWorks can therefore provide a unit disk:
let unit_disk : KShape (ℜ2) =

compact_union {ℜ} unit_interval {ℜ2} (λ r : ℜ⇒ (scale r unit_circle));;

Generally, K-shapes form a monad representing nondeterminism (similar to the list monad), with
the operations point and compact_union representing return and bind.

Cone. Using the these simple shapes, we can now build the cone. To build the base of the
cone, the code simply maps the unit disk in ℜ2 to ℜ3. To build the top, the code leverages com-
pact_union to union scaled and translated unit circles across the full height of the code. Finally,
to assemble the full cone, the code uses StoneWorks’s union3 operator to union together the base
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expression e ::= x | q

| (e1 , . . . , en) | e[k]

| λ x : t ⇒ e | e e

type t ::= ℜ | Σ | t * . . . * t | t → t

variable x
rational q

natural number k

Γ ⊢ q : ℜ Γ ⊢ e1 : t1 . . . Γ ⊢ en : tn

Γ ⊢ (e1, . . . , en) : t1 * . . . * tn

Γ ⊢ e : t1 * . . . * tn

Γ ⊢ e[k] : tk

Γ,x : t1 ⊢ e : t2
Γ ⊢ λ x : t1 ⇒ e : t1 → t2

Γ ⊢ e1 : tA → tB Γ ⊢ e2 : tA

Γ ⊢ e1 e2 : tB

Fig. 4. Left : Core syntax of MarshallB. Right : MarshallB typing rules.

and the top. StoneWorks’s set operations, such as union, intersection, and relative complement al-
low the construction of composite shapes from simpler ones. This final step of modeling shapes
using set operations is known as Constructive Solid Geometry (CSG) [Requicha and Voelker 1977].

Mesh. Constructing the mesh uses the same set of operations as constructing the cone (Fig. 3).
The code constructs 16 triangles using compact_union and unions them together using union3.

2.2 Analysis
Upon constructing a shape, a developer oftenwants to analyze a shape in someway, for instance, to
produce a rendering ormake ameasurement. In this example, wewant to ensure that theHausdorff
distance between the ideal cone and its mesh is not too large.

The Hausdorff distance between two shapes is the maximum distance between a point on one
shape and the closest point to it on the other shape. Using StoneWorks’s hausdorff_dist opera-
tion we can define their Hausdorff distance by (where d_R3 : ℜ3 → ℜ3 → ℜ)
let dist_between_cones = hausdorff_dist d_R3 cone cone_mesh

Note that dist_between_cones performs minimax optimization over uncountable infinitudes of
real numbers, ranging over the points in each shape. This computational feat is possible because
the two shapes are compact and the distance function, d_R3, between them is continuous, as all
MarshallB functions are. Moreover, StoneWorks enables dist_between_cones to be evaluated to
arbitrary precision. For example, we can compute that dist_between_cones is between 0.07 and
0.10.2 Analytically, the Hausdorff distance between the two shapes is roughly (up to the floating-
point discrepancies on the order of 10−16) 1 − cos

(

π

8

)

≈ 0.076.

2.3 Summary
StoneWorks’s construction on MarshallB – with continuity as a fundamental requirement of all
programs – enables one to soundly and robustly construct a variety of shapes as well as reason
about their composition. Over the next several sections, we present MarshallB, StoneWorks’s two
shape representations, and the constructions and analyses that StoneWorks exports.

3 SYNTAX AND TOPOLOGICAL SEMANTICS OF MARSHALLB
Fig. 4 presents MarshallB’s core syntax and typing rules. MarshallB is an extension of System F
with the primitive types ℜ, Σ, and n-ary products. MarshallB also includes the primitive built-
in constants shown in Fig. 5. Though not presented, MarshallB includes syntactic sugar for let
expressions (that elaborate to lambdas) and top-level definitions, such as those of Coq or OCaml.
2 Using a 3.1 GHz Core i7 (I7-7920HQ) CPU, dist_between_cones < 0.1 returns ⊤ in 30 minutes, using 155 MB memory,
and dist_between_cones > 0.07 returns ⊤ in 36 minutes, using 398 MB memory.
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⊤, ⊥ : Σ
(<) : ℜ→ℜ→ Σ
(∧), (∨) : Σ → Σ → Σ
(+), (-), (*), (/) : ℜ→ℜ→ℜ
sin : ℜ→ℜ

dedekind_cut : (ℜ→ Σ * Σ) →ℜ
forall_unit_interval : (ℜ→ Σ) → Σ
exists_unit_interval : (ℜ→ Σ) → Σ
exists_real : (ℜ→ Σ) → Σ
integrate_unit_interval : (ℜ→ℜ) →ℜ

Fig. 5. MarshallB constants and their types. Infix operators are surrounded by parentheses.

In this section, we ground MarshallB’s semantics in topology, on which we then build abstrac-
tions for real-valued arithmetic, logical operations, dedekind cuts, quantifiers, and integration.
MarshallB also includes sin and other operators; however we omit their definitions due to space.

3.1 Denotational Semantics
The simply-typed lambda calculus can be interpreted into any cartesian closed category. We in-
terpret MarshallB into the category of presheaves over second-countable locally-compact sober topo-
logical spaces and continuous maps, and thus interpret the primitive types as objects and primitive
terms as arrows in this category.
Definition 3.1. A second-countable locally-compact sober space E is a tuple (K ,O,⊑,V ):3

• a countable poset K called a compact basis
• a countable set O called an open sub-basis
• a relation ⊑ ⊆ K ×O , called a containment relation, that is upward-closed with respect to the
K argument, i.e., if k ⊑ o and k ≤ k ′, then k ′ ⊑ o.

• a predicate V ⊆ P(O) on the powerset of the open basis, called a validity predicate.
For instance, MarshallB has a type ℜ that denotes a locally-compact sober space ⟦ℜ⟧ (but we
hereafter drop the brackets) whose points contains the reals (R) as well as other exotic elements.
Compact Basis. The compact basis (or K-basis) of a space E—denoted by K(E)—is the space’s set

of primitive representations. For example, the compact basis of ℜ is the set of symbolic intervals
K(ℜ) ≜ {[x ,x ] | x ∈ {−∞}∪Q,x ∈ Q∪{∞}}, partially ordered by reverse inclusion, [x ,x ] ≤ [y,y]

if x ≤ y and y ≤ x . These represent partial information about a real number: the first component
represents a rational lower bound (with −∞ being a vacuous bound) and the second an upper
bound (with ∞ vacuous).

Open Sub-basis. The open sub-basis, which we refer to by O(E), represents the fundamentally
observable properties of a space. The open sub-basis for ℜ is O(ℜ) ≜ {· < q | q ∈ Q} ∪ {q < · |
q ∈ Q}, the predicates describing being smaller or larger than some rational number.

Containment Relation. The containment relation k ⊑ o describes when the partial information
described by k implies the observable property described by o. For ℜ, q < [x ,x ] (as shorthand for
[x ,x ] ⊑ q < ·) holds when q < x , and [x ,x ] < q holds when x < q.

Validity Predicate. A validity predicate, V (E), allows us to take subspaces of a larger space, E.
For ℜ, we take the whole space with V (ℜ) ≜ ⊤ because the additional elements (in comparison
to R) are frequently useful. For instance, 1 / 0 returns the constant stream [−∞,∞]. In general,
all ground types in MarshallB have a validity predicate of ⊤.
Points. The points of a space E are monotone sequences of K-basis elements, N → K(E) that

satisfy the validity predicate V (E) in that a sequence x : N → K(E) is said to lie in a basic open
P ∈ O(E), written x |= P if there is some n ∈ N such that xn ⊑ P . Moreover, the sequence x must
satisfy V (E), specifically {P ∈ O(E) | x |= P} ∈ V (E). For example, the sequence that MarshallB
returns for sin pi (Section 1.2) is a point that represents 0.
3Our definition of spaces differs from standard treatments and we feel that it may be helpful to point to other notions that
motivated it, including [Taylor 2006], [Taylor 2019, Theorem 6.12], and [Vickers 1989, Chapter 9].
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Sub-basic opens are positively observable in the sense that if a point lies in a sub-basic open, we
can tell by looking at a finite prefix of the point’s sequence, but the converse does not necessarily
hold. Given points x ,y : N → EK , we say that y specializes x if every sub-basic open that x lies
in, y lies in as well. Two points are considered equal when they lie in exactly the same sub-basic
opens. That is, a point is uniquely determined by the basic opens it lies in. For instance, xn = [0, 0]
and yn = [0, 1/n] are equal points of ℜ in that they both represent 0.
Continuous Maps. A continuous map f : E →c F (we use the arrow →c to distinguish from

regular functions) is a monotone function (where N is given the standard numerical ordering)
K(f ) : N × K(E) → K(F ) (but we will hereafter conflate f with K(f )), which when applied to
points according to (f (x))n ≜ K(f )n(xn),must map points of E to points of F , and moreover must
map equal points of E to equal points of F . Two continuous maps are considered equal if they map
input points to the same output points.

