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Abstract

This thesis addresses the problem of scheduling multiple, concurrent, adaptively par-
allel jobs on a multiprogrammed shared-memory multiprocessor. Adaptively parallel
jobs are jobs for which the number of processors that can be used without waste
varies during execution. We focus on the specific case of parallel jobs that are sched-
uled using a randomized work-stealing algorithm, as is used in the Cilk multithreaded
language.

We begin by developing a theoretical model for two-level scheduling systems, or
those in which the operating system allocates processors to jobs, and the jobs schedule
their threads on the processors. To analyze the performance of a job scheduling
algorithm, we model the operating system as an adversary. We show that a greedy
scheduler achieves an execution time that is within a factor of 2 of optimal under these
conditions. Guided by our model, we present a randomized work-stealing algorithm
for adaptively parallel jobs, algorithm WSAP, which takes a unique approach to
estimating the processor desire of a job. We show that attempts to directly measure a
job’s instantaneous parallelism are inherently misleading. We also describe a dynamic
processor-allocation algorithm, algorithm DP, that allocates processors to jobs in
a fair and efficient way. Using these two algorithms, we present the design and
implementation of Cilk-AP, a two-level scheduling system for adaptively parallel work-
stealing jobs. Cilk-AP is implemented by extending the runtime system of Cilk.

We tested the Cilk-AP system on a shared-memory symmetric multiprocessor
(SMP) with 16 processors. Our experiments show that, relative to the original Cilk
system, Cilk-AP incurs negligible overhead and provides up to 37% improvement
in throughput and 30% improvement in response time in typical multiprogramming
scenarios.

This thesis represents joint work with Charles Leiserson and Kunal Agrawal of
the Supercomputing Technologies Group at MIT’s Computer Science and Artificial
Intelligence Laboratory.

Thesis Supervisor: Charles E. Leiserson
Title: Professor
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Chapter 1

Introduction

An adaptively parallel job is a job for which the number of processors that can be
used without waste varies during execution. This number represents the instantaneous
parallelism, or processor desire, of the job. In this thesis, we investigate the problem
of scheduling multiple, concurrent, adaptively parallel jobs on a multiprogrammed
shared-memory multiprocessor. We focus on the specific case of parallel jobs that
schedule their computation on a given set of processors using a randomized work-
stealing algorithm, as is used in the Cilk multithreaded language [5, 19,47].

The problem of scheduling parallel jobs on multiprogrammed parallel systems is
two-fold: first, the processors are allocated to the competing jobs, and second, a
thread from a job is chosen to run on each of the job’s allocated processors [17]. In
single-level scheduling , the decision of where to allocate a processor is combined
with the decision of which thread to run on it; in other words, the operating sys-
tem schedules all threads of all jobs. In two-level scheduling , the two issues are
decoupled: the operating system is responsible for allocating processors to the jobs
(the first level of scheduling), and the jobs are responsible for scheduling their threads
on those processors (the second level of scheduling). Since processors are allocated
to jobs, sharing is done using space slicing , where the processors of the system
are partitioned statically or dynamically among the different jobs. In contrast, time

slicing shares processors by rotating them from one job to another during each time
quantum and is more common in single-level scheduling.

We have developed a theoretical basis for analyzing the performance of two-level
schedulers. We model the interaction between the first and second levels of scheduling
by playing a game between the operating system and the job scheduler, in which the
operating system acts as an adversary. A similar approach is taken by Arora et. al. [2]
to model multiprogrammed environments for their thread scheduler. We define an
adaptively parallel job using the graph-theoretic model of multithreaded computation
developed by Blumofe and Leiserson [7]. We extend the model’s definition, however,
to support the idea of adaptive parallelism when executing a multithreaded compu-
tation. In particular, the model can handle a scenario where the operating system
(adversary) changes the number of processors allocated to a job at the beginning of
every time step. We show that it is still possible for a job scheduler using a greedy
algorithm under these conditions to achieve an execution time that is within a factor
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of 2 of optimal.
Using our theoretical model, we have developed a randomized work-stealing algo-

rithm for adaptively parallel jobs, algorithm WSAP (for “work stealing, adaptively
parallel”), that can handle dynamically changing processor allocations; WSAP is an
extension of algorithm WS presented in [7]. We also describe a dynamic processor-
allocation algorithm, algorithm DP (for “dynamic partitioning”), which allocates pro-
cessors to jobs both fairly and efficiently by responding to changes in the processor
desires of jobs during runtime. Using these two algorithms, we have designed and
implemented a two-level scheduling system for adaptively parallel work-stealing jobs
running on a multiprogrammed shared-memory system. In the first level of schedul-
ing, we use algorithm DP to allocate processors to the running jobs, based on their
current processor desires. In the second level of scheduling, we use algorithm WSAP
to schedule the computation of a single job and report its current processor desire to
the first-level scheduler.

The manner in which a job’s current processor desire is estimated is an interest-
ing problem on its own. In particular, we show that measuring the instantaneous
parallelism of a job can grossly underestimate the actual parallelism in the job. We
propose a strategy that proactively explores the parallelism of a job and uses feedback
from work-stealing statistics to tune the estimated desire.

We have implemented our two-level scheduler by extending the runtime system
of the Cilk multithreaded language. We call our system Cilk-AP. The original Cilk
scheduler implements algorithm WS [7], which assumes that the number of processors
allocated to a job remains fixed throughout its execution. We modified the scheduler
to implement algorithm WSAP, which handles dynamically changing processor allo-
cations, and we added a user-level extension that implements the processor-allocation
algorithm DP. Cilk-AP uses a technique called process control [48] to coordinate the
reallocation of processors between the first and second levels of scheduling. This tech-
nique is different from the technique used in [2], because it ensures that the number
of virtual processors used by a job always matches the number of physical proces-
sors assigned to it. Empirical results demonstrate that Cilk-AP has low overhead
and improved performance over the original Cilk system in a variety of situations.
These results also suggest that algorithm WSAP runs in asymptotically optimal time,
although we have not yet verified this conjecture theoretically.

The remainder of this thesis is organized as follows. In Chapter 3, we develop a
theoretical model for adaptively parallel computation, using the two-level scheduling
approach. Chapter 4 presents our randomized work-stealing algorithm for adap-
tively parallel jobs, algorithm WSAP, and Chapter 5 presents our dynamic processor-
allocation algorithm, algorithm DP. In Chapter 6, we discuss the design and imple-
mentation of our two-level scheduling system, Cilk-AP; we present empirical results
for Cilk-AP in Chapter 7. Chapter 8 discusses previous work and we conclude in
Chapter 9.

12



Chapter 2

High-Level Policy Decisions

In this chapter, we justify some of the major policy decisions in our approach to
scheduling adaptively parallel jobs. In particular, we discuss the advantages of

1) two-level scheduling over single-level scheduling,

2) dynamic processor allocation over static allocation , and

3) coordinated processor reallocation over uncoordinated processor reallocation.

When choosing these policies, we focus on their applicability to shared-memory
systems that use the “workpile-of-tasks” programming model, in which a computa-
tion is represented as a workpile of tasks that are executed by a variable number of
worker threads [17]. The model for adaptively parallel computation that we present
in Chapter 3 is a variant of this model.

Two-Level Scheduling

The first policy decision we consider is the choice between single-level and two-level
scheduling, the two basic approaches to scheduling in multiprogrammed parallel sys-
tems defined in Chapter 1.

In single-level scheduling, the operating system is responsible for scheduling all job
threads directly onto the processors. The problem with this approach is that it incurs
high operating-system overhead and may not be responsive to application needs [17].
Since many scheduling decisions are a result of synchronization conditions among the
application’s threads, paying the operating system overhead at every synchronization
point is expensive. The cost is especially high in fine-grained applications, where such
interactions between threads are numerous and frequent. Furthermore, the operating
system is unable to optimize the scheduling, because it lacks information about the
application’s characteristics and synchronization patterns.

The solution to this problem is to use two-level scheduling, where the operating
system is only responsible for allocating processors to the competing jobs, and the
applications themselves perform the fine-grain scheduling of threads onto allocated
processors in a way that satisfies synchronization constraints. The internal level of
scheduling allows the application to have more threads than allocated processors.

13



It also makes it possible to create systems where the allocation changes at runtime
and applications are expected to reschedule their threads accordingly. This approach
is well suited to the workpile-of-tasks programming model, where the tasks can be
executed by a variable number of worker threads.

While two-level scheduling is not universally accepted for all types of multipro-
grammed parallel systems, it is perfectly suitable for shared-memory systems using
the workpile-of-tasks programming model [17], which are the focus of this thesis. The
presence of shared memory makes it possible for tasks to be executed by any worker
thread on any processor. In fact, if the shared memory is centrally located, memory
allocation (e.g. to implement the shared workpile) is completely decoupled from the
allocation of processors. Previous work has also shown that single-level schedulers
tend to work poorly on shared-memory systems [22,38,50,51].

Dynamic Processor Allocation

The first level of a two-level scheduling system allocates processors to jobs using either
a static or dynamic allocation policy. In a static policy, the number of processors
assigned to a job remains fixed throughout the job’s execution. In a dynamic pol-
icy, the number of allocated processors may change during runtime. The current
Cilk scheduler can only be used with a static processor-allocation policy, since it as-
sumes that a job’s processor allocation does not change during runtime. The Cilk-AP
scheduler presented in Chapter 6, on the other hand, copes with dynamically changing
allocations, and so it is suitable for use with a dynamic policy.

The disadvantage of a static processor-allocation policy is that it leads to frag-
mentation of processor resources and it compromises fairness. Since job allocations
are fixed during runtime, new arrivals are forced to wait in a queue if sufficient
processors are not available. Various strategies to reduce queuing have been pro-
posed [16,42,43,49], but all of these strategies essentially reserve processors for future
arrivals, thus wasting system resources and limiting achievable utilization. In addi-
tion, static policies are unable to adapt to changes in processor requirements exhibited
by jobs during runtime.

Unlike static policies, dynamic processor-allocation policies allow the system to
respond to load changes, whether they are caused by the arrival of new jobs, the
departure of completed jobs, or changes in the parallelism of running jobs—the last
case is of particular importance to us because of our study of adaptively parallel
jobs. In all three cases, a dynamic policy is able to redistribute processor resources
to accommodate the change in load.

To see how this response compares to that of a static policy, consider the example
scenarios presented in Figure 2-1. In scenario (a), jobs A and B start running at
time T = 0 with P/2 processors each, where P is the number of processors in the
system, and a third job requesting P/2 processors arrives at time T = t. In the static
case, all processors of the system are busy, so job C is forced to wait until either A
or B finishes; this policy compromises fairness and suffers from reduced throughput.
The dynamic policy, on the other hand, is able to redistribute the processors of the
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system at time t and give each job a fair share of P/3 processors, thus achieving
better throughput. In scenario (b), only jobs A and B are running in the system,
but they exhibit complementary parallelism profiles (indicated by the dashed line).
In the static case, no changes can be made to the processor allocations once the jobs
have started, so there are periods during which some of the processors are poorly
utilized. This problem does not occur in the dynamic case, because the policy is able
to redistribute underutilized processors from job A to B and vice versa. The response
times of both jobs are also better because the processors are used more efficiently.

a)

b)

A A
A
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B
C
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Time
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Figure 2-1: Theoretical performance of static vs. dynamic processor-allocation policies
on a system with P processors. In scenario a), jobs A and B are running and job C enters
the system at time t; in scenario b), jobs A and B are running and exhibit complementary
parallelism profiles.

Dynamic processor-allocation policies have been studied and implemented exten-
sively in the past [8, 12, 15, 22, 27, 29, 30, 32, 33, 35, 37, 39–41, 44–46, 48, 52]. Most of
this work, however, assumes that the instantaneous parallelism of the jobs is known
and used by the scheduling system when making its decisions. In practice, this in-
formation is not easily discernible, and in some cases can be inherently misleading.
(We show an example of such a case and describe our solution to the problem in
Chapter 6.) In particular, at present not only does the Cilk system expect the user to
manually enter the parallelism of a job before it begins, but this parallelism remains
fixed throughout the job’s execution, making the system only suitable for use with
static processor allocation policies.
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The primary complaint against dynamic processor-allocation policies is that they
incur more system overhead than static policies due to the frequent reallocations.
This overhead, however, is significantly reduced in shared-memory systems that use
the workpile-of-tasks programming model, because the presence of shared memory
makes it possible for tasks to be executed by any worker thread on any processor.
Moreover, the reallocation overhead also depends on how changes to job allocations
are coordinated between the first and second levels of scheduling.

Coordinated Reallocations

An important policy decision for two-level scheduling systems that employ a dynamic
processor-allocation policy is the manner in which reallocations are coordinated. In
uncoordinated reallocations, the operating system moves processors without in-
teracting with the application, while in coordinated reallocations, processors are
moved in concert with the application [33]. The problem with uncoordinated reallo-
cations is that a processor might get preempted while running a thread that holds
a spin lock, for example, causing other threads to spin until the critical thread is
resumed. In fact, the thread need not be holding a lock, but may be critical to the
application for another reason, causing other threads to block or spin at the next
synchronization point. This waste of processor resources can significantly deteriorate
both application and system performance [17, 33]. While several locking protocols
have been proposed to alleviate the problem—for example, “two-phase” or “spin-
then-block” locking [24, 28]—they neither eliminate the problem nor target threads
that are critical for reasons unrelated to locks.

To avoid this kind of reallocation overhead, we choose a policy that performs
coordinated reallocations. In a coordinated reallocation, the application is given
some responsibility or control to effect the requested allocation change, or at the very
least, it receives notifications from the operating system when important scheduling
events occur. Since the application knows which of its threads are critical at any
given time, it can avoid preempting the corresponding processors in the event that its
allocation needs to be reduced. For example, an application that follows the workpile
of tasks programming model can avoid preempting a processor whose thread is in the
middle of executing a given task.

In general, coordinated reallocations allow us to flexibly distribute reallocation
responsibilities between the application and the operating system. The more respon-
sibility that is given to the application, however, the more the operating system needs
to trust that it will respond to allocation changes in an honest manner. Several mech-
anisms have been proposed to implement coordinated reallocation policies, such as
scheduler activations [1], first-class user threads [31], and process control [48]. The
Cilk-AP system uses the process control mechanism, which we discuss in Section 6.2.
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Chapter 3

A Theoretical Model for
Scheduling Adaptively Parallel
Jobs

In this chapter, we develop a theoretical model for adaptively parallel jobs and their
execution schedules. We assume a two-level scheduling environment in which pro-
cessors are allocated to jobs in the first level using a dynamic policy, as discussed in
Chapter 2. We begin by modeling an adaptively parallel job as a “fully strict” (well-
structured) multithreaded computation with a given execution schedule, where the
number of processors allocated to the job may change at each step of the execution.
Then, we model the interaction between the first and second levels of scheduling by
playing a game between the operating system and the job scheduler, in which the
operating system acts as an adversary; this approach is also used in [2]. We end with
an analysis of a greedy job scheduler in this adversarial model, showing that greedy
schedules achieve an execution time which is within a factor of 2 of optimal.

