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ABSTRACT
Mobile devices come with an assortment of networks: WiFi in two
different frequency bands, each of which can run in infrastructure-
mode, WiFi-Direct mode, or ad hoc mode; cellular radios, which
can run in LTE/4G, 3G, or EDGE modes; and Bluetooth. But how
should an app choose which network to use? There is no systematic
solution to this problem today: in current practice the choice is
almost always left to the user, who usually has no idea what’s best.
In fact, what’s best for a user depends on the app’s performance
objectives (throughput, delay, object load time, etc.) and the user’s
constraints on cost and battery life. Besides, what’s best for a single
user or app must be balanced with what’s best for the wireless net-
work as a whole (individual optimality vs. social utility). This paper
introduces Delphi, a transport-layer module to resolve these issues.
Delphi has three noteworthy components: “local learning”, in which
a mobile device estimates or infers useful properties of different
networks efficiently, “property sharing”, in which mobile devices
share what they learn with other nearby devices, and “selection”,
in which each node selects a network using what it has observed
locally and/or from its neighbors.

CATEGORIES AND SUBJECT DESCRIPTORS
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network Management

KEYWORDS
Multi-Network, Mobile Device

1. INTRODUCTION
Today’s mobile devices come equipped with a variety of networks,

but without any systematic framework that allows apps to use the
best network that fits their needs. For example, it is all too common
to see a “smart” phone associate with a WiFi access point located
inside a building even when the user is outdoors and walking, simply
because of a static setting preferring WiFi over cellular networks.
Even inside a building, it is common today for many devices to all
use the 2.4 GHz WiFi network in a building, when in fact some
of them using the cellular LTE network, the 5 GHz WiFi band, or
even Bluetooth would provide better aggregate performance. When
two devices want to exchange files with each other, for example a
device backing up its data to another or streaming a movie to another,
the choice between a direct WiFi link (using WiFi-Direct or ad hoc
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mode) and a path via an access point has to be made; by default,
the latter option is usually made today, which may be inferior to the
former.

In all these cases, what’s best for an interactive videoconference
may be different from what’s best for a web app, and what’s best
for uploading photos to a server may be different from what’s best
for sharing a picture between two mobile devices—because these
apps all have different performance objectives and the networks have
different connectivity properties. The starting point for our solution
is that the right answer to this question depends on what the app
wants from the network; i.e., the objective. In addition, constraints
on monetary costs and energy must be taken into account. Last but
not least, what’s best for an individual might be at odds with what’s
socially optimal for a group of concurrent users.

The problem of network selection is not a subnetwork or link-layer
problem because it must operate across different subnetworks. Nor
is it a network-layer problem—although traditionally the networking
community has viewed it as such—because that layer lacks the
ability to infer end-to-end properties of a path. Our position is
that a good transport architecture for mobile systems must provide
network selection as a core module, that it must consider objectives
and costs, and that it must operate efficiently.

We propose a transport module that makes this choice for apps.
This module, named Delphi, includes (1) components to predict the
properties of each network by both learning from easy-to-measure
observations and active probes; (2) a simple protocol to share prop-
erties learned between nearby nodes; and (3) a selector that makes
the best network choice at each node taking both app objectives
and social utility into consideration. We believe that Delphi is a
significant step toward allowing a mobile device to fully harness the
capabilities of all the networks at its disposal.

The question of choosing the best wireless network interface
has received prior attention, as has the question of ensuring that
TCP connections survive changes in this choice (see §4). To our
knowledge, no prior work solves this problem when the candidate
networks achieve throughput and delay values that are both variable
and comparable in magnitude. In the past, it was almost always the
case that WiFi performed better than 2G, EDGE, or 3G, allowing a
static preference between these networks. Based on this assumption,
previous work contributed to one of the following problems: 1)
designing mechanisms to seamlessly switch between interfaces;
2) using multiple networks concurrently, striping packets between
them; 3) specifying policies, e.g. delay background traffic, saving
energy, and offloading data under the assumption that “WiFi is faster
than cellular” or “WiFi is more energy-efficient than cellular”.

