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Abstract—Sorting is one of the most fundamental and use-
ful applications in computer science, and continues to be an
important tool in analyzing large datasets. An important and
challenging subclass of sorting problems involves sorting ter-
abyte scale datasets with hundreds of billions of records. The
conventional method of sorting such large amounts of data
is to distribute the data and computation over a cluster of
machines. Such solutions can be fast but are often expensive
and power-hungry. In this paper, we propose a solution based
on flash storage connected to a collection of FPGA-based sorting
accelerators that perform large-scale merge-sort in storage. The
accelerators include highly efficient sorting networks and merge
trees that use bitonic sorting to emit multiple sorted values
every cycle. We show that by appropriate use of accelerators
we can remove all the computation bottlenecks so that the end-
to-end sorting performance is limited only by the flash storage
bandwidth. We demonstrate that our flash-based system matches
the performance of existing distributed-cluster solutions of much
larger scale. More importantly, our prototype is able to show
almost twice the power efficiency compared to the existing
Joulesort record holder. An optimized system with less wasteful
components is projected to be four times more efficient compared
to the current record holder, sorting over 200,000 records per
joule of energy.

I. INTRODUCTION

Sorting is one of the most studied problems in computer

science, and is crucial in many applications. It is used to

organize data for fast searches, and tasks such as duplicate
detection and removal. For performance, a DBMS sometimes

sorts the two tables of interest before joining them, or sorts a

table by its keys to create a clustered index. Large scale sorting

is also a key function in the MapReduce paradigm, where the

keys emitted from mappers must be sorted before being fed

into reducers.

Because sorting is usually used as a component of a larger

system, the resource budget allocated for sorting is often

limited. However, the computational overhead and memory

requirement of fast sorting is ever increasing due to the

increasing size of the datasets of interest. As a result, sorting

can easily become a performance bottleneck.

If the datasets does not fit in the available memory of a

single machine then it must be stored either in secondary

storage, or distributed across multiple machines, or both. In

such a setting, sorting algorithms need to be modified to

compensate for the access-latency of the secondary storage or

network. Many sorting systems mitigate these overheads by

using fast storage, such as SSDs or RAID, and fast networks,

such as 10Gbps Ethernet or Infiniband. The fastest systems

for sorting terabyte scale data today are built on a cluster of

machines that use a MapReduce processing platform such as

Hadoop.
The high computational overhead of sorting has prompted

research into sorting accelerators. Such efforts include parallel

sorting algorithms for multiprocessors and sorting algorithms

that take advantage of SIMD instructions such as Intel’s

Streaming SIMD Extensions (SSE) [1], [2]. There is also

much research into sorting accelerators on larger scale SIMD

appliances such as General Purpose Graphic Processing Units

(GPGPU) [3], [4]. Application-specific sorting hardware via

Field Programmable Gate Arrays (FPGA) [5]–[10] or Appli-

cation Specific Integrated Circuits (ASIC) [11]–[13] are also

under active investigation.
This paper proposes a system architecture for merge-sorting

terabyte-size datasets using an FPGA-accelerated flash storage.

This work is an important component for a larger in-store

accelerator platform for a graph analytics system we are build-

ing. The high performance accelerators on the FPGA ensures

that the computational limitations of sorting are effectively

removed, and is replaced by the limitations of flash and DRAM

bandwidth.
Our system includes different types of hardware sorting

accelerators which operate at different levels of granularity.

The basic unit of sorting is a tuple, which consists of N
entities that can be packed into the width of the datapath. In

our implementation the datapath width is 256 bits. Depending

on the workload, N can be 2 (128 bit entities) to 8 (32 bit

entities). Since N is a small number, it can be efficiently

sorted using a sorting network [14] in a pipelined and parallel

manner. Larger granularities are sorted using a collection of

N-tuple mergers which are organized to efficiently use the

memory hierarchy. Each merger emits N sorted values at every

cycle using the ideas from a recently proposed FPGA merge-

sorter [5]. The following four sorting accelerators are used by

our system:

• Tuple Sorter : Sorts an N-tuple using a sorting network.