For example, a simple continuous map is negation, (−) : ℜ →c ℜ, which has the definition
(−)n([x ,x ]) ≜ [−x ,x ]. Intuitively, a continuous map is a stream transformer that produces finite
approximations of the output given only finite approximations of the input: this is the essence of
continuity. A continuous map’s monotonicity means that given more information about inputs
and more time, functions must provide more information about outputs.
Product Spaces. There is a space ∗ with a single point: its compact basis K(∗) has one element

and its open sub-basis O(∗) is empty. Points of E are isomorphic to continuous maps ∗ →c E.
Finite products of ground types correspond to finite products of spaces with the product topol-

ogy.The compact basis for the product space is the product of the spaces’ compact bases. The open
sub-basis for the product is the product of the open sub-bases.
Subspaces. As mentioned, ℜ contains more than the standard reals R. However, we can define

subspaces of a given space by defining additional properties that we require points of the space
to satisfy. This is accomplished by specifying a nontrivial validity predicate that restricts which
sequences of compact basis elements are valid points. For example, we can reason about subspaces
of ℜ, such as R itself, R along with −∞ and ∞, and closed intervals of R. The definitions of these
subspaces result from validity predicates that compose the following properties of a point x : ℜ.

(1) (Boundedness) There exist ℓ,u ∈ Q such that ℓ < x and x < u

(2) (Disjointness) There is no q ∈ Q such that both x < q and q < x .
(3) (Locatedness) For any ℓ,u ∈ Q such that ℓ < u, either ℓ < x or x < u.

With these properties, we can then define these subspaces as follows:
• R: bounded, disjoint, and located points.
• R (R along with −∞ and ∞): disjoint and located points.
• IR (closed intervals of real numbers [a,b]): bounded and disjoint points.

The topology on each of these spaces is the subspace topology inherited from ℜ. Though these
subspaces at not types within MarshallB, we refer to them later on in this paper.
Higher-order Functions. The Yoneda embedding lifts spaces into presheaves, and is full and faith-

ful, and preserves products and exponentials when they exist. Accordingly, ground types denote
spaces, and first-order functions denote continuous maps.

One need not think about presheaves until working with higher-order functions. Each higher-
order primitive has a type (A → B) → C where A, B, and C are spaces (i.e., representable). A
term of that type is thus equivalent to a function that takes continuous maps Γ × A →c B to
maps Γ →c C, for any representable Γ. In turn, this is just a map of stream transformers, from
N × K(Γ) × K(A) → K(B) to N × K(Γ) → K(C). A special case of such a map is one whose
K(C)-valued result on input (n,γ ) always applies its input argument of type N × K(Γ) × K(A) to
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⟦+⟧n([x ,x ], [y,y]) = [x + y,x + y] ⟦-⟧n([x ,x ]) = [−x ,−x ]
⟦*⟧n([x ,x ], [y,y]) = Kaucher([x ,x ], [y,y])

Fig. 6. Semantics of arithmetic on ℜ. Bauer and Taylor [2009, Section 12] define Kaucher multiplication.

⟦⊤⟧n = True

⟦⊥⟧n = ?

⟦<⟧n([x ,x ], [y,y]) =

{

True x < y

? otherwise

⟦∧⟧n(x ,y) =
{

True x = True and y = True

? otherwise

⟦∨⟧n(x ,y) =
{

True x = True or y = True

? otherwise

Fig. 7. MarshallB semantics of primitives on Σ.

the same (n,γ ), and otherwise does not use its K(Γ) argument, thus being equivalent to a map
N × (K(A) → K(B)) → K(C).

3.2 Operational Semantics
The semantics as presheaves over spaces can be interpreted operationally (along the lines of, e.g.,
[Elliott 2017]). All the operations in constructing presheaves and describing spaces and continuous
maps are fundamentally constructive. MarshallB only allows evaluation of closed terms whose
types are representable, and accordingly, the categorical semantics of such a term is a point of the
space represented by that type.

Operationally, a point is represented by a monotone sequence of K-basis elements. MarshallB
computes this sequence, printing each K-basis element in sequence as it is computed. MarshallB
computes ever finer estimates of the result, until the user is satisfied with a given approximation.
(Operationally, continuous maps in MarshallB are simply executable stream transformers.) These
operational semantics are computationally sound in that a computed sequence is a member of the
equivalence class defining the point described by the program.

Note that these operational semantics of MarshallB that we present are only a simple pedagogi-
cal model for understanding the language’s computational interfaces and computability; the actual
runtime of MarshallB is more efficient than these operational semantics suggest. Bauer [2008] sum-
marizes the runtime of Marshall, the language upon which MarshallB is based.

3.3 Real Arithmetic
Fig. 6 presents the semantics of standard arithmetic operators on ℜ, such as negation, addition,
and multiplication. As noted in Section 3.1 the K-basis for ℜ is the set of intervalsK(ℜ) ≜ {[x ,x ] |
x ∈ {−∞}∪Q,x ∈ Q∪{∞}}. Therefore, arithmetic primitives perform rational interval arithmetic,
propagating lower and upper bounds.

3.4 Logical Operations
Fig. 7 presents the semantics of primitives on Σ, the space of truth values called the Sierpiński space.
The Sierpiński space allows us to represent a logical predicateU on a space E as an open subset of
E (i.e.,U ⊆ E) and therefore as a continuous map χU : E → Σ that classifies which points lie in U .
For example, the MarshallB expression let i : ℜ → Σ = λ x : ℜ ⇒ 0 < x describes the
open subset of ℜ corresponding to the interval (0,∞).
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An open subset or – open – is a predicate U ⊆ E on points such that there is a corresponding
predicate UK ⊆ K(E). The relationship between the two predicates is that U (x) holds if and only
if ∃n ∈ N. UK (xn). This relationship denotes that if a subset is open then it is possible to confirm
that its predicate holds of a point by inspecting a finite approximation of that point, xn .

This relationship does not entail that it is also possible to refute that an open holds of a point
with a finite approximation. Therefore, an open – given by its corresponding continuous map – is
positively observable: it is akin to a semidecision procedure that terminates on points in the open
and diverges for points in its closed complement.

The Sierpiński space’s K-basis is the partial order {?, True}, where ? ≤ True. It has a single basic
open which holds of True but not ?. It has two points: ⊤, which is any stream that is eventually
True, and ⊥, which is the stream that is always ?.

Given an open U of E defined by a predicate UK on the K-basis of E, the continuous map χU :
E →c Σ that maps points inU to ⊤ and points in E \U to ⊥ by

(χU )n(k) ≜

{

True UK (k)

? otherwise

MarshallB’s comparison operator, < : ℜ × ℜ →c Σ, instantiates this pattern on ℜ2 (Fig. 7),
thereby providing comparison as a logical predicate in the language.

Continuous Logic. MarshallB also provides conjunctions and disjunctions of predicates. For ex-
ample, the continuous map ∧ : Σ × Σ →c Σ conjoins predicates and demonstrates that opens are
closed under intersection. For instance, the MarshallB expression let i : ℜ → Σ = λ x : ℜ⇒ 0 < x ∧ x < 1 describes the open subset of ℜ corresponding to the open interval (0, 1).

The continuous map ∨ : Σ×Σ →c Σ provides the disjunction of predicates and demonstrates that
opens are also closed under union. In general, opens are also closed under infinitary disjunction
(union): given continuous maps fi : E → Σ for i ∈ I , where I is some indexing set, their union is

(

∨

i :I

fi

)

n

(x) ≜

{

True ∃i ∈ I . fi n(x) = True

? otherwise

In sum, opens are analogous to semidecidable languages: they are closed under finitary inter-
section and arbitrary union. However, just as with semidecidable languages, opens are not closed
under complementation. Therefore, Σ does not admit negation. Instead to provide extended logical
reasoning, MarshallB’s provides a quasi-boolean algebra based on the Belnap Booleans.

Belnap Booleans. Fig. 8 defines MarshallB’s 𝔅, the Belnap Booleans, and their corresponding
logical operations, including negation. The Belnap Booleans form a quasi-Boolean algebra [Sher-
man et al. 2018] with corresponding logical operations. A Belnap Boolean is a pair of Σ values,
denoted by mkbool t f, the first (t) indicating truth and the second (f) indicating falsity. Almost
all of the laws that Boolean algebras satisfy also apply to these Boolean operators on 𝔅, with the
exception that they do not necessarily satisfy the laws x ∨ ¬x = ⊤ and x ∧ ¬x = ⊥. For example,
we have the counterexamples

mkbool ⊥ ⊥ || ¬ (mkbool ⊥ ⊥) = mkbool ⊥ ⊥ , tt

mkbool ⊤ ⊤ && ¬ (mkbool ⊤ ⊤) = mkbool ⊤ ⊤ , ff.

Additionally, we can identify a few useful subspaces of 𝔅 = Σ × Σ:

B⊥ ≜ {x ∈ 𝔅 | is_true x ∧ is_false x = ⊥}
B ≜ {x ∈ B⊥ | is_true x ∨ is_false x = ⊤}
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type 𝔅 = Σ * Σ;;
let mkbool (t f : Σ) : 𝔅 = (t, f);;
let is_true (x : 𝔅) = x[0];;
let is_false (x : 𝔅) = x[1];;

let (&&) (x y : 𝔅) : 𝔅 = mkbool (is_true x ∧ is_true y)
(is_false x ∨ is_false y);;

let (||) (x y : 𝔅) : 𝔅 = mkbool (is_true x ∨ is_true y)
(is_false x ∧ is_false y);;

let ¬ (x : 𝔅) : 𝔅 = mkbool (is_false x) (is_true x);;
let (<b) (x y : ℜ) : 𝔅 = mkbool (x < y) (y < x);;
let tt : 𝔅 = mkbool ⊤ ⊥;;
let ff : 𝔅 = mkbool ⊥ ⊤;;

Fig. 8. Definition of the Belnap Booleans and their operations in MarshallB.