However, increasing cellular speeds are fast invalidating these
assumptions and make the problem of network selection more chal-
lenging. Today, WiFi and LTE throughputs are often comparable,
but each varies significantly with time as channel conditions and of-
fered loads change, so the choice isn’t straightforward (see Figure 1).
To better utilize the network capacity, an adaptive, online selection
method is now required. Delphi provides a general-purpose wireless
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Figure 1: WiFi and LTE Throughput/RTT difference. x < 0
means WiFi has lower throughput or RTT than LTE, and vice
versa. This figure shows that neither WiFi nor LTE is categori-
cally better.

network selection scheme applying ideas from machine learning
using features obtained using both passive observations and active
probes. Delphi selects network intelligently when it is unclear which
network performs best, and the right answer changes with time be-
cause the networks are variable in time or space, and are often of
comparable quality.

Besides, prior research has not developed a systematic framework
for network selection that addresses two conflicting concerns:

1. Optimizing individual objectives such as high throughput, low
delay, or low page load time, while simultaneously

2. paying heed to a social objective such as good performance
of the network as a whole.

Our work is a synthesis of new techniques for wireless network
selection together with a plan for sharing information to achieve
social objectives when network conditions are voltaile enough to
preclude a static preference for one network over another.

2. SYSTEM OVERVIEW
Delphi’s design is shown in Figure 2. Delphi runs on each device

as a transport module to select the network for each data stream.
The app specifies an objective to Delphi when it creates the stream.

Application 
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Figure 2: Delphi system overview.

For applications that use TCP, Delphi makes this choice once at
the beginning, and does not change it for the stream because TCP
does not handle roaming. For applications that embed a different
transport library, e.g., one capable of roaming [17], or one where
the session is made of request-response traffic with the possibility
of changing IP addresses between requests, Delphi may change the
network selected mid-stream.

Delphi strives to optimize the app-specified objective for the
stream; Table 1 gives examples of objectives. Delphi also attempts
to provide fairness across the different users sharing a wireless LAN.

Here are some examples of intended outcomes:

1. For apps that share the common objective of maximizing
some property like throughput or throughput/delay, Delphi
should select the network at each node that achieves an α-
fair throughput allocation [15]. I.e., the allocation maximizes

∑i
r1−α

i
1−α

, and particularly the special case of α = 1 (propor-
tional fairness), which corresponds to maximizing ∑i logri,
where ri is the property of interest.

2. For an app wishing to minimize energy, Delphi should sched-
ule the app’s packets on a low-power interface such as EDGE.

3. For an app looking to minimize data usage, Delphi should
delay transmissions until it has access to a free WiFi network.

In general, to realize these objectives systematically, Delphi’s
design consists of three components:

1. Local learning collects data to estimate network conditions:

(a) Channel information, e.g., WiFi RSSI, WiFi link rate,
and cellular signal strength.

(b) Transport-layer performance statistics, such as average
throughput, per-packet delay, and ping RTT.

(c) Location and user activity [1].

2. Property sharing distributes the results of the local learning
stage to all nearby nodes.

3. Selection is responsible for objective maximization, using the
information from the previous stages.



Objective Target apps

Maximize throughput
delay Video streaming apps (YouTube, Netflix, Hulu)

Maximize throughput Backup apps, system updates
Minimum delay VOIP apps such as Viber and Skype
Minimize energy Apps that periodically synchronize with a server like email
Minimize data usage Apps that aggressively prefetch such as web search interfaces
Maximize interactivity Apps that have both foreground and background modes. In this case, messages belonging to fore-

ground apps are scheduled preferentially.

Table 1: Objectives and apps that use them

3. DESIGN
There are several ways in which the three components—local

learning, property sharing, and selection—may be implemented.
This section describes some alternatives in detail.

