SIAM J. COMPUT. © 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 873-933. August 1997 001

AN OPTIMAL PROBABILISTIC PROTOCOL FOR SYNCHRONOUS
BYZANTINE AGREEMENT"

PESECH FELDMANT AND SILVIO MICALIH

Abstract. Broadcasting guarantees the recipient of a message that everyone else has received
the same message. This guarantee no longer exists in a setting in which all communication is person-
to-person and some of the people involved are untrustworthy: though he may claim to send the same
message to everyone. an untrustworthy sender may send different messages to different people. In
such a setting, Byzantine agreement offersthe "best alternative" to broadcasting. Thus far, however,
reaching Byzantine agreement has required either many rounds of communication (i.e., messages had
to be sent back and forth a number of times that grew with the size o the network) or the help of
some external trusted party.

In this paper, for the standard communication model of synchronous networks in which each
pair of processors is connected by a private communication line, we exhibit a protocol that, in
probabilistic polynomial time and without relying on any external trusted party, reaches Byzantine
agreement in an expected constant number of rounds and in the worst natural fault model. In fact,
our protocol successfully tolerates that up to 1/3 of the processors in the network may deviate from
their prescribed instructions in an arbitrary way, cooperate with each other, and perform arbitrarily
long computations.

Our protocol effectively demonstrates the power of randomization and zero-knowledge compu-
tation against errors. Indeed, it proves that "privacy” (a fundamental ingredient of one of our
primitives), even when is not a desired goal in itself (as for the Byzantine agreement problem), can
be a crucial tool for achieving correctness.

Our protocol also introduces three new primitives— graded broadcast, graded verifiable secret
sharing, and oblivious common coin—that are of independent interest, and may be effectively used
in more practical protocols than ours.

Key words. broadcasting, Byzantine agreement, fault-tolerant computation, raridomization

A M S subject classifications. 68Q22, 68R05, 68M15, 94A60. 94.499, 94B99

PII. S0097539790187084

1. The problem.

A motivating scenario. We are in Byzantium, the night beforea great battle. The
Byzantinearmy, led by acommander in chief, consists of n legions, each one separately
encamped with its own general. The empireis declining: up to 1/3 of the generals—
including the commander in chief—may be traitors. No radios (sic!) are available:
all communication is via messengers on horseback. To make things worse, the loya
generals do not know who the traitors are. During the night each general receives
a messenger with the order of the commander for the next day: either "attack” or
"retreat." If al the good generas attack, they will be victorious; if they al retreat,
they will be safe: but if some of them attack and some retreat they will be defeated.
Since a treasonous commander in chief may give different orders to different generals,
it is not a good idea for the loyal ones to directly execute his orders. Asking the
opinion of other generals may be quite mislezding too: traitors may represent their
ordersdifferently to different generals, they may not send any information to someone,

* Received by the editors August 30, 1990; accepted for publication (in revised form) July 31,
1995. An earlier version of this work was presented at the 1988 ACM Symposium on the Theory of
Computing (STOC).

http://ww si amor, a/ j our nal s/ si conp/ 26-4/ 18708. ht m

T Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139. Current address: OHR SOMAYACH, 22 Shimon Hatzedik. Jerusalem, Israel.

} Laboratory for Computer Science, Massachusetts | nstitute of Technology, Cambridge, MA 02139
(silvio@theory.lcs.mit.edu). The research of this author was supported in part by NSF grants DCR-
84-13577 and CCR-9121466. XRO grant DAALO3-86-K-0171, and ONR grant NOOO14-92-J-1799.

873



874 PESECH FELDMAN AND SILVIO MICALI

and they may claim to have received nothing from someone else. On the other hand,
should the honest generals always—say—attack (independently of the received orders
and of any discussion), they would not follow any meaningful strategy. What they
need is a way to exchange messages so as to always reach a common decision while
respecting the chief's order, should he happen to be honest. They need Byzantine
agreement.

Byzantine agreement. As insightfully defined by Pease, Shostak, and Lamport
[32), Byzantine agreement essentially consists of providing “the best alternative" to
broadcasting when all communication is person-to-person (asin an ordinary telephone
network) and some o the people involved are untrustworthy. In order to briefly de-
scribe what this alternative is, we must first sketch its classic underlying communi-
cation model, the most convenient and simplest one in which the need for Byzantine
agreement arises.

Modernizing the motivating scenario a bit, generals are processors o a computer
network. Every two processors in the network are joined by a separate communica-
tion line, but no way exists to broadcast messages. (Thus, though a processor can
directly send a given message to all other processors, each recipient has no way to
know whether everyone else has received the same message.) The network otherwise
has some positive features. Each processor in it hasadistinct identity and knowsthe
identities o the processors on the other end o itslines. The network is synchronous,
that is, messages are reliably delivered in asufficiently timely fashion: thereisacom-
mon clock, messages are sent at each clock tick (say, on the hour) and are guaranteed
to be delivered by the next tick (though not necessarily simultaneously). Each com-
munication line is private, that is, no one can alter, inject! or read messages traveling
aong it. Indeed, the only way for an adversary to disturb the communication o two
good processors is by corrupting one of them. We will refer to such a network as a
standard network since it is the one generally adopted for discussing the problem of
Byzantine agreement. !

Now assumethat each of the processorsdf a standard network hasan initial value.
Then, speaking informally, a Byzantine agreement protocol should guarantee that for
any set of initial values, the following two properties hold:

1 Consensus: All honest (i.e., following the protocol) processors adopt a com-
mon vaiue.

2. Vdlidity: If al honest processorsstart with the same value, then they adopt
that value.?

Byzantine faults. Having briefly discussed our communication model, are must
now mention our fault model. Processors become faulty when they deviate from their
prescribed programs. " Crashing (i.e., ceasing al activities) is a benign way for a
processor in anetwork to become faulty. Thefaulty behavior considered in this paper
isinstead much moreadversarial: faulty processors may deviate from their prescribed
programs in an arbitrary fashion, perform an arbitrary amount of computation, and

! standard networks are advantageous to consider in that they allow one to focus on the novel
characteristicsof Byzantine agreement without. being distracted by legitimate but "orthogona™ con-
cerns. We wish to stress, however, that, while the absence of broadcasting is crucial for the problem
of Byzantine agreement to be meaningful, we shall see in section 9.1 that most of the fine details of
the adopted communication model can be significantly relaxed without affecting our result.