⟦dedekind_cut⟧n(f ) = locate(boundn(1, f ), f )

bound0(b, f ) = (0, ([−∞,∞])

boundn+1(b, f ) =

{

(n, [−b,b]) π1(f ([−b,−b])) = True and π2(f ([b,b])) = True

boundn(2b, f ) otherwise

locate((0, [ℓ,u]), f ) = [ℓ,u]

locate((n + 1, [ℓ,u]), f ) = locate((n, [ℓ′,u ′]), f ) where

a =
2

3
ℓ +

1

3
u b =

1

3
ℓ +

2

3
u

ℓ
′ =

{

a π1(f ([a,a])) = True

ℓ π1(f ([a,a])) = ?
u ′ =

{

b π2(f ([b,b])) = True

u π2(f ([b,b])) = ?

Fig. 9. MarshallB semantics of Dedekind cuts.

The Booleans B represents the familiar discrete space with two points, while the space B⊥ has
a third point mkbool ⊥ ⊥, which allows partiality. All of the Boolean operators in Fig 8 can be
restricted to any of these spaces, e.g., the || of two points from B⊥ yields a point of B⊥.

One reason that we usually use 𝔅 rather than B is that there are few continuous maps to B:
there are no non-constant continuous maps into B from connected spaces, which include Rn and
Σ. The map <b : ℜ2 → 𝔅 for comparing two real numbers restricts to a map R2 →c B⊥, and
classifies whether a real number is smaller or larger than another, diverging only if they are equal.

3.5 Dedekind Cut
Fig. 9 presents the semantics of the primitive dedekind_cut, which describes a real number by a
Dedekind cut f : ℜ → Σ * Σ, where f(x)[0] and f(x)[1] indicates whether the number is
bigger or smaller than x, respectively. The primitive dedekind_cut equivalently has the type (ℜ→ 𝔅) → ℜ and satisfies the identity q <b dedekind_cut P = P q, meaning that to describe
a real number x with a Dedekind cut, we give a B⊥-valued predicate that indicates whether any
test value q ∈ R is less than x .
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let sqrt (x : ℜ) : ℜ = dedekind_cut (λ q : ℜ⇒ q <b 0 || q2 < x);;

n 2 sqrt 2 1 sqrt 2 + 1

0 [2, 2] [−∞,∞] [1, 1] [−∞,∞]
1 [2, 2] [−∞,∞] [1, 1] [−∞,∞]
2 [2, 2] [−2, 2] [1, 1] [−1, 3]
3 [2, 2] [−2/3, 2] [1, 1] [1/3, 3]
4 [2, 2] [2/9, 2] [1, 1] [11/9, 3]
5 [2, 2] [22/27, 2] [1, 1] [49/27, 3]
6 [2, 2] [98/81, 130/81] [1, 1] [179/81, 211/81]

Fig. 10. Operational semantics of a program to compute
√
2+ 1. Boolean operations are described in Fig. 8.

⟦forall_unit_interval⟧n(f ) =

{

True ∀i ∈ {0, . . . , 2n − 1}. f ([i/2n , (i + 1)/2n ]) = True

? otherwise

⟦exists_unit_interval⟧n(f ) =

{

True ∃i ∈ {0, . . . , 2n − 1}. f ([i + 0.5)/2n , (i + 0.5)/2n ]) = True

? otherwise

⟦exists_real⟧n(f ) =

{

True ∃i ∈ {0, . . . , 22n }. f ([−2n + i/2n ,−2n + i/2n ]) = True

? otherwise

Fig. 11. MarshallB semantics of quantifiers.

Fig. 10 illustrates the operational semantics of a program to compute
√
2 + 1; the program uses

dedekind_cut to specify the value of
√
2. Dedekind cuts compute by first attempting to find some

bound on the size of the number, by trying numbers of larger and larger magnitude until the
predicate eventually says that it is smaller than the very positive number and larger than the very
negative one. At step n = 2 in Fig. 10, the Dedekind cut for sqrt successfully bounds

√
2 to within

[−2, 2], thus bounding the overall result.
Upon bounding the number within some interval, the primitive proceeds to locate the number

either in the lower two thirds of the interval or the upper two thirds of the interval. After n = 2,
each successive step in evaluation runs locate to refine the interval in which

√
2 lies. Evaluation

proceeds for n > 6 (not shown in the Figure) by producing finer and finer approximations of
√
2.

Note that the more standard procedure of bisection could fail if the cut specifies a rational number
exactly in the middle the interval, because the predicate would never recognize that test point as
being either smaller or larger than the true value; this is why we use overlapping regions.

3.6 Quantifiers
Fig. 11 presents the semantics of quantifiers. The primitive forall_unit_interval and the prim-
itive exists_unit_interval take a predicate P : ℜ → Σ on real numbers and indicate whether
(or not) P holds everywhere on the unit interval [0, 1] ⊆ R or somewhere on [0,1], respectively.The
primitive exists_real indicates whether a predicate holds for some real number. The universal
quantifier forall_unit_interval iteratively partitions the unit interval into ever finer partitions,
evaluating the predicate on these increasingly fine intervals. Its adequacy—in that whenever it is
applied to any predicate P such that ∀x ∈ [0, 1]. P(x) = ⊤, it eventually returns True—is a con-
sequence of the fact that the unit interval on R is topologically compact. Existential quantifiers
enumerate a dense collection of rational numbers, and return True when they encounter some
rational number for which the approximated result is True.
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⟦integrate_unit_interval⟧n(f ) =
2n−1
∑

i=0

f ([i/2n , (i + 1)/2n ]) (sum using interval arithmetic)

Fig. 12. MarshallB semantics of integration.

3.7 Integration
Fig. 12 presents the semantics of integration. The primitive integrate_unit_interval specifies
the Riemannian integral of a function f : ℜ → ℜ over the unit interval [0,1]. Integration
proceeds by partitioning the unit interval into ever finer partitions, approximating the integrand
with rational interval-valued functions that are constant on each partition, whose interval-valued
integrals can be found by simple finite sums. The integrals of these interval approximations will
eventually converge as partitions are made finer.

4 STONEWORKS’S SOUND AND ROBUST REPRESENTATIONS
With MarshallB as its base, StoneWorks exposes and supports two alternative representations:
Open representation (O-rep), which Edalat and Lieutier [2002] defines as the solid domain, is a
canonicalization of function representation (F-rep). Compact representation (K-rep) is a novel rep-
resentation in which a shape’s representation is a functional that computes whether a predicate
holds everywhere or somewhere within a shape. K-rep enables StoneWorks to implement and
expose a variety of useful analyses that are not possible to expose for O-rep (or F-rep).

Open Representation. Open representation (O-rep) is a simplification of function representation
(F-rep), a well-known shape representation for solid modeling. The F-rep of a shape S ⊆ E is a
function f : E → R such that f (x) > 0 if x is in the interior of s , f (x) < 0 if x is in the exterior
of s , and f (x) = 0 if x is on the boundary of s . F-rep is a natural specification for implicit surfaces:
shapes that are specified by a mathematical equation whose zeros denote the shape’s boundary. In
contrast to B-rep (Section 1.1), F-rep can be used to implement sound and robust operations.

The O-rep of a shape S is the unique function o : E → B⊥ such that o(x) = tt if x is in the
interior of s , o(x) = ff if x is in the exterior of s , and o(x) = ⊥B if x is on the boundary of s . The
topology on B⊥ ensures that this function o is continuous for any shape S .

O-rep is a quotient of F-rep, ensuring canonicity. However, all O-rep constructions and analyses
that we present could just have well been done with continuous function representations.

Compact Representation. Our compact repesentation, or K-rep (K for compact), is an entirely new
representation for shapes that describes a shape S by its universal quantification functional k :
(E → B⊥) → B⊥: for any (continuous) predicate P : E → B⊥ on points in the space E, k(P) is tt
if P is tt everywhere in S , q(P) is ff if P is ff somewhere in S , and ⊥B otherwise.

K-rep enables the representation of shapes that are not representable in O-rep (and thus also
F-rep), such as 2-dimensional shapes within 3-dimensional space. It also enables the computation
of properties that are not generally possible with O-rep (or F-rep), including volume, Hausdorff
distance, separation distance (infimum of closest points between two shapes), and nonemptiness 4.