3.1 Local Learning
For each cellular and local-area network, Delphi must estimate

properties of interest to apps, such as network throughput, delay, time
to deliver a file of a certain size (which would additionally depend
on the packet loss rate), the tail of the packet delay distribution,
etc. Some of these parameters are obtainable by inference from
passive measurements, while for others, some active measurements
are required.

Property estimation for cellular networks is a tricky problem
because channel conditions vary with time, especially for moving
users. One might consider active probing techniques [18], but these
incur significant overhead on cellular networks. Passive approaches
to estimate throughput [7] are of greater practical interest, but our
goal is not just to infer the properties of the cellular network, but to
make decisions relative to other choices such as WiFi.

Local learning includes both passive and active measurements
of the available networks, gathering the following statistics: sig-
nal strength of each available wireless link, cellular network type
(GPRS/3G/LTE), ping RTT, DNS lookup time, number of observed
WiFi APs, WiFi link rates on different WiFi options (frequency band,
WiFi-Direct, infrastructure-mode, etc.), packet loss rates, offered
load observed on the network from passive measurement (for WiFi,
the fraction of time a node had data to send over the network) and,
in some cases, measured throughput from active data probes.

During an active probe, which is useful to calibrate how well
a throughput estimated from passive or lightly active observations
(such as RTT) reflects reality, a node simply initiates a stream (ideally
from an existing app workload, rather than with new packets). It
tracks the observed throughput and logs the start and end times
of the experiment. Later, when nodes share their locally-learned
information, they can make the appropriate selection decisions using
this information.

At the end of the local learning stage, a node has enough informa-
tion to make its own local decision about which network to use. For
instance, it can infer whether to use WiFi or cellular, assuming (for
the moment) that it does not care about other users. We approach
this problem by developing a simple machine learning classifier
over the observed local features to determine whether one network
is better than the other for any given objective, with a confidence
metric reflecting the accuracy of the prediction.

We use a random forest classifier in our prototype experiments.
We collected TCP throughput data from twenty different locations
(each location involving multiple experiments lasting several min-
utes) over both WiFi and multiple cellular networks. We trained
the classifier on 10% of the data and tested on the remaining 90%.

Figure 3(a) shows the result for maximizing throughput in a dataset
consisting of WiFi and Verizon LTE samples (the approach works
for other cellular networks as well). The learning classifier improves
median throughput by 29% over Cell-Only, and by 11% over WiFi-
Only across different transfer sizes. We also used a similar learning
process to pick a network to minimize packet RTT. Figure 3(b)
shows that the classifier reduces delay by 18 ms (32%) over Cell-
Only (Figure 3). These results indicate that it may be possible to use
machine learning to quickly predict which network choice optimizes
a property such as throughput, delay, as well as objectives of the
form in Table 1. We are refining this approach, making sure not to
overfit to the trained data.

Instead of each node making a greedy decision, in Delphi, nodes
share information between each other (within a single local-area
network) so they can make balanced decisions. We assume cooperat-
ing nodes; handling non-cooperating nodes is an interesting area of
future work, but notice that the damage done by a non-cooperating
node is mitigated by the sharing mechanisms at the MAC and net-
work layers in WiFi and cellular networks.

We also note that in some cases a purely local decision might be
sufficient or even required. For instance, if an app has data usage or
energy constraints, switching to a lower-power or cheaper network
is possible even in the absence of global knowledge. Furthermore,
the energy and cost constraints might even be at odds with the social
optimum. As an example, the social optimum might dictate that the
node transmit on a higher-power or more expensive interface for
the greater good. In such cases, Delphi respects app constraints on
energy and cost, even if it results in a socially inefficient solution.

3.2 Property Sharing
Property sharing is a simple protocol that uses link-layer WiFi

broadcast to share information between nodes in the same WiFi
broadcast domain about the locally-learned parameters. Every sev-
eral seconds, each node broadcasts the locally-learned information
about its property estimates, as well as estimates of offered load and
the time-throughput observations of any active experiments. This
protocol allows any pair of nodes in the same broadcast domain (e.g.
connected to the same access point) to not only know its own prop-
erties, but also those of its neighbors. This ability is critical because
it allows the nodes to cooperate to improve network selection. At
the end of the property sharing stage, each node has its own property
estimates, as well as those of its neighbors.