2 Notice that we have stated Byzantine agreement a bit more generally than in the motivating
scenario; namely, the processors are not given their initial values by adistinguished member of their
group but have their own individual sourcesfor thesevalues. Consider, for instance, the case of party
bosses who, before an election, call each other on the phone to select a common candidate to back:
even though their initial choices do not, arise from the suggestion o a distinguished boss, they still
need Byzantine agreement.




OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 875

even coordinate their disrupting actions. Modeling software and hardware faults as
malicious behavior may not be unreasonable when dealing with the interaction of
very complex programs, but it is actually very meaningful, and even mandatory, if
there are people behind their computers. Indeed. whenever we wish to emphasize the
possibility of human control — and thus that of malicious behavior—we do employ the
term "player" instead of processor.

The goa of the faulty players is to disrupt either the consensus or the validity
requirement or simply to delay reaching Byzantine agreement for as long as possible
(aswhen, say, they prefer the status quo to any o the two alternatives being voted
on). Here is an example of what malicious players may do against a simple-minded
protocol.

Assume that the honest generals o the motivating scenario try to reach agreement
as follows: they send their initial orders to each other and then execute the most
"popular” order. Then the dishonest generals can easily cause disagreement. To
make our example more dramatic, let us suppose that 2/3 of the generals are loyal,
that half of the loyal onesstart with the value "attack," and that the other loyal half
start with “retreat.”3 In thissituation, the traitors simply tell every loya genera in
thefirst haf that their initial value is “attack™ and every loya one in the second half
that their value is "retreat.” Consensus is then disrupted in a most dramatic way:
half of the loya generals will attack and the other half will retreat. Indeed, reaching
Byzantine agreement is a tricky business.*

The significance & Byzantine agreement. Byzantine agreement is widely onsid-
ered the standard bearer in the field of fault-tolerant distributed computation. While
it isindisputable that this problem has attracted an enormous amount o attention,
we are skeptical about its relevance in the context of errors naturally occurring in a
distributed computation. In our opinion, Byzantine agreement is relevant to the field
df secure computation protocols, which includes problems such as electronic elections, -
electronic negotiations, or electronic bids.

Secure protocols (see [30] for a satisfactory and general definition) isa new and
exciting branch o mathematics that has experienced impressive growth in recent
years. A problem in this field consists of enabling a group of mutually distrustful
parties to achieve, in a interaction in which some of the players do not follow the
rules of the game, the same results that are obtainable by exchanging messagesin a
prescribed manner when there is total and honest collaboration. Indeed, it is thanks
to insights from the field of secure prolocols that we have succeeded in finding our
optimal probabilistic solution to the synchronous Byzantine agreement problem.

Byzantine agreement plays an important role in secure protocol theory; essen-
tialy, it dispenses with the need to hold a meeting when, because of the presence of
adversaries among us, it is useful to establish in a public manner who said what or
what was decided upon. In the simplest secure protocol or in the most complex one,

3 These initial values are not at all unlikely if they represent (as in our motivating scenario) the
individual version of an aleged unique message sent by a dishonest party. In any case, consensus
and validity are very strong requirements: they should hold for any initial values!

4 As we shall mention in the next section, at least t rounds of communications are needed to
reach Byzantine agreement whenever (1)t parties are dishonest and (2) the honest ones follow a
deterministic protocol. Thisfact immediately yields an alternative way to dismissthe simple-minded
strategy discussed above: it is deterministic and can be implemented in two rounds, no matter how
many players there are and no matter how many of them can be faulty. The same fact allows one to
dismiss a good deal of other simple-minded strategies as well. As we shall see, it is only through a
careful use of randomization that a strong majority of honest players may reach Byzantine agreement
very fast.



876 PESECH FELDMAN AND SILVIO MICALI

the honest players cannot possibly make any progress without keeping a meaningful
and consistent view o the world. Thisis what Byzantine agreement gives us.

The quality of a Byzantine agreement protocol. Several aspects are relevant in
determining the quality of a Byzantine agreement protocol. As for most protocols,
the amount of local computation and the total number of message bits exchanged
continue to be important. But in this archetypal problem in distributed adversarial
computation, two are the most relevant (and most investigated) aspects: the round
complexity and the fault model.

Theround complexity measurestheamount of interaction that a protocol requires.>
Since, at each clock tick, a player may send messages to more than one processor (and
their recipients will receivethem by the next tick), the round complexity of a protocol
naturally consists o the total number of rounds (i.e., clock pulses and thus "waves"
o messages) necessary for completing the protocol.

Thefault model specifieswhat. can go wrong (whilestill being tolerable somehow)
in executing a protocol, namely the following: How many processors can become
faulty? How much can they deviate from their prescribed programs? How long can
faulty processors compute to pursue their disruptive goals?

In this light: the goal o a Byzantine agreement protocol naturally consists of
simultaneously "decreasing” theround complexity while "increasing” the fault model.

Our solution. We present a probabilistic-polynomial-time protocol that, reaches
Byzantine agreement in an expected constant number of rounds (thus minimizing the
round complexity) while tolerating the maximum possible number of faulty players
and letting them exhibit a most malicious behavior.

2. Previous solutions and ours.

21. Theworst natural fault model. Though several weaker modelsfor Byzan
tine agreement can be considered (seethe excellent surveys of Fischer [19] and Chor
and Dwork [11] for a more comprehensive history o this subject), in this paper, we
concentrate on a most adversarial setting. Speaking informally for now, the worst
(natural) fault model is characterized by the following three conditions:

1. the good players are bound to polynomial-time computation;

2. aconstant fraction of the total number of players may become faulty; and

3. the faulty players can deviate from their prescribed instructions in any ar-
bitrary way, perform arbitrarily long computations, and perfectly coordinate their
actions.