Summary. Over the next several sections we detail StoneWorks’s constructions and analyses
for O-rep (Section 5), K-rep (Section 6), and OK-shapes, a shape with both an O-rep and K-rep
(Section 7). OK-shapes admits analyses, such as volume, that are not available for a shape with
only a single representation in isolation.
4Some of these properties can be computed with O-rep shapes given a priori knowledge that the shapes are within some
compact space. We will later show that we can generate a K-representation from an O-representation when this is the case.
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type OShape E = E → 𝔅
! Constructions
unit_interval_o : OShape ℜ
unit_disk_o, unit_square_o : OShape (ℜ2)
rectangle_o (width height : ℜ) : OShape (ℜ2)
product_o E F : OShape E → OShape F → OShape (E * F)
empty_o, full_o : (E : type) → OShape E
union_o, intersection_o : (E : type) → OShape E → OShape E → OShape E
complement_o E : OShape E → OShape E
contramap E F : (F → E) → OShape E → OShape F
translate_o_R2 (trans : ℜ2) : OShape (ℜ2) → OShape (ℜ2)
! Analyses
is_in E : E → OShape E → 𝔅
nonempty E (exists_E : (E → Σ) → Σ) : OShape E → Σ

Fig. 13. A module for open representation in MarshallB.

5 OPEN REPRESENTATION (O-REP)
Fig. 13 summarizes StoneWorks’s definition of an O-shape (a shape given by its O-rep) and its
associated constructions and analyses. Edalat and Lieutier [2002] defined O-rep and named such
shapes “partial solids.” We view this representation as important for programming with shapes
within StoneWorks, particularly due to its fundamental interplay with compact representation.

In this section, we give synthetic versions of the many of Edalat and Lieutier [2002]’s results, in
that we provide programs that witness the computability and continuity of their corresponding
operation. This stands in contrast to Edalat and Lieutier [2002], who instead give semantic defini-
tions of operations – without programs – and then provide proofs of computability and continuity
(for particular semantic models).

5.1 Definition
First, we define some topological properties of shapes. Because opens admit arbitrary unions, for
any property, there is a largest open subset satisfying that property. Given a subset S ⊆ E, its
interior int (S) is the largest open set of E contained in S , its exterior ext (S) is the interior of the
complement of S , and its closure S is the complement of the exterior of S . For instance, consider
the half-open interval [0, 1) ⊆ R. Its interior is (0, 1), its exterior is {x ∈ R | x < 0 ∨ x > 1}, and
its closure is [0, 1].

Definition 5.1. An O-shape is a continuous map E →c B⊥.

That is, an O-shape o : E →c B⊥ is a partial map to the Booleans that indicates the shape’s
interior, which are the points x of E such that o(x) = tt , and its exterior, which are those points
x that are mapped to ff . The map o diverges on points on the shape’s boundary.

Definition 5.2. If an O-shape o satisfies {x : E | o(x) = tt } = int (O) and {x : E | o(x) = ff } =
ext (O), then o is the open representation of O . Any O-shape o′ specialized by o (classifying as tt
or ff smaller areas in comparison to o) is called a weak open representation of O .

A shape has exactly one open representation, but may have many weak open representations.
A weak open representation ofO may classify some points in the interior or exterior ofO with ⊥,
rather than a Boolean value. But if a weak open representation classifies a point as either tt or ff ,
then that classification correctly indicates the point is the in interior or exterior, respectively.
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Two shapes have the same O-representation if their interiors and exteriors are the same. For
instance, both Q and R \Q, as shapes in R, have the same O-representation λ x : ℜ ⇒ mkbool⊥ ⊥, since they both have empty interior and exterior.

5.2 Constructions
StoneWorks provides the unit interval, which is constructed in MarshallB as follows:
let unit_interval_o : ℜ→ 𝔅 = λ x : ℜ⇒ 0 <b x && x <b 1;;

Note that both the open unit interval (0, 1) (as immediately seen above) and the closed unit interval
[0, 1] share the same O-rep and therefore this definition at once defines both intervals.

StoneWorks’s unit disk {(x ,y) : R2 | x2 + y
2 ≤ 1} has an equally declarative implementation:

let unit_disk : ℜ2 → 𝔅 = λ x : ℜ2 ⇒ x[0]2 + x[1]2 <b 1;;

StoneWorks supports Cartesian products of O-shapes, for instance enabling a user to easily
specify the unit square as the product of two intervals:
let product_o E F (oE : OShape E) (oF : OShape F) : OShape (E * F) =
λ x : E * F ⇒ oE x[0] && oF x[1];;

let unit_square : OShape (ℜ2) = product {ℜ} {ℜ} unit_interval_o unit_interval_o;;

5.2.1 Constructive Solid Geometry (CSG) Operations. TheBoolean operations on 𝔅 can be applied
pointwise to yield Boolean operations on O-shapes, giving rise to the constructive solid geometry
(CSG) operations of union, intersection, and complementation.
let union_o E (o1 o2 : OShape E) : OShape E = λ x : E ⇒ o1 x || o2 x;;
let intersection_o E (o1 o2 : OShape E) : OShape E = λ x : E ⇒ o1 x && o2 x;;
let complement_o E (o : OShape E) : OShape E = λ x : E ⇒ ¬ (o x);;

These Boolean operations are onlymeaningful to the extent that they satisfy expected properties
of Boolean operations. In general, O-shapes do not form a Boolean algebra: instead, the quasi-
Boolean algebra structure of 𝔅 (described in §3.4) lifts to a quasi-Boolean algebra on O-shapes.
Since the Boolean operations only form a quasi-Boolean algebra for O-shapes, rather than the
Boolean algebra that they form (classically) for shapes, the Boolean operations on O-shapes do not
necessarily preserve open representation. One law that quasi-Boolean algebras miss that Boolean
algebras have is the law x ∨ ¬x = ⊤, and this may indeed be violated for O-shapes. For instance,
while the union of Q and R \ Q is the entire space R, the union of their O-representations, both λ
x : ℜ ⇒ mkbool ⊥ ⊥, is still λ x : ℜ ⇒ mkbool ⊥ ⊥, while the O-representation of R is λ
x : ℜ ⇒ tt. While open representations are not preserved, weak open representations are:

Pॸॵॶॵॹiॺiॵॴ 5.3. Boolean operations on O-shapes preserve weak open representation. E.g., if a
and b are weak open representations of A and B, respectively, then union_o a b is a weak open
representation of A ∪ B.

Pॸॵॵf ॹkeॺch. We prove the case of union described above. Other cases are similar, or easier.
We must show that if is_true (a x || b x), then x ∈ int (A ∪ B), and if is_false (a x ||
b x), then x ∈ ext (A ∪ B). If is_true (a x || b x), then either is_true (a x) or is_true
(b x). Suppose the former case, w.l.o.g, and thus we know x ∈ int (A), and thus x ∈ int (A ∪ B).
If is_false (a x || b x), then is_false (a x) and is_false (b x), so x ∈ ext (A) and
x ∈ ext (B), and thus x ∈ ext (A ∪ B). □
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This weaker statement tells us that CSG operations will always yield O-shapes that, when they
classify a point x as tt or ff , soundly indicate that the result of applying CSG operations on
the underlying shapes also yields a shape such that x is in the interior or exterior, respectively.
However, the O-shape may diverge on a point that is not on the boundary of the underlying shape.
For instance, the intervals [0, 1] and [1, 2] are represented by the O-shapes λ x : ℜ ⇒ 0 <b x
&& x <b 1 and λ x : ℜ ⇒ 1 <b x && x <b 2. While their union is [0, 2], and 1 ∈ int ([0, 2]),
the union of their O-representations is
λ x : ℜ⇒ (0 <b x && x <b 1) || (1 <b x && x <b 2)

which classifies 1 as mkbool ⊥ ⊥ rather than tt.

5.2.2 Closure Under (Continuous) Inverse Images. Since E 7→ E → 𝔅 is a contravariant func-
tor [Edalat and Lieutier 2002] , we can take the preimage of any o-shape under a continuous map:
let contramap E F (f : F → E) (o : OShape E) : OShape F = λ x : F ⇒ o (f x);;

In particular, we can compute the image of any O-shape under a homeomorphism, since home-
omorphisms have continuous inverses. Therefore, we can compute the image of O-shapes under
translation and scaling by a nonzero factor, and for instance can create a rectangle from a square.
let translate_o_R2 (trans : ℜ2) (o : OShape (ℜ2)) : OShape (ℜ2) =
contramap {ℜ2} {ℜ2} (λ x : ℜ2 ⇒ (x[0] - trans[0], x[1] - trans[1])) o;;

let rectangle_o (width height : ℜ) : OShape (ℜ2) =
contramap {ℜ2} {ℜ2} (λ x : ℜ2 ⇒ (x[0] / width, x[1] / height)) unit_square;;

5.3 Analyses
As long as E is overt, meaning that it has an existential quantification functional of type (E → Σ)→ Σ (as Rn does), we can affirm whether an O-shape has nonempty interior:
let nonempty E (exists_E : (E → Σ) → Σ) (o : OShape E) : Σ =
exists_E (λ x : E ⇒ is_true (o x));;

By applying this operation after the Boolean operations, it is possible to affirm various properties,
such as if a shape has nonempty exterior, or if the intersection of two shapes has nonempty interior,
meaning that they overlap.

6 COMPACT REPRESENTATION (K-REP)
Fig. 14 summarizes StoneWorks’s definition of K-shapes (a shape with a K-rep) and its provision
of constructions and analyses for them. K-rep is our new shape representation that enables con-
structions and analyses not possible with O-rep (and thus also F-rep).

6.1 Definition
First, we define the topological notion of compactness: A subset K ⊆ E is compact if for any space
Γ and any openU ⊆ Γ × E, the subset ∀KU ≜ {γ ∈ Γ | ∀x ∈ X . (γ ,x) ∈ U } is open in Γ.

