
How to Sign Given Any Trapdoor Permutation

MIHIR BELLARE AND SILVIO MICALI

~~assacbusetts Institute of Techn olog.v, Cambridge, Massach Ilsetts

Abstract. A digltdl sgnature scheme M presented. which M breed on the exlstencc of any trapdoor

permutation. The scheme is secure in the strongest possible natural sense. namely, It is secure aga]nst

e.wstentlal forgery under adaptwe chosen message attack.

Categories and Subject Descriptors: F.O [Theory of Computation]: General; G.3 [Mathematics of
Computing]: Probability and Statistics—probabilistic algoritlzrzzs, C .2.0 [Computer Communica-

tion Networks]: General —secw[t.v and protection: D.4 6 [Operating Systems]: Security and

Protection — autherrticatmn

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases. Cryptography, dlgltal signatures, randomness, trapdoor functions

1. Introduction

1.1. THE DIFFIE-1-lELLMAN MODEL OF IXGITAL SIGNATURES. Fifteen years

ago, Diffie and IIellman [4] put forward a beautiful model for digitally signing.

Their model was based on—and in some sense coincided with—their newly

introduced notion of a trapdoor permutation. an extension of the notion of a

one- way permutation.

Roughly speaking, a permutation f is said to be one-way if it is computation-

ally easy to evaluate, but computationally hard to invert. A one-way permuta-

tion f is trapdoor if it has an associated secret string, Sj, given which f
becomes easy to invert.

Diffie and Hellman proposed using trapdoor permutations to achieve digital

signatures as follows. Each user A selects a trapdoor permutation f,4” together

with” its associated secret Sf~. User A then publishes f,q and keeps secret

Sf~. Thus A is the only one who can efficiently invert f,4. To digitally sign a

message (number) m, A computes the string a = f-1(?77). Given m and a,

any one can efficiently verify that o is A‘s digital signature of message m by

“looking up” A‘s published permutation f~, computing f,a(a), and verifying

that the result is indeed m.

MIhlr EMlare was supported in part by National Science Foundation (NSF) grant CCR-87- 19689.

Sd\ 10 Micah was supported m part by Natlorud] Sctence Found~tlon (NSF) grant DCR-84- 13577 and

ARO grant DAALO-3-86-K-0171.

Authors’ Addresses. M]hm Etellare and SdvIo Micah, Massachusetts Institute of Technology. Labora-

tory for Computer Science. 545 Technology Square, Cambridge, MA 02139.

Permlsslon to copy without fee all or part of this material is granted provided that the copies are not

made or dlstrdxzted for direct commercial ad~ antage, the ACM copyright notice and the title of the

publication and its date appear. and notice M given that copying is by permlsszon of the Assocmtlon for

Computing Machinery. To copy otherwzse, or to repubhsh, requires a fee and/or specfic permission.
@ 199~ ACM (.)004-5411 /92/0100-0214 $01 50

JmJmd uc the Asocmtm. to, Cnmputmg M&hlnc,y, Vd 39. No 1. Jan.dry 1992. PP 214-233

How To Sign Given Any Trapdoor Permutation 215

At the time of their proposal, no one knew how to go about proving that

trapdoor permutations exist (such a proof automatically entails that P # NP,

something still out of reach), or how to suggest concrete reasonable “candidate”

trapdoor permutations. Soon afterwards, Rivest, et al. [14] proposed an alge-

braic candidate, the RSA function, for which no efficiently inverting algorithm

has yet been found (and may not exist).

1.2. CRITIQUE OF THE MODEL. Although quite elegant, the Diffie-Hellman

model has some inherent limitations, brought to light by Goldwasser, et al. [9].

For instance, they point out that it is impossible that a trapdoor permutation be

hard to invert on all of its range. (For example, the RSA function has the form

x’ mod n, thus its inverse at 1 is 1.) At best, one can prove that, with high

probability, every efficient inverting algorithm fails to invert a trapdoor permu-

tation at a point randomly selected in its range, but a small subset of the range

will always exist for which inverting the permutation is easy. Security vanishes

if the message set is contained in (or overlaps significantly with) the “easy”

subset of the trapdoor permutation’s range. Thus, even if we have proved that a

given permutation is trapdoor, will we ever be able to prove that ASCII English

avoids its range’s easy subset?

Also, nowhere in the definition is it said that a trapdoor permutation f cannot

enjoy additional properties. For instance, f may be “multiplicative” (like the

RSA) in the sense that, given the value of f-1 at points x and y, computing

f-1(xy) is easy. Mutatis mutandis, this means that, given “legitimately”

obtained signatures of strings x and y, one may easily forge the signature of

string xy. One may object that in the case of English messages, it is unlikely

that the product of two messages is a proper English sentence. However,

besides the fact that this may be hard to prove, in many applications we may

need to be able to sign arbitrary numbers. What, then, would happen to the

“security” of the scheme?

Finally, one could always generate legitimate signatures by choosing a string

a and computing m = f(o).
In essence, Goldwasser. et al. [9] pointed out that the notion of security for

digital signature schemes was far from being understood, and that the existence

of trapdoor permutations (without adding extra assumptions, such as, that

multiplicativity does not hold, nor additivit y, nor “ . .) may not be sufficient to

guarantee the existence of “secure” digital signature schemes.

1.3. THE NOTION OF SECURITY. What then is a satisfactory definition of

security for digital signatures schemes? Since the above critique is not confined

to any specific implementation but is rather about the Diffie and Hellman model

itself, implicit in this question is the question of what the model should be.

A quite general definition of security for signature schemes was given by

Goldwasser, et al, [9], as well as the first example of a scheme outside the

Diffie and Hellman model. The “right” definition was found a year later by

Goldwasser, et al. [8].

Informally, the GMR definition [8] says that even an adversary who is
granted a special experimentation session with the signer, in which the adver-

sary asks and receives signatures of messages of his choice, cannot later

efficiently forge the signature of any new message. This definition is formally

presented in Section 3. For further motivation, and more history of these ideas,

we address the reader to their original paper.

216 M. BELLARE AND S. MICALI

1.4. THE COMPUTATIONAL ASSUMPTIONS NEEDED TO IMPLEMENT IT. Having

established the desired notion of security, it became very important to establish

the computational assumptions necessary to implement it.

The existence of secure digital signatures was first proved assuming the

computational difficulty of some outstanding mathematical problems; integer

factorization in the case of [8] (actually Goldwasser, et al. [8] based their

signature scheme on a general primitive that they called clc~w-free puim and

then showed how these could be implemented based on factoring).

Proving the security of a scheme implementing a basic primitive based on a

purely mathematical assumption is not easy. Ever since the work of [7] on

public-key encryption, such proofs of security have had the form of a reduction.