The worst fault model is not only the most difficult one to handle but, aso, in our
opinion, the most meaningful one to consider. Condition 1 essentially expresses that
for a Byzantine agreement protocol to be useful, the computational effort required
by the honest processors should be reasonable. Condition 2 properly captures our
intuition about the nature of faults, independently of whether we consider players as
machines or people controlling machines. Indeed, while we do expect that the number
of faulty playersgrows with thesize of the network, it would be quite counterintuitive
to expect that it growssublinearly in this size. (For instance, assume that in a network
of n players the number of bad ones isn/logn. Then this would mean that, while
we expect 1% of a group o 1000 players to be faulty, we expect a smaller percentage
of faulty players in a much larger group.) Condition 3 essentially captures that there
may be people behind their computers: dishonest people follow whatever strategy is

5 In a distributed setting, this is the most, expensive resource. Typically, the time invested by the
processors for performing their local computation is negligible with respect to the time necessary to
send electronic mail back and forth severa times.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 877

best for them, try much harder than honest ones, and effectively cooperate with one
another. In any case, by successfully taming malicious faults, we would a fortiori
succeed in taming all other more benign—though not necessarily more reasonable—
ones.

Let us thus review the main protocols in this difficult model.

2.2. Previous solutions. Dolev et al. [12] exhibited the first solution in the
worst fault model. Letting n denote the total number of players in the network and
t denote an upperbound on the number of faulty players, they showed that as long
ast < n/3, Byzantine agreement can be reached deterministically in ©(t) rounds.
Recently, by a different protocol, Moses and Waarts {31} tightened their number of
rounds to bet+1 for t <n/8. Thisisoptimal for their choice df ¢, since Fischer and
Lynch [20] proved that t rounds are required by any deterministic protocol if t faults
may occur in its execution.

Inlight of thelower bound mentioned, all hope for faster agreement isentrusted to
probabilism. Indeed, since the pioneering work of Ben-Or (5], randomization has been
extensively used for reaching agreement. In particular, Rabin's notion of a common
coin [34] has emerged as the right version of probabilism for this setting. A network
with a common coin can be described as a network in which a random bit becomes
available to all processors at each round but is unpredictable before then. Theinterest
o this notion isdue to areduction of Rabin showing that aslongast < n/4, Byzantine
agreement can be reached in expected constant number of rounds with the help of
a common coin. Of course, commen coins are not a standard feature of a point-to-
point network; thus this reduction raises a natural and important question: Are there
efficient Byzantine agreement protocols implementable "within the network™ and in
the worst fault model?

. Prior to our work, no efficient within-the-network Byzantine agreement protocol
was known for the worst fault model. Rabin [34] devised a cryptographic Byzantine
agreement protocol running in an expected constant number o rounds but relying
on a incorruptible party external to the network.® Bracha [6] exhibited Byzantine
agreement protocols that do not require trusted parties, but his protocols are slow-
ers (they run in expected O(logn) rounds) and are not explicitly constructed (their
existence is proved by counting arguments). Chor and Coan [8] exhibit an explicit
and within-the-network Byzantine agreement protocol, but their solution, though at-
tractively simple, is much dower (their protocol tolerates any t < n/3 faults but
runsin O(t/logn) rounds; thus it requires expected O(n/logn) rounds in the worst
fault model). Feldman and Micdli [18] explicitly exhibited a cryptographic within-
the-network protocol that, after a preprocessing step consisting o a single Byzantine
agreement (on some specially generated keys), alows any subsequent agreement to be
reached in an expected constant number of rounds.” While their protocol is actually
very practical after the first agreement has been reached, the first agreement may

8 Rabin's algorithm uses digital signatures—which implies that dishonest processors are bound
to polynomial-time computation— and a trusted party—i.e., an incorruptible processor outside the
network. In his solution, if the trusted party distributes k pieces of reliable information to the
processors in the networks in preparation, then these processors can, subsequently and without any
external help, compute k common coins. Thus the number of reachable agreements is bounded by the
amount of information distributed by the trusted party in the preprocessing stage. A cryptographic
Byzantine agreement protocol with a trusted party but without the latter limitation was later found
by the authors in [18], in addition to other results mentioned later on.

™ Thus their protocol does not require any preprocessing if a trusted party distributes the right
keys beforehand. The present result can thus be viewed as removing cryptography and preprocessing
from their protocol.



878 PESECH FELDMAN AND SILVIO MICALI

very wel be the most important one (i.e., whether or not to hold a meeting).

To complete the picture, let us mention that Dwork, Shmoys, and Stockmeyer
[16] found a beautiful Byzantine agreement protocol running in expected constant
round but not.in the worst fault model. (Their algorithm tolerates only O(n/logn)
faults.)

2.3. Our solution. The main theorem in this paper can be informally stated as
follows:

There exists an explicit protocol P reaching Byzantine agreement in the worst
fault model and running in in an expected constant number of rounds. Protocol P
actually tolerates any number of faults less than one third of the total number o
processors.

Our protocol is probabilistic in the "best possible way": it is always correct and
probably fast; that is, an unlucky sequence of coin tosses may cause our protocol to
run longer, but when it halts both consensus and validity are guaranteed to hold.
Our algorithm not only exhibits optimal (within a constant) round complexity, but
it also achieves optimal fault tolerance. In fact, Karlin and Yao [28] have extended
the earlier deterministic lower bound of [32] by showing that even probabilistically
Byzantine agreement is unreachable if £ = n/3 faults may occur.'

3. Model of computation. As of today, unfortunately, no reasonable treat-
ment o the notion o probabilistic computation in a malicious fault model can be
conveniently pulled off the shelf. (A comprehensive effort in this direction—in the
more general context of secure computation.—was made in [30], but this paper has
not yet appeared in print.?) Thus we have found it necessary to devote a few pages
to discuss—though only at a semiformal level — o definitionsin what we intended to
be a purely algorithmic paper.