3.3 Selection
The goal of the selection stage is for each node to determine its

choice of network; our key insight is that each node runs an algorithm
over both its data and those of its neighbors, so the expectation is that
each node can compute both its choice and those of its neighbors.
This idea is an example of Hofstadter’s superrationality [10]: when
multiple agents face a choice and are interested in a cooperative
outcome, each node knowing that the other will also cooperate and
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Figure 3: Median throughput and delay using random forest
learning (“learn”) compared to using WiFi/cellular and an “or-
acle” with future knowledge.

will run the same algorithm (for the social good) can lead to a better
outcome than in the classic game-theoretic setting where no such
explicit cooperation is assumed. Applying this notion to our context
requires each node to run the same algorithm over a common set of
inputs, available everywhere.

To illustrate this concept with a simple example, consider two
nodes, A and B, with one app running on each node, interested
solely in high throughput. Suppose A and B both get 10 Mbits/s
when each is alone on WiFi, but on LTE they get 6 Mbits/s and 7
Mbits/s, respectively. Further, suppose that if both A and B used
WiFi concurrently, they get only 5 Mbits/s each (Table 2). If each
node chose greedily, solely based on local WiFi link rates and LTE
throughputs, they would both pick WiFi giving each 5 Mbits/s. But
each knowing about the other user and sharing properties, A can
select WiFi and B LTE, which maximizes the total throughput across
all users1. This outcome is easy to compute if each node had access
to this table (the intended outcome of the previous two stages).

We are investigating two approaches to the selection problems.
The first involves active probe data and is less optimal, but we
have implemented and tested it. The second uses entirely passive
1This corresponds to α-fairness with α = 0. Other values of α can
be used as well

A/B A:WiFi A:LTE
B:WiFi (5, 5) (6, 10)
B:LTE (10, 7) (6, 7)

Table 2: Example: Throughput for A, B on WiFi, LTE.

observations and we believe can provider better results, but involves
more computation at each node. We describe these below.

FCFS approach. In the first-come, first-served (FCFS) approach,
a new sender S that wishes to transmit first broadcasts an intent to
transmit. This broadcast tells all senders in the vicinity that S is about
to initiate a transmission. On receipt of this broadcast, all nodes
including S send out active probes to estimate their throughput on all
possible networks. We call this throughput the “shared throughput”
for each sender on a particular network, because it is the throughput
any of the senders would see if all of them utilized the network at the
same time. Once a node estimates these shared throughput values, it
broadcasts them to everyone else, and each node simply picks the
network that maximizes the aggregate shared throughput.

As implemented currently, each node works to maximize total
shared throughput, but it can (should) be extended to achieve dif-
ferent global objectives, such as proportional fairness, which maxi-
mizes the sum of the logarithms of throughput (or other app objec-
tives), or the more general α-fairness metric.

All-permutations approach. The first step is to determine what
happens if any subset of nodes were transmitting on the same shared
wireless LAN (e.g., WiFi). This computation sounds daunting, but it
is in fact tractable for modest numbers of heavily active (say 10-20)
nodes on the shared network. For each subset of nodes, because we
know their offered load and link rates, we can compute the through-
put each would get if the given subset were active. This computation
can be carried out offline using a WiFi link-layer simulator, and
stored in a lookup table that can be looked up at run time. Then,
by comparing with the cellular property estimates, each node can
decide which network it should use so as to maximize a global utility
function. We have not tested this method experimentally yet, though
we have reason to believe that it is feasible: the time to look up
the results for a given subset is minuscule, and even with 20 active
nodes, there are only about a million combinations to consider!

