Shibani Santurkar

Education

- 2015-present **Ph.D. in Computer Science**, *Massachusetts Institute of Technology* Research Advisors: Aleksander Mądry & Nir Shavit
 - 2015–2017 **SM in Computer Science**, *Massachusetts Institute of Technology* Advisor: Nir Shavit Thesis: "Towards Generative Compression"
 - 2010–2015 **Dual Degree (B.Tech and M.Tech),** *Indian Institute of Technology Bombay* Electrical Engineering (Major) and Computer Science (Minor)

Research Interests

The focus of my research is on building a machine learning (ML) toolkit that allows for the reliable, robust, and auditable deployment of models in the real world. Specifically, my work revolves around:

- **Understanding current deep learning practices:** how various design choices (e.g., architectural components, datasets, and loss functions) impact model behavior in practice.
- **Studying generalization beyond training conditions:** characterizing and alleviating failures of models due to natural and adversarial shifts in the data distribution during deployment.
- **Building tools for fair and interpretable ML:** developing a fine-grained understanding of the features that models base predictions on, so as to identify model biases and possible ways to alleviate them.

Awards

2019-2021	Google PhD Fellowship in Machine Learning
2015	Undergraduate Research Award Awarded for exceptional research at IIT Bombay.
2010-2014	Dhirubhai Ambani Scholarship National higher education scholarship awarded by Dhirubhai Ambani foundation, India.
	Selected Conference Publications (* denotes equal contribution)
ICML 2020	From ImageNet to Image Classification: Contextualizing Progress on Bench- marks D. Tsipras*, S. Santurkar*, L. Engstrom, A. Ilyas & A. Mądry
ICML 2020	Identifying Statistical Bias in Dataset Replication L. Engstrom*, A. Ilyas*, S. Santurkar, D. Tsipras & A. Mądry
ICLR 2020	Implementation Matters in Deep RL: A Case Study on PPO and TRPO L. Engstrom*, A. Ilyas*, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph & A. Mądry Oral presentation
ICLR 2020	A Closer Look at Deep Policy Gradients A. Ilyas*, L. Engstrom*, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph & A. Mądry Oral presentation

NeurIPS 2019	Image Synthesis with a Single (Robust) Classifier S. Santurkar*, D. Tsipras*, B.Tran*, A. Ilyas*, L. Engstrom* & A. Mądry
NeurIPS 2019	Adversarial Examples Are Not Bugs, They Are Features A. Ilyas*, S. Santurkar*, D. Tsipras*, L. Engstrom*, B.Tran & A. Mądry Spotlight presentation
ICLR 2019	Robustness May be at Odds with Accuracy D. Tsipras*, S. Santurkar*, L. Engstrom*, A. Turner & A. Mądry
NeurIPS 2018	How Does Batch Normalization Help Optimization? S. Santurkar*, D. Tsipras*, A. Ilyas* & A. Mądry Oral presentation
NeurIPS 2018	Adversarially Robust Generalization Requires More Data L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar & A. Mądry Spotlight presentation
ICML 2018	A Classification–Based Study of Covariate Shift in GAN Distributions S. Santurkar, L. Schmidt & A. Mądry
ICML 2017	Deep Tensor Convolution on Multicores D. Budden, A. Matveev, S. Santurkar, S. R. Chaudhuri & N. Shavit
	Preprints (* denotes equal contribution)
2020	BREEDS: Benchmarks for Subpopulation Shift S. Santurkar*, D. Tsipras* & A. Mądry arxiv:1906.00945
2019	Adversarial Robustness as a Prior for Learned Representations L. Engstrom [*] , A. Ilyas [*] , S. Santurkar [*] , D. Tsipras [*] , B.Tran [*] & A. Mądry arxiv:1906.00945
	Work experience
6/2018-8/2018	Google Inc.InternMentor: Ilya MironovDesigned a general-purpose, configuration-free approach for differentially private data synthesis.
5/2017-8/2017	VicariousInternMentor: Huayan WangCreate deep learning-based model for single image-based pose-prediction for robotic grasp planning.
	Professional Service
2020	"Towards Trustworthy ML" ICLR Workshop Co-organizer.
2018-2021	NeurIPS, ICML, ICLR Reviewer.
2018	The Quest Symposium on Robust, Interpretable AI (MIT) Co-organizer.
2017-2020	MIT UROP Mentor Supervised MIT undergraduate students on research projects.
	Teaching
Fall 2017	6.336 Introduction to Numerical Simulation (MIT) Teaching Assistant
Spring 2015	EE739 Processor Design (IIT Bombay) Teaching Assistant
Fall 2014	EE301 Electromagnetic Waves (IIT Bombay) Teaching Assistant