3.1 A Model for Adaptively Parallel Jobs

In this section, we present a model for adaptively parallel jobs based on the graph-
theoretic model of multithreaded computation described in [7]. We model an adap-
tively parallel job as a fully strict multithreaded computation with an adaptive exe-
cution schedule. We define each of these terms in turn.

Our definition of a multithreaded computation is identical to the definition pro-
vided in [7]. To summarize, a multithreaded computation consists of a set of threads
that are connected to each other via spawn or data-dependency edges. A thread

is defined as a sequential ordering of unit-size tasks, where each task takes one unit
of time to execute on a processor, and tasks in the same thread are connected by
continue edges that specify the sequential ordering of the thread. Figure 3-1 shows
an example of a multithreaded computation. During its execution, a thread (which
we call the “parent”) may create, or spawn , other threads (called “children”). Each
spawn is represented by an edge, called the spawn edge, which connects the task in
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the parent thread that performed the spawn operation to the first task of the resulting
child thread. A spawn is similar in semantics to a subroutine call, except that the
parent thread is allowed to operate concurrently with the child thread.

v1 v2 v15 v16 v19 v20

v3 v6 v9 v10

v4 v5 v7 v8 v11 v12 v13

v17 v18v14

A

B

C D E

F

Figure 3-1: A fully strict multithreaded computation. The shaded blocks represent
threads, the circles represent tasks, and the horizontal edges within each thread are continue
edges. Threads are connected to each other by spawn edges, shown as downward-pointing,
shaded edges, and dependency edges, shown as curved edges. This computation contains
20 tasks v1, v2, . . . , v20 organized into six threads.

In addition to spawn edges, a multithreaded computation may also contain de-
pendency edges between threads, modeling both data and control dependencies. De-
pendency edges allow threads to synchronize with each other and must be satisfied
before a thread can continue executing. For example, task v9 in Figure 3-1 cannot
execute before tasks v5 and v8 have completed because of the dependency edges from
v5 to v9 and v8 to v9. If the execution of thread B reaches v9 and these dependencies
have not been resolved, thread B stalls ; the execution of v5 and v8 enables thread
B, making it ready for execution.

In general, a multithreaded computation can be viewed as a directed acyclic graph
(dag) of tasks connected by continue, spawn, and dependency edges. Since it can
be impossible to schedule multithreaded computations with arbitrary dependencies
efficiently [6], we focus on a subclass of multithreaded computations, called fully

strict computations, in which all dependency edges from a thread go to its parent.
We say the computation is “well-structured” in the sense that all dependencies from a
subcomputation emanate from the subcomputation’s root thread. Any multithreaded
computation that can be executed in a depth-first manner on one processor can
be made fully strict by altering the dependency structure—possibly at some cost
in lost parallelism—but not affecting the semantics of the computation [4, 7]. The
computation depicted in Figure 3-1 is fully strict.

An execution schedule for a multithreaded computation determines which pro-
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cessors of a parallel computer execute which tasks at each step [7]. A processor may
execute at most one task during any step of the execution schedule. In addition, an
execution schedule must obey the constraints delineated by the continue, spawn, and
dependency edges of the computation dag. In particular, no processor may execute a
task until all of the task’s predecessors in the dag have been executed, i.e., the task is
ready . The execution schedules studied in [7] assume that the number of processors
available to execute a computation remains fixed over time. We remove this assump-
tion in our model and introduce the notion of an adaptive execution schedule, which
is identical to an execution schedule except that the number of available processors
is allowed to change (instantaneously) from one step of the execution to the next.

We now have all the tools necessary to model an adaptively parallel job. An adap-
tively parallel job is a fully strict multithreaded computation with a given adaptive
execution schedule. The execution of an adaptively parallel job is controlled by two
entities: the operating system, which controls the number of processors allocated to
the job during each step of its execution, and the job scheduler, which generates an
adaptive execution schedule subject to the allocations dictated by the operating sys-
tem. These entities correspond to the first and second levels of a two-level scheduling
system. In order to analyze the execution time of an adaptively parallel job, we need
to model the roles of these two levels, as well as the interaction between them. We
present this model in Section 3.2.

3.2 An Adversarial Model for Two-Level Sched-

ulers

In this section, we present a model for two-level scheduling systems based on the
model for adaptively parallel jobs from Section 3.1. We describe a game played
between the operating system and the job scheduler to execute a job, in which the
operating system acts as an adversary. Using this adversarial model, we show how to
quantify the execution time of an adaptively parallel job.

There are three main entities in a two-level scheduling system: the operating
system (representing the first level of scheduling), the job scheduler (representing
the second level of scheduling), and the job itself. The execution of an adaptively
parallel job is controlled by both the operating system and the job scheduler. We
model the interaction between the first and second levels of scheduling by playing a
game between these two entities. We assume that there is only one job in the system
initially (extending our model to handle multiple, concurrent jobs is trivially shown
at the end of this section). The rules of the game are simple. During each time step
t of a job’s execution, three operations occur:

1. The operating system determines the number Pt of processors to allocate to the
job for step t.

2. The job scheduler assigns tasks in the computation that are ready at time t
to one or more of the Pt processors (i.e., it generates one step of the adaptive
execution schedule).
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3. Each processor that is assigned a task finishes executing the task by the end of
step t. (Recall that all tasks in the computational dag are unit-sized.)

We refer to the players in this game as OS and JS, for the operating system and
the job scheduler, respectively. The role of OS is to act as an adversary, similar to the
role of the operating system in [2]. The role of JS, on the other hand, is to schedule
the job as efficiently as possible given the allocations provided by OS, minimizing the
job’s execution time. There are no restrictions on the policy used by OS to determine
the job’s allocation during each time step.

To quantify the execution time of the job, we first define some terms. Let Pt be the
number of processors allocated to the job during step t, where t ∈ S = {0, 1, . . . , T}.
T is the execution time of the job on an ideal machine with no scheduling overhead.
In general, we make this assumption for all theoretical execution times in our model.
We define the critical path length of a job to be the length of the longest directed
path in the computational dag. We denote this length by T∞, since with an infinite
number of processors, each task along the critical path must still be executed serially.
We define the work of a job to be the total number of tasks in the dag, denoted
by T1, since a single processor can only execute one task during each step. We want
to bound the execution time T of the job using these two quantities, similar to the
bounds presented in [7].

If the processor allocation of a job remains fixed during its execution (as in a
static allocation policy), then our situation reduces to the situation studied in [7]. In
particular, if Pt = P for all t ∈ S, then the following bounds can be shown for T :
T ≥ T∞ and T ≥ T1/P . The first bound holds because any P -processor execution
of the computation must execute the critical path. To show the second bound, we
note that the P processors can execute at most P tasks per time step, and since
the computation has a total of T1 tasks, the execution time is at least T1/P . In our
model, however, the processor allocation policy used by OS need not be static; that
is, the values of Pt may change from one time step to the next. While it still follows
that T ≥ T∞ (for the same reason given above), we cannot make the statement
that T ≥ T1/P , because P is not a fixed number in our case. We can try to prove
a similar bound, however, based on the average value of Pt, which we denote by
P = (1/T )

∑

t∈S Pt. The problem with using P as defined is that, if OS allocates an

infinite number of processors to the job during one or more time steps, the value of P
becomes infinite, yielding a trivial bound of T ≥ T1/∞ = 0. To solve this problem,
we modify our definition of P to cope with infinite allocations. In particular, given
the allocations Pt of the job, t ∈ S, let Pt1 , Pt2 , . . . , PtT∞

be the T∞ largest allocations
received by the job during its execution, and let S ′ = {t1, t2, . . . , tT∞

} be the set of
time steps corresponding to those allocations. Notice that the elements of S ′ are
distinct and S ′ ⊆ S. Also, let Rt be the number of ready tasks in the computational
dag at time step t. Then, we define P as follows:

Definition 1 The average effective processor allocation, P , is the average of
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all Pt, t ∈ S, with each Pti replaced by min(Pti , Rti) for all ti ∈ S ′. In other words,

P =
1

T

(

∑

t∈S−S′

Pt +
∑

t∈S′

min(Pt, Rt)

)

. (3.1)

The modified definition of P replaces values of Pt that are infinite with the cor-
responding values of Rt. This substitution allows us to calculate P in the face of
adversarial behavior by OS. It also makes intuitive sense, because Rt represents the
maximum number of tasks that JS can schedule in a particular step, which is also
the maximum number of processors that can be used in that step. Without the mod-
ification to P ’s definition, OS could apply the following “winning” strategy to every
possible job: allocate an infinite number of processors to the job in the first time
step, and then allocate 1 processor during each succeeding step. In this scenario,
P = ∞ and the best execution time JS can achieve is T = T1, since only one task is
ready during the first time step and at most one task can be executed during each
succeeding step. Thus, the execution time on an infinite number of processors is no
better than the serial execution time (when P = 1).

Using Equation (3.1), we can now prove a lower bound on execution time based
on the amount of work in the computation.

Lemma 2 For any adaptively parallel job with work T1 and average effective processor
allocation P , the execution time T of the job satisfies the constraint T ≥ T1/P .

Proof. During each step t of the job’s execution, at most Pt tasks can be executed,
since there are only Pt processors available to the job and each processor executes at
most 1 task per time step. The sum of the Pt’s therefore serves as an upper bound
for the amount of work in the job:

T1 ≤
∑

t∈S

Pt . (3.2)

Let Pt1 , Pt2 , . . . , PtT∞
be the T∞ largest allocations received by the job during its

execution, as before. If we replace each Pti with min(Pti , Rti), then Inequality (3.2)
still holds, because Rt is also an upper limit on the number of tasks that can be
executed during step t. Thus, we restate the bound as follows:

T1 ≤
∑

t∈S−S′

Pt +
∑

t∈S′

min(Pt, Rt)

≤ T

(

1

T

)

(

∑

t∈S−S′

Pt +
∑

t∈S′

min(Pt, Rt)

)

≤ TP .

The bounds shown in this section hold even if multiple adaptively parallel jobs
are running in the system, each with its own instance of JS. From the point of view of
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the JS’s, OS is an adversary, and so no expectations or constraints are placed on the
allocations it provides to their jobs. Consequently, each JS need not be aware of how
many other JS’s are in the system or what allocations they receive from OS, which
makes sense since the JS has no control over either of these factors. All a JS must
know in order to perform its function is the allocation of its own job during each time
step (regardless of how this allocation is determined).

3.3 Analysis of Greedy Schedules

For the case of static processor-allocation policies, early work by Graham [20, 21]
and Brent [10] shows that there exist P -processor execution schedules that satisfy
TP ≤ T1/P + T∞, where TP is the minimum execution time over all P -processor
execution schedules. The greedy-scheduling theorem in [6] extends this result by
proving the same bound on TP for greedy schedules, or schedules that attempt to do
as much work as possible during every step. In this section, we prove a similar bound
for greedy schedules for the case of dynamic processor-allocation policies, where the
allocation of a job may change during each step of its execution.

We define an adaptive greedy schedule to be an adaptive execution schedule
in which, during each step t of a job’s execution, if at least Pt tasks are ready, then Pt

tasks execute, and if fewer than Pt tasks are ready, then all execute. In the scheduling
game described in Section 3.2, the adaptive greedy schedule would be generated by
JS in response to the allocations Pt provided by OS. We now state the Graham-Brent
bound for adaptive greedy schedules:

Theorem 3 (The adaptive greedy-scheduling theorem) For any adaptively par-
allel job with work T1, critical path length T∞, and average effective processor allo-
cation P , any adaptive greedy schedule achieves T ≤ T1/P + T∞, where T is the
execution time of the job.

Proof. We classify each step t of a job’s execution as one of two types: in a
complete step, there are at least Pt tasks that are ready, so a greedy schedule
selects any Pt of them to execute. An incomplete step has strictly less than Pt

ready tasks, and so a greedy schedule executes them all. Since each step is either
complete or incomplete, we can bound the time used by an adaptive greedy schedule
by bounding the number of complete and incomplete steps.

Consider the complete steps first. If every step t ∈ S −S ′ of the job’s execution is
complete, then exactly Pt tasks are executed during each of these steps by a greedy
schedule. Also, since min(Pt, Rt) ≤ Rt for all t ∈ S ′, no more than Rt tasks are
executed during the remaining steps. Since no more than T1 tasks can be executed
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by the greedy schedule, we have that

T1 ≥
∑

t∈S−S′

Pt +
∑

t∈S′

min(Pt, Rt)

≥ T ·
1

T

(

∑

t∈S

Pt +
∑

t∈S′

min(Pt, Rt)

)

≥ TP ,

from which it follows that T ≤ T1/P . Thus, the maximum number of complete steps is
T1/P . Now, consider the number of incomplete steps. Let G denote the computational
dag of the job, and let Gt be the subgraph of G that remains at the beginning of step
t, where G0 = G. During each step t, all tasks in Gt with in-degree 0 (i.e, tasks that
have no unexecuted predecessors) are ready to be executed. If we assume that every
step is incomplete, then all of these tasks are executed by a greedy schedule during
step t. Since the longest path in Gt starts with a task that has in-degree 0, the length
of the longest path in Gt+1 must be one less than the length of the longest path in Gt.
In other words, every incomplete step reduces the length of a longest path in G by
one unit; since this length is precisely the critical-path length, there can be at most
T∞ such steps. For example, Figure 3-2 illustrates the progression 〈G0, G1, . . . , GT 〉 of
dags resulting from a greedy schedule of the computation in Figure 3-1, where every
step is incomplete; the length of the critical path (shown in bold) reduces by one unit
during each step.

Combining these results, the total time for executing the complete and incomplete
steps of a job using a greedy schedule is at most T1/P + T∞.

The result of Theorem 3 tells us when an execution schedule can achieve linear

speedup; that is, when it can achieve execution time T = Θ(T1/P ). In particular,
we find that this occurs when P ≤ T1/T∞, since then we have T1/P ≥ T∞ and so
a greedy schedule executes in time T ≤ 2T1/P . The quantity T1/T∞ is called the
average parallelism of the computation. Thus, if the average effective processor
allocation is bounded by the average parallelism, linear speedup occurs.

The proof of Theorem 3 also provides additional intuition for the definition of P
in Equation (3.1): namely, that we only need to replace the largest T∞ values of Pt

when calculating P , because there can be at most T∞ incomplete steps when using
a greedy schedule. In more general terms, if a good scheduling algorithm is used to
determine the adaptive execution schedule of a job, we expect the job to complete
after no more than T∞ infinite-processor allocations by OS.

Theorem 3 can be easily extended to show the following corollaries.

Corollary 4 An adaptive greedy schedule yields an execution time that is within a
factor of 2 of an optimal schedule.

Proof. The lower bounds proved in Section 3.1 state that the execution time T of
an adaptively parallel job satisfies T ≥ max(T1/P , T∞). From Theorem 3, we know
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Figure 3-2: The dag corresponding to the computation in Figure 3-1, with the critical
path shown in bold. The progression 〈G0, G1, . . . , GT 〉 shows the subgraph remaining after
each incomplete step of a greedy schedule.

that an adaptive greedy schedule yields the following execution time:

T ≤
T1

P
+ T∞

≤ max

(

T1

P
, T∞

)

+ max

(

T1

P
, T∞

)

≤ 2 max

(

T1

P
, T∞

)

(3.3)

Thus, an adaptive greedy schedule is always within a factor of 2 of optimal.