• Page Sorter : Sorts an 8KB (a flash page) chunk of sorted

N-tuples in on-chip memory.

• Super-Page Sorter : Sorts 16 8K-32MB sorted chunks in

DRAM.

• Storage-to-Storage Sorter : Sorts 16 512MB or larger

sorted chunks in flash.

The design of the various sorting networks and merge-sort

accelerators described above is not new. Our contribution is

how we organized various hardware sorters to make the best

use of a memory hierarchy composed of flash, DRAM and on-
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chip BRAM. The Super-Page size is derived from the available

hardware; given larger DRAM, the Super-Page sorter could

sort larger chunks and improve the performance of the system

by reducing the number of times the data is copied back and

forth from flash. We show that our design has substantial

power, cost and performance benefits over existing software-

centric systems.

We have implemented a prototype with all the sorters and

support infrastructure on a Xilinx VC707 FPGA development

board coupled with a Xeon server, using a flash expansion

card plugged into the FMC port of the VC707 board. We

evaluated the performance of our system using randomly

generated terabyte-size datasets, composed of ten to hundred

billion records.

Measuring the sorting performance of a prototype imple-

mentation with a single accelerated storage showed that such

a system was able to match the performance of cluster systems

of much larger scale, at a fraction of cost and power budget.

For example, one node was able to sort a 1TB dataset of over

10 billion key-value pairs from the Terasort benchmark in 700

seconds. This is more than half the performance of a published

21-node MapR cluster [15]. The performance of our system

can be doubled simply by adding another accelerated storage

device, which will allow our system to exceed the performance

of the MapR cluster with a single node.

The most notable characteristic of our system is its power
efficiency. For the Terasort/Joulesort [16] benchmark data, a

single node instance is capable of sorting 1TB of 16 byte

records, or over 68 billion records, in less than 5,000 seconds

while consuming less than 140W of power. This translates to

over 100,000 records sorted per joule of energy consumed,

which is almost double the current record holder in the

Joulesort benchmark. Although due to our system’s custom

design we do not satisfy the Joulesort criterion, it is a good

reference point since our system can be constructed entirely

using available hardware. The power efficiency is particularly

impressive considering almost 100W of power is consumed

by the host server, which is not doing much useful work. We

also present a system design with an embedded processor and

two storage devices, which is expected to sort over 200,000

records per joule, almost four times the current record holder

performance.

The rest of the paper is organized as follows: Existing

literature related to large scale sorting is explored in Section II.

The detailed architecture and implementation of our system is

described in Section III. We present the performance evalu-

ation of our implementation in Section IV, and conclude in

Section V.

II. RELATED WORK

A. Large Scale Sorting

Sorting has been one of the most widely studied research

topics since the dawn of computer science. Appropriate sorting

algorithms have to be chosen for different types of data and

available hardware resources. With the advances in parallel

Fig. 1. A known optimal
8-way sorting network
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Fig. 2. Bitonic sorting network

processors, it is vital to parallelize sorting algorithms for

performance but it is not straightforward to do so.

With the data explosion from our era of “Big Data”, it is

not uncommon to see the need to sort dataset at hundreds-of-

terabyte to petabyte scale. The de-facto solution for sorting a

large-scale dataset is running MapReduce [17] programs on

a cloud of general-purpose servers. To handle the complexity

of the sorting job on such a large scale, a general-purpose

distributed software environment, such as Apache Spark [18]

and Hadoop [19], is typically deployed to manage cluster

resources and schedule parallel executions. Work in this di-

rection [20]–[23] shows that a 100TB of data can be sorted

in hundreds of seconds on cluster of general-purpose servers.

TecentSort [20] holds the world record of sorting 100TB of

data in 98.8 seconds, which runs on top of 512 OpenPower

computational nodes, connected via 100Gbps Ethernet.