Namely, it is shown that if any algorithm exists for efficiently defeating the

cryptographic scheme in question, then a (different) algorithm would exist for

efficiently solving the underlying mathematical problem. The difficult y of these

proofs arises from the fact that they “reduce apples to oranges. ” For instance,

an algorithm for attacking a digital signature scheme does not look related at all

with any factoring algorithm: it has different goals, different inputs, et cetera.

This difficulty explains why the fundamental cryptographic primitives were

first implemented based on the computational difficulty of some specific
mathematical problem: that is, one possessing some additional property besides.

for example, trapdoorness. This may simplify the work of the scheme designer.

An attacker, of course, is always allowed to use any extra structure that might

be present, although not explicitly assumed. If extra structure is explicitly

assumed, it is at least available to the scheme designer as well.

Indeed, factoring (properly modified) yields a specific trapdoor permutation

[2, 16], with some rich algebraic properties.
However, once we must resort to making assumptions, we had better make

the “smallest” ones. Trapdoor permutations may exist, but trapdoor permuta-

tions enjoying specific algebraic properties may not. In order to establish the

existence of the basic cryptographic primitives, it is preferable (disregarding

efficiency considerations) to assume an “abstract” trapdoor permutation, rather

than one on possessing additional properties. Better yet is finding the minimal

computational assumption needed. That is, finding conditions that are both

necessary and sufficient to implement our primitives securely.

1.5. OUR RESULT. In this paper, we show that abstract trapdoor permuta-

tions are sufficient for digital signature schemes. Thus, we show that the same

complexity assumption hypothesized by Diffie and Hellman can be used (though

in a totally different way) to achieve “perfect” security.

Let us say that we would have not devised our scheme without the work of
[8] (from which we borrow definitions, notations, and several ideas) and the

older work of Lamport [11].

1.6. RECENT IMPROVEMENTS. Our basic digital signature scheme, together

with other beautiful ideas of Merkle [12], have been successfully used by Naor

and Yung [18] and Rompel [15]. Naor and Yung show that even one-way

permutations are sufficient for secure digital signatures. Rompel shows that

one-way functions are actually sufficient for secure digital signatures. Since an

easy argument of ours, reported in [15], shows that this condition is also

necessary, the existence of a one-way function is the minimal complexity

assumption for the existence of secure digital signatures schemes.

How To Sign Given Any Trapdoor Permutation 217

Since the works of Naor and Ytmg and Rompel heavily rely on ours, the

present paper is also a quite effective introduction to their more complex

schemes.

2. Notation and Conventions

2.1. STRINGS AND SEQUENCES. The empty string is denoted ~.

The length of a binary string s is denoted by I s I while its ith bit is denoted

(s),. We use (s)l, , to denote the string consisting of the first i bits of s; this

iseifi=O.

Ifa=(a,,ai)andb=(bl. bi) are sequences, then a* b denotes

the sequence (aI, ai, b,, . . ., b~). If a = (al, . . . , a,) is a sequence and

jsi, then (al,..., aj) is called an initial segment of a.

2.2. NOTATION FOR PROBABILISTIC ALGORITHMS. We use the notation and

conventions for probabilistic algorithms used by Goldwasser, et al. [8].

We emphasize the number of inputs received by an algorithm as follows. If

algorithm A receives only one input, we write “A (”)‘’; if it receives two, we

write “A(”, “)‘’, and so on. If A is a probabilistic algorithm, then, for any

input i the notation A(i) refers to the probability space that to the string a

assigns the probability that A, on input i, outputs a (in the special case that A

takes no inputs, A refers to the algorithm itself whereas the notation A()

refers to the probability space obtained by running A on no inputs).

If S is a probability space, we denote its support (the set of elements of

positive probability) by [S].

If~(”) and g(”, ..”) are probabilistic algorithms, then ~(g(., “ . c)) is the

probabilistic algorithm obtained by composing f and g (i.e., running f on g‘s

output). For any inputs x, y, the associated probability space is denoted

f(&’(x, Y,”””)).
If S is a probability space, then x‘= S denotes the algorithm which assigns

to x an element randomly selected according to S (i .e,, x is assigned the

value e with probability P~[e]). In the case that [S] consists of only one

element e we may write x +- e.

For probability spaces S, T, the notation

P[p(x, y,”””): X4 S;y GT; . . . 1

denotes the probability that the predicate P(x, y, “ “ “) is true after the (ordered)

execution of the algorithms x ~ S, y +- T’, etc.

If S is a finite set, we identify it with the probability space that assigns to

each element of S the (uniform) probability 1/ I S j . Thus, x ~ S denotes the

operation of selecting an element of S uniformly at random (again in the case

that the set is of only one element e we may write x‘= e rather that x ~ {e}).

We let PPT denote the set of probabilistic polynomial time algorithms. We

assume that a natural encoding of these algorithms as binary strings is used.

3. Signature Schemes and their Security

In a digital signature scheme, each user A publishes a “public key” while

keeping secret a “secret key. ” User A‘s signature for a message m is a value

depending on m and his public and secret keys such that anyone can verify the

validity of A‘s signature using A‘s public key. However, it is hard to forge

A‘s signatures without knowledge of his secret key.

218 M. BELLARE AND S. MICALI

Below, we give a more precise outline of the constituents of a signature

scheme and of the notion of security against adaptive chosen message attack [8].

3.1. COMPONENTS OF A SIGNATURE SCHEME. A digital signature scheme has

the following components:

—A security parameter k. This is chosen by the user when he creates his

public and secret keys, and determines overall security, the length and

number of messages, and the running time of the signing algorithm.

—A message space. This is the set of messages to which the signature

algorithm may be applied. We assume all messages are binary strings, and to

facilitate our exposition and proofs we assume that the message space is

.Y~ = {O, 1} ~, the set of all k-bit strings, when the security parameter is k.
—A key generation algorithm & Y. This is a probabilistic polynomial time

algorithm that can be run by any user to produce, on input 1L, a pair

(PK, SK) of matching public and secret keys.

—A signing algorithm .7. This is a probabilistic polynomial time algorithm

which given a message m and a pair (PK. SK) of matching public and

secret keys outputs a signature of m with respect to PK. Y’ might also have

as input the signatures of all previous messages it has signed relative to PK.
—A verification algorithm 7’. This is a polynomial time algorithm which

given S, m. and PK outputs true if S is a valid signature for the message m

with respect to the public key PK, and false otherwise.

Note that the key generation algorithm must be randomized to prevent a forger

from rerunning it to obtain a signer’s secret key. The signing algorithm need

not be randomized, but ours is; a message may have many different signatures

depending on the random choices of the signer.