Corollary 5 If P is much less than the average parallelism T1/T∞, then an adaptive
greedy schedule achieves almost perfect linear speedup.
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Proof. If P ¿ T1/T∞, then it follows that T∞ ¿ T1/P . Thus, the execution
time of an adaptive greedy schedule from Theorem 3 reduces to T ≤ T1/P + T∞ ∼
T1/P . Since the constant in front of T1/P is close to 1, the resulting execution time
demonstrates almost perfect linear speedup.

The argument that maintains Theorem 3 and Corollaries 4 and 5 when multiple
adaptively parallel jobs are running in the system is identical to the argument we
provide in Section 3.1. In particular, since we treat OS as an adversary and place no
constraints on the processor allocation policy it uses, each JS can operate obliviously
to the other JS’s by simply regarding them as part of OS. In other words, a JS does
not need to know how the allocations of its job are determined—including whether
or not they are affected by the presence of other jobs—for Theorem 3 to hold.
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Chapter 4

A Randomized Work-Stealing
Algorithm for
Adaptively Parallel Jobs

In Chapter 3, we developed an adversarial model for analyzing the performance of
two-level schedulers for adaptively parallel jobs, where the operating system (OS) and
job scheduler (JS) play the roles of the first and second-level schedulers, respectively.
We showed that if JS uses a greedy algorithm to schedule a job’s computation, then
the execution time of the job is within a constant factor of optimal. In this chapter,
we present another algorithm for JS, called algorithm WSAP, which uses randomized
work stealing to schedule the computation of an adaptively parallel job. WSAP is
an extension of algorithm WS from [7] that works with dynamic processor-allocation
policies. We begin with a description of WSAP in the adversarial model, and then
discuss the policy issues surrounding its use in practice. We forego a theoretical
analysis of WSAP in favor of investigating its performance practically through the
Cilk-AP system (Chapters 6 and 7).

4.1 Algorithm WSAP in the Adversarial Model

In this section, we outline algorithm WSAP, which extends algorithm WS to han-
dle the case where a job’s processor allocation changes during its execution. Like
WS, WSAP is an online, randomized work-stealing algorithm for scheduling fully
strict multithreaded computations; unlike WS, WSAP generates an adaptive execu-
tion schedule that conforms to changing processor allocations provided by OS. Since
WSAP is an extension of WS, we begin with a reprise of algorithm WS from [7]
and [3] and then proceed to extend it.

In algorithm WS (for “work stealing”), the threads of a computation are dis-
tributed across a fixed set of processors, each of which attempts to steal work from
another processor whenever it runs out of work to do. Each processor maintains a
doubly-ended queue, called the ready deque , of threads that are ready to execute;
a thread is “ready” if the first unexecuted task in its sequential order is ready. A
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processors treats its own ready deque as a stack, pushing and popping threads from
the bottom, but treats the ready deque of another processor as a queue, removing
threads only from the top. In general, a processor obtains work by removing the
bottommost thread of its ready deque, which we call thread A, and executing it until
one of three situations occur:

1. Thread A spawns another thread B. In this case, the processor pushes A onto
the bottom of the deque and starts executing B.

2. Thread A terminates. The processor checks the ready deque: if the deque is
nonempty, then the processor pops the bottommost thread and begins executing
it; if the deque is empty, then the processor tries to execute A’s parent thread;
if the deque is empty and A’s parent is busy, then the processor attempts to
work steal, as described below.

3. Thread A reaches a synchronization point and stalls. The deque must be empty
in this case (if the computation is fully strict), so the processor attempts to
work steal.

The work-stealing strategy operates as follows: the processor that is attempting to
work-steal, called the thief , chooses another processor uniformly at random, called
the victim , and tries to steal work from it. If the victim’s deque is nonempty, then
the thief removes the topmost thread and starts executing it (the steal is successful); if
the deque is empty, the thief restarts the process, choosing another victim at random
to steal from (the steal is unsuccessful). Each steal attempt takes one unit of time
on a processor. At the beginning of the computation, all the ready deques are empty
except for one (the one that contains the root thread), so all but one processor starts
out work stealing.

Unlike algorithm WS, algorithm WSAP (for “work stealing, adaptively parallel”)
schedules a multithreaded computation on a dynamically changing set of processors.
In the context of our adversarial model, algorithm WSAP is implemented by JS and
responds to changing processor allocations given by OS. Specifically, during each step
t of a job’s execution, JS receives an allocation Pt from OS that is either greater than,
less than, or equal to Pt−1, the job’s allocation during the previous step. Consequently,
JS needs a mechanism to increase or decrease the number of processors being used by
the job, or the job’s usage , to match the new allocation Pt. In algorithm WSAP, these
adjustments are made by sending signals to the relevant processors at the beginning
of step t. In particular, a sleep signal is sent to a processor to reduce the job’s
processor usage by one, and a wake signal is sent to a processor to increase the
job’s usage by one. Thus, at the beginning of each step t, JS takes one of two actions
after receiving the allocation Pt:

1. If Pt < Pt−1, JS sends a sleep signal to any Pt−1 −Pt processors that are awake.

2. If Pt > Pt−1, JS sends a wake signal to Pt − Pt−1 processors that are asleep,
waking all processors with nonempty deques first before waking those with
empty deques.

For ease of discussion, we assume that a job has an infinite number of “virtual”
processors at its disposal, most of which are asleep; during any step t of the job’s
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execution, algorithm WSAP guarantees that only Pt of the virtual processors are
awake. The role of OS thus reduces to providing a number Pt to JS, instead of actually
allocating the physical processors. This abstraction does not violate the rules of our
adversarial model, since we guarantee that JS only uses as many processors as are
allocated, but makes it easier for us to deal with processors that are put to sleep
in the middle of working, since these processors cannot be returned to the system
without some protocol for handling their (nonempty) deques. We overload the terms
“virtual processor” and “processor” in the remainder of this chapter.

The processors in algorithm WSAP follow the same rules of operation as the
processors in algorithm WS, except now they need to respond appropriately to sleep
and wake signals. In particular, we add a fourth situation to the three situations
listed above that can interrupt a processor’s execution:

4. The processor receives a sleep signal from JS at the beginning of step t. In this
case, the processor immediately puts itself to sleep, regardless of whether it
is executing a task or attempting to steal work during step t. The processor
remains asleep until it receives a wake signal from JS or another processor at
the beginning of step t′ > t, at which point it continues executing where it left
off.

Working

Stealing

deque is empty and 

parent is busy

deque is empty and 

found parent

stalled at 

synchronization point

received sleep signal

received sleep 

signal

Sleeping

received wake signal 

w/ nonempty deque

received wake signal 

w/ empty deque
steal successful 

(found work)

Figure 4-1: State diagram of a processor’s execution in algorithm WSAP.

Figure 4-1 summarizes the execution of a processor in algorithm WSAP using a
state diagram; the three possible states a processor can be in are “Working” (when
the processor is executing a thread), “Stealing” (when the processor is making a
steal attempt), and “Sleeping” (when the processor responds to a sleep signal). Since
processors can receive sleep signals at the beginning of any step, it is possible for
some of them to go to sleep even if they have work on their deques. To prevent this
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work from going unnoticed, we modify the work-stealing strategy as follows: the thief
processor chooses a victim from the set of processors that are either awake or sleeping
with nonempty deques. If the victim processor is asleep, then the thief sends a wake
signal to the victim and puts itself to sleep (note that the thief has an empty deque
since it is work stealing); the victim awakens and continues executing where it left
off. If the victim processor is awake, then the thief follows the original work-stealing
protocol: if the victim’s deque is nonempty, the thief removes the topmost thread
and starts executing it, and if the deque is empty, the thief restarts the process and
chooses another victim at random.

Using algorithm WS, the expected time to execute a multithreaded computation
on P processors is O(T1/P + T∞), where T1 is the work and T∞ is the critical-path
length. This bound has been shown using a delay-sequence argument by Blumofe and
Leiserson [7], as well as using a potential-function argument by Arora et. al. [2]. Arora
et. al. also prove an execution time bound for a nonblocking implementation of WS in
a two-level scheduling environment, where the computation executes on a fixed set of
P processes that are scheduled by the operating system onto a time-varying allocation
of physical processors. In the case of algorithm WSAP, the mapping between processes
to physical processors is one-to-one; that is, the computation executes on exactly as
many virtual processors as there are physical processors. We expect that one can
use an approach similar to the potential-function argument used in [2] to analyze the
execution time of algorithm WSAP.

4.2 Algorithm WSAP in Practice

In the adversarial model, the decisions made by OS are completely decoupled from
those made by JS; specifically, OS does not consult with JS when determining a job’s
allocation for a given time step. While this model is suitable for analyzing the worst-
case performance of a job scheduling algorithm—since it captures the notion that a
given job has no control over the number and processor requirements of other jobs
in the system—it only tells half the story in practice. In a real two-level scheduling
system using a dynamic processor-allocation policy, the operating system and job
scheduler communicate with each other to determine the current allocation of a job.
In particular, the operating system gathers information about the current processor
desire of each job in the system, and then uses this information to make its allocation
decisions. While there exist dynamic processor-allocation policies that do not use
a job’s current processor desire in their decisions, these policies do not respond to
changes in the parallelism of jobs during runtime, and thus cannot run adaptively
parallel jobs efficiently (see Chapter 5).

In order to estimate the processor desire of a job during runtime, there are three
policy questions that need to be addressed:

1) who is responsible for estimating a job’s processor desire,

2) how should the desire be estimated, and

3) how often should the desire be estimated.
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We discuss the policies used in algorithm WSAP in response to these questions
in the remainder of this section. We begin by illustrating a fundamental problem
with strategies that measure a job’s instantaneous parallelism directly, and use this
problem to guide our policy decisions on questions 1) and 2). Then, we explain our
policy of estimating a job’s desire at regular intervals instead of irregular ones, in
response to question 3).

Estimating a Job’s Processor Desire

In order to provide a good estimate for the processor desire of a job, we need infor-
mation about the different runtime characteristics of the job, such as the number of
threads it is currently using, the amount of work being performed by those threads,
or any synchronization constraints that limit processor utilization. Since this infor-
mation is directly and readily available to the job scheduler, we give the responsibility
of estimating a job’s processor desire to the job scheduler itself (i.e. the second-level
scheduler). While it is true that the operating system can obtain different runtime
statistics of a job—such as the utilization of the job’s processors or the size of its
memory footprint—this information is necessarily coarse-grained and reveals noth-
ing about the internal workings or dependencies of the job. For example, consider a
program written in the Cilk multithreaded language [47], and recall that Cilk uses a
work-stealing scheduler which implements algorithm WS. During a given run of the
program, the operating system can only determine the number of processors being
used by the job and has no direct knowledge about the number of threads that have
been queued on the ready deques of the processors. Since each of these threads could
potentially execute in parallel, it is important that the entity responsible for esti-
mating the job’s desire be aware of them. The only entity with direct access to this
information is the job scheduler.

Given that the job scheduler is in charge of estimating a job’s processor desire,
the question still remains as to how this estimate is made and, in particular, what
runtime information about the job is used. As we observed in Chapter 2, most prior
work on dynamic processor-allocation policies assumes that the processor desire of
a job is either known by the scheduling system or inferred using some measurement
of the job’s instantaneous parallelism. In the latter case, almost all studies use the
number of operating system threads or processes being used by the job to measure its
instantaneous parallelism. Even if this method were accurate, however—which, as we
showed in the example of Cilk above, is not always the case—we maintain that any
measure of a job’s instantaneous parallelism is not an accurate or reliable measure
of its processor desire. To see why this is true, we present a typical example of a
multithreaded computation whose instantaneous parallelism is always bounded by
the number of processors it is allocated, but whose average parallelism may be orders
of magnitude higher. This computation, called the LOOPY benchmark, is shown
in Figure 4-2. We assume that LOOPY is scheduled using a depth-first algorithm
(like algorithm WS), meaning that execution goes to the child whenever a thread is
spawned or created.

Suppose that LOOPY starts out executing on one processor. The processor starts
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Figure 4-2: The LOOPY benchmark: a multithreaded computation with work T1 =
N2 + N and critical-path length T∞ = 2N .

at task v1 of the root thread but then immediately spawns thread A, thus beginning
working on A. Assuming that N is very large, each of the subcomputations in threads
A, B, etc. may take a long time to complete, and so we assume that the processor
is “stuck” on thread A for all practical purposes. At this point, the instantaneous
parallelism of the job is 2, as measured by the number of threads it has created (the
root thread and A). If another processor is allocated to the job, this processor can
continue executing the root thread while the first processor executes A, but it gets
stuck working on thread B almost immediately. The instantaneous parallelism of the
job is now 3 (the root thread, A, and B). The process continues as more processors
are allocated to the job. At any given time, the instantaneous parallelism of the job is
only 1 greater than its allocation. Since all N subcomputations spawned by the root
thread of LOOPY can theoretically execute in parallel, the instantaneous parallelism
is a gross underestimate of the average parallelism of the job. Specifically, the average
parallelism of the LOOPY is

T1

T∞

=
N2 + N

2N

=
N + 1

2
.

If N is large, the average parallelism could be orders of magnitude greater than
the instantaneous parallelism. Moreover, an execution of LOOPY achieves linear
speedup as long as P ≤ (N + 1)/2. For N > 105, this number is larger than most (if
not all) multiprocessor machines in existence today.

The LOOPY benchmark represents a common class of data-parallel programs,
in which a single loop in the main thread spawns a large number of equal-sized
subcomputations. The following code fragment, for example, produces a LOOPY
computation:
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for (i = 0; i < N; i++) {

spawn Work_N(i);

}

where Work N is a subcomputation with N units of work. Programs of this form
provide a simple and effective means of generating large amounts of parallelism in
a computation. They are especially common in parallelized versions of serial code.
Their widespread use reinforces our case against policies that use instantaneous par-
allelism measures to estimate a job’s processor desire.

In light of this example, we seek a policy for estimating a job’s desire that more
accurately gauges its average parallelism, but also responds to periods of high (or
low) levels of parallelism that may occur at arbitrary times during the job’s execution.
Specifically, since we cannot reliably discern the potential parallelism of a job through
instantaneous measurements, we employ a policy that proactively explores its “future”
parallelism and uses runtime information about the job to tune the estimated desire.
The basic idea is to give a job more processors than it apparently needs at the
current time, and then remove processors that aren’t being used efficiently. Using
this strategy, we can find and exploit sources of parallelism that may be hidden in
the current state of the computational dag, but which reveal themselves as the dag
is unfolded. (Recall that since we are studying online scheduling algorithms, we only
discover the structure of the dag as it unfolds.)