High computation requirement of sorting algorithms has

also inspired research into using novel parallel features from

off-the-shelf hardware to speed up sorting tasks. Parallel

sorting algorithms, such as merge sort, can be multi-threaded

on multicore processors by processing disjoint data segments

in parallel [24]. Furthermore, modern processors provide

Single Instruction Multiple Data (SIMD) features to more

aggressively exploit data-level parallelism in sorting [1], [25].

For example, Intel processors provide SIMD features with

Intel’s Streaming SIMD Extensions (SSE). Work in this di-

rection has attempted to efficiently map sorting algorithms

into SSE-enabled processors [1], [2]. There is also research

to accelerate sorting with larger-scale SIMD appliances such

as GPGPUs [3], [4]. SIMD-enabled processors can deliver

strong sorting performance on small-scale data, however such

solutions are generally power-hungry.

Hardware accelerators, such as FPGAs [5]–[10] and

ASICs [11]–[13], are also under active investigation to pro-

vide power-efficient solutions to sorting. Compared to SIMD-

enabled general-purpose processors, hardware accelerators can

deliver similar sorting performance at more than 10x lower

power budget [7]. Hardware sorting accelerators can be cate-

gorized into sequential sorters and parallel sorters. Sequential

sorters [9], [11] are implementations of single-threaded sorting

algorithms and can produce 1 number/cycle. On the other

hand, hardware parallel sorters [5], [7], [10] often implement

Bitonic or odd-even sorting networks [26] and can sort more

than two inputs simultaneously. Hardware parallel sorters have
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better performance than sequential sorters, but they need larger

area and more I/O pins [13]. With larger capacity FPGAs

such as Xilinx UltraScale+ and Altera Stratix 10, hardware

parallel sorters are more popular as the implementation choice

for sorting accelerators [5].

In order to reap the maximum processing power of general-

purpose or application-specific sorting engines, it is imperative

that all the data should fit into the main memory of the

machine. For example, if the sorting job does not fit into

the aggregate DRAM capacity of a MapReduce cluster, the

dataset has to be moved to the slower secondary storage, and

the performance can degrade dramatically [27]–[29]. In such

a setting, NAND flash memory can offer an alternative to

the distributed DRAM solution for sorting [27]–[31], thanks

to its orders-of-magnitude larger capacity than DRAM [32]

and relatively fast random accesses compared to magnetic

disks. NAND flash memory has very different characteris-

tics than DRAM, such as accesses at page granularity and

erase-before-write requirement. To migrate memory-intensive

program, such as sorting, into flash storage, flash-oriented

optimizations have to be made to mitigate storage overhead

and reap maximum device performance [27]. Another benefit

of using more flash and less DRAM is lower energy consumed

by sorting tasks. NTOSort [33] holds the world record for

JouleSort which measures the amount of energy to sort 1TB

of data. NTOSort uses a desktop system with 16 Samsung 840

Pro 256GB SSDs, 1 Samsung 840 Pro 128GB SSD, and can

sort 59,444 records/Joule.

B. Sorting Networks

1) Sorting Network Overview: Sorting networks are com-

putation units that repeatedly perform a sequence of compare

and swap operations between pairs of values using compara-

tors. Values are entered into the network in parallel over

wires, and when a pair of values meets a comparator, they

are compared and swapped, so that each wire now contains

min(x, y) and max(x, y) respectively. A sorting network can

be made to completely sort a sequence of values in correct

order with well-placed comparators. Figure 1 shows the known

optimal sorting network for 8 values. While it is possible to

generate a sorting network that sorts the input values of any

given length, there is a large body of work to construct optimal
sorting networks for relatively small input sizes. Such optimal

sorting networks have minimal depth, or minimal number of

comparators in the network. Optimal sorting networks for

the first sixteen input sizes are listed in Knuth’s The Art of

Computer Programming [34]. Figure 1 is the known optimal

sorting network for input size of 8, and consists of six stages

of comparators.