3.2. SECURITY OF A SIGNATURE SCHEME. Of the various kinds of attacks that

can be mounted against a signature scheme by a forger, the most general is an

adaptive chosen method attack.
In an adaptive chosen message attack a forger uses the signer A to obtain

signatures of messages of his choice. He is allowed to choose these messages

not only as a function of A‘s public key but as a function of the signatures

returned by A in response to the forger’s previous requests. That is, the forger

begins by picking some message m ~ as a function of A‘s public key PK and

obtaining from A a signature S1 of it. As a function of PK, m, and S1 he now

chooses ml and gets a signature S2 of it. This goes on for a polynomial (in the

security parameter) number of messages.

From the knowledge so gathered, the forger attempts forgery.
The most general kind of forgery is the successful signing, relative to A‘s

public key, of any message m. This is called an existential forgery. (Note that

forgery of course only denotes the creation of a new signature; it is no forgery

to obtain a valid signature from A and then claim to have “forged” it.) The

security we require of our scheme is that existential forgery under an adaptive

chosen message attack be infeasible with very high probability.

More precisely, a forger is a probabilistic polynomial time algorithm Y

that, on input, a public key PK with security parameter k

(1) engages in a conversation witn the legal signer Y’, requesting and receiving

signatures with respect to PK for messages of his choice (the adaptive

chosen message attack),

219How To Sign Given Any Trapdoor Permutation

(2) then outputs a pair (m, S) (an attempt at existential forgery).

We say 3- is successful if

(1) S is a signature of m with respect to PK (i.e., 7 (S, m, PK) = true),

and

(2) a signature of m was not requested of Y in the adaptive chosen message

attack.

Definition 3.1. Let Q be a polynomial. We say that a signature scheme is

Q-forgeable if there exists a forger .Y who, for infinitely rnanY k, succeeds
with probability more than 1/Q(k) on input a public key with security

parameter k. (The probability here is over the choice of the public key (which

is chosen according to the distribution generated by Z Y) and over the coin

tosses of .Y- and Y’.)

Definition 3.2. A signature scheme is secure if for all polynomials Q it is

the case that the scheme is not Q-forgeable.

4. Trapdoor Permutations

Informally, a family of trapdoor permutations is a family of permutations such

that

—It is easy, given an integer k, to random] y select a permutation f which has

security parameter k, together with some “trapdoor” information associated

with ~

–f is easy to compute, and, given the trapdoor information, so is f-1; but

without the trapdoor information, j is “hard” to invert.

13ut what exactly does it mean for f tobe hard to invert? No finite function is

hard to invert, so the formalization must be in terms of families of functions.

Moreover, no function is hard to invert at all points in its range, since one

could always have an algorithm, that when asked to invert f at y, evaluates f
at a few fixed points and checks whether any of these evaluations yields y. We

ask rather that f be hard to invert at a random input.

4.1. A &MPLE DEFINITION

Definition 4.1. A triplet (G, E, 1) of probabi~istic polynomial-time algo-

rithms (the generating, evaluating, and inverting algorithms. respective] y] is

a trapdoor permutation generator if’ cm input 1k the algorithm G outputs a

pair of k bit strings (x, y) such that

(1) The algorithms E’(x, s) and 1(y, ~) define permutations of {0, 1} k which

are inverses of each other: 1(Y, ~(x, z)) = z and 12(x, 1(Y, z)) = z for

all zc {O, I}k.

(2) For all probabilistic polynomial time (adversary) algorithms A(”, “ , “),

for all c and sufficiently large k,

P[E(x, u) =z: (x, y) +G(lk); Z+ {O,l}k; U~A(lk, X, z)] < k-’”.

In informal discussions, we omit explicit mention of the generator and talk

of f being a “trapdoor permutation.” It is to be understood that f(~) =
E(x, .) for some (x, y) e [G(1~)] where (G, E, 1) is the underlying trapdoor

permutation generator.

220 M. BELLARE AND S. MICAL1

Although simpler, our definition is potentially less general than that of [8].

The difference lies in the nature of the domain on which a trapdoor permutation

is defined. We ask that the domain be {O, 1} L when the security parameter is k,

while [2] only require that it be a set that can be sampled; their generator

produces with each permutation an algorithm that can produce a random point

of the domain. We utilize this difference in our scheme.

However, our definition is without loss of generality in the sense that it does

capture all known candidates for trapdoor permutations. A simple, general

construction due to Yao [17] fits RSA and other candidates into our scenario.

An informal description of this construction follows.

4.2. USING YAO’S CONSTRUCTION. Take, for example, the RSA function

[14], the most popular candidate for a trapdoor permutation. The domain of the

trapdoor permutation f when the security parameter is k is D = z;, a subset

of the k bit strings. The function ~ is assumed, say, hard to invert on a

1 – l/kc fraction of D.

First extend f to {O, 1} ~ by defining

~(~) = {y if XED,

otherwise

This new function is a permutation on {O, 1} k but might be easy to invert on

a polynomial fraction of the domain. Yao’s cross product construction can now

be used to pump up the security. We define the function F on

{O,l}k x . . . x {O,l}k

n
by

F(xl, ..., Xn) = (7(XJ>...>7(%));

F is still a permutation, and Yao shows that by choosing n to be an appropriate

polynomial in k, it can be made to satisfy (2) of Definition 4.1.

The same construction works for the trapdoor permutations of [2]. In general,

the construction can be applied whenever

—the domain of f is a subset of {O, 1} k of size at least a polynomial fraction of

{o, l}k,

—there is a (polynomial time) algorithm to determine whether a given point lies

in the domain.

5. An Overview of the Scheme

We present here an overview of our scheme and a sketch of the proof

of security. For simplicity we will for the moment completely disregard

efficiency.

5.1. BACKGROUND. Lamport [11] suggested the following method for sign-
ing a single bit. The signer makes public a trapdoor permutation f and a pair of

points a“ and u 1, and keeps secret f-’. The signature of a bit b e {O, 1} is

then f–[(a~).

How To Sign Given Any Trapdoor Permutation 221

The drawback of this method is that the number of bits that can be signed is

limited to the number of pairs of points that are placed in the public key. Our

scheme can be considered an extension of this type of scheme in that it removes

the restriction on the number of bits that can be signed while using a similar

basic format for signing a single bit. We do this by regenerating some of the

public key information every time we sign a bit. Goldwasser et al. [8] too use

the idea of regenerating some part of the information in the public key, but a

different way of signing a single bit.

In the scheme described below, and then in more detail in Section 6, we

reverse the roles of functions and points in the Lamport format with respect to

signing a single bit, and then sign new points as needed. A dual and equivalent

scheme which directly uses the Lamport format but signs new functions
instead is described briefly in Section 8. (The latter version of the scheme was

also presented in [1]).