The definitions below, presented only at a semiformal level, focus solely on what
weimmediately need to discuss our Byzantine agreement protocol, purposely ignoring
many other subtleissues (addressed in the quoted paper [30]). We only wish to clarify
what it means that, in the execution of an n-party protocol, t of the processors may
make errors (i.e., deviate from their prescribed instructions) in a most malicious way
and that the protocol tolerates these faults.

Basic notation. Below we assume that a proper encoding scheme is adopted.
Thus. we can treat a string or a set of strings over an arbitrary alphabet as a binary

string, we may consider algorithms that output (the encoding of) another algorithm,
etc.

We assume that each finite set mentioned in our paper is ordered. If Sy,...,Sk
arefinite sets, we let the instruction Vz; € S; ...V, € Sk Alg(z,,...,zx) stand for
the program consisting of running algorithm Alg first on input the first element of
S =8, x ... x 8, then ("fromscratch," i.e., in a memoryless fashion) on input the
second element o S, and so on.

8 This remains true, as proved by Dolev and Dwork [14], even if one abandons the worst fault
model so asto include cryptographic protocols (against faulty processors with polynomially bounded
resources). Thusthe optimality of our algorithm is retained in thissetting as well.

¢ Byzantine agreement aims only at guaranteeing correctness in the presence of an adversary
(about what was decided upon) but, not at keeping secret the original single-bit inputsof the players.
A secure protocol must instead simultaneously ensure that a given computation (on inputs some
of which are secret) is both correct and private, that. is, roughly, not revealing the initially secret

individual inputs more than is implicitly done by the desired output of the computation. This is
much more difficult both to handle and to formalize.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 879

The symbol “:=" denotes the assignment instruction. The symbol “o” denotes
the concatenation operator. If aisastring and 7 is a prefix of a, we denote by the
expression “o/7” thestring p such that a= 7o p.

If Alg is a probabilistic algorithm, 1 is astring, and R is a infinite sequence of
bits, by running running Alg oninput | and coins R we mean the process of executing
Alg oninput | so that, whenever Alg flipsa coin and R = bo R/, the bit bis returned
as the result of the coin toss and R := R’.

Protocols. To avoid any issue df nonconstructiveness, we insist that protocols be
uniform.

DEFINITION 1. Let n ke an integer greater than 1. An n-party protocol is an
n-tuple of probabilistic algorithms, Py, ..., P,, where each P; (whichisintended to be
run by player i) satisfies the following property. On any input (usually representing
player i’s previous history in an execution), P; halts with probability 1 computing
either an n-tuple of binary strings (possibly empty, representing <’s messages to the
. other players for the next round) or a triple consisting of an n-tuple of strings (with
the same interpretation as before), the special character TERMINATE, and value V (as
its output).

Notice that each time that P; is run, one also obtains as "side products’ the
sequence of coin tosses actually made by P; and the sequence of its "future” coin
tosses.

A protocol is a probabilistic algorithm that, for all integersn > 1, on input the
unary representation of n, outputs (the encoding of) an n-party protocol.

In this paper, the expression round denotes a natural number; in the context of
an n-party protocol, the expression player denotes an integer in the closed interval
(1,n].

Executing protocols without adversaries. Let us first describe the notion of exe-
cuting -a protocol when all players are honest. Intuitively, each party runs his own
component of the protocol. The only coordination with other parties is via messages
exchanged in an organized fashion. Namely, there isa common clock accessible by all
players, messages are sent at each clock tick along private communication channels,
and they are received by the next tick. The interval of time between two consecutive
ticks is called a round. At the beginning of a round, a player reads the messages
sent to him in the previous round, and then runs (his component of) the protocol to
compute the messages he sends in response. These outgoing messages are computed
by a player by running the protocol on the just-received incoming messages and its
own past "history,” (i.e., an encoding of all that has happened to the player during
the execution of the protocol up to the last round). We now describe this intuitive
scenario a bit more precisely, though not totally formally. In so doing, parties, hard-
ware, private communication channels, and clocks will disappear. However, they will
remain in our terminology for convenience of discourse.

DEFINITION 2. Letn be aninteger > 1, P = (P,,..., P,) be ann-party protocol,
p1,...,pn ke finite strings, and R;,...,R, be infinite binary sequences. Then by
executing P on private inputs py,...,p, and coins Ry,..., R, we mean the process
of generating, for each player : and round r, the quantities

e M, astring called the history of player i at round r (atriple consisting of (1)
i’s history prior to round r, (2) the messages received by i in round r, and (3) the
coin tosses of i in round r),

e M . the messagessent by player i in round r (ann-tuple of strings whose jth
entry. M_[j], is called the messagesent by i to j in round r),

e M .. the messages received by player i at round r (ann-tuple of strings, whose



880 PESECH FHLDMAN AND SILVIO MICALI

jthentry, MT.[7]. is called the message received by i from j in round ),

e CT, thecoin tosses o i inround r (asubstring of R;), and

e R7, the coin tosses of i1 after round r (asubstring of R;)
by executing the following instructions:

(Start) Set C? =€, RY = R;, M) =M%, = (€, ...,¢), and H? = (p;, M°,.C?).

"Only the individual input is available at the start of an execution: no message
has yet been sent or received: and no coin has been flipped.”

(Halt) Say that player 7 haltsat round r (and hisoutputisa)ifr isthe minimum
round s for which P;, oninput HS~* and coins R;, computes a triple whose second
entry is the special character TERMINATE (and whose third entry is 0.) If ¢ haltsin
round r, thenVs >r, M$ = (e,...,€), M2, = (M;_[i]....,M5_[i]), C; :=¢,
R :=R!, and Hf := (H™', M2, §).

(Continue) If 4 has not halted in around <r, run P; oninput H'~' and coins
RI~! so asto compute either (a) ann-tuple of string M or (b) atriple (M, TERMINATE, V
where M is an n-tuple of strings, TERMIMATE is a special character, and v is a
string. If C is actually the entire sequence of coin tosses that P; has made in
this computation— and thus C is a prefix of R}~ —then CT :=C, R := R]"'/C,
M :=Ad M’ = (M]_[i],...,M:_[i]), and H := (H] "', M",;,CT).