2) Bitonic Sorting Network: Sorting networks can take

advantage of bitonic sequence characteristics, in which values

are either monotonically increasing and then monotonically

decreasing, or monotonically decreasing and then monoton-

ically increasing. A bitonic sequence can be entered into a

class of sorting network called Bitonic half cleaner, and the

output sequence will be separated into two equal-length bitonic

sequences, where all values of the upper part will be larger

or equal to all values in the lower half. A bitonic half cleaner

is a sorting network of depth one. This means the separation

of upper and lower halves can be done in a single cycle, in a

hardware implementation.

A bitonic half cleaner can be used to merge two sorted

sequences efficiently. Given two sequences a and b that are

already sorted internally, the concatenation of a and the inverse

of b is a bitonic sequence. Therefore, the bitonic half cleaner

can be applied to separate the higher values and lower values.

Increasingly smaller half cleaners can be applied recursively

to merge the two sequences as shown in Figure 2. It can

be seen that it requires much fewer comparators and less

depth compared to the network in Figure 1. An important

characteristic of this network is that because the upper half and

lower half can be separated in a single cycle, a merge sorter

constructed using this unit can merge two sequences organized

into units of N values, and emit N sorted values at every cycle.

Once the upper and lower values are separated, the merged

upper values can be internally sorted in a pipelined fashion.

Our sorter will take advantage of this feature extensively.

C. Sort Benchmark

The Sort Benchmark, colloquially called Terasort, is a set

of benchmarks that measures the capability to sort a large

amount of records under a variety of conditions [35]. Initially

the main benchmark of interest was the TeraByte Sort, which

measures the time to sort 1TB (1012 bytes) of data. Many

more benchmarks have been added since to reflect the modern

computation environment. One such benchmark of interest to

us is JouleSort, which measures the amount of energy required

to sort a certain amount of data. Each of the benchmarks in

the set comes in two categories: Indy (Formula 1), where

records are fixed size (100-byte records with 10-byte keys),

and Daytona (Stock Car), where the sort code must be general

purpose.

III. SYSTEM ARCHITECTURE

Figure 3 shows the overall architecture of our system. At

a high level, it is simply a flash storage device with FPGA-

based, in-storage accelerators. In the first step of the sorting

process which is shown in Figure 4, data to be sorted is

loaded onto DRAM from flash in 512MB chunks, sorted, and

then written back to flash. (512MB is half the size of the

on-board DRAM capacity). Three different types of sorters

are involved in sorting 512MB chunks in memory: the Tuple

Flash

DRAM

Merger 
Tree

Page 
Sorter `

Host Server

Fig. 3. The system is designed as a flash-based storage device, with FPGA-
based accelerators and a DRAM buffer
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Fig. 4. Data is first sorted into chunks that can fit in the DRAM buffer and
stored back in flash

sorter, Page sorter and the Super-Page sorter. Once data in flash

is organized into 512MB sorted blocks, the sorted blocks are

iteratively merge-sorted by the Storage-to-Storage Sorter until

the entire data is sorted, as shown in Figure 5.

A. Tuple Sorter

Our sorting system stores data as packed tuples, which

are aligned to the width of the datapath. For example, our

implementation has a datapath of 256 bits, and stores data

organized into N-Tuples that can be packed into 256-bits. 256

bits can fit a 4-tuple of 64 bit values for long long values,

or a 2-tuple of 128 bit key-pointer pair values for the terasort

benchmark. Because the size of the tuple is relatively small, an

N-Tuple can be sorted efficiently using a sorting network. The

tuple sorter is located on the datapath of flash reads, so that

tuples stored in flash can be sorted as data is read. Because the

parallel pipelined sorting network can sort data at wire speeds,

only one tuple sorter instance is required. Our sorting system

provides a library of known optimal sorting networks that can

be selected at compile time.