5.2. THE SIGNATURE SCHEME. A user’s public key in our scheme is of the

form

p~= (fo,o,fo,lj fk. o$fk.l>~o)>

where the f, j are trapdoor permutations with security parameter k and aO is a

random k bi’t string (we refer to k bit strings equivalently as points or seeds).

His secret key is the trapdoor information ~1~~ (i, j = O, k).
Suppose the message to be signed consmts of a single bit b. The signer

executes the following two steps:

(1) Sign b. He reveals f{)(aO)
(2) Regenerate the Pubhc Key. He picks at random a new seed cil and sends

it to the receiver. He signs this seed by revealing for each i = 1, k

either f,;: (ao) m f,: ~(ao) depending on whether the ith bit of u, was a O
ora 1.

At this point, not only has the bit b been signed, but the public key has been

“recreated.” That is, another bit can now be signed in the same manner with

al playing the role of UO above. This process can be continued to sign a

polynomial in k number of bits. The signature of a message is thus built on

a chain of seeds a, al, az, . . . in which each element of the chain is used to

sign its successor.

We note that a seed is never reused: ai_ ~ is used to sign one message bit and

a i and then is never touched again.

5.3. Wm IS THIS SECURE? Suppose ~ is a successful forger (as described

in Section 3.2). We derive a contradiction by showing that the existence of F

implies the existence of an algorithm ~ that inverts the underlying trapdoor

permutations with high probability.

Given a trapdoor permutation g with security parameter k and a k bit string

z, the algorithm A must use the forger to find g-1(z). A‘s strategy will be to
build a suitable public key and then run .Yy and attempt to sign the messages

requested by Y–. From $‘s forged signature will come the information

required to invert g at z.
A creates a public key PK = (fO, O, fO,,, f~, O, f~, ~, aO) in which

f.,. = g for a randomly chosen n c {0, k} and cc {O, 1} and all the

222 M. BELLARE AND S. MICALI

other functions are obtained by running the generator (so A knows their

inverses). In the course of signing, A will generate a list of random seeds of

the form a{ = g(Dl), except for some one (random) stage at which it will use

as seed the given point z. So A knows how to invert all the f,, ~ at all the seeds

with the single exception of not knowing fr~, ~.(z).

It is possible that A will not be able to sign a message that ~fi- requests:

specifically, A will not be able to sign a message m if computing the signature

would require knowledge of g – 1(z). But this is the only possible block in A‘s

signing process, and since .F does not know where z has been placed it will

happen with probability at most 1/2. So ~ succeeds in responding to all X‘s

requests with probability > 1/2.

13y assumption ~- will now return the signature of a message not signed

previously by ~. The placement of the original function g in the public key, as

well as the placement of z in the list of seeds, are unknown to Y’ (more

precisely, the probability distribution of real signatures and A‘s signatures are

the same), With some sufficiently high probability, the signature of the new

message will include the value of g-1(z) that A can output and halt.

6. The Signature Scheme

Let (G, E, I) be a trapdoor permutation generator. With some abuse of

language, we often call x a function and identify it with E(x. -).

6.1. BUILDING BLOCKS FOR SIGNING. The signing algorithm makes use of

many structures. This section describes the basic building blocks that are put

together to build signatures.

Let (x~, Y/)e[G(l~)] = for i= O,. ... k and j= 0,1, and let 2=

(X; ,X;9 ...3 x:, x~). Let a, a’ 6{0, l}~.

Definition 6,1, A seed authenticator (a’; a); is tuple of strings

(oJ’, a, Zl, z~) for which

E(X:a), , z,) = CY’,

foralli=l,k.

Intuitively, u’ (which we think of as already having been authenticated) is

authenticating CY(with respect to i) via the Lamport format. For each bit (a),

of a, the seed authenticator (a’; a); includes a value Z,. This value is ft–~ (a’)
if (a), = O and ft; f(a’) if (a), = 1 (where ft, j(”) = E(xl, j, .)). ‘

Bits are authenticated similarly:

Definition 6.2, A bit authenlicutor, (a’: b)7 is a tuple of strings (a’, b, Z)

such that b e {0, 1} and E(xj, z) = a’.

Notice that we have k i- 1 pairs of functions Xi, ~ so that a single a‘

can authenticate up to k + 1 bits. We use the first (Oth) pair of ftmctions to

autkmticate a bit and the rest to authenticate a k-bit seed.

Definition 6.3. An authenticator (Q’; c): is either a seed authenticator or

a bit authenticator. In the authenticator (a’: C)I, u’ is called the root of the

authenticator, c is called the child of ~he authenticator, and 2 is called

the source of the authenticator.

How To Sign Given Any Trapdoor Permutation 223

Given 2 and a tuple purporting to be the authenticator (a’; C)z, it is easy for

anyone to check that it is indeed one. However, given a’, c, and ~, it is

difficult to create an authenticator (a’; C)t without the knowledge of Y:,

Y;? . . . , Y:, YL.

Definition 6.4. A sequence F = (Fl, FP) of seed authenticators is a

spine starting at a’ if’

—a’ is the root of F’].

—for i = 1,. ... P – 1, the root of F’+ 1 is the child of I@.

Definition 6.5. A sequence B = (B’, l?q) of bit authenticators is
s-attacked to the spine F = (F1, FP) if the root of B’ is equal to the

child of FS+l–l for i= 1, ..., q. A sequence of bit authenticators B =
(B’, ..., BQ) is attached to the spine F = (FI, F-”) if it is s-attached

for some s.

6.2. GENERATING KEYS. The key generation algorithm ~’ ~’ does the

following cm input 1~:

(1) Run G a total of 2 k + 2 times on input lk to get a list of pairs (x{, y/)

(i= O,..., k, j = 0,1).

(2) Select a random k-bit seed a c {O, 1} ~.

(3) Output the public key PK =~1~, 2,0Q) ~here ~ = (~~, x:, x;, xi.).

(4) Output the secret key SK = Y = (YO, YO, Y:, Y~).

6.3. SIGNATURES

Definition 6.6. A signature of a message m c. RL with respect to a

public key PK = (1~, ~, a) is a triple (F, B, m) where F = (F’, FP~)
(pal) isaspine and B=(B1, ..., B ~) is a sequence of bit authenticators

such that

. B is ((p – l)k + 1)-attached to F.
e F starts at CY.

eForalli= l,..., k the child of B’ is (m)i.
. The common source of all the authenticators is ~.

Figure 1 (right) shows a schema of a signature for a message m with respect

to a public key (1~, 1, CYO); here, F’ = (a,_l; a,); (i = 1, pk) and

~’ = (Q(p-l)k+17
(m),): (i= 1,. ... k).