In algorithm WSAP, the primary mechanism for exploring the parallelism of a
job is by work stealing: when a processor steals work from its victim, it removes and
executes the topmost thread from the victim’s deque, which is necessarily an ancestor
of the thread currently being executed by the victim (see Lemma 4 in [7]). Since the
ancestor thread is shallower (in terms of dag depth) than the thread being executed
by the victim, the thief is able to expose parallelism starting at a higher level in the
computational dag. In the LOOPY benchmark, for example, the second processor
allocated to the job steals the root thread from the deque of the first processor,
thus continuing the execution of the main-level loop and exposing more of the job’s
parallelism through thread B. Evidently, it makes sense to use runtime information
about steal attempts to estimate a job’s processor desire. In particular, if the number
of steal attempts is too low, then we increase the estimated desire of the job, even
if the amount of work available on the ready deques doesn’t seem to warrant such
an increase; if the number of steal attempts is too high, then we reduce the job’s
desire. The underlying intuition is that, if there are many unsuccessful steal attempts
occurring, then there are too many processors being used inefficiently by the job,
whereas if the number of unsuccessful steal attempts is low, then most processors are
being used efficiently, so we can afford to increase the allocation in search of additional
parallelism. We formalize the notions of efficiency and inefficiency—as they relate to
a job’s usage of processors—in Section 6.1. The intuition presented here is justified
theoretically in previous (unpublished) work by the Supercomputing Technologies
Group at MIT. We discuss this work in Chapter 8.

When using the number of unsuccessful steal attempts to measure an allocation’s
inefficiency, we focus on those attempts that are purely unsuccessful , meaning that
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the victim processor is in the middle of work stealing itself, as opposed to attempts
that are partly unsuccessful , where the victim processor has an empty deque but
is busy working on some thread. Purely unsuccessful steal attempts give a better
indication of the number of inefficiently used processors in a job, since both thief
and victim processors are looking for work. In a partly unsuccessful steal attempt,
however, the victim processor is actually doing work, so it is misleading to use such
attempts to directly measure the inefficiencies of a job’s allocation. For example, if
the LOOPY benchmark is scheduled using algorithm WSAP, then the total number
of unsuccessful steal attempts is always very large, because only one thread can be
stolen at any given time; the fraction of these attempts that are purely unsuccessful,
however, is very low, because most processors are busy working on a subcomputation
when their deques are empty. As a result, any decisions based on the total number of
unsuccessful steal attempts—or the number of partly unsuccessful steal attempts—
would lean towards reducing the job’s allocation, even if all the processors are busy
doing work (and hence being used efficiently). Decisions based on the number of
purely unsuccessful steal attempts, on the other hand, would lean towards increasing
the job’s allocation, thus exploiting the high average parallelism of the computation.

The details of what thresholds to use when comparing the number of unsuccessful
steals attempts, and how much to increase or decrease the allocation by, are left to
the particular implementation of algorithm WSAP. We discuss these decisions for the
Cilk-AP system in Section 6.1.

Frequency of Desire Estimations

We have established that the job scheduler is responsible for estimating the processor
desire of a job and that it does so using runtime information about unsuccessful
steal attempts. The question remains, however, as to how often these estimations
should be made. We consider two options. Option 1 is to estimate the job’s desire at
evenly spaced intervals, where the size of the interval can be tuned either statically
or dynamically. Option 2 is to estimate the job’s desire at irregular intervals, perhaps
corresponding to relevant events in the job’s execution (for example, when a processor
successfully steals work, or conversely, when a processor is repeatedly unable to steal
work).

There are several disadvantages to Option 2. First, performing desire estimations
at important events in the job’s execution may add an unacceptable amount of over-
head. In the case of Cilk jobs, for instance, the work-first principle [19] states that
scheduling overheads borne by the work of a computation should be minimized, since
they contribute more to the execution time of a job than overheads borne by the
critical path. Thus, if processors that are currently working are expected to perform
desire-estimation calculations, the effect on the job’s running time may be adversely
large. Even if this overhead is reduced—for example, by restricting the estimation
calculations to processors that are in the middle of stealing (adding to critical-path
overhead instead of work overhead)—the irregularity of the estimation intervals makes
it difficult to measure or tune the incurred overhead, let alone reason about it.

As a result, we stick to Option 1 in algorithm WSAP, performing the desire es-
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timation at regular intervals. By tuning the size of the interval, we can balance the
trade-off between the overhead incurred by estimating a job’s desire and the respon-
siveness of these estimates to changes in the job’s parallelism. Specifically, larger
intervals reduce the overhead incurred by the desire estimation, while reducing the
responsiveness of the estimates to changes in the job’s parallelism. Smaller intervals
achieve the opposite effect, incurring greater overhead but responding to changes in
parallelism more promptly. We discuss our approach to tuning this interval in the
context of the Cilk-AP system in Section 6.1.
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Chapter 5

A Dynamic Processor-Allocation
Algorithm for
Adaptively Parallel Jobs

In a real two-level scheduling system using a dynamic processor-allocation policy, the
operating system communicates with the job scheduler to determine the current al-
location of a job. In Section 4.2, we discussed the policies used by algorithm WSAP
in the second level of scheduling to estimate the processor desire of a job and report
it to the first level. In this chapter, we describe a well-known dynamic processor al-
location algorithm, algorithm DP, which allocates processors to multiple, concurrent,
adaptively parallel jobs in the first level of scheduling. DP uses information about the
processor desires of each job to distribute processors in a way that is fair, efficient,
and conservative. We begin by defining these three conditions, and then we show how
DP satisfies them. Algorithm DP is used in the first-level scheduler of the Cilk-AP
system in Chapter 6.

5.1 Properties of a Good Dynamic Processor-Allocation

Algorithm

In this section, we define three conditions for a good dynamic processor allocation
algorithm: fairness, efficiency, and conservatism. Together, these conditions ensure
that an allocation achieves both low job response times and high job throughput.

We consider a parallel system with P processors and J running jobs, where J ≤ P .
At any given time, each job j = 1, 2, . . . J has a processor desire dj, representing the
maximum number of efficiently usable processors, and an allotment aj, representing
the number of processors allocated to it. If aj < dj, we say that the job is deprived ,
since it has fewer processors than it desires; if aj = dj, we say that the job is satis-

fied , since its desire has been met. We define the notions of fairness, efficiency, and
conservatism as follows:

1. An allocation is fair if the processors are distributed equally among the jobs.
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Mathematically, if there exists a job j such that aj < dj, then for all i =
1, 2, . . . , J , mi ≤ aj + 1; whenever a job is deprived, then no other job receives
more than 1 more processor than this job receives. (The allowance of one
processor is due to integer roundoff.)

2. An allocation is efficient if it uses as many processors as possible. Mathemat-
ically, if there exists a job j such that aj < dj, then

∑J
j=0

aj = P ; if a job is
deprived, then there must be no free processors in the system.

3. An allocation is conservative if no job receives more processors than it desires.
Mathematically, for all j = 1, 2, . . . J , aj ≤ dj; a job is either deprived or
satisfied.

The fairness condition allows all jobs to run simultaneously, instead of having
some of them wait in a queue. The conservatism condition ensures that jobs use their
allocations efficiently (by not giving processors to jobs that do not use them well), and
the efficiency condition ensures that the system utilizes all processors efficiently. As
long as the efficiency condition is met, both fairness and conservatism contribute to
high job throughput. Furthermore, since jobs do not spend arbitrarily long periods
of time in queues, the response times of jobs more directly reflect the amount of
computation they have to perform.

Fair EfficientAllocation Conservative

Job 1 Job 2 Job 3 Job 4 Job 5

Job 1 Job 2 Job 3 Job 4 Job 5

Job 1 Job 2 Job 3 Job 4 Job 5

Job 1 Job 2 Job 3 Job 4 Job 5

×

��

��

��

��

�

�

�

�

Figure 5-1: Example allocations for a system with P = 20 processors and J = 5 jobs;
the fairness, efficiency, and conservatism conditions are evaluated on the right. Each large
circle represents a job, and the small circles within the job represent its processor desire;
small circles that are grayed represent actual processors. The gray circle that is crossed
out in Job 3 of the second allocation represents a processor allocated to the job beyond its
desire.

Figure 5-1 shows examples of different allocations for a system with P = 20 and
J = 5. For each allocation, we determine whether or not it satisfies the conditions
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of fairness, efficiency, and conservatism. In particular, the first allocation is not fair,
because Job 4 is deprived and receives only 2 processors while other jobs receive more
than 3. The second allocation is not conservative, because Job 3 is given one more
processor than it desires. The third allocation is not efficient, because there are free
processors in the system that are not being used to satisfy deprived jobs. The fourth
allocation satisfies all three conditions.

5.2 Algorithm DP

In this section, we present algorithm DP (for “dynamic partitioning”), a well-known
dynamic processor-allocation algorithm that is fair, efficient, and conservative. DP
employs a dynamic version of the basic equipartition policy [33, 48], and hence is
sometimes called “dynamic equipartitioning”.

The equipartition policy strives to maintain an equal allotment of processors to
all jobs, with the constraint that a job’s request is an upper bound on the number
of processors it receives. During a reallocation, processors are distributed among the
jobs as follows: each job starts out with 0 processors, and the allotment of each job
is incremented by 1 in turn, where jobs that are satisfied drop out of the allocation.
The process continues until either all jobs have dropped out or P processors have
been allocated. We recognize three types of equipartitioning. In static equiparti-
tioning, reallocations are not allowed to change the allotments of existing jobs, and
so imbalances in the allocation and queuing may occur. In regular equipartitioning,
reallocations occur on job arrival and completion only, and so the allocation is fair,
efficient, and conservative at all times if we assume that the processor desires of jobs
remain fixed during their execution. In dynamic equipartitioning, reallocations can
occur at any time—responding to both job arrivals and completions as well as changes
in the processor desires of jobs during execution—and so the allocation is always fair,
efficient, and conservative.

Although dynamic partitioning can be implemented using the equipartitioning
algorithm described above, we present a more practical version for algorithm DP that
does not have to redistribute processors every time a reallocation occurs. Assume that
there are no jobs in the system initially, and that jobs arrive one at a time (i.e. no
two jobs arrive at exactly the same time). We define the fair share of a job to be
the quantity:

fair share =

P −
∑

S={j|dj<bP/Jc}

aj

J − |S|
(5.1)

where P is the total number of processors and J is the number of jobs in the system.
In other words, a job’s fair share is computed by discounting all processors being used
by jobs that desire less than the system equipartition bP/Jc and then distributing
the remaining processors equally among jobs that desire more than bP/Jc. Thus,
when a new job j with initial desire dj and initial allocation aj = 0 arrives into the
system, algorithm DP operates as follows:

39



Current Allocation State Input Event Ending Allocation State

{} Arrival: job 1 with d1 = 4 {4}
{4} Arrival: job 2 with d2 = 16 {4, 12}
{4, 12} Arrival: job 3 with d3 = 2 {4, 10, 2}
{4, 10, 2} Change in desire: d3 = 16 {4, 6, 6}
{4, 6, 6} Arrival: job 4 with d4 = 8 {4, 4, 4, 4}
{4, 4, 4, 4} Arrival: job 5 with d5 = 8 {3, 3, 3, 3, 4}
{3, 3, 3, 3, 4} Arrival: job 6 with d6 = 8 {2, 2, 3, 3, 3, 3}
{2, 2, 3, 3, 3, 3} Completion: job 2 {3, 4, 3, 3, 3}
{3, 4, 3, 3, 3} Completion: job 3 {4, 4, 4, 4}
{4, 4, 4, 4} Completion: job 6 {4, 6, 6}

Figure 5-2: A sample allocation trace for algorithm DP on a 16-processor system.

1. Let free procs be the number of free processors in the system at the time when
j arrives. If free procs ≥ dj, set aj = dj. Otherwise, set aj = free procs and
go to step 2.

2. Compute the value of fair share given by Equation (5.1) (include job j in the
calculation). If aj ≤ min(dj, fair share), remove one processor from a job that
has the highest allocation and give this processor to j.

3. Repeat step 2 until either aj = dj, meaning that j is satisfied, or aj = fair share,
meaning that j now has its fair share of processors.

The same steps are performed by DP when the processor desire of an existing job
increases; the only difference is that aj does not start out at 0 in this case. When the
desire of a job j decreases, or when j completes, DP operates as follows:

1. Add the number of freed processors to free procs. Recompute fair share

using Equation (5.1) if j has completed.

2. Add a processor to a deprived job that has the lowest allocation.

3. Repeat step 2 until either free procs = 0 or there are no deprived jobs.

Figure 5.2 shows a sample allocation trace for algorithm DP on a system with 16
processors. Each row of the table shows the current state of the allocation (expressed
as a list of allotments), an input event (either a job arrival, job completion, or change
in a job’s processor desire), and the ending state of the allocation.

Several studies have shown that algorithm DP outperforms all other space-slicing
policies when the reallocation overhead is low, regardless of job workload or overall
system load [22, 27, 33, 39, 46, 48, 52]. Most of these studies focus on uniform-access,
shared-memory (UMA) machines, where the allocation of processors is decoupled from
the allocation of memory (see Chapter 2). Some studies have also shown that DP
performs better than static allocation policies under realistic reallocation overheads
[15], and for some classes of workloads, under a wide range of overheads [52]. In
general, the advantage of using algorithm DP increases with larger and more rapid
changes in the parallelism of the workload, as well as increasing system load [52].
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The performance of DP decreases, however, when the number of jobs in the system
exceeds the number of processors (i.e. during high loads), since some of the jobs must
be queued [35, 52]. While queuing is not expected to be a problem in large parallel
machines [17], various strategies can be used to reduce its effect on the response time
of jobs [16,42,43,49]. A mathematical model for algorithm DP, including an analysis
of its performance across a wide range or parallel system environments, is provided
in [46]. Examples of real implementations of DP can be found in [12,32].

In practice, there are a few policy decisions that need to be made when imple-
menting algorithm DP, most of which relate to the way reallocations occur. The
first decision is between uncoordinated reallocations, where the operating system
reallocates processors without interacting with the job scheduler, and coordinated
reallocations, where processors are reallocated in concert with the job scheduler. We
choose the policy of coordinated reallocations for reasons discussed in Chapter 2.
Given that reallocations are coordinated, it is still unclear how much responsibility or
control the job scheduler should have during a reallocation, as well as how much trust
this responsibility requires between the operating system and job scheduler. We also
need to determine when and how often reallocations occur—which may or may not
depend on how often jobs report their processor desires (see Section 4.2)—so that we
can control the amount of overhead a reallocation incurs. In practice, reallocations
never occur instantaneously (this is true of both uncoordinated and coordinated poli-
cies), and so there is necessarily a delay between when a job’s allotment is changed
by the operating system and when its processor usage matches the new allotment. If
pj represents the number of processors currently being used by job j, then there is
a period of time when pj > aj after j’s allotment is decreased, and a period of time
when pj < aj after j’s allotment is increased. Also, we need to decide how to deal
with situations where J > P (e.g. whether to multiplex the existing processors or
just queue the excess jobs), keeping in mind that queuing can dramatically affect the
performance of algorithm DP relative to other processor-allocation policies [52]. We
discuss all of these policy decisions and issues as they pertain to the Cilk-AP system
in Chapter 6.
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Chapter 6

Cilk-AP: A Two-Level Scheduler
for Adaptively Parallel
Work-Stealing Jobs

In this chapter, we present the design and implementation of Cilk-AP, a two-level
scheduling system for adaptively parallel work-stealing jobs running on a multipro-
grammed shared-memory system. In the first level of scheduling, Cilk-AP uses algo-
rithm DP from Chapter 5 to allocate processors to jobs in a fair, efficient, and con-
servative manner. In the second level of scheduling, Cilk-AP uses algorithm WSAP
from Chapter 4 to schedule the computation of a single job and report its processor
desire to the first-level scheduler. The Cilk-AP system is implemented by extending
the runtime system of the Cilk multithreaded language [5,19,47]. We first present an
overview of the design of Cilk-AP, addressing some of the policy questions raised in
Chapters 4 and 5. Then, we describe its implementation.