B. Merger Sub-Component

All subsequent sorters, including the Page sorter, Super-

Page sorter, and the Storage-to-Storage sorter use one or

more instances of the Merger module at its core. The merger

module takes as input the length of the two sequences to be

merged, and the two sequences, each organized into a stream

of internally sorted n-tuples. It outputs the merged sequence,

also organized into a stream of n-tuples. The merger is capable

of emitting a merged n-tuple every cycle, meaning that a

certain amount of data can be sorted in a deterministic amount

of time, regardless of the size of the values. The internal

structure of the Merger can be seen in Figure 6.

At the beginning of execution, the merger is given the size of

sequences to merge. When the first pair of n-tuples enters the

merger, they are pushed through the bitonic half cleaner. When

sorting in the ascending order, the values in the lower half of

the result forms the first n-tuples of the merged sequence. This

Storage-to-
Storage Sort

512MB in Flash 512MB in Flash 512MB in Flash 512MB in Flash

…

In-Storage
Merge 

Phase 1

In-Storage
Merge 

Phase 3

2TB in Flash

128GB in Flash

Storage-to-
Storage Sort

8GB in Flash 8GB in Flash

128GB in Flash128GB in Flash

…512MB in Flash

…8GB in Flash

Storage-to-
Storage Sort

Storage-to-
Storage Sort

Storage-to-
Storage Sort

In-Storage
Merge 

Phase 2

…

Storage-to-
Storage Sort

Storage-to-
Storage Sort

Fig. 5. Large sorted chunks are merge-sorted directly from storage to storage

n-tuple is sorted internally by a bitonic sorter before being

output from the merger. The upper half of the results are also

sorted by a bitonic sorter, and then stored in a register. All

subsequent half cleaner operations are between the value in

this register, and one of the input FIFOs. The FIFO that will

be used depend on which of the two n-tuples processed in

the previous cycle had the largest value. If the n-tuple in the

register had the largest value, there are still values in the FIFO

that are smaller than the register value. If the n-tuple from the

FIFO had the largest value, there may be values in the other

FIFO that are smaller than the register value. Once one of the

two input FIFOs are empty, the value in the register and in

the other FIFO are flushed out without further comparisons.

C. Page Sorter

The page sorter takes as input a fixed length list of values

organized into internally sorted n-tuples, and emits a com-

pletely sorted list of same length. A page-granularity sorter is

required because fine-grained random access performance of

DRAM drops sharply below page granularity. It makes sense

to load page-granularity chunks into on-chip memory and sort

it completely. The tuples are sorted by a sorting network before

they are entered into the page sorter.

The page sorter is used to sort data into page-sized sorted

chunks as it is being initially read from flash to DRAM. It

works by first pushing all n-tuples into one of two FIFOs,

merging them into increasingly large chunks of sorted se-

quences until the whole list is sorted. The internal architecture

of a page sorter can be seen in Figure 8. Since the page sorter

requires multiple passes over the data to sort it completely,

multiple instance of page sorters are required to keep up with

the bandwidth of the flash storage.

D. Super-Page Sorter

Once data exists on DRAM as sorted blocks, they are

merged into larger chunks with the Super-Page Sorter. The

Super-Page Sorter is composed of two components; An 8-leaf

merge tree and a page-granularity DRAM FIFO loader/storer.