A shape’s compact representation is its B⊥-valued universal quantifier:
Definition 6.1. Let k : (E →c B⊥) →c B⊥ be a continuous map5 and let K be a shape in E. If for

all continuous maps p : E →c B⊥, k(p) = tt if and only if ∀x ∈ K . p(x) = tt , and k(p) = ff if
and only if ∃x ∈ K . p(x) = ff , then k is the compact representation of K . We call k a K-shape.
5 Here we let the→c arrow represent the generalized notion of continuous map determined by the category of presheaves
over spaces and continuous maps, so that higher-order functions are permissible. Equivalently, k is a function from maps
Γ × E →c B⊥ to Γ →c B⊥ for all Γ (natural in Γ).
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type KShape E = (E → 𝔅) → 𝔅
! Constructions
unit_interval : KShape ℜ
unit_square : KShape (ℜ2)
unit_disk : KShape (ℜ2)
point E (x : E) : KShape E
compact_union E (k : KShape E) F (f : E → KShape F) : KShape F
product E F : KShape E → KShape F → KShape (E * F)
empty E : KShape E
union E (k1 k2 : KShape E) : KShape
intersect, difference : (E : type) → KShape E → OShape E → KShape E
map E F : (E → F) → KShape E) → KShape F
bezier E (cvx_comb : ℜ→ E → E → E) (p0 p1 p2 : E) : KShape E
convex_hull E (cvx_comb : ℜ→ E → E → E) : KShape E → KShape E
minkowski_sum E (plus : E → E → E) (k1 k2 : KShape E) : KShape E
! Analyses
forall E : KShape E → (E → 𝔅) → 𝔅 ! synonym: is_contained_in
exists E : KShape E → (E → 𝔅) → 𝔅 ! synonym: touches
forall_s, exists_s : (E : type) → KShape E → (E → Σ) → Σ
is_empty E : KShape E → 𝔅
infimum, supremum : KShape ℜ→ℜ
disjoint E (neq : E → E → Σ) : KShape E → KShape E → Σ
kshape_neq E (neq : E → E → Σ) : KShape E → KShape E → Σ
separation_dist, hausdorff_dist : (E : type) → (E → E →ℜ) → KShape E → KShape E →ℜ

Fig. 14. A module for compact representation in MarshallB.

We use the MarshallB type type KShape E = (E → 𝔅) → 𝔅 for K-shapes. Just as ℜ strictly
contains R and 𝔅 strictly contains B, KShape E strictly contains the K-shapes of E. For instance,
λ P : E → 𝔅 ⇒ mkbool ⊥ ⊥ is not a K-shape, because there is no shape that it represents.

A K-shape is defined as its universal quantifier on B⊥. Its existential quantifier can be defined by
negation of the universal quantifier, owing to the fact that B⊥ behaves as a quasi-Boolean algebra:
let forall E (k : KShape E) (p : E → 𝔅) : 𝔅 = k p;;
let exists E (k : KShape E) (p : E → 𝔅) : 𝔅 = ¬ (k (λ x : E ⇒ ¬ (p x)));;

If we choose to think of the predicate P as an O-shape, then we can use is_contained_in and
touches as synonyms for forall and exists, respectively.

Theॵॸeॳ 6.2. Every shape in Rn that has a compact representation is closed and compact, and its
compact representation is unique, meaning that K-shapes in Rn are in bijection with closed, compact
subsets of Rn .

Pॸॵॵf. Rn is countably-based, locally compact, and sober,meaning that it is quasi-Polish. de Brecht
and Kawai [2017] prove the correspondence for quasi-Polish spaces. □

Given any Σ-valued predicate on a space E, a K-shape on E can return a Σ-valued predicate
indicating whether that predicate holds everywhere or somewhere on that shape:
let forall_s E (k : KShape E) (p : E → Σ) : Σ =
is_true (k (λ x : E ⇒ mkbool (p x) ⊥));;

let exists_s E (k : KShape E) (p : E → Σ) : Σ =
is_false (k (λ x : E ⇒ mkbool ⊥ (p x)));;
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In fact, a (valid) pair of these quantifiers is isomorphic to a (valid) K-shape; one constructs a K-shape
from these quantifiers with6

let from_quantifiers E (forall exists : (E → Σ) → Σ) : KShape E = λ P : E → 𝔅 ⇒
mkbool (forall (λ x : E ⇒ is_true (P x))) (exists (λ x : E ⇒ is_false (P x)));;

6.2 Constructions
We can construct the closed unit interval [0, 1] using logical language primitives:
let unit_interval : KShape ℜ = λ P : ℜ→ 𝔅 ⇒
mkbool (forall_unit_interval (λ x : ℜ⇒ is_true (P x)))

(exists_unit_interval (λ x : ℜ⇒ is_false (P x)));;

K-shapes form a (strong) monad and their monad operations are those inherited from the contin-
uation monad E 7→ (E → 𝔅) → 𝔅 of “generalized quantifiers” [Escardó and Oliva 2010]. It may
also be viewed as a nondeterminismmonad.This monad’s unit gives the K-shape for a single point:
let point E (x : E) : KShape E = λ P : E → 𝔅 ⇒ P x;;

Common intuition for compact sets is that they behave much like finite sets. The monad’s bind
operation witnesses one such instance: the union of compactly many compact sets is compact:
let compact_union E (k : KShape E) F (f : E → KShape F) : KShape F

= λ P : F → 𝔅 ⇒ forall {E} k (λ i : E ⇒ forall {F} (f i) P);;

We can use this to, for instance, construct a cone from disks that depend on a line segment, as seen
in §2. Having a (strong) monad means that we also get products of K-shapes:
let product E F (kE : KShape E) (kF : KShape F) : KShape (E * F) =
λ P : E * F → 𝔅 ⇒ forall {E} kE (λ x : E ⇒

forall {F} kF (λ y : F ⇒ P (x, y)));;

6.2.1 Constructive Solid Geometry (CSG) Operations. It is possible to compute disjunctive CSG
operations on K-shapes:
let empty E : KShape E = λ P : E → 𝔅 ⇒ tt;;
let union E (k1 k2 : KShape E) : KShape E =
λ P : E → 𝔅 ⇒ forall {E} k1 P && forall {E} k2 P;;

However, in general, it is not possible to compute the conjunctive operations. If the full space E
is representable as a K-shape, then E is compact (which is not the case for Rn ). If intersection (∩) is
possible on K-shapes in E, then E is discrete (also untrue of Rn ), meaning that there is a continuous
map (=) : E × E →c B classifying the diagonal:
let equal E (intersection : KShape E → KShape E → 𝔅) (x y : E) : 𝔅 =
¬ (is_empty (intersection (point x) (point y)));;

6 This isomorphic type is effectively a presentation of the Vietoris powerspace [Johnstone 1982]. Johnstone [1982] describes
the Vietoris construction for locales, which are a slightly modified notion of topological space. Translated closer to our
language, the Vietoris powerspace for a space E is characterized as the space of points (□, ♢) : (E → Σ) → Σ) × (E →
Σ) → Σ) (where all arrows here denote continuous maps), such that ♢ preserves arbitrary unions, □ preserves finitary
intersections and directed unions, and for all opens P and Q of E ,

□P ∧ ♢Q ≤ ♢(P ∧Q) and □(P ∨Q) ≤ □P ∨ ♢Q,

where the operators ∨, ∧ applied to opens E → Σ represent the pointwise lifting of those operators on the Sierpiński space,
andU ≤ V indicates that the openU is contained in the openV (whereU andV are represented as continuous maps into
Σ). The maps forall_s and exists_s correspond to □ and ♢ respectively.
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The is_empty function, explained in §6.3, always returns a value in B, and so the result is in B
as well. Hence, intersection is not possible for spaces E of interest (such as Rn ), which are not
discrete.

Nor are K-shapes closed under complementation, since, e.g., the complement of the empty space
is the full space, which is not a K-shape unless the full space is compact.

While it is impossible to compute the intersection of two K-shapes, one can intersect an O-shape
with a K-shape to produce a K-shape.
let intersect E (k : KShape E) (o : OShape E) : KShape E =
λ P : E → 𝔅 ⇒ forall {E} k (λ x : E ⇒ ¬ (o x) || P x);;

The inner predicate can also be read as the Boolean implication o x implies P x: we are only
required to satisfy P if we are within o. For this operation to work well, the O-shape o must be an
classical solid, meaning that {x : E | f (x) ∈ B} is dense, i.e., its closure is the full space E [Edalat
and Lieutier 2002]. Open shapes and closed shapes are classical solids, and classical solids are
closed under the CSG operations [Edalat and Lieutier 2002]. All the usual shapes encountered in
CAD or graphics applications are classical solids.

Theॵॸeॳ 6.3. If o is a classical solid weakly representing O , and k is the K-representation of K ,
then intersect k o is the K-representation of O ∩ K , where O is the closure of O .

Pॸॵॵf ॹkeॺch. Suppose we have a predicate P : E →c B⊥. We must confirm the two properties
defining the K-representation of the output:

(1) ∀x ∈ (O ∩ K). (P(x) = tt ) iff is_true (forall k (λ x ⇒ ¬ (o x) || P x)).
(2) ∃x ∈ (O ∩ K). (P(x) = ff ) iff is_false (forall k (λ x ⇒ ¬ (o x) || P x)).