To evaluate the FCFS approach, we implemented a time-slot-
based simulator that randomly generates the amount of data to be
transmitted between pairs of phones and the time at which each
pair starts transmitting. For calibration, we measured the actual
throughput in a real wireless network, with two nodes A and B,
under the following three scenarios:

1. Only node A is transmitting.

2. Only node B is transmitting.

3. Both nodes A and B are transmitting.

While running the simulation, we plug in the right value of the
achieved throughput (one of item 1, 2, or 3 above) based on the
set of concurrent transmitters in the simulated network in every
time-slot.

We compare this method with other schemes, including WiFi 2.4
GHz only, WiFi 5 GHz only, and a greedy algorithm that the senders
choose the best network by probing once (shown as Greedy in
Figure 4), without notifying other phones sharing the same network.
Figure 4 shows the average aggregate throughput for three pairs of
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phones. FCFS achieves 5.1× gain over using WiFi 2.4 GHz only,
and 2.3× gain over using WiFi 5 GHz only, and outperforms the
greedy algorithm.

4. RELATED WORK
The idea of using multiple networks has attracted significant

attention from researchers over the past decade. Early work showed
the benefits of switching between or combining multiple networks in
different scenarios. Bahl et al. [5] present cases where selecting the
proper network can reduce energy consumption, enhance network
capacity, and improve mobility.

Several papers aim to achieve specific goals by combining mul-
tiple wireless networks. CoolSpots [13] and SwitchR [2] reduce
mobile device power consumption. FatVAP [11] and MultiNet [8]
improve throughput by allowing a single WiFi card to connect to
multiple WiFi APs. COMBINE [4] improves individual device
throughput by pooling the network capacity of neighboring devices.
Multipath TCP [19] allows one TCP connection to be split across
multiple paths. Our problem is different: Delphi does not stripe
packets from a single connection across multiple networks. Instead,
it picks one network interface for an app and sends all packets over
that interface, switching to a new interface if conditions change
dramatically and if permitted by the app.

Contact Networking [6] provides localized network communica-
tion between devices with multiple networks, focusing on mecha-
nisms for neighbor discovery, name resolution, and routing. Air-
drop [3], a feature of Apple OS X, allows users to share files over
both WiFi and Bluetooth, but it is designed explicitly for the purpose
of file sharing and does not extend to other applications (it is also
not clear that it adaptively selects the network).

A substantial amount of prior work focuses on switching be-
tween different networks. Zhao et al. [20] designed network layer
mechanisms for interface switching using Mobile IP [14]. Their
mechanisms adapt to network topology changes, striving to mini-
mize routing hop count. Stemm et al. [16] (and subsequent papers
by others) developed vertical handoff techniques for heterogeneous
networks. These works provide mechanisms to gracefully switch
between different networks, whereas Delphi addresses the policy
problem of “which network to pick”.

MultiNets [12] proposes a mechanism to allow smartphones to
use multiple networks based on certain policies (such as energy

saving, data offloading, and performance). However, users need
to manually configure the policy, which in turn affects all running
apps. In contrast, our design requires no user interaction and is able
to distinguish between different apps automatically based on app
objectives. Intentional Networking [9] provides APIs that allow
apps to label their network flows. The labels specify background
or foreground to indicate if the flow is delay-tolerant, and large or
small to specify the amount of data to be transmitted. This design
is beneficial when there is a concurrent mix of foreground and
background traffic. In contrast, our design provides apps with the
capability to specify a quantitative metric to optimize directly. Both
Multinets and Intentional Networking assume that WiFi has better
performance than cellular wireless networks, which we have shown
earlier to no longer be true.

5. CONCLUSION AND FUTURE WORK
This paper introduced Delphi, a transport-layer module for mobile

network selection. Applications on a mobile device express their
desired objectives that Delphi optimizes by selecting the best net-
work, balancing individual optimality with social utility. Delphi has
three key components: “local learning”, in which a node estimates
or infers useful properties of different networks efficiently, “property
sharing”, in which nodes share what they learn with other nearby
nodes, and “selection”, in which each node selects a network using
what it has observed locally and from its neighbors. An implemen-
tation and experimental evaluation of Delphi is in progress; some
pieces have been built and experimented with as reported in this
paper.
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