An 8-leaf merge tree is composed of a tree of the two-way

merger described above, and takes as input 16 streams n-tuples

as input and emits a sorted stream of n-tuples. The pairs of

stream length information given to the first layer of mergers
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is added and given to the upper level mergers as input. The

internal architecture of an example merge tree with 4 leaf

nodes can be seen in Figure 7.
The reason such a high fan-out merge sorter is used is to

reduce the number of passes the merger has to make to get a

fully sorted sequence. Sorting 16 values takes 4 passes with a

binary merger, but a single pass with an 8-leaf merge tree. An

even larger fan-out will be beneficial to performance, if the on-

chip resources of the FPGA allows it. The Super-Page Sorter

makes multiple passes over data stored in DRAM until the

size of the sorted block becomes half of the available DRAM

capacity, at which point it is written to flash.
The DRAM FIFO loader loads page-granularity blocks of

data from DRAM and enqueues it into one of the multiple

output FIFOs that the merger reads from. It takes as input

a stream of DRAM addresses to read from, a stream of

DRAM addresses to write to, number of pages to read, and a

destination FIFO index. It returns an acknowledgement with

the destination FIFO index whenever a read request is fulfilled.

The loader initiates a DRAM page read whenever there is

enough space on the destination FIFO for a page read. DRAM

can be kept completely busy by making sure that one or more

requests are always in flight for each FIFO.
The reason a page-granularity loader is required is because

DRAM performs relatively poorly with fine-grained random

reads. DRAM is organized into banks a few KBs in size, and

there is some overhead whenever a new bank has to be opened.

The read performance of our 1GB SODIMM DRAM card with

random 8KB page-granularity reads was about 10GB/s, while

random 64-byte cache granularity reads performed at about

1GB/s.
More than one instance of the in-memory merger is usually

required to keep up with the maximum bandwidth of DRAM

during intermediate merge phases. At the last merge phase,

all data in DRAM is collected into a single sorted sequence,

and this needs to be done by a single merger. But because the

flash write bandwidth is the limiting factor at this stage, one

merger is more than enough.

E. Storage-to-Storage Sorter
Once data is organized into large sorted block on flash,

they are merged into larger blocks using the Storage-to-Storage

Sorter. The Storage-to-Storage Sorter actually uses the same

infrastructure used by the Super-Page Sorter, since the Super-

Page Sorter is no longer required to be active during the

Storage-to-Storage phase. In this phase, the DRAM is used as

a prefetch buffer for flash storage. Commands for reading flash

pages into DRAM is pipelined with the commands for reading

the same pages from DRAM to the merger. The merged pages

are also buffered in DRAM, and written back to flash.

F. Software Manager

The FPGA accelerators and the layout of data on flash is

managed by a accelerator-aware file system. The file system

communicates to the storage device over PCIe, and maintains

a list of files in the file system and their mappings to the

flash chips. It has a separate data and command paths to

and from the storage device and accelerators. The data path

between the storage and software operates using fast DMA

communication over PCIe. The command path operates over

low latency I/O mapped communication over PCIe, and is

used also for sending commands to accelerators and receiving

acknowledgements.

IV. EVALUATION

In this section, we first describe the implementation details

of the prototype system we have constructed, evaluate the

performance of individual components of the system, and then

explore in detail the performance characteristics of sorting a

large dataset.

A. Implementation Details

We have implemented our solution using a Xilinx VC707

FPGA development board coupled with a custom flash expan-

sion card connected via the two FMC ports on the VC707

board. The VC707 board is equipped with a Xilinx Vertex 7

FPGA and 1GB of DDR3 DRAM. The DRAM performed at

10GB/s with sequential read/writes and 1GB/s with random

read/writes. The flash expansion card has a capacity of 1TB,

and has a modest performance of 2.4GB/s reads and 2GB/s

writes. The coupled device is plugged into the Xeon server

which acts as the host, via a x8 Gen2 PCIe slot. FPGA devel-

opment was largely done in the Bluespec hardware description

language.

B. Component Performance

1) Merger Tree: The merger tree was run at a clock

frequency of 125MHz, using a data path of 256 bits. We

measured the performance of the merger using values sizes of

of 64 bits and 128 bits. At a data path of 256 bits, the merger
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takes as input 4-tuples and 2-tuples, respectively. The merger

invariably emits one n-tuple at every cycle regardless of data

distribution. At 125MHz, it merges data at 4GB/s, regardless

of value size.