6.1 Design Overview

Figure 6-1 provides an overview of the Cilk-AP system. Cilk-AP uses a global alloca-
tion table (GAT) to maintain a fair, efficient, and conservative allocation of processors
to jobs in the first level of scheduling. The allotments in the GAT are computed using
algorithm DP, and the GAT itself is stored in shared memory. In the second level
of scheduling, Cilk-AP uses algorithm WSAP to schedule the computation of a job
and estimate its processor desire. The estimates are performed at regular intervals
and entered directly into the GAT. In Cilk-AP, both the first and second levels of
scheduling are performed by the job schedulers of the running jobs. In this section,
we describe the three major functions performed by the job scheduler:

1) estimating the processor desire of a job,

2) maintaining a fair, efficient, and conservative allocation, and

3) adjusting the processor usage of a job to match its allotment.
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Figure 6-1: Overview of the Cilk-AP system. Jobs record their processor desires in the
GAT and recompute the allocation for the entire system if necessary.

We end by discussing our strategy for tuning the parameters used in the above
functions. In the course of our discussion, we present the policy decisions of the
Cilk-AP system in response to the questions and issues raised in Sections 4.2 and 5.2
(regarding the use of algorithms WSAP and DP in practice, respectively).

Estimating a Job’s Processor Desire

The circles in Figure 6-1 represent multiple, concurrent, adaptively parallel jobs run-
ning in the Cilk-AP system. Each job has an associated job scheduler that schedules
the job’s computation using algorithm WSAP. In accordance with the policies of
WSAP (Section 4.2), the job scheduler is also responsible for estimating the proces-
sor desire of the job and reporting this desire to the GAT; in other words, job desires
are estimated in the second level of scheduling. Let dj be the current processor desire
of job j and let pj be the number of processors currently being used by j (the distinc-
tion between pj and aj, the job’s allotment, is explained in Section 5.2). We define
the efficiency of j to be the ratio of processors that are busy working to pj; the
inefficiency of j, therefore, is the ratio of processors that are busy stealing to pj.
The desire-estimation process occurs as follows: at any given time in j’s execution,
each of the pj processors keeps track of the number of purely unsuccessful steal at-
tempts and the number of total steal attempts that take place on the processor (recall
from Section 4.2 that purely unsuccessful steal attempts are a better measure of an
allocation’s inefficiency than partly unsuccessful steal attempts). Every est cycle

seconds, the job scheduler uses the steal-attempt statistics from each processor to
approximate the overall inefficiency of j, and then uses this approximated value to
estimate dj. More specifically, the job scheduler performs the following operations
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every est cycle seconds:

1. Calculate the ratio of purely unsuccessful steal attempts to total steal attempts
across all pj processors, using

PUS ratio =

∑pj

i=0 no. of purely unsuccessful steal attempts on processor i
∑pj

i=0 no. of total steal attempts on processor i
.

Reset the steal-attempt counters on all pj processors to start the next interval
of counting.

2. If PUS ratio ≤ 1−η, where 0 < η ≤ 1 is the target efficiency, set dj = (1/η) ·pj;
otherwise, set dj = d((1 − PUS ratio)/η) · pje.

3. Replace the old value of dj stored in the GAT with the new value computed in
step 2.

Since the GAT is stored in shared memory, the job scheduler is able to directly
update the row corresponding to j in step 3; other job schedulers perform similar
updates, as illustrated by the arrows in Figure 6-1. The interval at which the above
operations occur, est cycle, is a tunable parameter that balances the overhead of
the desire-estimation process with its responsiveness to changes in a job’s parallelism.
The value of est cycle is set by the job scheduler and may vary from job to job.
The parameter η in step 2, 0 < η ≤ 1, is another tunable parameter that represents
the target efficiency of job j. The value of η can be set by either the user or the job
scheduler and can also vary from job to job. We discuss the tuning of the parameters
est cycle and η at the end of Section 6.1.

Our definition of efficiency for adaptively parallel work-stealing jobs is based on
the premise that working processors are efficient because they make progress on the
total work (T1) of a job’s computation. Stealing processors, on the other hand, do
not contribute to T1, and are therefore inefficient. By setting a target efficiency η for
job j, we effectively set a limit on the fraction of processors that can be stealing at
any given time, or the inefficiency of j. Since 1−η represents the target value for this
fraction, it also represents the probability that a victim processor chosen uniformly
at random during a steal attempt is also busy stealing. Thus, we can use the ratio
of purely unsuccessful steal attempts (those in which the victim processor is busy
stealing) to total steal attempts in a given interval to approximate the inefficiency of
j during that interval. (This value is calculated in step 1 as PUS ratio.) If PUS ratio

is less than the target inefficiency (1− η), then we treat the ratio as effectively 0 and
set j’s desire to (1/η times its current processor usage, or the usage at which j’s
efficiency drops to η (and its inefficiency rises to 1− η) if j is 100% efficient to begin
with. If the inefficiency is greater than 1 − η, then we set j’s desire to the fraction
of the current usage that matches the target inefficiency, which we derive in the next
paragraph.

The reason we overestimate j’s desire when its current inefficiency drops below
1−η is to allow us to proactively explore the future parallelism of j, in accordance with
our policies from Section 4.2. By approximating j’s inefficiency to 0, we temporarily
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overstate its processor desire in the hopes of finding more work and exploiting any
available parallelism sooner. While this boost in processors temporarily reduces j’s
efficiency below η, the hope is that a sufficient number of the added processors are
able to find work before the next interval, thus increasing the overall efficiency of j.
Also, there are two additional safeguards that prevent j’s inefficiency from greatly
exceeding 1 − η during this period. The first safeguard is that we only increase j’s
desire by a factor of (1/η) over its current usage, so the resulting efficiency is lower
bounded (at least initially) by (1/η2); if η > 0.5, then the efficiency drops by at most
a factor of 1/2. The second safeguard is that we only increase j’s processor desire dj,
and not its actual allotment aj. The allotment of j is determined by the first-level
scheduler of Cilk-AP, and is guaranteed never to exceed the fair share of j. Thus,
there is no risk that a large desire reported by the job scheduler can monopolize the
available processors in the system or detract from the fair shares of other jobs.

If, despite these two safeguards, the processors of j are unable to find sufficient
work to increase j’s efficiency to η, then the desire of j is reduced in step 2 during the
next est cycle interval. In particular, if j’s inefficiency is greater than 1 − η, then
we reduce its desire to avoid wasting processors that may be used more efficiently by
other jobs. Unlike increases to j’s desire, however, we do not want to overstate this
reduction, since an underestimation of the desire can adversely affect the response
time of j. Thus, a good compromise is to try to match the target inefficiency exactly,
by calculating the number k of stealing processors that need to be removed in order to
lower j’s inefficiency to 1−η. Since PUS ratio is the approximation of j’s inefficiency
during the most recent interval, and pj is the usage of j during that interval, we can
calculate k as follows:

PUS ratio× pj − k

pj − k
= 1 − η (6.1)

Multiplying both sides of Equation (6.1) by (pj − k) and solving for k, we have:

k =
pj(1 − η) − PUS ratio× pj

1 − η − 1

=

(

PUS ratio + η − 1

η

)

pj .

Subtracting this value of k from pj yields the new desire of j shown in step 2.
Figure 6.1 shows a sample desire-estimation trace for job j with η = 0.5 running on
a 16-processor system, where one other job runs concurrently with j for the duration
of the trace. Each row of the table shows the values of PUS ratio, pj, dj, and aj

after the desire-estimation process has occurred during the corresponding est cycle

interval. The value of aj is set by the first-level scheduler and never exceeds the fair
share of j, as computed by Equation (5.1). (We assume that the second job in the
system always desires more than the system equipartition, or bP/Jc = b16/2c = 8
processors.)

One aspect of the desire-estimation process that merits further discussion is the
manner in which we measure a job’s efficiency in step 1 by approximating its inef-
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Interval no. PUS ratio pj dj aj

1 0.15 4 8 8
2 0.45 8 16 8
3 0.70 8 5 5
4 0.55 5 5 5
5 0.50 5 10 8
6 0.95 8 1 1

. . . . . . . . . . . . . . .

Figure 6-2: A sample desire-estimation trace for job j with η = 0.5. There are 16 proces-
sors in the system and one other job running concurrently with j whose desire is consistently
greater than 8 processors.

ficiency using the ratio of purely unsuccessful steal attempts across all processors.
There are two main reasons why we measure the inefficiency of the job instead of
directly measuring its efficiency (for example, by counting the number of partly un-
successful steal attempts or successful steal attempts): relevance and overhead. Since
steal attempts are made by stealing processors, they are only accurate indicators
of periods of inefficiency in the job’s execution. In other words, when most of the
job’s processors are stealing—that is, when the job is being inefficient—there are a
large number of steal attempts, and so any measurements based on steal-attempt
statistics are accurate. When most of the job’s processors are working, there are few
steal attempts, so any measurements we take are inherently inaccurate. Since we are
trying to approximate the job’s inefficiency, however, it is not very important if our
measurements are inaccurate when most of the job’s processors are working, because
then the job is being efficient and its inefficiency is low. Thus, by choosing to measure
the inefficiency of the job, the accuracy of our measurements match their degree of
relevance to the current situation. If we choose to measure the efficiency of the job
directly, the circumstances would be reversed, and we would not achieve the desired
level of accuracy in our measurements. Furthermore, when measuring the inefficiency
of the job, the overhead of maintaining the steal-attempt statistics also matches their
degree of importance: when the job is being inefficient, we spend more time collecting
steal-attempt information because of the large number of steal attempts. When the
job is being efficient, however, we incur little overhead, because the number of steal
attempts is very low. Again, this situation would be reversed if we were trying to
measure the job’s efficiency directly.

Another alternative to our method of approximating a job’s inefficiency is to have
the job scheduler poll all pj processors at regular intervals and check which ones are
working or stealing. We decided against this strategy for two reasons: compatibility
with the existing scheduling algorithm and overhead. Since all jobs are scheduled
using algorithm WSAP, our strategy of maintaining a few steal-attempt counters
while work stealing is a simple and unobtrusive extension to the algorithm. The
current implementation of the Cilk system, for example, already has this capability
built into its work-stealing scheduler. Furthermore, since we only take measurements
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while work stealing, the overhead incurred by our strategy is always borne by the
critical path of the computation (satisfying the work-first principle [19]), and is always
proportional to the inefficiency of the job. In a regular polling strategy, the amount of
overhead remains fixed throughout the job’s execution, and it is not clear where the
overhead is borne. If the job spends most of its time using its processors efficiently,
regular polling incurs more overhead than our strategy.

Maintaining a Fair, Efficient, and Conservative Allocation

The Cilk-AP system uses algorithm DP to compute a fair, efficient, and conservative
allocation in the first level of scheduling. The only information required for this
calculation is the processor desire of each job, which is entered into the GAT by
the job schedulers during the desire estimation process above. Since the GAT is
stored in shared memory (in user space), it is not a requirement that the operating
system perform the first level of scheduling. In Cilk-AP, the entries of the GAT are
maintained in a distributed fashion by the job schedulers of the running jobs. In
particular, each job scheduler recomputes the allocation when updating the processor
desire of its own job: if the change in the job’s desire does not affect the allocation,
then no entries in the GAT are changed; otherwise, the job scheduler adjusts the
allotments of the relevant jobs using algorithm DP. We assume that the number of
jobs is always less than or equal to the number of processors in the system, so each job
is allotted at least one processor. There are three primary reasons for maintaining the
allocation in this way, related to the ease of implementation, timeliness, and overhead
of our strategy. We explain these reasons below.

• Ease of implementation. Since the job scheduler already accesses the GAT to
report the processor desire of its job, it does not take much more effort to update
the job allotment entries in the event that the allocation has been disturbed.
In addition, since processors are moved only one at a time by algorithm DP, it
is possible for multiple job schedulers to update the GAT concurrently without
a strict locking protocol; we explain this in more detail in Section 6.2.

• Timeliness. The allocation of the system only changes when a job enters or
leaves the system, or when the current processor desire of a running job changes.
Since the job scheduler access the GAT at precisely these times, it makes sense
for the job scheduler to update the allocation as well. This way, we can be sure
that changes to the allocation are always timely and necessary.

• Overhead. By updating the allocation only when needed, we minimize the
overhead of maintaining the GAT while maximizing the responsiveness of the
allocation to changes in job desires.

There are many alternatives to the above strategy for maintaining the GAT, most
of which fall into one of two categories: strategies that store or update the GAT in
kernel space, and strategies that store the GAT in user space but perform updates
externally to all jobs (e.g., using a background processor). We summarize the differ-
ences between our strategy, which we call USER-JS (for “job scheduler”), and the
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Strategy Ease of Overhead Security
implementation

USER-JS easy low but GAT could
become a hot spot

job schedulers trust
each other

USER-BP easy low job schedulers trust
background proces-
sor

KERNEL difficult high if job schedulers
communicate with
kernel

job schedulers trust
kernel

Figure 6-3: Comparison of alternative strategies for maintaining the GAT.

alternative strategies, which we call KERNEL and USER-BP (for “background pro-
cessor”) respectively, in Figure 6.1. We use three main criteria for our comparison:
ease of implementation, overhead, and security. We assume that the GAT is updated
in a timely manner by all three strategies, as described in the timeliness condition
above. (Alternatively, the GAT can be updated at regular intervals without coordi-
nating with the job schedulers, reducing overhead at the cost of lower responsiveness.)
From Figure 6.1, we see that the primary disadvantages of USER-JS are its lack of
scalability (since the GAT may become a “hot spot”) and the level of trust it requires
between the job schedulers. We describe methods to cope with these problems in
Section 6.2.

Adjusting a Job’s Processor Usage

After setting a job’s allotment in the GAT, the task still remains of adjusting the job’s
processor usage to match the computed allotment; the discrepancy between these two
quantities is the difference between the terms pj and aj, as explained in Section 5.2.
In the Cilk-AP system, adjustments to a job’s processor usage are made by the job
scheduler using sleep and wake signals, as specified by algorithm WSAP. For a given
job j, let signaled to sleep be the number of working processors that have received
a sleep signal from the job scheduler, but which have not yet gone to sleep. Every
est cycle seconds, after reporting j’s desire to the GAT and making any necessary
changes to the allocation, the job scheduler compares j’s allotment aj to its current
usage pj and takes one of two actions:

1. If aj < (pj−signaled to sleep), send a sleep signal to (pj−signaled to sleep−
aj) of the working processors that have not been signaled to sleep; if too
few of those processors exist, send a sleep signal to all of them. Increment
signaled to sleep for each sleep signal sent.