6.4. THE SIGNING ALGORITHM. Let PK = (1~, 2, o@ and SK = j be a

pair of public and secret keys. We presume that the signing procedure $ is

initialized with the values of PK and SK and has already signed messages

‘nl?..., ml_l and kept track of the signatures S1 = (Fl, Bl, ml), . . . , Si_l
= (~_,, B,_,, m,_ ~) of these messages. We let FO be the empty sequence. To

compute a signature Si = (F,, B,, m,) for m, G .#k, the signing procedure Y’

does the following:

(1) Set 1 = (i – l)k, and select k seeds al+,, al+~~ {O, 1}~ at random.
(2) Form the seed authenticators

)-FJ= (aj_l; CY~X,

forj=l+ l,..., 1 + k, and let F be the spine (F/+l, F1+~).

224 M. BELLARE AND S. MICALI

~o

k
~o

al

(ml)l
Q1 i

Q2

(ml)2
,
,

~k

~~

(ml)k
a(~-l)k ‘

FIG. 1. A signature corpus (left), and a
~k+l

signature of a message m (right). (m,), ~(p-l)k+l

~k+2 ml

(m2)2
qp-1)k+2

m2

ff~k-1

~,k-1 ‘

N

k

ink-l

(m~)k_~
Qpk

Q:k
mk

(m~)k

(3) Form the bit authenticators

BJ = (~l+j; (~i)j)z,

forj=l,k. andlet Bi=(B1, B~).
(4) Let ~. = ~._ ,*F and output lli = (~., Bi, nzi) as the signature of m,.

Figure 1 (left) shows a schema of the data structure constructed by the signing

procedure as described above, This structure will be called a signature corpus in

Section 7.

6.5. THE VERIFICATION ALGORITHM. Given a public key PK and something

purporting to be a signature of a message m with respect to PK, it is easy to

check whether this is indeed the case. It is easy to see that checking whether a

given object really has the form of definition 6.6 only requires knowledge of the

public key.

7. Proof of Security

7.1. THE SIGNATURE CORPUS

Definition 7.1. Let (F[, B1, ml),..., (~, Bi, mi) be a sequence of the

first i signatures output by our signing algorithm Y, for some i >0. Let
F= Fi and B= B1* ””” * 13i. We call signature corpus the triple C =

(F, B, (ml,. . . . mi)).

Note that a signature corpus (F, B, M) is a spine F = (Fi, Fp) to

which is 1-attached the sequence of bit carrying items B = (B‘, BP).

Definition 7.2. Let Z = (F, B, M) be either a single signature or a

signature corpus, relative to a public key PK = (lk, ~, ao), where F =
(F1,. ... FP) and B = (B1, Bg). Then

(1) F(Z) denotes F, the spine of Z, and B(Z) denotes B, the sequence

of bit authenticators of Z. The authenticators in F are called the seed

How To Sign Given Any Trapdoor Permutation 225

authenticators of Z and the authenticators in B are called the bit authentica-

tors of Z.
(2) The set of authenticators of Z is A(Z) = { F“, . . . , F’P] U

{B’,..., B9}.
(3) The chain of seeds of Z, denoted P(Z), is the sequence of seeds which

form the roots and children of the seed authenticators of F. That is,

P(Z) = (CYO,al, aP), where al is the child of ~’ for all i =

1,. ..,.
(4) The setpof roots of Z, denoted R(~), is the set of roots of the seed

authenticators of Z.

(5) The tuple A4 of messages signed by Z is denoted &f(Z). (If Z is the

signature of a single message m, we just let A4(Z) = m).

7.2. 13XTRACTING INFORMATION FROM A FORGERY. As indicated in the

overview of Section 5.3, forgery must eventually be used to extract information

about the inversion of a trapdoor function. The preliminary definitions and

lemmas here are devoted to characterizing the structure of a forgery relative to

a given corpus.

~EMMA 7.3. Let C be a signature corpus relative to a public
key PK = (Ik, ;, a) and let S be a signature, relative to the same pub-
Jic key, of a message m not in M(C). Then there is an a’ in P(C) such that
one of the following holds:

(1) There is a pair of seed authenticators. (a’; h,)z in F(C), and (a’; h2)z
in F(S), such that hl # hz.

(2) a’ is not in R(C) (i. e., a’ is the child of the last authenticator in the
spine) and there is a seed authenticator (a’; h)z in F(S).

(3) There is a pair of bit authenticators, (cY’; b,); in B(C), and (cY’; bz)~ in
B(S), such that b, # bz.

PROOF. Suppose neither (1) nor (2) holds. Since F(S) and F(C) both start

at u, F(S) must be an initial segment of F(C). Thus P(S) is an initial

segment of P(C). Since B(S) is attached to F(S), the roots of all the bit

authenticators of S are in P(S) hence in P(C). So if p(c) = (a., . . .

aP~), then there is some i such that (~(, _ I)L+Y,~ (m,)J)z ~ B(C) and

(U(i-l)k+j “ (M(S))j)2= B(S) for all j = 1, ..., k, where m,elk is the ith

message in the corpus. But M(S) is not in M(C), so there is some j such that

(~(s))j Y (m,)j. Let b, = (m,),, bz = (iW(S))J, and a’ = ~~l_lJk+J. Then

(u’; b,); c B(S) and (a’; b,); e B(C) are the desired bit authenticators which
give us part (3) of the lemma. ❑

Let PK = (l’”, X, a) be a public key, where ~ = (x:, x;, x:, xi),

and let C be a signature corpus relative to PK. We introduce the notion of a

pair (a’, x!) being unused in C, where a’ is in P(C). Informally, we would

like to say that (a’, x:) is unused if the authenticators in the corpus C do

not contain E’(x;, -) -1 (u’), That is, the inversion of E(xi, o) at a’ was not

required in the signing process. For technical reasons however, the formal

definition that we use is rather to say that the inversion of E(x: ‘J, “) was
required in the signing process. Boundary conditions (being at the end of the

spine) complicate things a little further.

226 M. BELLARE AND S. MICALI

Definition 7.4. Let PK, C be as above. We say that (a’, x;) is unused in

C if Q’ is in P(C) and one of the following holds:

(1) There is a seed authenticator (cY’; h)= in A(C) with (h), #j.

(2) i # O and CY’is not in R(C). (So a’ is at the tail end of the spine F(C)).

(3) i = O and there is a bit authenticator (cY’; b); in A(C) with b #j.

With PK, C as above, let S be the signature of a message m not in M(C),

relative to PK. We show that this signature could not have been created

without inverting E(xf, “) at 0/ where (a’, x;) was some unused pair in the

corpus C.

LEMMA 7.5. There is a polynomial-time algorithm that takes as input
PK, C, and S as described above, and outputs a triple of the form
(a’, x/, u) such that the pair (a’, x:) was unused in C and E(x~, L1) = a’.

PROOF. Let d be the seed of Lemma 7.3. The proof breaks down into the

cases provided by Lemma 7.3, and we number the cases below accordingly.