For simplicity's sake (since each P;, on any input, halts with probability 1), above
we have neglected dealing with protocol “divergence.” Also for smplicity, we let a
player, at each round, run his own version of the protocol, P;, on the just-received
messages and on the entire history of his execution of the protocol. Thisis certainly
wasteful. In most practical examples, in fact,, it sufficesto remember very little of the
past history. Also notice that the current round number is not an available input to
P;, but it can be easily derived from the current history. In our protocols, however,
we make players very much aware of the round number. In fact, we actually spell out
what each P; should do separately for each round. Notice aso that the strings Ry
need not to be given "in full." 1t sufficesthat a mechanism is provided that "retrieves
and deletes" R;’s first bit.

Adversaries. We now alow maliciouserrorsto occur in the execution of a protocol.
A processor that has made an error iscalled faulty or bad. To formalize the ideathat
faulty processors may coordinate their strategies in an optimal way, we envisage a
single external entity, the adversary, that chooses which processors to corrupt and
sends messages on behalf of the corrupted processors. Since we wish our adversary
to be as strong as possible, we alow it to be a nonuniform probabilistic algorithm.
(Infact, in our protocol, we might as well assume that an adversary is an arbitrary
probabilistic noncomputable function.)

DEFINITION 3. Let n be an integer. greater than 1. An n-party adversary is a
probabilistic algorithm that: on. any input (usually representing A'S previous activity
in an execution) halts with probability 1 and outputs either an integer in the range
[1,n] (the identity of a newly corrupted player) or a sequence of pairs (j,M), where
J is an integer between 1 and n (the identity of a corrupted player) and Af is an
n-tuple of strings (the messages sent by j in the current round). An adversary, A, is
a sequence of n-party adversaries: A= {A(n): n=2,3,...}.

Executing protocols uiith an, adversary. We now define what it means for an n-
party protocol P to be executed with an n-party adversary A. A entersthe execution
with an initial adversarial history, a string denoted symbolicallg by HY, and an
initially bad set, BAD” C [1,n]. String H} may contain some a priori knowledge
about the inputs of the players, the result of previous protocols, and so on. Set BAD?
represents the players corrupted at round 0, that is, before the protocol starts. (In



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 881

other words, if P were the first protocol "ever to be executed,” Bap® would be empty.
If,asweshall see, P werecalled as asubprotocol, 8Bap® would comprise all the players
that have been corrupted prior tocaling P.) Adversary A may, at any round, corrupt
an additional processor, j. When this happens, al o j's history becomes available
to A;'° as for all corrupted processors, all future messages sent to j will be read by
A; and A will aso compute al of the messages that j will be sending. Essentialy,
j becomes an extension o A. Thus if k € BAD®, k’s private input is what becomes
available to A at the start of P, and A will totally control player k for the entire
execution of P.

Since we want to prepare for theworst, we let the adversary be even more powerful
by allowing rushing; that is, we let the message delivery (which is not simultaneous) be
as adversarial as possible. At the beginning of each round, all currently good players
read the messages sent to them in the previous round and compute the ones that
they wish to send in the present round. We pessimistically assume that the messages
addressed to the currently corrupted processors are always delivered immediately, and
if based on thisinformation the adversary decidesto corrupt an additional processor j,
we pessimistically assume that it succeedsin doing so before j hassent any messagesto
the currently good players, thusgiving A a chance to change these messages. Further,
we consistently "iterate this pessimism” within the same round. That is, once j is
corrupted in round r, we assume that the messages addressed to j by the currently
good processors are immediately delivered, while j has not yet sent any messages to
the remaining good players. This way A may decide whom to corrupt next in the
same round, and so on, until A does not wish to corrupt anyone else in round r.
At this point, A computes all messages sent by the corrupted processors in round r.”
These "bad" messages will be read by the good processors (of course, each processor
receives the messages addressed to him), together with all "good" messages, at the
beginning of round r 1,

The privacy o the communication channels of a concrete network is captured
in the formulation below by the fact that messages exchanged between uncorrupted
processors are never an available input to the adversary algorithm.

The history of a bad player is essentially frozen at the moment in which he is
corrupted because A has essentially subsurned him from that point on.

DEFINITION 4. Letn beaninteger > 1, HY, p1,...,p, be finite strings, R4, R,
..., Ry, infinite binary sequences, BaD? ke a subset of [1,n] and coop? ke its comple-
ment, P=(P,,..., P,) ke ann-party protocol, and A ke ann-party adversary. Then
by executing P with A on initia adveraaria history HY, inputs py,....ps, initidly
bad set Bap?, and coins R4 and R,,...,R,, We mean the process of (i) generating,
for all playersi and roundsr, the quantities

o HI M _, M, C7, and R (whose interpretation, as well as their setting for
r =0, is the same as in Definition 2)
and the new quantities

e H' (astring called the history of the adversary at round r),

e (7, (abinary string called the coin tosses of the adversary at round r),

e 7 (aninfinite subsequence of R4 called the coin tosses of A after round r),

and

e BAD" and GooD" (two sets of players called, respectively, the bad players at
round r and the good players at round r, such that Vr, coop” = [1,n] — BAD

% Thisisa clean but pessimistic approach (which makes our result stronger). In practice, though
J may wish to fully collaborate with A by sharing all information he has. he may still have trouble
in remembering—say —all previously received messages or all previously made coin tosses.



882 PESECH FELDMAN AND SILVIO MICALI

by setting C§ = ¢ and RS = R4 and (ii) executing the following instructions for
r=12,...:

0. TEMPHY := H,"!; TEMPRY, := R,'; TEMPGOOD" := GOOD"~}; TEMPBAD"

:= BAD" L.
“Because A's history, future coin tosses, and sets of good and bad players
dynamically change within a round, we shall keep track of these changes in
temporary variables. However, their final values within round r, respectively,
H%, R7, cooDp”, and BAD', are unambiguously defined.”

1. “Just as when all processors are honest,” Vg € Goop™ !, generate M7_,
"the messages that g wishes to send in this round (which may ke reset ifg
is corrupted in this round),” Cy, and R by running P, on input H;~! and
coins Ry~ 1.