To show the property 1, we use the fact that O is a classical solid to equate E \ ext (O) with O .
Property 2 is fairly straightforward, depending only on some facts about point-set topology. □

We can use intersect to construct the K-shape for the closed unit disk using its open repre-
sentation and the square [−1, 1]2 (square_sym), for instance:
let unit_disk : KShape (ℜ2) = intersect {ℜ2} square_sym unit_disk_o;;

More generally, if we can produce a K-shape that bounds the O-representation of a closed shape
O , we can produce a K-representation for O . In this way, intersect witnesses the topological
theorem that a closed subset of a compact shape is compact.

Since O-shapes have complements, we can also do a relative complement of a K-shape and an
O-shape:
let difference E (k : KShape E) (o : OShape E) : KShape E =
intersect {E} k (complement_o {E} o);;

6.2.2 Closure Under (Continuous) Images. Since E 7→ (E → 𝔅) → 𝔅 is a (covariant) functor,
we can take the image of any K-shape under a continuous map:
let map E F (f : E → F) (k : KShape E) : KShape F =
λ P : F → 𝔅 ⇒ forall {E} k (λ x : E ⇒ P (f x));;

The map program realizes the well-known result in topology that the continuous image of a com-
pact set is compact.This allows us to compute projections, for instance from 3D to 2D. Of course, as
with O-shapes, we can compute the image of shapes under homeomorphisms such as translation
and scaling by a nonzero factor.

Closure under images also enables representation of parametric surfaces as K-shapes by first
constructing the parameter space as a K-shape, and then taking its image under the parametric
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definition. For instance, this permits construction of Bézier curves and surfaces (and NURBS, more
generally). Given a space E with an function cvx_comb : ℜ → E → E → E for convex
combinations, a quadratic Bézier curve is specified by
let bezier E (cvx_comb : ℜ→ E → E → E) (p0 p1 p2 : E) : KShape E =

map {ℜ} {E} (λ t : ℜ⇒ cvx_comb t (cvx_comb t p2 p1) (cvx_comb t p1 p0))
unit_interval;;

6.2.3 Convex Hull and Minkowski Sum. Convex hulls can be computed with
let convex_hull E (cvx_comb : ℜ→ E → E → E) (k : KShape E) : KShape E =
compact_union {E} k {E} (λ x : E ⇒
compact_union {E} k {E} (λ y : E ⇒
map {ℜ} {E} (λ c : ℜ⇒ cvx_comb c x y) unit_interval));;

Given two shapes S1 and S2 in a vector space E, their Minkowski sum is S1 ⊕ S2 ≜ {x + y |
x ∈ S1,y ∈ S2}. Minkowksi sums may be used in CAD, for instance to round the edges of a
solid by taking its Minkowski sum with a ball, as well as in robot path planning for determining a
collision-free path-planning space.

When E is a vector space, it is possible to compute the Minkowski sum of K-shapes:
let minkowski_sum E (plus : E → E → E) (k1 k2 : KShape E) : KShape E =
λ P : E → 𝔅 ⇒ forall {E} k1 (λ x : E ⇒

forall {E} k2 (λ y : E ⇒ P (plus x y)));;

6.3 Analyses
A space E is Hausdorff if its codiagonal relation {(x ,y) : E2 | x , y} is open. Note that R is
Hausdorff, specified by the Marshall map neq (x y : ℜ) : Σ = x < y ∨ y < x. However, ℜ
and IR are not Hausdorff. When E is Hausdorff with open codiagonal neq : E → E → Σ, we can
compute the open exterior of a K-shape according to
let exterior E (neq : E → E → Σ) (k : KShape E) : E → Σ =
λ x : E ⇒ forall_s {E} k (λ y : E ⇒ neq x y);;

The space of K-shapes gives us our first example of a non-discrete space that is disconnected:
we can decide whether or not a compact shape is empty:
let is_empty E (k : KShape E) : 𝔅 = forall {E} k (λ x : E ⇒ ff);;

We can compute the minimum and maximum of nonempty K-shapes on R:
let infimum (k : KShape ℜ) : ℜ =
dedekind_cut (λ q : ℜ⇒ forall {ℜ} k (λ x : ℜ⇒ q <b x));;

let supremum (k : KShape ℜ) : ℜ =
dedekind_cut (λ q : ℜ⇒ exists {ℜ} k (λ x : ℜ⇒ q <b x));;

Since K-shapes in a Euclidean space are bounded and closed, the extrema are finite, and they are
obtained within the K-shape. Other notions of extrema on nonempty K-shapes over spaces other
than R may be computed by first taking their image under an R-valued continuous map.

If E is Hausdorff, we can affirm if two K-shapes in E are disjoint, meaning they have empty
intersection:
let disjoint E (neq : E → E → Σ) (k1 k2 : KShape E) : Σ =
forall_s {E} k1 (λ x : E ⇒ forall_s {E} k2 (λ y : E ⇒ neq x y));;
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If E is a metric space with continuous distance metric d : E ×E →c R, then we can compute the
separation distance, i.e., the infimum of the distances between two K-shapes, as:
let separation_dist E (d : E → E →ℜ) (k1 k2 : KShape E) : ℜ =
dedekind_cut (λ q : ℜ⇒ q <b 0 || forall {E} k1 (λ x : E ⇒

forall {E} k2 (λ y : E ⇒ q <b d x y)));;

If either shape is empty, the separation distance is ∞. If both shapes are nonempty, the separation
distance is finite. In a metric space, two K-shapes are disjoint if and only if their separation distance
is positive, disjoint k1 k2 = 0 < separation_dist k1 k2.

If E is a metric space with continuous distance metric d : E ×E →c R, then we can compute the
Hausdorff distance on K-shapes as:
let hausdorff_dist E (d : E → E →ℜ) (k1 k2 : KShape E) : ℜ =
dedekind_cut (λ q : ℜ⇒ q <b 0
|| exists {E} k1 (λ x : E ⇒ forall {E} k2 (λ y : E ⇒ q <b d x y))
|| exists {E} k2 (λ x : E ⇒ forall {E} k1 (λ y : E ⇒ q <b d x y)));;

If both shapes are empty, the Hausdorff distance is 0. If one shape is empty but the other is not,
the Hausdorff distance is ∞. If both shapes are nonempty, the Hausdorff distance is finite.

For a metric space E, Hausdorff distance induces a metric on the non-empty K-shapes in E, and
the topology induced by that metric is the Vietoris topology. If E is Hausdorff, then the space of
K-shapes themselves are Hausdorff as well, and K-shapes are distinguished by the codiagonal:
let kshape_neq E (neq : E → E → Σ) (k1 k2 : KShape E) : Σ =

exists_s {E} k1 (λ x1 : E ⇒ forall_s {E} k2 (λ x2 : E ⇒ neq x1 x2))∨ exists_s {E} k2 (λ x2 : E ⇒ forall_s {E} k1 (λ x1 : E ⇒ neq x1 x2));;

In a metric space, two K-shapes differ if and only if their Hausdorff distance is positive,
kshape_neq k1 k2 = 0 < hausdorff_dist k1 k2.

7 USING O-REP AND K-REP TOGETHER
The analyses available for O-shapes and K-shapes are complementary. For instance, we can test
membership of a point in an O-shape (is_in), but this is not possible for K-shapes. On the other
hand, analyses available for K-shapes, such as universal and existential quantification and separa-
tion andHausdorff distance, are impossible for O-shapes. If we are able to represent the same shape
with both open and compact representations, then analyses from either representation are avail-
able to us, and in fact, we can even perform new analyses not available with either representation,
such as computing volume.

We call a shape with both a weak O-representation and K-representation an OK-shape. One
might imagine that though we get the union of the analyses of O-rep and K-rep, we only get
the intersection of their constructions. In a literal sense, yes, to construct an OK-shape, one must
construct an O-shape and a K-shape. However, more constructions are available than one might
expect. For instance, OK-shapes are closed under intersection, even though K-shapes are not; this
is because, while K-shapes cannot be intersected with each other, a K-shape can be intersected
with an O-shape to produce an O-shape.

Fig. 15 summarizes StoneWorks’s definition of OK-shapes, and its provision of constructions and
analyses for them. Semantically, OK-shapes correspond to the “bounded partial solids” of Edalat
and Lieutier [2002]. While Edalat and Lieutier [2002] demonstrate continuity and computability
of several of the constructions in this section, our synthetic approach that provides programs for
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type OKShape E = KShape E * OShape E
! Constructions
unit_interval_ok : OKShape ℜ
unit_disk_ok : OKShape (ℜ2)
product_ok E F : OKShape E → OKShape F → OKShape (E * F)
compact_union_ok E (i : KShape E) F (f : E → OKShape F) : OKShape F
empty_ok E : OKShape E
union_ok E (s1 s2 : OKShape E) : OKShape
intersect_ok, difference_ok : (E : type) → OKShape E → OShape E → OKShape E
bimap E F : (E → F) → (F → E) → OKShape E → OKShape F
minkowski_sum_ok E (plus : E → E → E) : OKShape E → KShape E → OKShape E
! Analyses
getK E : OKShape E → KShape E
getO E : OKShape E → OShape E
volume : OKShape E →ℜ

Fig. 15. A module for open-compact representation in MarshallB.

those constructions is new and quite different, especially since Edalat and Lieutier [2002] have no
notion of K-representation on its own.