2) Page Sorter: The page sorter sorts 8KB blocks of data.

Since all data is organized into n-tuples with total size of 256

bits or less, each block consists of 256 such tuples. A two-

way merger must make 8 passes over the data to result in

a completely sorted block. As a result, each page sorter is

capable of producing sorted blocks of data at 0.5GB/s. Since
the goal of the page sorter is to sort data as it is read from
flash, our system required 5 page sorters to completely saturate
the 2.4GB/s flash bandwidth.

Figure 9 compares the performance of merge trees and page

sorters implemented for hardware of various value sizes, and

a single thread software implementation. The software imple-

mentation was compiled with GCC with -O3 optimizations

and run on an Intel Xeon E5-2690 running at 2.90GHz.

3) External Sorters: A 16-way merger is capable of emit-

ting a sorted tuple at every cycle, resulting in a 4GB/s band-

width per merger. There are three different situations for the

use of 16-way merge-sorters: Sorting from DRAM to DRAM,
which requires two 16-way mergers to saturate the bandwidth,
DRAM to flash and flash to flash, which require one merger.
The maximum available bandwidth in each situation is 5GB/s,

2GB/s and 1GB/s, respectively.

Table I describes the sorting phases and the required compo-

nents to saturate the bandwidth of the medium. For example,

during the DRAM-DRAM phase, the 10GB/s of bandwidth

needs to be shared between read and writes, which leaves

5GB/s each for reads and writes. During the DRAM-flash

phase, the DRAM is capable of reading at 10GB/s, but the

flash is only capable of writing 2GB/s, which turns into the

bottleneck.

C. End-to-End Sorting Performance

We demonstrate the end-to-end performance of the system

by sorting 512GB of data stored in flash. We experimented

with 512GB of data because the effective capacity of a 1TB

Sort Phase Bandwidth Accelerator Required
(GB/s) Instances

Flash Read 2.4 Page Sorter 5
In-memory 5 Merge Tree 2
Flash Write 2 Merge Tree 1
In-storage 1 Merge Tree 1

TABLE I
REQUIRED COMPONENTS FOR SORT PHASES

flash storage is actually a bit smaller due to increasing number

of bad blocks due to use, and some additional storage capacity

for intermediate buffers are required by the system.

Sorting is done in phases as is traditional merge sort. At the

first phase, unsorted data is read in 8KB blocks and sorted via

the page sorter, after which the sorted block size is 8KB. At

every subsequent sort phase, all blocks are merged 16 blocks

at a time through a merge tree, increasing the sorted block

size by 16-fold after every phase.

Table II shows the breakdown of performance across the

merge phases to completely sort 512GB of data, along with the

maximum read bandwidth each medium can provide during

that phase. Each row corresponds to a merge sort phase.

The elapsed time column shows the total amount of time it

took to merge all sorted blocks from the previous phase. All

elapsed time values were averaged over multiple executions

and rounded up to the nearest 10 seconds. We can see that at

every stage, almost the maximum bandwidth of the mediums is

being saturated for useful work. The numbers we are getting is

the maximum sorting performance available from these storage

hardware.

An interesting effect of using high fan-out mergers is that

as long as the number of merge phases do not change, the

amount of time it takes to sort a dataset is linear to its size. The

range of datasets with the same number of merge phases that

include 512GB is over 128GB to 2TB. For example, 256GB

can be sorted in 1200 seconds, and 2TB can be sorted in

10,000 seconds.
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Sorted Block Size Medium Bandwidth Time
log(bytes) (GB/s) (s)

13 flash-DRAM 2.4 220
17 DRAM-DRAM 5 110
21 DRAM-DRAM 5 110
25 DRAM-DRAM 5 110
29 DRAM-flash 2 280
33 flash-flash 1 520
37 flash-flash 1 520
41 flash-flash 1 520

total 2390
TABLE II

512GB SORTING PERFORMANCE BREAKDOWN BY MERGE PHASE

D. Terasort Performance

We focused on the Indy category of the terasort benchmark,

which sorts fixed-sized key-value pairs, to compare our system

against existing ones. The Indy category requires sorting of

fixed size elements of 100 bytes in size, with 10 byte keys.