2. Vg € oop™ ! and Vb € BAD" !, TEMPH', := (TEMPH,, g,b, M]_ [b]).

3. Run A on input TEMPH"; and coins TEMPRY,.

If in this execution of step 3 A has output j € TEMPGOOD” and made the
sequence of coin tosses C, then

e TEMPBAD" := TEMPBAD" U { ), TEMPGOOD" := TEMPGOOD" —{]),

e TEMPHY, :=(TEMPH[,H] ', C},C) “so that from H; ™' and C7 A can
reconstruct,all of the messages that j wished to send in round r, and
fromTeEMPH?, and C she can reconstruct why she has corrupted j,"

e TEMPR', :=TEMPR'",/C “adjust A's future coin tosses,”

e Vg E TEMPGOOD", TEMPH, := (TEMPH,, ¢, 4, M_[j]), “i.e., accord-
ing to rushing, A is also given the messages that the currently good
players wish to send to j in this round,” and

e (o to step 3 "to corrupt next processor.”

Otherwise, if in this execution of step 3, A has output, ¥b € TEMPBAD", a
vector M, € ({0,1}*)" "asb’s round-r messages”’ and made the sequence
of coin tossesC, then

e Vb € BAD", M]_, = M,,

e TEMPH', :=(TEMPH";,C) “so that she can reconstruct the bad players’
messages o round r,” and

e TEMPR), := TEMPR',/C, and "adjust the final round-r quantities as
follows."

4. Letting C ke the sequence of coin tosses A has made since the last execution
of step 2,

e H7 :=TEMPH"; C7 :=C; and R, := TEMPRY;

GOOD™ := TEMPGOOD™ and BAD” := TEMPBAD";
Vi, ] € [Ln), MT[j] :=M]_][i];
Vg € GoobD', H; = (H;—l,;nq'r_g,cg):
Vb € BAD™"}, H] := (H; ',bad), and ¥b € BAD" — BAD""!, H] :=
(H]~',C7, bad).

Let E ke the sequence (of tuples of quantities resulting from. the above computa-
tion) so defined:

E=EyE,...,
where
E.=(H], M[_, M".,, C}, R}, ..., Hl, M’_, M"... C", R",
HY}., C%, R, BAD",GOOD").
11 By convention, if A's output is not of this format, then it is assumed that M, = (e....,¢€)

Vb € TEMPBAD".



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 883

We call E the execution of P with A on initial quantities HS, Bap®, and py,...,p,,
and coins R4 and Ry,...,R,. Thevalue E, iscalled round r of E. If R is a positive
integer, by the expression E up to round R, in symbols Ej 5, we mean the finite
subsequence Fy, ..., Eg.

(Note: The quantities Hy, M] ., M, Cj, R, H). C%, R, BAD, and
GOOD™ may carry an additional superscript or prefiz to emphasize the protocol during
the execution of which they have been generated.)

Remark. The ability of an adversary to corrupt players at arbitrary points in
time of a protocol is crucia in a randomized protocol. For a deterministic protocol,
the adversary's optimal strategy may be calculated beforehand, but it may profitably
change during the execution of a randomized protocol. For example, consider a prob-
abilistic protocol for randomly selecting a "leader,” that is, a processor to be put in
charge of a given task. Depending on the specifics of the protocol, it may be impossi-
blefor the adversary to corrupt a few players beforehand and coordinate their actions
so that one of them is guaranteed to be elected leader. It is, however, very easy for
her to wait and see which processor is selected as leader and then corrupt it! (This
feature models a "real-life" phenomenon: nobody is born a thief, but some may be-
come thieves if the right circumstances arise . ... To capture this realistic feature, we
must alow' —and successfully deal with— adversariesthat can corrupt players, during
run time, in a dynamic fashion.)

Fractional adversaries. Above we have presented the mechanics of executing
a protocol with an adversary exhibiting what is essentially an arbitrarily malicious
behavior. To keep things meaningful, however, we wish to put a cap on the number
o players that an adversary may corrupt without otherwise limiting its actions in
any way. In fact, we assume that no n-party adversary may corrupt n playersin an
execution with an n-party protocol (otherwise, no meaningful property about such an
execution 'could possibly be guaranteed).

We will actually be focusing on adversaries that may corrupt at most a constant
fraction o the players. Let c be a constant between 0 and 1; we say that an adversary
A is a c-adversary if for al n > 1 and al n-party protocols P, in any execution
with P on an initially bad set with < ¢n elements, the cardinality of the bad set
always remains < m. Whenever we consider an execution of an n-party protocol with
a c-adversary, we implicitly assume that the initially bad set contains less than cn
players.

We also assume that no more than one adversary is active in an execution of
a protocol. Actually, because the adversary that never corrupts any processor is a
specia type of adversary (indeed, a c-adversary for all possible ¢ € (0,1)), we shall
assume that in every execution of a protocol there is exactly one adversary active.
Thus the expression "an execution of protocol P really means "an execution of
protocol P with adversary A, for some adversary A."

Initial quantities. As we have seen, to run an n-party protocol with an n-party
adversary A, we need to specify, other than the coin tossesdof A and the n players, the
followinginitial quantities: (1)the initia adversarial history HY, (2) theinitially bad
set BAD', and (3) the inputs (py,...,ps). For the purpose of defining the mechanics
of executing an n-party protocol with an n-adversary, we define Z@Q,,, the set of the
initial quantities (of size n) in a most "libera™ manner; that is, Z7Q, = {0,1}* x
o{l..n} % ({0,1}*)™. In an accordingly liberal manner, we let ZQ = {ZQ, : n > 1)
be the set of all (possible) initial quantities.