7.1 Definition
We consider an O-shape o and K-shape k to be consistent if o weakly represents the shape that k
represents (recall that K-shapes represent shapes uniquely). We call consistent pair of an O-shape
and K-shape an OK-shape.

7.2 Constructions
7.2.1 Closure Under Images of Homeomorphisms. Since OShape is contravariant in its space on
which shapes are defined (hence closed under continuous preimages), and KShape is covariant
(hence closed under continuous images), OKShape is invariant, implying that it is closed under
homeomorphisms, which are continuous maps with continuous inverses (and include translation,
rotation, and scaling by a nonzero factor).

7.2.2 Constructing O-Shapes Using K-Shapes. In this section, we witness some new constructions
of O-shapes that are available using K-shapes. Analogous version of some of these constructions
have already been shown for K-shapes, and putting them together allows us to have these con-
structions for OK-shapes as well.

The following programs witness another way in which compact sets behave like finite ones, in
that “intersections of compactly many open sets are open” [Escardó 2009] (together with the less
surprising fact that unions of compactly many open sets are open):
let compact_union_o E (k : KShape E) F (o : E → OShape F) : OShape F =
λ x : F ⇒ exists {E} k (λ i : E ⇒ o i x);;

let compact_intersection_o E (k : KShape E) F (o : E → OShape F) : OShape F =
λ x : F ⇒ forall {E} k (λ i : E ⇒ o i x);;

7.2.3 Constructive Solid Geometry (CSG) Operations. Since both O-shapes and K-shapes have the
disjunctive CSG operations (empty and union), so do OK-shapes. OK-shapes are closed under inter-
section and relative complement as well, which might be surprising, since although O-shapes are
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closed under these operations, K-shapes are not. However, one can produce the K-representation
of the result by taking the intersection or relative complement of the K-representation of one shape
with the O-representation of the other.

7.3 Analyses
It is possible to compute the volume of an OK-shape. First, we define an indicator function from
B⊥ to IR
let indicator (b : 𝔅) : ℜ = dedekind_cut (λ q : ℜ⇒ q <b 0 || (b && q <b 1));;

satisfying indicator ff = 0, indicator tt = 1, and ⟦indicator (mkbool ⊥ ⊥)⟧n = [0, 1].
Volume on R is then defined as
let integral (a b : ℜ) (f : ℜ→ℜ) : ℜ =
(b - a) * integrate_unit_interval (λ x : ℜ⇒ f (a + x * (b - a)));;

let volume (s : OKShape ℜ) : ℜ = integral
(infimum (getK s)) (supremum (getK s)) (λ x : ℜ⇒ indicator (getO s x));;

If the boundary of s has finitely many points, then in fact volume(s) returns a real number rather
than an interval. This can naturally be generalized to compute the volume of any OK-shape in Rn ,
in which case the condition for the volume being a real number rather than an interval is that the
boundary must have Jordan measure 0.

8 CASE STUDIES
We next demonstrate how MarshallB and StoneWorks enable the specification and execution of
programs that solve several tasks in solid modeling.

8.1 Depth Map for O-Rep Using Root Finding for Ray Intersection
One technique to render computer graphics images is ray tracing: a procedure that computes the
color of a pixel in an image by tracing the paths of the rays of light that propagate through the
scene of interest, intersect with objects in the scene, and eventually intersect the pixel.

When shapes in a scene are represented with F-rep, computing the nearest point of intersection
of a ray of light with the surface requires finding the smallest root of a function. For example, a
sphere centered at (3,−1, 2) with radius 5 would have the F-rep

f (x ,y, z) = 52 − ((x − 3)2 + (y + 1)2 + (z − 2)2).

To find the intersection of a ray that begins at the origin and moves in the +x-direction with this
sphere, one needs to compute

min{x ∈ [0,∞) | f (x , 0, 0) = 0}.
A standard algorithm for this ray-intersection problem with black-box F-rep shapes is ray march-
ing: choosing some fixed step size ε , walk along the ray with steps of size ε , and watch for the sign
of f to change from negative to positive. This algorithm is not sound: choosing ε too large can
cause the root to be missed, causing graphical artifacts; for instance, “thin features can disappear
in some special surfaces” [Flórez et al. 2007]. As opposed to ray marching, StoneWorks enables
a developer to provide a declarative specification of the intersection problem within a semantics
that permits an execution using exact reals. Fig. 16 shows a short MarshallB program lft_root
that performs robust ray intersection operations on O-shapes to produce a 2D image from a 3D
scene. Its execution is similar to known approaches that use interval arithmetic for robust ray trac-
ing of implicit surfaces [Flórez et al. 2007; Sanjuan-Estrada et al. 2003; Snyder 1992a]. Fig. 17 uses
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let interval (l : ℜ) : KShape ℜ =
map {ℜ} {ℜ} (λ x : ℜ⇒ x * l) unit_interval;;

let lft_root (f : ℜ→ 𝔅) : ℜ =
dedekind_cut (λ q : ℜ⇒ q <b 0 || ¬ (touches {ℜ} (interval q) f));;

let lft_root_max_20 (f : ℜ→ 𝔅) : ℜ =
dedekind_cut' [0, 20] (λ q : ℜ⇒ ¬ (touches {ℜ} (interval q) f));;

let ray (disp : ℜ2) : ℜ→ℜ3 = let mag = sqrt (1 + disp[0]2 + disp[1]2) in
λ t : ℜ⇒ (t / mag, t * disp[0] / mag, - t * disp[1] / mag);;

let ray_depth (scene : ℜ3 → 𝔅) (disp : ℜ2) : ℜ =
lft_root_max_20 (λ t : ℜ⇒ scene (ray disp t));;

Fig. 16. lft_root computes ray intersection. ray_depth, when given a 3D scene, describes the distance to
the nearest point in the scene as a function of the 2D image coordinates. As an optimization, for producing
images, we use lft_root_max_20 rather than lft_root in the definition of ray_depth, since beyond this
will appear black in the image. For any f, dedekind_cut' [a, b] f = dedekind_cut (λ q : ℜ ⇒ q <
a || (f q && q < b)) but the former is more performant. It would be possible to implement a compiler
optimization that applies this operation on any definition max k d where k is constant and the normal form
of d is a Dedekind cut, but we have yet to do so.

lft_root to create a 2D depth map image (ray_scene) of a 3D scene of a ball on a table, where
the image’s output is displayed for the rectangle [−1, 1]2.7

Fundamentally, lft_root computes in a similar way to related work using interval arithmetic
for ray intersection. Let’s observe how lft_root behaves with some examples, before formally
characterizing it. If we pass a ray through the half-line λ x : ℜ ⇒ k <b x, for some k ∈ (0,∞),
the lft_root result is k. If we pass a ray through the empty shape, lft_root (λ x : ℜ ⇒ ff),
there is no intersection, and accordingly the result is∞. A ray intersects the full shape immediately,
i.e., lft_root (λ x : ℜ ⇒ tt) is 0. Tangency is problematic. For instance, taking k ∈ (0,∞),
the result for the shape λ x : ℜ ⇒ (x - k)2 <b 0 is the point y such that q < y if q < k but
y ≮ q for all q ∈ Q., which is not located. lft_root satisfies:

q < lft_root(f ) ⇔ ∀x ∈ [0,q]. f (x) = ff
lft_root(f ) < q ⇔ ∃x ∈ [0,q]. f (x) = tt

Fix an f and let us define y = lft_root(f ). Note that if f outputs only to B⊥, then y is always
disjoint. If there is some x ∈ [0,∞) such that f (x) = tt , then the cut is also bounded (y < u for
some u); if not, the result is ∞. The resulting cut will be located if for every ℓ,u ∈ Q such that
ℓ < u, we have

∀x ∈ [0, ℓ]. f (x) = ff or ∃x ∈ [0,u]. f (x) = tt .
Intuitively, this will happen if f (assuming f outputs only to B⊥) switches away from ff , and
when it does so it switches to tt after passing through mkbool ⊥ ⊥ only at an isolated point.8
This isolated point is lft_root(f ).
lft_root can be interpreted as realizing an abstracted version of the constructive intermediate

value theorem [Taylor 2010].
7 Producing this 256x256-pixel depth map takes 2 hours and 25 minutes, using 14 MB memory. We believe it would be
possible to add optimizations that would reduce the runtime.
8 This is analogous to the notion of a stable zero given by Taylor [2010].
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let lta (x : ℜ) (y : ℜ) : 𝔅 =
mkbool (x < y + 0.01) (y < x);;

let table (x : ℜ3) : 𝔅 =
lta x[2] (-1) && lta (-1) x[1] && lta x[1] 1;;

let ball (x : ℜ3) : 𝔅 =
lta ((x[0] - 2)2 + (x[1] - 0.7)2 + x[2]2) 1;;

let ray_scene : ℜ2 →ℜ =
ray_depth (union_o {ℜ3} table ball);;