We generated 1TB of such key-value pairs, and stored the

key and value data separately. The keys were augmented with

a pointer to its corresponding value. As a result, the actual

dataset to be sorted was a list of 16-byte key-pointer pairs. It

takes our system 700 seconds to completely sort 1010 16-byte

key-pointer pairs, or 150GB of data.

Published performance numbers on Terasort from MapR

reports 494 seconds to completely sort 1TB of data, or 1010

keys, on a 21 node cluster, each node equipped with 32 cores,

128GB of RAM and 11 HDDs [15]. With a single storage

device, our system performs at more than half the performance

of a 21-node MapR cluster. In order to exceed the cluster

performance, we can simply add another accelerated storage

device and double the available bandwidth. This allows us to

completely sort the data in less than 400 seconds with a single

node. The comparison between accelerated systems with one

or two storage devices and the Hadoop system can be seen in

Figure 10.

It should be noted that the performance comparison against

the MapR system is intended to provide a reference for

capability and performance estimate, not to compare the merits

of the two architectures. Single node systems such as ours have

different constraints compared to cluster systems.

E. Power-Performance

Thanks to the low utilization of the host CPU and the

high power efficiency of the FPGA accelerator, the end-to-end

power consumption of the system is very low. Not only can

a single node system can perform on par with cutting edge

cluster systems, but also with much less resources. Thanks

to offloading computation to the FPGA accelerator, the host

CPU is actually doing very little work. The host server can

conceivably be swapped out with a low power embedded

processor without performance loss.

We measured the power consumption of the overall system

using a power monitor. The overall system consumed approx-

imately 140W of power, of which a single accelerated storage

device is responsible for about 40W. It should be noted that

our storage implementation is a prototype based on a very

conservative power estimation. Production systems will have

much lower power consumption.
Figure 11 compares the power performance numbers be-

tween a fully software implementation of the system, our

prototype system with single or double accelerated storage

devices, and projected systems with a low-power embedded

processor projected to consume 40W of power. Terasort bench-

mark data is packed into 128 bits of key-pointer pairs. The

software numbers are from NTOSort [33], which holds the

current record for Joulesort. Although our custom hardware

violates the constraints for the Joulesort benchmark, it is a

good reference point to compare against. Not only does our

prototype outperform the current record holder by almost

twice the efficiency, a projected system with more realistic

components for deployment outperforms the current record

holder by almost four times.

V. CONCLUSION

In this paper, we have presented the design and implemen-

tation of a low-power high-performance system for sorting

terabyte scale data. Our design used a hierarchy of storage

devices and a library of FPGA-based in-storage sorting accel-

erators to exceed the performance of much larger clusters with

a single, much cheaper node. Thanks to the power efficiency

of FPGA and flash storage, our system was also able to

exceed the power efficiency of the current Joulesort record

holder by up to four times. The device components we used

to construct our prototype are not special among their peers.

For example, a 1TB PCIe SSD with 2.4GB/s of bandwidth is

not a particularly high performance device anymore. We think

a system built using our design, using more modern and less

wasteful components can further improve the performance and

power efficiency of sorting systems.
It should be noted that because Page Sorters and In-Memory

Sorters remove fine-grained random access into storage, vari-

ous storage characteristics such as read granularity or random

access performance becomes unimportant. As a result, our

system can perform well using other storage devices, such

as HDDs or other future NVMs, as long as it delivers high

sequential throughput.
This sorting system was designed to be one of the key

components of a larger in-storage accelerator platform for low-

power high performance graph analytics. We plan to continue

exploring the use of flash and FPGA accelerators to enable

more low-power high-performance analytics of more complex

problems.
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