In general, however, it is meaningful to prove properties of protocols if the ini-
tial quantities of their executions satisfy a given constraint (e.g., reaching Byzantine



884 PESECH FELDMAN AND SILVIO MICALI

agreement on "the message” sent by a given member of a network is meaningful only
if the identity of this sender is a common input to all processors in the network).
We actually prefer to dismiss nonmeaningful initial quantities from consideration al-
together. That is, we define each n-party protocol P(n) together with the set of its
own proper initial quantities, denoted by ZQF, on which—and solely on which—P(n)
can berun. Thus whenever we say that some specific values | Q are initial quantities
for P(n), it isassumed that | Q € IQ,’f. Also, whenever we refer to an execution of
a protocol P with some specificinitial quantities 1Q, if 1 Q € 7Q,,, we actually refer
to an execution of P(n) on initial quantities |Q— quantities which actually belong to
TQF. (Indeed, it should be noticed that n can easily be computed from any member
o ZQ,.) Insummary, al initial quantitiesof a protocol are deemed to be proper —and
we shall use the expression "proper” only for emphasis.

Notice that by specifying the proper initial quantities of a given protocol, one
could easily "cheat" by disallowing certain initial adversarial histories or initially bad
sets so as to make protocol design artificially easy. In this paper, however, the proper
initial quantities of a protocol will never in any way constrain the initial adversar-
ia history or theinitially bad set, except for its cardinality. Moreover, in this paper,
proper initial quantities will never impose any restrictionson theinputsof theinitially
corrupted players. When defining a new protocol, though, wefind it convenient to de-
scribe the generic element of its (proper) initial quantities by specifying (in particular)
the inputs of all players, with the understanding that all constraints on the initially
bad players must be dropped; that is, by saying that (H$, BAD?, (p1,...,pn)) € TOF,
we simply mean that the private input o player i isp; if i does not belong to BADC.
(In other words, if we wish a more extensive notation,-an element of ZQF is of the
form (HY,BADY, {(¢,p;) : i & BAD®}).)

Random executions and probabilities.

DEFINITION 5. Let n be aninteger > 1, P be an n-party protocol, A be an n-party
adversary, and 1Q € ZQ”. By randomly executing P with A on initial quantities
IQ, we mean the process consisting of generating the infinitely long bit sequences R4,
Ri,...,R, by randomly and independently selecting each of their bitsin {0.1} and
then ezecuting P with A oninitial quantities| Q and coins Ra, Ry,....R,. We cal
the execution resulting from this process a random execution of P with A on initial
quantities 1 Q.

Thus the probability that an event e occurs in a random execution of P with A
on initial quantities | Q is solely computed over the coin tosses of P and A. (Only if
we have assumed a probability distribution on the private inputs as well—and if we
explicitly say so—we may compute the probability o an event also over the random
choices in selecting the private inputs.) The probabilities of events that are most
important to us are those that are intrinsic properties of our protocols alone; that is,
we shall prove bounds for these probabilities that are valid for any adversaries, any
initial adversarial history, any initially corrupted players, and any players' inputs.

Fault tolerance. Thefault tolerance of a protocol isessentialy the highest fraction
of faultsit can tolerate.

DEFINITION 6. Let ¥ be a property(i. e.. a predicate) and ¢ be a constant between
0 and 1. We say that a protocol P is a c-fault tolerant protocol (or a protocol with
fault tolerance c) with respect to ¥ if ¥(E) = true for any execution E of P with a
c-adversary.

If the property ¥ is clear from context, we may simply say that P is a protocol
with fault tolerance c rather than with fault tolerance ¢ with respect to .

Legal shortcuts. For simplicity of discourse, we wish to "legalize" some handy



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 885

notation.

¢ Highlighting something. When we want to focus only on some of the quantities
determining an execution, we just omit mentioning the others. For instance, the
sentence "Let E be an execution of n-party protocol P with n-party adversary A on

inputs p1,...,p, and initial corrupted set BAD®” stands for "Let E be an execution
o n-party protocol P with n-party adversary A oninputspy,...,pn, initialy bad set
BAD, initial adversarial history H%, and coin tosses Ri,..., R, and R4, for some

string HY and bit sequences Ry,...,R, and R4.”

e Matching types. If P is an n-party protocol and we say that P is executed
with an adversary A, we implicitly assume that A is an n-party adversary. Any
adversary mentioned in the context of a protocol with fault tolerance c is meant
to be a c-adversary. If P is a protocol and A is an adversary, by saying that n
parties execute P with A, we mean that they execute P(n) with adversary A(n). By
saying that a value | Q represents some initial quantities, we implicitly assume that
1Qe {0,1}* x 2t x ({0, 1}*)" for some positive integer n. By saying that a protocol
P is executed with adversary A on initial quantities | Q = (HY,BaD?, (p1,...,p,),
we mean executing P(n) with A(n) on initial adversarial history HS, initially bad set
BAD?, and inputs py,...,p.. By an execution of protocol P with adversary A, we
mean an execution of P(n) with A(n) for some number of players n (on some proper
initial quantities).

Good, bad, and end. In an execution of a protocol, we say that processor ¢ is
good at round r if the adversary has not corrupted i at a round < r, and say that it
is bad at round r otherwise. When, in an execution, the round under consideration
is not specified, we say that a player i is currently good (respectively, currently bad)'
to mean that it is good at round r (respectively, bad at round r) if the round under
consideration is r. We say that ¢ is eventually bad in an execution if it is corrupted
at some round df it, and say that it is aways good otherwise. When no confusion can
arise, we may use the simpler expression good (respectively, bad) instead of currently
or always good (respectively, currently or eventually bad).

We say that an execution of a protocol halts at round r if r is the smallest integer
s for which every good processor has halted in a round < s. (Note: If an execution
of an n-party protocol Q has not halted at round r, it continues to be considered
an execution of an n-party protocol after that round, whether or not some of the
good processors have halted by round = and no longer execute the protocol.) Let R
be a constant and P be a protocol; we say that P is an R-round protocol if in all
executions of P every good processor halts at round R. (Note: In every execution‘of
an R-round protocol, all good processors halt "simultaneously,” but if an execution
of a protocol which is not R-round halts at round R, the good processors may not
halt in the same round of that execution.) We say that P is a fired-round protocol if
it isan R-round protocol for some value R. All of our protocols, except for the last
one, are fixed-round. We say that a protocol does not halt before round = if in all its
executions no good processor haltsat a round <r.