2. If aj > (pj−signaled to sleep), send a wake signal to (pj−signaled to sleep−
aj) processors that are asleep, waking all processors that have work first before
waking those that do not have work. A processor that has been signaled to
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sleep (but which hasn’t gone to sleep yet) can be “woken up” by canceling its
sleep signal and decrementing signaled to sleep.

Upon receiving a sleep signal, a processor that is working goes to sleep as soon
as it can, decrementing signaled to sleep immediately prior to sleeping. (In our
implementation, working processors can only go to sleep at the thread boundaries of
a computation, as explained in Section 6.2.) A processor that is stealing checks to
see if aj < pj before each steal attempt; if it is, then the processor goes to sleep. If
a stealing processor chooses a victim that is sleeping with a nonempty deque, then
the processor wakes the victim up and goes to sleep itself (as specified by algorithm
WSAP); the usage of j does not change in this case. We assume that j always has
access to its allotted number of processors when increasing its usage in Action 2.

The strategy described above is identical to the strategy used by algorithm WSAP
in the adversarial model (Section 4.1), with two important distinctions. First, since
adjustments to the processor usage are not instantaneous in practice, we need to keep
track of the number of processors that have been signaled to sleep. Second, sleep
signals are only sent to processors that are busy working, because stealing processors
go to sleep on their own. In Cilk-AP, the interval at which a job’s processor usage is
adjusted is the same as the desire-estimation interval, or est cycle seconds. By using
the same interval, we ensure that the frequency at which the job scheduler affects the
system allocation is the same as the frequency at which it adjusts to changes in the
allocation.

The overall reallocation process in Cilk-AP follows a coordinated policy (Chap-
ter 2), because processors are only removed from a job at their earliest convenience.
We discuss how this policy affects our implementation in Section 6.2. Since the job
schedulers are responsible for both the first and second levels of scheduling, the prob-
lem of trust between the first and second-level schedulers now becomes a problem
of trust between the job schedulers themselves. We explain our approach to this
problem, again in Section 6.2.

Setting the Tunable Parameters

The job scheduler uses two tunable parameters to perform its second-level scheduling
functions: est cycle and η. In theory, both of these parameters can vary from job
to job, but in Cilk-AP we only allow η to vary, and use the same value of est cycle

across all jobs. The motivation for this decision is to uphold the fairness and efficiency
conditions of algorithm DP: since est cycle is the interval at which a job’s processor
usage is adjusted, it also represents the responsiveness of the job to changes in the
allocation, whether caused by the job itself or some other job in the system. If the
value of est cycle varies from job to job, then some jobs respond faster to allocation
changes than others, resulting in potentially long periods of inefficiency or unfairness.
For example, if job j has est cycle = x and job i has est cycle = 4x, then a change
in j’s desire can take up to 3x seconds to be noticed by i, assuming that the intervals
of i and j are aligned and that updates to the GAT are instantaneous. (If these
assumptions are removed, then the delay may be even greater.) If j is increasing
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its desire to demand more of its fair share of processors, then the allocation may
become unfair during the delay, since i may be using some of the processors j needs.
Conversely, if j is decreasing its desire below its fair share, then the allocation may
become inefficient during the delay, since i may be able to use some of the processors j
gives up. In practice, we cannot entirely avoid this type of delay, but we can minimize
it by using the same value of est cycle for all jobs.

Given that the value of est cycle is fixed, we still must determine what value
to use. Smaller values of est cycle increase the job scheduler’s responsiveness to
changes in both the job’s parallelism and the overall allocation, albeit at the cost of
greater overhead. Larger values of est cycle reduce the job scheduler’s responsive-
ness to these changes, but incur less overhead. For our implementation, we tune the
value of est cycle experimentally, as described in Chapter 7.

Unlike est cycle, the parameter η need not be consistent across all jobs, and
can even be set by the user, because its effect on the allocation is safeguarded by
algorithm DP. In particular, η is only used to compute the desire of a job, not its
allotment. The job’s allotment is computed in the first level of scheduling, and is
guaranteed by algorithm DP never to exceed the job’s fair share. We should note,
however, that low values of η bloat the job’s desire by allowing it to maintain a high
ratio of stealing processors. In contrast, high values of η result in more conservative
estimates, but may prevent the job from exploring its future parallelism. Setting η
to 0.5 (50% efficiency) strikes a good balance between the two extremes, and is the
value we used in most of our experiments in Chapter 7. In practice, it is possible
to dynamically tune the value of η to respond to changes in the system load or the
job itself. For example, if the system load is too high, then the job scheduler can
increase η to reduce the number of processors used for stealing. Alternatively, if the
system load is low, then the job scheduler can reduce η, because we can afford to be
inefficient. The value of η can also be increased when the job enters a serial phase, and
reduced when the job enters a phase of high (or unknown) parallelism. For simplicity,
we do not dynamically tune the value of η in our current implementation, because
using a fixed value made it easier to analyze our experiments in Chapter 7.

6.2 Implementation

We implemented the Cilk-AP system by extending the runtime system of Cilk, a
language for multithreaded parallel programming based on ANSI C. Specifically, we
extended Cilk’s job scheduler to perform the three functions described in Section 6.1:
estimating a job’s processor desire, maintaining the allocation, and adjusting a job’s
usage to match its allotment. The resulting scheduler is called the Cilk-AP scheduler.
We begin with a brief overview of the existing Cilk implementation and then describe
the implementation of Cilk-AP.
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The Cilk Scheduler

The existing Cilk scheduler uses algorithm WS to schedule the computation of a job
(WS is described in Section 4.1). A Cilk job is a program execution consisting of a
collection of Cilk procedures ; each processor in Cilk (called a worker) maintains
a deque of ready procedure instances. Cilk uses the THE protocol to manage the
ready deque of each worker [19]. This protocol allows an exception to be signaled to
a worker without introducing any additional work overhead. A worker checks for an
exception every time it pops a frame from its deque.

When compiling a Cilk program, the program is first preprocessed to C using the
cilk2c translator [34] and then compiled and linked with the Cilk runtime system
for a target platform. The runtime system is responsible for scheduling the compu-
tation of a job (it contains the code for the Cilk scheduler) and is the only part of
Cilk that we modified to implement Cilk-AP. The current implementation of Cilk
has a portable runtime system that is designed to run efficiently on shared-memory
symmetric multiprocessors (SMP’s). Cilk runs on UNIX-like systems that support
POSIX threads (Pthreads), which are used to implement the workers of a job. When
a Cilk program is started, the user specifies the number of workers that the Cilk job
can use; the runtime system then creates this many Pthreads and runs a worker on
each thread. Cilk relies on the operating system to schedule the workers onto the
physical processors of the machine.

The Cilk-AP Scheduler

The Cilk-AP system uses a technique called “process control” [48] to coordinate
the allocation of processors between the first and second levels of scheduling. In
the process control technique, jobs create virtual processors independently of the
first-level scheduler. When the allotment of a job changes, the job is notified of the
condition and is expected to adjust its current usage accordingly. Eventually, the total
number of virtual processors becomes equal to the number P of physical processors
in the system. Process control is consistent with the design of Cilk-AP, because of
the way the job scheduler adjusts the usage of a job. It is also consistent with the
existing implementation of Cilk, which virtualizes a job’s processors using Pthreads.
The extensions to the runtime system required to implement process control in Cilk-
AP are therefore relatively simple.

To reduce the overhead of creating/destroying virtual processors, the Cilk-AP
scheduler automatically creates P workers at the beginning of a job’s execution.
Meanwhile, the scheduler continues to run on its own Pthread, which we call the
background thread . To adjust the processor usage of a job, the workers are put
to sleep or awakened according to the strategy specified in Section 6.1. The Cilk-AP
scheduler creates an unnamed UNIX pipe for each worker to implement the sleeping
mechanism: a worker goes to sleep by performing a blocking read on its pipe, and
a sleeping worker is awakened when either the background thread or another worker
writes to its pipe. Initially, the desire of a job is set to 1 processor, which causes most
of the workers (which start out stealing) to put themselves to sleep. After this point,
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the job’s desire is measured periodically by the background thread using the process
described in Section 6.1. The steal-attempt counters used to calculated PUS ratio

are maintained by each worker using the event-recording mechanism already built
into Cilk.

According to the process-control technique, no worker is forcibly put to sleep by
the Cilk-AP scheduler when reducing a job’s usage. Instead, the scheduler signals a
sleep exception to the worker from the background thread using the existing exception
mechanism of Cilk [19]. Since the worker only checks for an exception after a frame
is popped from its deque, it may take a while for the worker to notice the exception
if the thread it is currently executing is very long (for example, if the worker is
executing a subcomputation of the LOOPY benchmark). In the worst case, this
delay causes the total number of workers in the system to exceed P , resulting in
added overhead due to context switching and synchronization delays [17]. A similar
situation occurs when the number of jobs in the system exceeds P , since each job
is given at least 1 processor. While this phenomenon of process control temporarily
affects the performance of running jobs, it is a much better alternative to policies
that resort to queuing in these situations [52].

…
Worker 1

status = ACTIVE

Worker 2

status = SLEEPING_ 

WITH_WORK

Worker 3

status = SLEEPING_ 

W/O_WORK

Worker 4

status = ACTIVE

Worker P

status = SLEEPING_ 

WITH_WORK

Worker 4 Worker 1 … Worker 2 Worker P … Worker 3 …

active procs_with_work P

Figure 6-4: The thread state array (TSA) used by the Cilk-AP scheduler to or-
ganize the workers of a job. The first active workers are either working or steal-
ing; the next procs with work − active workers are sleeping with work; and the last
P − procs with work workers are sleeping without work.

To simplify the management of the workers, the Cilk-AP scheduler uses an array
of indirection to group the workers according to their current status: active (the
worker is either working or stealing), sleeping with work (the worker is asleep with
a nonempty deque), and sleeping without work (the worker is asleep with an empty
deque). Figure 6-4 illustrates this array of indirection, called the thread state array

(TSA). The TSA simplifies a number of the operations performed by the Cilk-AP
scheduler:

1. When a worker is stealing, it only chooses victims that are either active or
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sleeping with work.

2. When the background thread increases the usage of a job, it only wakes up
workers that are either sleeping with work or sleeping without work.

3. When the background thread reduces a job’s usage, it only signals a sleep ex-
ception to workers that are active.

Accesses to the TSA by the different workers are synchronized with the use of Cilk
locks [47]. Cilk locks support the memory-consistency semantics of release consistency
[23, p. 716] and are designed to be as fast as is supported by the underlying hardware
[47].

The final component of the Cilk-AP system is the GAT, which is currently stored
in a memory-mapped file that all jobs have access to. Before creating the workers of
a job, the Cilk-AP scheduler first maps the GAT file into memory and then registers
the job (adding a row to the GAT) using the obtained pointer. The same pointer is
used in subsequent updates to the GAT. Currently, we do not use a locking scheme to
control accesses to the GAT for two main reasons. First, since every job accesses the
GAT on a regular basis, using a coarse-grained lock on the table would make the GAT
a bottleneck (or “hot spot”) in the system. Using fine-grained locks (e.g., one lock
per row) is an alternative, but this strategy is complicated to implement correctly.
Secondly, since algorithm DP (as presented in Section 5.2) only transfers processors
between jobs one at a time, it is unlikely that concurrent updates to the GAT can
cause the allocation to deviate that much from the fair, efficient, and conservative
ideal. If deviations do occur, the allocation can easily be rebalanced during the next
update to the GAT. In general, we find that the cost of implementing an efficient
locking scheme outweighs the overhead incurred by brief periods of inefficiency or
unfairness in the allocation. Nevertheless, we consider more scalable approaches than
the current scheme in Chapter 9.

By restricting our modifications to the Cilk runtime system, we automatically
impose the condition that all jobs in the Cilk-AP system are Cilk jobs. Since each
job is linked with the same (modified) runtime system, they are all associated with
instances of the same job scheduler—the Cilk-AP scheduler. While this consistency
limits the scope of our system, it eliminates the problem of trust between the job
schedulers, because they all share the same code. In Chapter 9, we consider possible
ways to generalize the Cilk-AP system to include other types of jobs as well.

Upholding the Design Goals of Cilk

The implementation of the Cilk-AP system upholds the three major design goals of
the current Cilk implementation: simplicity, minimal work overhead, and portability.
We summarize Cilk-AP’s adherence to these goals below.

• Simplicity. The extensions made by Cilk-AP to the Cilk runtime system lever-
age existing mechanisms whenever possible, both simplifying and reducing the
number of changes required. The process-control technique leverages Cilk’s im-
plementation of workers as Pthreads. The steal-attempt counters maintained
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by each worker use the existing event-recording mechanism of Cilk. The back-
ground thread leverages Cilk’s exception mechanism to signal workers to sleep.
Finally, Cilk locks are used to control access to the TSA.

• Minimal work overhead. The Cilk-AP system uses steal-attempt information
to estimate the desire of a job. Since this information is only gathered while a
worker is stealing, it does not contribute to work overhead, thus satisfying the
work-first principle of Cilk.

• Portability. The Cilk-AP scheduler performs both the first and second levels of
scheduling and does not depend on the operating system or underlying architec-
ture of the machine. The process-control technique escapes direct interaction
with the underlying hardware by virtualizing the physical processors of the ma-
chine. The sleeping mechanism used to increase or decrease a job’s usage is
implemented using standard UNIX pipes. Finally, the GAT is implemented
using the standard UNIX mechanism of memory-mapped I/O.
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Chapter 7

Experimental Results

In this chapter, we present a suite of experiments that measure the overhead and
performance of the Cilk-AP system. In each experiment, we compare Cilk-AP to the
current Cilk system as follows. If there is only one job running, then we compare
the results from the two systems directly. If there are multiple jobs running, then
we compare Cilk-AP to the Cilk system combined with a static processor-allocation
policy. (Recall that Cilk is only compatible with static allocation policies because
it uses algorithm WS.) We begin by describing the different Cilk applications used
in our experiments. Then, we describe our experiments for measuring the overhead
of the Cilk-AP system, and use our results to choose an appropriate value for the
tunable parameter est cycle. Finally, we describe our experiments for analyzing
the performance of Cilk-AP in the scenarios presented in Figure 2-1, and compare
the execution times achieved by Cilk-AP to the greedy-scheduling bound proved in
Theorem 3. Our results show that the Cilk-AP system incurs negligible overhead and
provides up to 37% improvement in throughput and 30% improvement in response
time for the tested scenarios.

All experiments in this chapter were performed on an idle SGI Origin 2000 SMP
with 16 195-MHz processors and 8 Gb of memory, running version 6.5 of the SGI
IRIX operating system.

Cilk Applications

We used several Cilk applications in our experiments. These applications are de-
scribed below:

• fib(n) is a program that calculates the nth Fibonacci number using double
recursion.