Note that given C and S it is possible for an algorithm to determine which of

the cases of Lemma 7,3 applies.

(1) Since hl # hz wecan findan i such that (h,), # (hz)l. Set j = (h,),. The

authenticator (a’: h~){ provides us with the value F(x;, “) - 1(a’), and by

the first part of Definition 7.4 the pair (a’, x:) is unused in c.

(2) Set i to any value between 1 and k and set j = (}z),. The authenticator

(a’; h)i provides us with the value E(x:, “) -‘(a’), and the second part of

Definition 7.4 says that (a’, x:) is unused in C.

(3) Set i= O and j= bz. The authenticator (a’; b,){ provides us with the

value E(x:. “)-‘ (a’) and the last part of Definition 7.4 says that (CY’, x:)
is unused in C. U

7.3. PROOF OF SECURITY. We are now ready to prove

THEOREM 7.6. Under the assumption that (G, E, 1) is a trapdoor permu-
tation generator the above signature scheme is secure.

(see Definition 3.2 for the definition of security).

The proof of the theorem is by contradiction. Assume the existence of a

polynomial Q, an infinite set ~, and a forger Y-(”) such that for all k e ~, Y
is successful in forging with probability > 1 /Q(k) on input a public key

chosen according to the distribution induced by .X !4. Our goal is to construct

an algorithm A(”, o , “) c PPT which on input 1~, x, z uses Y- to find

E(x, ”)-’(z).

Since +7 is probabilistic polynomial time, there is a polynomial SF such that
the number of signatures requested by .~~ is at most SF(k). We now define A

to operates as follows on input 1~, x, z:

(l) Letn -{0,..., k}, c’={O, l}, andt~{O,kS~(k)}.
(2) Run G a total of2k + 1 times on input 1~ to get (x:, y:) for i = O, k,

j = O, 1, (i, j) # (n. c). Let x: = x, and let 2 = (x:, xi, x:, xi).

How To Sign Given Any Trapdoor Permutation 227

(3)

(4)
(5)

(6)

Pick kSF(k) random k bit strings flo, 13_,. D,+,, (3L,*,.(~), and

then create the seeds

{

z if l=t

‘1 = E(X, (31) otherwise.

Let F’ be the sequence (aO, al, o!~s~(~)).

Let PK = (1~, ~, aO).

Invoke .Y– on the public key PK, and attempt to sign the requested

messages in the same manner as the signing procedure Y’, but using the

already generated seeds from P where Y would pick random new seeds.

The inverses of all but one of the functions in ; are known, and, for that

function X:, the value E(x:, “)- l(CY1) = pl is known for all values I # t.

If either (CY,+,),, = c, or n = O and the sequence of requested messages
has c in the fth position, it will not be possible to sign. Output Q1 and halt

in this case. If all .Y–’s requested messages are successfully signed, let ‘L

be the corpus of these signatures.

If .% does not now output a signature of a message not in JW(Q, output

@, and halt. Otherwise~ invoke the algorithm of L~mma 7..5 on input PK,

C, and the signature S output by Y-. This algorithm outputs a tuple

(et’, x<, u). Now output u and halt.

We consider the distribution of A‘s output when its inputs me chosen at

random: that is. we consider the result of executing

(x,Y) -G(l~]; z+ {O,l}k; ueA(l~, x,z).

LEMMA 7.7. The public key PK creoted in step 4 has the same distribu-
tion as that induced on public keys by the key generation algorithnl .Y 5

Of Section 6.2.

PROOF . The functions xi of step (2) were obtained by running G, as was x,

so 2 has the right distribution. The 131were chosen at random in step (3). Since

E(x, “) is a permutation, the seeds al are also randomly distributed. Since UO

is either one of these or the randomly chosen z, it k randomly distributed. So

PK has the same distribution as generated by ~ %’. ❑

LEMMA 7.8

[1) 7%2 distribution of signatures generated by the conversation between .P-
and A is, at every stage in the conversation, the same as the distribu-
tion that would be generated in a conversation between % and the legal
signer .Y.

(2) With probability > ~ al[of .F’s requests m-e successf~~lly signed.

PROOF. As noted above, the public key has the right distribution. Now the

steps used by A to sign are exactly those of the signing algorithm 9’, with

the one exception noted in step 5 of the descri~tion of A. The signatures

received by .Y– up to this crucial point haw tk same distribution as the legal

signer would have generated. Now at the next step A must invert either

E(x; , “) m E(x~z, o) at at. since c was clmsen at random, we can conclude
that this stage is passed with probability ~. Moreover, this and future signatures

are still with the right distribution. 130th- parts of the lemma are thus verified.

❑

228 M. BELLARE AND S. MICALI

Suppose all Y-’s requests are signed. By the preceding lemma, the corpus

generated has the same distribution as would have been generated with the legal

signer. By assumption, we know Y– forges with probability 1/Q(k) on this

distribution. Since the signing was accomplished with probability > ~ we

obtain a forgery Y’ with probability

1

= 2Q(k) “

The next step is to show that the u output by

sufficiently high probability.

A is equal to E(x, .)-1(z) with

Note that :(6) is an initial segment of the sequence P. If the requested

messages added together to a length of more than t bits, then z is in P(C’).

The signing process is accomplished only if inverting J5(x, “) = 13(x;, .) at z

is avoided, so if z is in P(C) then (x, Z) is unused in c. We state this as a

lemma.

LEMMA 7.9. If A does succeed in signing cdl of X‘s requests, and if z is
in P(C), then (z, x) is unused in C.

PROOF. If z is the last seed in the sequence P(C) and n >0, then we have

case (2) of Definition 7.4. Otherwise, since the signing was accomplished,

either (1) or (3) must hold. U

By Lemma 7.5, u = 13(x~, “)- I(u’) for some pair (a’, x<) unused in C’. We

would like the pair to actually be (z, x), for then u = E(x, “) - 1(Z). We

consider the probability that u = E(x, “) -1(z) conditioned on the event that z

is in P(C) and (z, x) is unused in C. By the randomization of the n and t

parameters (step 1), this probability is

1

2 (1 + k)(l + ksF(k)) “

We conclude that for all k c ~.

p[E(x, u) =z: (x, y)~G(l~); z~{().l}~; u~A(l~,x,z)l

1

> 2Q(k)(l + k)(l + ks~(k)) ‘

contradicting the fact that G is a trapdoor permutation generator. This

completes the proof of Theorem 7.6.

8. The Dual Scheme

An interesting feature of our scheme is a “duality” between the roles of

functions and seeds. The roles as described in the scheme of the previous

sections can be interchanged to yield an equivalent scheme which keeps a fixed

number of seeds in the public key and signs new functions as needed.