Fig. 17. ray_scene describes the distance to the nearest point in the ball-table scene as a function of the
2D image coordinates. The table and ball are defined with approximate comparisons, yielding thin regions
where the interior and exterior overlap, which facilitates quick computation with a known maximal degree
of inaccuracy. Right: A 256x256-pixel rendering of the ray_scene depth map rendered with MarshallB.

let piston : KShape (ℜ3) = compact_union {ℜ} (line_segment 20) {ℜ3} (λ x : ℜ⇒
compact_union {ℜ2} unit_disk {ℜ3} (λ yz : ℜ⇒
point (x, yz[0], yz[1])));;

let cam (angle : ℜ2) : KShape (ℜ3) =
rotate_xy angle (translate_R3 (-2.5, 0, 0) (extrude 1 (scale2 5 unit_disk)));;

let translated_piston (angle : ℜ2) : KShape (ℜ3) =
translate3 (5 + 2.5 * angle[0], 0, 0) piston;; !piston translates when cam rotates

let cam_piston (angle : ℜ2) : KShape (ℜ3) =
union {ℜ3} (cam angle) (translated_piston angle);;

let enclosure_piece : KShape (ℜ3) = translate3 (30, -1, 0) (box (2, 2, 2));;

let collision_safe : Σ = forall_s {ℜ2} unit_circle (λ angle : ℜ2 ⇒
disjoint {ℜ3} neq_R3 (cam_piston angle) enclosure_piece);;

let clearance_dist : ℜ = infimum (map {ℜ2} {ℜ}
(λ angle : ℜ2 ⇒ separation_dist {ℜ3} d_R3 (cam_piston angle) enclosure_piece)
unit_circle);;

Fig. 18. StoneWorks code that defines a cam/piston system that varies with the angle that the cam is at and
an enclosure piece nearby the cam/piston system. collision_safe indicates whether or not the two parts
are always separated, and then clearance_dist computes the separation distance between the two parts.

8.2 Implementing and Verifying a Cam-Piston System with StoneWorks
Verifying minimum clearance of a system with degrees of freedom is an important property for
many designs. Commercial CAD software does not allow a user to do so in an automated way.
Instead, the user must manually move or manipulate an object to sweep through its degrees of
freedom to observe its clearance with respect to other objects. Either numerical error in the clear-
ance computation, or failure to sufficiently test all possible configurations of the system, may cause
the clearance computation to be unsound.

Wewill use StoneWorks to implement a model of a mechanical system that involves an eccentric
cam driving a piston within an enclosure, to compute whether the cam and piston remain disjoint
from the enclosure, and then to compute the minimum distance between the cam-piston system

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 99. Publication date: August 2019.



99:26 Benjamin Sherman, Jesse Michel, and Michael Carbin

and its enclosure. Fig. 18 shows the code for this task. StoneWorks automatically computes that,
in this case, the system is indeed safe from collisions, as well as the minimum clearance distance
between the components.
Construction. The cylindrical piston is defined by extruding the 2D disk unit_disk : KShape

(ℜ2) into a cylinder. Similarly, the cam is an extruded ellipse.When the cam rotates, the pistonwill
translate along its axis of movement, as captured by translated_piston. Wewill want to consider
the cam and piston system together when determining whether it collides with its enclosure, so
we compute their union in the definition of cam_piston in Fig. 18. The unit_circle is used to
parameterize the the possible rotations of the cam.
Analysis. Wewant to ensure that the cam-piston system of Fig. 18 is separated from its enclosure,

regardless of its angle of rotation, and then to see how much clearance it has. For each possible
rotation angle, we use disjoint to compute whether the cam and piston are disjoint from their
enclosure, producing a Σ-valued predicate parameterized by the unit circle (where each point on
the circle represents an angle). The collision_safe quantifies over all angles for the cam (drawn
from the unit_circle) to compute whether the shapes are disjoint for all rotations. In this exam-
ple, collision_safe returns ⊤,9 meaning that the two parts are always disjoint.

This implies that the clearance_distwill be a positive real number. Note that collision_safe
verifies safety holds for an uncountable infinitude of possible angles of the circle, and clear-
ance_dist computes the maximum of an uncountable infinitude of real numbers; this compu-
tational feat is possible because the circle is compact, and the functions that are computed over
the circle in each case are continuous.

9 RELATEDWORK
The syntax, semantics, and implementation of MarshallB are largely derived from the Marshall
programming language [Bauer 2008].

Edalat and Lieutier [2002] use domain theory to develop a theory of computability of CAD
operations. They define partial solids, which correspond closely to our O-shapes, and demonstrate
their closure under Boolean operations. Their bounded partial solids correspond closely to our OK-
shapes, and demonstrate computability of Minkowski sum. Our notion of K-shapes is new relative
to Edalat and Lieutier [2002], including those operations that are possible on K-shapes but not
OK-shapes, like the functorial and monadic operations, including representation of parametric
surfaces like Bézier curves. For instance, there is no way to represent 2D surfaces in 3D space and
compute their Hausdorff distance, as is done in §2. They do not present a programming model, nor
do they implement any of the operations that they demonstrate are computable.

Variousworks study notions of robustness in computational geometry and approaches to achieve
that [Brönnimann et al. 2001; Fang et al. 1993; Fortune 1996; Guibas 1996; Hoffmann 1996; Hoff-
mann et al. 1988; Salesin et al. 1989; Schirra 1998; Sharma and Yap 2017; Yap 1997]. Some ap-
proaches consider the use of approximate primitives that have error guarantees. In general, these
guarantees are not compositional, so algorithms are considered which can provide guarantees us-
ing these approximate primitives [Hoffmann et al. 1988].

Some approaches (e.g., [Burnikel et al. 1995]) consider the use of exact arithmetic on algebraic
numbers, which notably have decidable equality. CGAL [Fabri et al. 2000] follows this approach, of-
fering geometric algorithms that operate parametrically over number types.The interface for these
number types requires total (decidable) ordering, which necessarily limits the class of numbers
that can be exactly represented, for instance precluding MarshallB’s R ⊆ ℜ. As the constructible
numbers are algebraic, many geometric computations can be performed with only these, though
9 Using a 3.1 GHz Core i7 (I7-7920HQ) CPU, collision_safe returns ⊤ in 0.4 seconds, using 8 MB memory.
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Sharma and Yap [2017] note that “Non-algebraic computation overΩ4 [the elementary numbers] is
important in practice”. Our framework for the analytical real numbers admits such computations.

The Soft Exact Computation paradigm in computational geometry [Sharma and Yap 2017] con-
siders similar computational models and guarantees to this work: numerical computation “with
a priori correctness guarantees, and which can dynamically adjust their arbitrary precision and
steps depending on the input instance.” The Subdivision Model uses interval arithmetic for com-
puting on shapes. This model has been applied to ray intersection in graphics [Flórez et al. 2007;
Sanjuan-Estrada et al. 2003] as well as meshing [Lin and Yap 2011; Plantinga and Vegter 2004]. In
all of these cases, computations are performed on F-rep shapes. In comparison, our definition of
K-representation and computations on K-shapes is novel.

GENMOD [Snyder 1992b] is a programming system for “generative modeling” of shapes that
represents shapes as parametric surfaces, generally based on hyper-rectangular domain. Using in-
terval arithmetic, GENMOD provides two generic higher-order algorithms, “SOLVE, which com-
putes solutions to a system of constraints, and MINIMIZE, which computes the global minimum
of a function, subject to a system of constraints” [Snyder 1992a]. These are used for “ray tracing,
computation of toleranced polygonal decompositions, detection of collisions, computation of CSG
operations, approximation of silhouette curves, and many others.” A GENMOD parametric repre-
sentation (called a manifold) is a map Rm → Rk , usually implicitly assuming a hyper-rectangular
domain within the input space Rm , but the domain cannot be programmatically associated with
the manifold. Thus GENMOD manifolds are not closed under union, for instance. GENMOD man-
ifolds can be interpreted as K-shapes in MarshallB, but K-shapes are strictly more general. For
instance, there are no GENMOD operators analogous to point, union, or intersect.

dReal is a tool that allows computation of approximate truth values over R [Gao et al. 2012], al-
lowing order comparisons and bounded quantifiers.This tool allows the approximate computation
of geometric facts in a manner similar to our tool.

Nandi et al. [2018] describe a simple CSG-based functional programming language for polyhe-
dra, and gives a compiler correctness proof for compilation to meshes. Their language only admits
polyhedral shapes, and their compiler does not consider computability on the reals: they use a prim-
itive intersect that indicates whether a ray intersects a face, which is discontinuous, and hence not
computable in the manner we discuss here.

Simpson [1998] presents exact real functionals for maximizing and integrating real-valued func-
tions within a lazy functional programming language, making critical use of laziness in the oper-
ational execution of the functions to maximize or integrate.

10 CONCLUSION
Solid modeling is a challenging problem for which researchers have long sought sound and ro-
bust systems. StoneWorks provides an approach that is grounded in an underlying programming
language for continuous computation, MarshallB. In combination with our novel compact repre-
sentation, StoneWorks makes it possible to compute metrics, such as Hausdorff distance, that (to
the best of our knowledge) were not possible to compute before with this level of generality.

In sum, our work holds out the promise of future language-based solutions for solid modeling
that offer soundness and robustness guarantees as well as powerfully general programs for con-
structing and analyzing shapes.
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