• loopy(n) is an implementation of the LOOPY benchmark from Section 4.2 that
uses a single loop to spawn n equal-sized subcomputations. Each subcomputa-
tion consists of 106 iterations of a small amount of work.

• cholesky(n,z) is a program that performs a divide and conquer Cholesky
factorization of a sparse symmetric positive-definite matrix. The input matrix
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is generated randomly with size n and z nonzero elements; the nonzero elements
are stored in a quad tree.

• strassen(n) is a program that multiplies two randomly generated n × n ma-
trices using Strassen’s algorithm. The program reverts to a simpler divide-and-
conquer algorithm when the matrix size is sufficiently small (currently, less than
64).

• knary(n,k,r) is a synthetic benchmark whose parameters can be set to produce
different values for work and critical path length. Written by Robert D. Blu-
mofe of MIT’s Computer Science and Artificial Intelligence Laboratory, knary
generates a tree of depth n and branching factor k, where the first r children are
executed serially and the remaining k−r are executed in parallel. At each node
of the tree, the program performs 100 iterations of a small amount of work.

All programs are compiled using gcc -O2 when used in an experiment.

7.1 Overhead of Cilk-AP

In this section, we describe three experiments for measuring the overhead of the
Cilk-AP system. In the first experiment, we ran single jobs with high parallelism in
isolation and measured the amount of work performed before all of the job’s processors
get work on their deques; we call this amount the all-procs time. The second
experiment is identical to the first, except we measured the overall running time of
the job instead. By performing these experiments for different values of est cycle,
we can analyze the trade-off between the all-procs time and running time of each
job, and then use this information to choose an appropriate value for est cycle; this
value is used in all subsequent experiments. In the third overhead experiment, we
performed a simple test to illustrate the overhead incurred by process control when
the total number of workers in the system exceeds P .

The target efficiency η of the Cilk-AP scheduler was set to 0.5 in all three experi-
ments. For accuracy, each data point reported (either an all-procs time or a running
time) was averaged over 5 trials.

7.1.1 Experiment O1: All-Procs Time Overhead

The first overhead experiment measures the all-procs time of several jobs, each of
which has parallelism much greater than P . The jobs were run in isolation with
all P processors using both the Cilk and Cilk-AP systems. We first measured the
parallelism T1/T∞ of each job using the built-in profiling mechanism available in
Cilk; the profiler was not used during the actual P -processor runs. Since all of the
applications we used are deterministic—meaning that the computation only depends
on the program and its inputs—we could measure the work T1 by directly timing
the 1-processor run. The critical path length T∞ was measured internally by the
Cilk profiler. Since the profiler incurs a significant amount of overhead, the measured
values of T1 predict a much slower running time on P processors than our results
indicate (where profiling is turned off). We can ignore this discrepancy, however,
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All-procs time Running time
Cilk Job T1 T∞ T1/T∞ (16 procs.) (T16)

fib(33) 189.9 0.001093 169152 0.0709 1.044
loopy(64) 279.2 4.366 63.95 0.1089 18.15
cholesky(2048,10000) 373.8 0.4843 771.7 0.1271 11.17
knary(10,6,1) 1386 0.3748 3698 0.1199 12.89

Figure 7-1: The parallelism of four Cilk jobs, derived from work and critical path mea-
surements. The all-procs time and running time of each job using the Cilk system is shown
on the right. All times are in seconds.

because we are only using the profiler to measure the parallelism of a job, which is
the ratio between T1 and T∞, under the assumption that profiling affects T1 and T∞

comparatively.

Figure 7.1.1 shows the work, critical path length, and parallelism of four different
jobs; each job has parallelism much greater than the number of processors in our sys-
tem, P = 16. The all-procs time of each job using the Cilk system (on 16 processors)
is also shown in Figure 7.1.1. Using this value as a basis for comparison, we then
measured the all-procs time of each job using the Cilk-AP system for different values
of est cycle. We started with est cycle = 1 ms and repeat our measurements for
est cycle = 2, 5, 10, 25, 50, and 100 ms. (The resolution of the hardware clocks
on our machine is approximately 0.8 ms.) The measured all-procs times are shown
in Figure 7-2(a). Figure 7-2(b) plots the same results in terms of the number of
est cycle intervals.

Since a job starts out with only 1 processor in Cilk-AP, we expect the all-procs
times reported in Figure 7-2(a) to be longer than the times recorded for Cilk, where
the job starts out using all P processors. We compare the two systems in Figure 7-3.
A value of 1 in Figure 7-3 indicates that the all-procs time using Cilk-AP is as short
or shorter than when using Cilk, for the given job and value of est cycle.

In Cilk-AP, the desire of a job grows by at most a factor of 1/η during each
est cycle interval, so it takes at least log1/η P intervals before a job requests all P
processors of the machine. Once a processor has been requested and allocated to the
job, there is a short delay before the job’s usage actually increases, since the Cilk-
AP scheduler must wake up a sleeping worker, and another delay before the worker
gets work on its deque, since it has to steal this work from someone else. The total
τ of these delays over all P workers represents the all-procs time of the job when
est cycle = 0. Assuming each delay takes a constant amount of time, τ can be
expressed as follows:

τ = O(P ) + O(log1/η P ) . (7.1)

The first term represents the time taken to wake up all P workers, performed (in
series) by the Cilk-AP scheduler from the background thread; and the second term
represents the time for all P workers to find work, performed (in parallel) by the
awakened workers during each est cycle interval. In practice, est cycle is greater
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than 0, so τ is distributed across several intervals. If est cycle is large enough, then
each portion of τ completes within an interval, and the all-procs time of the job is
bounded by log1/η intervals. If est cycle is small, then the all-procs time may take
longer than log1/η intervals. For the values of est cycle used in our experiment, the
all-procs time is always much longer than log1/η P = log2 16 = 4 intervals, as shown
in Figure 7-2(b). The number of intervals drops rapidly, however, as est cycle is
increased. When reading Figure 7-2(b), observe that while the number of intervals
decreases for larger values of est cycle, the value of the all-procs time actually
increases, as shown in Figure 7-2(a).

Figure 7-2 illustrates the trade-off between overhead and responsiveness in the
Cilk-AP system. The smaller the value of est cycle, the shorter the all-procs time,
but the greater the number of desire-estimation intervals performed by the Cilk-AP
scheduler. In other words, while Figure 7-2(a) tells us to use the smallest value of
est cycle possible, Figure 7-2(b) cautions us from using a value that is too small, lest
it incur significant overhead. Looking at both graphs, it seems that a value between
5 and 10 ms strikes a good balance between the two extremes. We investigate this
trade-off further in the next experiment, and use our combined results to choose an
appropriate value for est cycle.

As an aside, we compared the all-procs time of the loopy program using Cilk-
AP to the all-procs time measured using Cilk-AP-INST, a version of Cilk-AP that
estimates the processor desire of a job by directly measuring its instantaneous par-
allelism. In Cilk-AP-INST, the instantaneous parallelism of a job is measured by
counting the total number of threads on the ready deques of all workers. As ex-
plained in Section 4.2, policies of this nature are inherently misleading because they
can substantially underestimate the actual parallelism of a computation. The results
of our comparison support this claim, and are shown in Figure 7-4. As predicted,
the Cilk-AP-INST system performs considerably worse than Cilk-AP for all values of
est cycle; even at the smallest interval size, Cilk-AP-INST is over 2.5 times slower
than Cilk-AP.

7.1.2 Experiment O2: Running Time Overhead

In Experiment O1, we observed a trade-off between the overhead and responsiveness of
Cilk-AP as the value of est cycle is changed. In Experiment O2, we assess the trade-
off further by measuring its effect on the running time of each job. For consistency, we
used the same jobs listed in Figure 7.1.1 from the first experiment. We then measured
the running time of each job using both the Cilk and Cilk-AP systems over the same
range of values for est cycle. By comparing the running times of Cilk-AP to Cilk, we
can gauge the overhead incurred by the desire-estimation process, which is performed
by the Cilk-AP scheduler during every interval. For small values of est cycle, this
process occurs with high frequency throughout the job’s execution, and hence we
expect the overhead to be high. As est cycle is increased, the process occurs less
frequently, and the resulting overhead is low. Figure 7-5 shows our results for the
different values of est cycle. The overhead of Cilk-AP is expressed as a percentage
of the running time using Cilk; a value of 0 indicates that Cilk-AP’s running time is
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as short or shorter than the running time using Cilk.
From Figure 7-5, we see that the overhead of Cilk-AP drops rapidly as the value of

est cycle is increased. In particular, for est cycle > 5 ms, the overhead is virtually
nonexistent. The decline of the overhead in Figure 7-5 is consistent with the decline
of the number of intervals in Figure 7-2(b). In particular, both graphs suggest that a
value of est cycle greater than 5 ms is large enough to avoid significant overheads
when using Cilk-AP. Beyond 5 ms, the difference in overhead is minimal. Combining
this result with our analysis of Figure 7-2(a), we conclude that a value est cycle = 5
ms is an appropriate choice for our system.

By repeating the first and second experiments for different values of P , we can
make a general statement about the overhead and optimal interval size of Cilk-AP in
terms of the number of processors in a system. We describe a strategy for performing
this extrapolation in Chapter 9.

7.1.3 Experiment O3: Process Control Overhead

In this experiment, we performed a simple test to measure the overhead incurred by
process control when the number of workers in the system exceeds P . As observed in
Section 6.2, this situation usually occurs when the threads of a computation are very
long, because a worker that is signaled to sleep only notices the exception after com-
pleting the currently executing thread. To simulate this effect, we ran two instances
of the loopy program—each with parallelism greater than or equal to P—separated
by the all-procs time of the first instance. In other words, we allow the first job’s
usage to reach P processors before starting the second job. In the Cilk-AP system,
the allotment of the first job is reduced to P/2 processors when the second job arrives,
but there is a potentially long delay before the first job is actually able to reduce its
current usage, because each of its workers is busy executing a long subcomputation.
The second job is oblivious to this delay and begins using its fair share of P/2 pro-
cessors immediately after starting. As a result, the total number of workers in the
system exceeds P for as long as the first job is unable to properly reduce its usage.

The response time of a job is defined as the time elapsed from when the job ar-
rives to when it completes (including any time the job spends queued). We measured
the mean response time of the two jobs for different input sizes, once using Cilk-AP
and again using Cilk-AP with an allocation limit of P/2 processors per job. In the
second case, the total number of workers never exceeds P , because the first job is
limited to P/2 processors from the start. Our results are shown in Figure 7.1.3. For
comparison, we ran the experiment using the Cilk system with a static allocation of
P/2 processors per job. From Figure 7.1.3, one can see that the process control tech-
nique incurs significant overhead relative to Cilk when the number of workers in the
system exceeds P . If the number of workers is kept at or below P , however, process
control incurs no additional overhead, as evidenced by the last column of Figure 7.1.3.
The larger the input size to loopy, the lower the process control overhead, because
the first job has more time to reduce its processor usage (in fact, all subcomputa-
tions after the first P are executed using only P/2 processors by the first job). The
allocation limits used in this experiment are for illustrative purposes only, and are
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not part of the design or implementation of the Cilk-AP system. Even though such
limits help prevent the number of workers from exceeding P , they also waste system
resources and limit achievable utilization, as explained in Chapter 2.

7.2 Performance of Cilk-AP

In this section, we describe three experiments for measuring the performance of the
Cilk-AP system. In the first experiment, we simulated scenario (a) from Figure 2-
1 using three identical instances of the fib program. In the second experiment,
we simulated scenario (b) from Figure 2-1 using complementary runs of the knary

program. We compare the mean response time and throughput achieved by the Cilk
and Cilk-AP systems in both of these experiments. We use the notion of power ,
defined as the throughput divided by the response time [25, 26], to compare the
overall performance. Power is a suitable metric for comparison because it reflects
our goal of maximizing the throughput while minimizing the response time. In the
last experiment, we measured the running times of several jobs using Cilk-AP and
compare them to the greedy-scheduling bound proved in Theorem 3.

The target efficiency η of the Cilk-AP scheduler was set to 0.5 in the first two
experiments and 0.75 in the third. For accuracy, all of the measured running times
were averaged over 5 trials.

7.2.1 Experiment P1: Arrival of a New Job

In this experiment, we simulated scenario (a) from Figure 2-1 using three identical
jobs, called A, B, and C, that request P/2 processors each. In the given scenario, jobs
A and B start running at time 0 and job C arrives at some time t ≥ 0. We begin by
analyzing the mean response time and throughput achieved by the Cilk and Cilk-AP
systems theoretically, assuming an ideal machine with no scheduling overhead. If T
is the execution time of each job on P/2 processors, then the mean response time and
throughput of each system can be expressed using P , T , and t. We calculated these
values for t = 0 and t = T/2 and list them in Figure 7.2.1. For both values of t, the
mean response time using Cilk-AP is longer than when using Cilk, but the increase
in throughput is still large enough to yield a greater power for Cilk-AP. The ratios in
Figure 7.2.1 indicate the relative performance we can expect from Cilk-AP and Cilk
in practice.

In our experiment, we used three instances of fib(38) to represent jobs A, B,
and C. Since each job has parallelism much greater than P , we set an allocation limit
of P/2 processors to simulate scenario (a) correctly. Figure 7.2.1 shows the mean
response time, throughput, and power achieved by the Cilk and Cilk-AP systems
during the actual experiment. The value of T was measured experimentally for each
system. Given the nonideal conditions of our machine, the ratios in Figure 7.2.1 coin-
cide reasonably well with the theoretical values shown in Figure 7.2.1. As predicted,
the power achieved by Cilk-AP is greater than the power of Cilk for both values of t,
even with a theoretical ratio as small as 1.067 (as predicted for t = T/2).
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7.2.2 Experiment P2: Changes in Parallelism During Run-
time

In the second performance experiment, we simulated scenario (b) from Figure 2-1 by
running two jobs, called A and B, that have complementary parallelism profiles. We
divided each job into two phases, a serial phase and a parallel phase, and used the
knary program to implement each phase. Job A executes the serial phase before exe-
cuting the parallel phase, and job B executes the parallel phase before executing the
serial phase. The pseudocode for each job is shown below. We used knary(11,4,4)

for the serial phase and knary(11,5,0) for the parallel phase.

Job A:

cilk int main (...) {

...

/* serial phase */

spawn knary(11,4,4);

/* wait for serial phase

to complete */

sync;

/* parallel phase */

spawn knary(11,5,0);

sync;

return 0;

}

Job B:

cilk int main (...) {

...