The duality is real enough to make the structure and description of the

schemes, as well as the proof of security, entirely symmetric, and the ability to

sign new functions rather than new seeds is unusual enough to merit a little

description. In fact, it is this dual scheme that was presented in detail in [2], and

the interested reader can obtain details from there.

How To Sign Given Any Trapdoor Permutation 229

We point out, though, that the scheme of Section 6 is the far more natural one

for implementation. In practice it is of course easier to generate a random

element of {O, 1} k (which just consists of k coin flips) than it is to run a

possibly quite complex generator to get a trapdoor function (a typical generator

is attempting to find certified primes of some length and so forth, a compara-

tively expensive operation). The dual scheme is thus likely to be a good deal

less efficient.

8.1. DESCRIPTION. We outline the structure of the dual scheme. The public

and secret keys are of the form

PK= (lk, Xo, a)

SK=YO,

where a = (a~,cY~,. . . , CY~, a~) is a vector of 2 k + 2 randomly chosen k bit
strings, and (xO, yO) c [G(l)].

Each signing step consists of signing a bit of the message and a new k bit

trapdoor permutation x, to take the place of the trapdoor permutation x[_, of

the previous stage (XO is used in the first stage). The k + 1 bits consisting

of the message bit and the k bits of xl are signed by sending either 1(y,, a:)

or 1(Y1, a ~) depending on whether the ith bit was a O or a 1. Note that the
signer gets new trapdoor permutations by running the generator; he thus knows,

and preserves, the inverses while signing and revealing the functions them-

selves. A total of 2 k + 2 seeds stay fixed in the public key, while random

trapdoor permutations are generated and signed as needed to propagate the

signatures; the roles of points and functions relative to the original scheme

(Section 6) are effectively interchanged.

To illustrate in a little more detail, we would have what we could call

function authenticators

(x’; X)&= (X’, x,z,,. ... zk)

such that E(x’, z,) = af-’)’, where x, x’ c [G(lL)]; bit authenticators would

now be of the form

(x’: b)a = (x’, b, z)

with .?3(x’, Z) = ci~. Spines would now consist of sequences of function

authenticators, and so forth. The entire scheme of Section 6 would carry over

with essentially just a change of terminology.

8.2. PROOF OF SECURITY FOR THE DUAL. It is easy to see that the proof of

Theorem 7.6 for the dual is just symmetric. To illustrate a little: A would

create the public key by placing the given point z in d, and making the rest of

the points of a of the form E(x, (3~). A would sign new functions obtained by

running G except at some one random stage when it would use x. It could then

simulate the signing and get E(x, e) – 1(z) from the forger in the same manner

as before.

9. Using Tree Structures

A key tool in improving the efficiency of our scheme and in eventually getting a

memoryless version is the use of tree structures in the style of [Goldwasser,

et al. [8]]. We describe in this section the nature of the basic tree-based scheme.

Henceforth, the scheme of Section 6 will be referred to as the linear scheme.

230 M. BELLARE AND S. MJCAL1

9.1. STRUCTURES FOR THE TREE SCHEME. In the tree scheme, the public and

secret keys are of the form

PK= (1~, i,io, i,, a,,p)

SK= (j, lo,.j,),

where

i= (X”, x’)

2.= (x:, ,. x:, ,,x:,2, x~,2,x.. k ,X; ,k)
il=(xy, ,,x; ,, ,x:,2,x; ,2, ..., X;, k, X;, k)

are trapdoor permutations, ~, ~0, ~, are their respective inverses, a, is a k-bit

seed, and the parameter ~ defines a signature bound: SB = 2 D is a bound on

the total number of signatures that can be signed with respect to the public key.

While signing, a binary tree of seeds is created, with a parent authenticating

two children. The new children seeds are signed in the same manner as

the previous scheme, using 70 as the source to sign the left child, and 21

as the source for the right child.

Seed authenticators thus come in two varieties, a left and a right:

(o!’; (+1(1 = (o!’, CY,o, :,,. ... :k)

(L+, = (a’, o!,l, z,,..., zk)

where a, a’ ={0, 1}~ and l?(y~~~I, z,) = a’ for all i = 1,....k. Bit
authenticators are with respect to x:

(a’; b); = (a’, a, z]

with E(x b, z) = a’. The terminology of roots, children, and sources of

authenticators (Definition 6.3), as well as that of spines and attaching (Defini-

tions 6.4, 6.5) remains the same. We can then define a signature, as follows in

Definition 9.1.

Definition 9.1. A signature of a message m E ,A?k with respect to a

public key Ph’ = (lL, ~, 2 , 71, a,, ~) is a triple (F, B, m) where F =

(F’,. . . , Fl~, Fd+l
. F~+~) is a spine and B = (Bl, B~) is a

sequence of bit authenticators such that

—B is ((1 + I)-attached to F.
—F starts at a,.

—Foralli= l...., k the child of B’ is (m), and the source of B’ is 7.

—-For alli= l,... , 6 the source of F’ is either 20 or 21.

—Foralli=(3+ l,... , /5’ + k the source of I“ is IO.

9.2. SIGNING. We now describe the signing procedure.

Let

PK= (l~,2,20,Zl,a,,fi)

How To Sign Given Any Trapdoor Permutation 231

be a pair of public and secret keys. We presume that the signing procedure Y’

is initialized with the values of PK and SK and has already signed messages

rno,mi_. and kept track of the signatures SO = (F., B., mo),

s ,-I = (~-,, B,_l, WZ_l) of these messages.
The integer i (O s i < 2/3) will be represented here as a binary string of

exactly D bits; that is, the representation of i is i in binary padded with leading

zeroes to bring the total length to exactly ~. With the notation of Section 2.1,

(i) ~.,,,. then denotes the first t bits of this string.
To compute a signature S, = (Fl, Bi, m,) for rnI, where i < 2‘3 and m, e

.#~, Y’ now performs the following steps:

(1) If i = O then let s = ~. Otherwise, let s be the longest common prefix of i

and i– 1.

(2) Select at random 6 – I s I seeds a(l), ,,, +,, at,,, ~ from {O, 1}~, and

form the seed authenticators

F(’)f = ~(1),()-; ~(ol [-q,),,–1

fort =lsl+l,~.

(3) Let F be the spine (F(’)’, F({)’ ~, F’(’)[~) (thus ~ consists of the first

I s I seed authenticators from ~_, (if i > O) followed by the ~ - I ,s I

authenticators created in step (2)).

(4) Now form a signature of mi in the style of the linear scheme. That is,

select k random seeds -yI ,Tk. Let y. = ~(i), ~, and let

Hj = (TJ-l; y] .to)-

B’= (?’,; (’~i),):

forj=l,k.

(5) Let ~ = F*(H’, H~), B, = (B’, BL), and output S, =

(~., B,, m,) as the signature of m,.

In the course of signing, 7 is thus building a binary tree of height ~ whose

nodes are labeled by seeds. The root is labeled with a,, and the left and right

children of a node with label a, are labeled a~o and a, ~, respectively. Seed

authenticators link a parent to its children:

F-” = (a,; a~o ~.)-

Fs’ = (a,; a,, ~,)-~

The signature of the ith message consists of the seed authenticators which

form the path to the ith leaf of this tree (numbering the leaves left to right,

beginning at O‘), together with a further linear chain in the style of the previous

scheme.

9.3. SECURITY. The argument to prove

THEOREM 9.2. Under the assumption that (G, E, I) is a trapdoor permu-
tation generator, the above tree based signature scheme is secure.

is based on ideas entirely similar to those used in the proof of Theorem 7.6, and

is complicated more by cumbersome notation than anything else. We thus omit

it here.

232 M. BELLARE AND S. MICALI

9.4. ADVANTAGES OF THE TREE SCHEME. The tree scheme not only produces

more compact signatures, but has the advantage that the size of a signature is

independent of the sizes of previous signatures. In order to discuss signature

sizes more precisely, it is convenient to talk in terms of the length of a

signature, a quantity easily visualized.

Definition 9.3. The length of a signature S = (F, B, m) (in either the tree

scheme or the linear scheme), denoted length(S), is the number of seed

authenticators in F.

The size of a signature S (in bits) is then 0(kz . lengths(S)), in either

scheme.

For the tree scheme with signature bound S~. the signature of a message m

is always of length I m I + log S~(k) which is k + log S~(k) for m e ../7,,. In

the linear scheme, the signature of the ith message m, reaches a length of

x~=, [n?j I = ki and thus if S ~ messages were to be signed the signature

lengths reach kS~(k).

10. Variations and Improvements

10.1. ARBITRARY LENGTH MESSAGES. The assumption that messages are

always of length equal to the security parameter was made to simplify the

proof, and can easily be removed. Messages of any length bounded by a fixed

polynomial in k are allowed, as long as they come from a subsequence free
set;

Definition 10.1. A set S of binary strings is subsequence free if any

sequence sl, . . . , S, of strings from S has the property that s E S is a substring

Ofsl, ..., s, if and only if s = Sj for some j.

Note that if a set S is subsequence free then it is automatically prefix free, but

not vice-versa.

It is easy to encode arbitrary non-empty strings so that the resulting set is

subsequence free. For example, encode a string by replacing each O by 00, each

1 by 11, and finally adding 01 to the beginning and end. The new string is about

twice as long as the old. This is much better than encoding into strings of length

k (at least for k = 3).

lo.~ A MEMORYLESS VERSION. Goldwasser, et al. [8] describe a method to

make their scheme memory less; they attribute the basic idea to Levin and

improvements to Goldreich [5]. Another memoryless version of the scheme is

due to Guillou [10]. We note here that the former set of techniques can be

applied to make our scheme memoryless as well. The basic tool is the use of
pseudo-random functions [6], whose existence is implied by our assumptions. A

function from a pseudo-random collection is put in the secret key and used to

compute the seeds in the tree (Goldwasser, et al. [8] call them roots) in a

specific manner. Further, a random branch of the tree is chosen to sign the next

message rather than using the branches in order from left to right.

REFERENCES

1, BELLAR~. M , AND MICALI, S, How to sign given any trapdoor functions. In Proceedings of the

20th .4nnuul ACM Sytnposwm on the Theory of Computing. ACM, New York, 1988,

pp 32-42,

2. BLUM, L , BLLUW, M., AND SHUB, M. A simple unpredictable pseudo-random number generator

SL4A4 J. COlll~Uf. 15, 2 (May 1986), 364-383.

How To Sign Given Any Trapdoor Permutation 233

3. BLUM, M., AND MICALI. S. How to generate cryptographically strong sequences of pseudo-

random bits. SIAM J. Comprzt. 13.4 (Nov. 1984), 850-864

4. DIFFIE, W., AND HELLMAN, M. E. New directions in cryptography, IEEE Trans. Info. Theory
IT-22 (NOV. 1976), 644-654.

5. GOLDREICH, O. Two remarks concerning the GMR signature scheme. Tech Rep. 715, MIT

Laboratory for Computer Science, MIT, Cambridge, Mass., Sept. 1986.

6. GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct random functions.

J. ACM. 33, 4 (Oct. 1986), 792-807.
7. GOLDWASSER, S., AND MICALI, S. Pmbabalistic encryption. J COnzP~~. $@ Sci. 28 (Apr.

1984), 270-299.

8. GOLDWASSER, S., MICALI. S., AND RWEST, R. A digital signature scheme secure against adaptive

chosen-message attacks. SZAM J. Compat. 17.2 (Apr. 1988), 281-308.
9. GOLDWASSER,S,, MICALI, S., YAO, A. Strong signature schemes, In Proceedings of the 15tlz

Annual ACM Symposium on the Theory of Computmg. ACM. New York 1983, pp. 431-439.
10. GJJILLOU. L. A zero-knowledge evolution of the paradoxical GMR signature scheme.

Manuscript, (Feb. 1988).

11. LAMPORT, L. Constructing digital signatures from a one-way function, SRI Intl. CSL-98.

(October 1979).

12. MERKLE, R. A digital signature based on a conventional encryption function. In Adva~zces irz

Cryptology – CR YPTO ’87 Lecture Notes m Computer Sc]ence. vol. 293, Springer-Verlag,

New York, 1987.

13 NAOR, M., AND YUNG, M. Universal one-way hash functions and them cryptographic apphca-

t]ons. In Proceedings of the 21st Annual ACM Symposium on the Theory of Computmg.
ACM New York 1989. pp. 33-43.

14. RIVEST, R., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital signatures and

public-key cryptosystems. Comrnun. ACM (Feb. 1978), 120-126.

15, ROMPEL, J One-way functions are necessary and sufficient for secure signatures. In Proceed-
ings of the 22nd Annaa/ ACM Symposium on the Theory of Computing. ACM New york.

1990, pp. 387-394.
16. WILLZAMS, H. C, A modification of the RSA public-key cryptosystem. IEEE Trans. Inf.

Theoryj IT-26 (1980), 726-729.

17. YAO, A. C. Theory and apphcations of trapdoor functions. In Proceedings of the 23rd Amztzal
IEEE Symposiunz on the Foundations of Computer Science. IEEE, New York. 1982, pp.

80-91.

RECEIVED SEPTEMBER 1988; REVZSED JUNE 1990; ACCEPTED JULI” 1990

Journal of the &.?ncm,on for Computing M:%chmc,y, VO1 39. No 1. J.nu:q 1992