/* parallel phase */

spawn knary(11,5,0);

/* wait for parallel phase

to complete */

sync;

/* serial phase */

spawn knary(11,4,4);

sync;

return 0;

}

Since A and B are perfect complements of each other, they exhibit the same
amount of parallelism. We measured this value to be 13.68 using the Cilk profiler. To
perform our experiment, we ran jobs A and B concurrently using both the Cilk and
Cilk-AP systems and measured the mean response time in each case. Our results are
shown in Figure 7.2.2. When using the Cilk system, each job is given the maximum
allotment of P/2 = 8 processors, based on their reported parallelism (which exceeds
this value). Since the allotment of each job is static, it remains fixed throughout both
the serial and parallel phases of execution. In the Cilk-AP system, the allotment of
a job is determined dynamically by the Cilk-AP scheduler based on estimates of the
job’s current desire. As a result, the allotment can grow and shrink during runtime
to adapt to changes in the job’s parallelism. In the first half of our experiment, job
A executes the serial phase while job B executes the parallel phase, which causes the
Cilk-AP scheduler to allocate most of the processors to job B. In the second half of
our experiment, the situation is reversed, and job A receives most of the processors.
Since Cilk-AP is able to use the processors more efficiently than Cilk, it achieves a
shorter mean response time in Figure 7.2.2, completing both jobs about 30% faster
than Cilk. Figure 7.2.2 also shows the value of P (defined in Section 3.2) for each job
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when using Cilk-AP. We approximate P by measuring the average processor usage of
each job over all est cycle intervals. In practice, the parallel phase of our experiment
takes longer than the serial phase (even when all 16 processors are used), and so the
value of P tends to be greater than 8.

7.2.3 Experiment P3: The Greedy-Scheduling Bound

In this experiment, we measured the running times of different jobs using the Cilk-
AP system and compare these times to the greedy-scheduling bound from Theorem 3.
Our goal is to show that the Cilk-AP scheduler achieves asymptotically optimal time
in practice, which suggests that a theoretical analysis of algorithm WSAP should yield
the same result (we explore this analysis in future work). Since the greedy-scheduling
bound becomes tighter with larger P , we raised the target efficiency η to 0.75 to
increase the accuracy and economy of our processor desire estimates. A higher value
of η means that fewer processors are used inefficiently by a job, resulting in a lower
value of P .

Given an adaptively parallel job with work T1, critical path length T∞, and average
processor allotment P , a greedy scheduler executes the job in time T ≤ T1/P +T∞, as
proved in Theorem 3. In Figure 7.2.3, we compare the running times of different jobs
using the Cilk-AP system to the greedy-scheduling bound predicted in Theorem 3.
As before, we approximate P using the average processor usage of a job over all
est cycle intervals. (We use the job’s usage instead of its allotment because the two
quantities are not always the same.) In every case, the running time T using Cilk-AP
is within a factor of 2 of the greedy-scheduling bound, and the performance of Cilk-
AP closely matches that of Cilk on a fixed allocation of dP e processors. Since the
Cilk scheduler achieves asymptotically optimal time in the static case (when the job’s
allotment is fixed) [4,7], these results suggest that a similar bound can be proved for
the Cilk-AP scheduler in the dynamic case (when the allotment is allowed to vary).

The running times for Cilk shown in Figure 7.2.3 come remarkably close to the
best running time achievable by Cilk on any number of processors. This observation
suggests that the Cilk-AP scheduler is able to find the optimal allotment of a job using
the desire-estimation strategy presented in Section 6.1. We expect the accuracy of P
to improve even further as the value of η is increased.
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Figure 7-2: The all-procs time of different jobs using the Cilk-AP system, shown on an
absolute scale in (a) and in terms of est cycle in (b).
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Figure 7-3: The all-procs time of different jobs using the Cilk-AP system, shown as a ratio
of the all-procs time using Cilk.
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Figure 7-5: The running time overhead of the Cilk-AP system for different jobs, expressed
as a percentage of the corresponding running time using Cilk.

Cilk Cilk-AP
(w/ alloc. Overhead (w/ alloc. Overhead

Job 1 Job 2 limit) Cilk-AP (%) limit) (%)

loopy(16) loopy(16) 9.035 12.31 36.26 8.984 0
loopy(32) loopy(32) 17.83 19.70 10.47 17.83 0.01528
loopy(64) loopy(64) 36.21 37.68 4.078 35.81 0

Figure 7-6: The overhead of process control when the number of workers in the system
exceeds P (= 16 in the above experiments). Each time represents the mean response time
of jobs 1 and 2 in seconds.
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t = 0 t = T/2
Metric Cilk Cilk-AP Ratio Cilk Cilk-AP Ratio

Mean response time 4T/3 3T/2 1.125 7T/6 5T/4 1.071
(sec)

Throughput 3/2T 2/T 1.333 3/2T 12/7T 1.143
(jobs/sec)

Power 9/8T 2 4/3T 2 1.185 9/7T 2 48/35T 2 1.067
(jobs/sec2)

Figure 7-7: Theoretical values for the mean response time, throughput, and power achieved
by the Cilk and Cilk-AP systems in scenario (a) of Figure 2-1. The ratio of Cilk-AP to Cilk
is shown for each metric.

t = 0 t = T/2
Metric Cilk Cilk-AP Ratio Cilk Cilk-AP Ratio

Mean response time 21.10 23.26 1.102 18.48 19.76 1.069
(sec)

Throughput 0.09450 0.1291 1.366 0.09450 0.1022 1.082
(jobs/sec)

Power 4.478 5.550 1.239 5.115 5.175 1.012
(×10−3 jobs/sec2)

Figure 7-8: Experimental values for the mean response time, throughput, and power
achieved by the Cilk and Cilk-AP systems in scenario (a) of Figure 2-1. The ratio of Cilk-
AP to Cilk is shown for each metric. Three instances of fib(38) are used to represent jobs
A, B, and C.

Metric Cilk Cilk-AP

Mean response time 31.33 22.12
(sec)

P (Job A, Job B) (8, 8) (8.275, 9.756)

Figure 7-9: The mean response time and processor usage of the Cilk and Cilk-AP systems
in scenario (b) of Figure 2-1. The knary program is used to implement the serial and
parallel phases of jobs A and B.
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Cilk-AP Cilk
Job T1 T∞ P T1/P + T∞ (T ) (TdP e)

knary(11,3,3) 7.669 4.187 3.732 6.242 11.37 10.85
knary(11,4,0) 122.6 0.001212 15.02 8.164 8.704 8.166
knary(10,4,2) 35.60 1.442 11.49 4.540 8.617 8.580
strassen(1024) 10.77 2.582 6.784 4.170 3.450 3.906
pfloop(64) 279.2 4.366 15.82 22.01 18.55 18.49
fib(33) 208.2 0.00704 15.60 13.35 18.99 18.93
cholesky(2048,10000) 448.4 0.8224 14.45 31.85 43.74 45.49

Figure 7-10: The running times of different jobs using the Cilk-AP system, compared here
to the greedy-scheduling bound in Theorem 3. All times are in seconds.
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Chapter 8

Related Work

The problem of scheduling adaptively parallel jobs on multiprogrammed parallel sys-
tems has been studied extensively in the past. In this chapter, we highlight some
of this work in the context of the Cilk-AP system. For a thorough treatment of job
scheduling in multiprogrammed parallel systems, the reader is directed to Feitelson’s
survey [17]. A more recent report has also been written by Feitelson and Rudolph [18].
For background on the concept of work stealing, the reader is referred to Blumofe’s
PhD thesis [4].

Dynamic processor-allocation systems are specifically designed with adaptively
parallel jobs in mind. The term “adaptive parallelism” itself seems to have been
coined by the designers of Piranha [11, 12], a dynamic processor allocation system
based on the Linda programming model [13]. Piranha is considered to be one of the
first real implementations of dynamic partitioning on a parallel machine [17]. Most
dynamic allocation systems in the past have used the instantaneous parallelism of
a job—usually determined by the number of threads that are ready to execute—to
estimate the job’s processor desire. We have shown in Section 4.2 that this approach
is inherently inaccurate for a large class of parallel programs. Nguyen et. al. use
runtime measurements of efficiency and/or speedup to tune a job’s allotment [36,37],
while others study the effect of using various application characteristics to influence
allocation decisions [9, 14, 27, 29, 42, 44, 45]. These systems are either impractical,
because they assume that application characteristics are provided to the scheduler
beforehand, or based solely on recent measures of a job’s performance. In contrast,
the Cilk-AP system uses a policy that proactively explores the future parallelism of
a job, and requires no a priori information about the job.

For the specific case of work-stealing jobs, little work has been done to analyzing
their performance in multiprogrammed environments. The work-stealing algorithm
presented by Blumofe and Leiserson [7], algorithm WS, is simultaneously efficient
with respect to time, space, and communication, but assumes that the number of
processors used to execute a multithreaded computation is fixed. As a result, any im-
plementations of this algorithm, such as the Cilk system [5, 19, 47], can only be used
with a static processor-allocation policy in a two-level scheduling environment. In
more recent work, Arora et. al. [2] present a nonblocking implementation of algorithm
WS that runs efficiently on a variable number of processors, making it suitable for
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use with a dynamic allocation policy. Given a multithreaded computation with work
T1 and critical-path length T∞, and for any number P of processes, their nonblocking
work stealer executes the computation in expected time O(T1/PA + T∞P/PA), where
PA is the average number of processors allocated to the computation. The differ-
ence between this algorithm and WSAP is that the number of processes in WSAP
always matches the number of physical processors allocated to the computation. We
investigate the performance of WSAP and the Cilk-AP system in future work.

Part of the work presented in this thesis is based on previous (unpublished) work
by Bin Song, Robert Blumofe, and Charles Leiserson of the Supercomputing Tech-
nologies Group at MIT. Song et. al. show that if a Cilk job running on P processors
spends a substantial fraction of its time stealing, then P is bigger than the average
parallelism of the computation. If the job only spends a small fraction of its time
stealing, then P is smaller than the average parallelism. This claim is justified both
theoretically and empirically in their work, and forms part of the intuition behind
using steal-attempts statistics in the desire-estimation process of Cilk-AP.
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Chapter 9

Conclusion

This thesis has presented the theoretical foundation, design and implementation of a
two-level scheduling system for adaptively parallel work-stealing jobs. The Cilk-AP
system uses dynamic partitioning (algorithm DP) in the first level of scheduling to
allocate processors to jobs in a fair, efficient, and conservative manner. In the second
level of scheduling, Cilk-AP uses a randomized work-stealing algorithm (algorithm
WSAP) to schedule a job’s computation, subject to these changing allocations. The
Cilk-AP scheduler estimates the processor desire of a job using a policy that proac-
tively explores the job’s “future” parallelism. We have shown through the LOOPY
benchmark that policies that directly measure the instantaneous parallelism of a job
are inherently inaccurate. These policies grossly underestimate the average paral-
lelism of a job for a large class of programs. The information used by the Cilk-AP
scheduler to estimate a job’s desire is provided by algorithm WSAP at virtually no
additional cost. By relying solely on steal-attempt statistics, we guarantee that the
overhead incurred by the desire estimation process is borne by the critical path and
proportional to the inefficiency of the job, thus satisfying the work-first principle.

As a consequence of our design choices, the implementation of the Cilk-AP system
requires only a few extensions to the current implementation of Cilk. Cilk-AP uses the
process control technique to manage the global allocation in user space. By leveraging
existing mechanisms of Cilk and relying only on standard UNIX mechanisms, the
Cilk-AP system upholds the three major design goals of the Cilk implementation:
simplicity, minimal work overhead, and portability. At present, all jobs in the Cilk-
AP system are Cilk jobs, which simplifies issues like security and trust between the job
schedulers, at the cost of limiting the system’s scope. We consider ways to generalize
the Cilk-AP system, and other extensions to the current design, in our discussion of
future work below.

Future Work

This thesis is the result of ongoing research by the Supercomputing Technologies
Group at MIT. As such, parts of the work presented here are pending further investi-
gation and study. In this section, we discuss these areas and directions for future work
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in the context of the Cilk-AP system. We begin with areas pertaining to the first
level of scheduling, and then discuss areas pertaining to the second level. Finally, we
describe some experiments that can be done to extend (and strengthen) our results.

The Cilk-AP system uses algorithm WSAP to schedule a job’s computation in the
second level of scheduling. We have described WSAP in the context of an adversarial
model, but have not provided a theoretical analysis of its performance; this analysis
is part of our current research. Like algorithm WS, our goal is to show that WSAP
achieves provably good time, space, and communication bounds. The nature of these
bounds is unclear to us at this time.

We are also exploring different extensions and improvements to the desire estima-
tion process of Cilk-AP. One idea is to incorporate the history of a job’s processor
usage when estimating its current desire, giving more weight to past usage trends
than to current demands. This technique is particularly useful for moderating the
effect of short-lived bursts or drops in a job’s parallelism. Another idea is to imple-
ment a mechanism for detecting whether or not a worker is blocked on I/O, similar
to the mechanism used by McCann et. al. in their dynamic processor allocator [33].
If a worker of a job is blocked, then it can be safely discounted from the job’s current
usage.

The Cilk-AP system uses algorithm DP to allocate processors to jobs in the first
level of scheduling. DP uses a strict notion of fairness that does not distinguish
between jobs. In practice, it may be useful to implement a priority scheme for dis-
tinguishing between different jobs (or users of jobs). A job’s priority can be set by
the user, and the user’s priority can be set by the administrator of the machine, for
example. Alternatively, the priority of the job can be determined by the Cilk-AP
system itself, based on runtime characteristics or properties of the job. The dy-
namic processor allocator designed by McCann et. al. [33] uses an adaptive priority
mechanism that increases the priority of jobs using fewer processors than the system
equipartition, and lowers the priority of jobs using more than the system equiparti-
tion. The allocator uses a job’s priority to determine which processors it can preempt
on the job’s behalf—for example, a lower priority job can never cause the preemp-
tion of a processor from a higher priority job. Once a priority scheme is established
for Cilk-AP, the first-level scheduler can be modified in a similar manner to use this
information when reallocating processors between jobs.

Instead of implementing its own priority scheme, the Cilk-AP system can leverage
existing priority mechanisms if we move the first-level scheduler into kernel space.
Although this strategy reduces the portability of the system, it extends the scope
of Cilk-AP to all types of jobs, not just Cilk jobs. As we noted in Section 6.1, the
disadvantages of a kernel-level implementation include the communication overhead
between the first and second levels of scheduling and the issue of trust between the
two levels. We are currently exploring these issues, as well as other ways to generalize
the Cilk-AP system.

A more immediate problem in the first level of scheduling is the potential for the
GAT to become a hot spot, especially on systems with a large number of processors.
One solution to this problem is to use a separate, dedicated processor to periodically
update the allotments in the GAT, relieving the individual job schedulers of this
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responsibility. If the updates are made frequently enough, we expect the allocation
to be as responsive to changes in job desires as the current system is (at the cost of
dedicating a separate processor for this role).

Finally, there are several experiments that we are planning to do to extend our
results from Chapter 7. First, we are considering an alternative way to measure
the overhead of the Cilk-AP system, using the amount of work performed by a job
before all processors get work on their dequeus (instead of measuring the time this
process takes). By repeating this experiment for different values of P , we can make
a general statement about the startup overhead of our system in terms of the size of
the machine and the value of est cycle. This overhead determines the minimum job
size for which it is advantageous to use our system. A similar statement can be made
about the optimal value of est cycle in terms of the machine size, by repeating the
second overhead experiment for different values of P . Together, these results can
make a strong case for the scalability and performance of Cilk-AP on any machine
size. As a final note, we plan to test the Cilk-AP system on real-world applications,
such as protein folding and ray tracing, to further reinforce these results.
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