Subprotocols. To facilitate the description of our Byzantine agreement protocol
and to make it possible to use parts of it in other contexts, we have constructed it in
a modular way. We thus need the notion of a subprotocal, that is, a protocol that is
called as a subroutine by another protocol. Fortunately, in this paper, all subprotocols
are fixed-round, they are called at rounds specified a priori by protocols (no execution
of which halts by those rounds), and n-party protocols call only n-party subprotocols.
(Thissimplifies our formalization somewhat; for instance, it makesit very clear when
the call starts and when it ends.)



886 PESECH FELDMAN AND SILVIO MICALI

Let Q be a > r-round protocol calling an R-round protocol P at a prescribed
round r. Then an execution of Q will be suspended once it reaches round r. At that
point, theinput value d each player i, p;, isspecified by either Pitself (i.e., aswhen p;
isa constant) or player i’s prior history, H ~*. (If thisisthe case, we formally assume
that there is a function Z/ specified a priori, that, evaluated on H] ™!, determines
p;.) Theexecution of P on these inputs then starts. The good players execute P as if
it were (rather than a subprotocol) "the first protocol they ever executein their life"
that is, their execution isindependent of their prior histories. The adversary, on the
other hand, is allowed to take advantage of what it has "learned" in the execution of
Q to fine tune its strategy in the execution of P.12 Moreover, should the adversary
corrupt an additional player k during the execution of P, she will get, in addition
to k’s current history in the execution o P, its "suspended” history in Q. When
P ends, each player appends its final "P-history" to its "suspended Q-history," and
Q's computation is resumed. Processors corrupted in the execution of P are also
considered corrupted in the resumed execution o Q.

DEFINITION 7. Let n be an integer > 1, A be an adversary, P be an n-party
R-round protocol, Q be an n-party protocol calling P at round r, and RY, R%, R%,
RO, RQ', RP ... RP, R¥% ... R beinfinite binary sequences. By executing
Q with A oninitial quantities | Q and coins

2
Ry, RL R% R9,....R9\.RP ... R R?? .. R,

we mean the following:

1. To execute Q "a first time" with adversary A on initial quantities 1Q and
coins R} ,RIQI.,...,RS1 “up to round =” so as to generate an execution up to round
R, EY, and thus quantities H;?, BAD™@, and H]*? for each player i.

2. (For each player i, we let p; be the input specified by H{’Q.) To generate an
execution up to round R, E2, by running P with A oninitial inputsp,,...,p,, initial
adversarial history H7 <, initially bad set BAD™ ", and coins RE, RP,...,RF asusual
ezcept for the following. If A corrupts a new player j at around X, it receives as an
input not only the history of player j in the present execution, Hf’P, but also H;'Q
("j's suspended history in Q7).

3. To generate an execution E2 by running Q with A oninitial adversarial his-
tory HEF initially corrupted set BADR-P | and inputs (B9, H*F), ..., (HIQ, HRP).

We let the corresponding execution (of calling protocol Q with A on the above
initial quantities and coins) consist of the sequence E whose first r elements are the
elements of E?, next R elements are those of E2, and remaining elements are those of
E3. (Inother words, the execution of a protocol Q that calls an R-round subprotocol
P at round r is obtained by identifying, for each p € {1, R] ,round p of P with round
r+p of Q.)

The notion of randomly executing a protocol and that of a random execution of
a protocols are extended in the natural way to a protocol that calls a subprotocol at a
prescribed round.

The notion o a subprotocol is immediately generalized to allow nesting of sub-
protocols, that is, to alow Q itself to be a subprotocol. Assume that for 1< x < k,
protocol @, has called fixed-round protocol @..; at round r,. Then if protocol

12 For instance, assume that a player j has been corrupted by A during the execution of Q before
P was called. Then it is conceivable that from the Q-history of player ; at the time of the call, the
adversary may infer the Q-history at thetimeof the call of a good player i well enough to predict i's
input to P. (That is, Q may induce some correlation among the inputs of subprotocol P that need
not to be there if P were executed "from scratch.™)



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 887

Q = Qk calls P at round r, al of the mechanics for caling P, executing P, and
including the result of P’s execution in the Q-histories remain the same, except that
if a new processor i is corrupted during the execution of P, the ' suspended his-
tory" of player i learned by the adversary, rather than simply being H , isactually
(HL_TQx _’HL"AQk)

Concurrent protocols. Sinceit isthegoal of this paper to squeeze as much compu-
tation as possible into a few rounds, we need to introduce the notion of concurrently
executing more protocols, each protocol on its own inputs.

DerINITION. Let R be a positive integer, n be an integer > 1, and £ ke a finite
set (of labels). Then an (n-party R-round) concurrent protocol is a mapping from £
into the set of n-party R-round protocols.

For each x € £, we denote by P* the image of x under P and by P* the program
of player i within P*, that is, P* = (Pf?,..., P%).

In an execution of a concurrent protocol P, the good players execute each of the
P*’s independently of the others. This restriction does not apply to the adversary,
who can make use of the information learned in the execution of one of the protocols
to choose her actions in the execution of another. Moreover, if the adversary corrupts
playeri at round p of the execution of a protocol P*, then i becomes corrupted in the
execution of every other protocol in P, but the total number of bad player increases
only by one. Let us now be more precise.

DEFINITION 8. Let R be a positive integer, n ke an integer > 1, £ ke a finite
set, P: x € L — P* be an n-party R-round concurrent protocol, A be an n-party
adversary, H% be a string, R4 ke an infinite binary sequence, BAD? be a subset of
(1,n] p,...,p% strings, and R¥,..., RZ beinfinite binary sequences. By executing P
(or, equivalently, by concurrently executing Vo € £ P*) with adversary A on initial
adversarial history Hf\, initially bad set BAD?, inputs p%,...,pZ, and coins R4 and
RT,...,RZ, we mean performi ng the following instructions for each player i € [1,n]
and each round r =0, 1,.

(@) Vi € coop™ ! and ¥z € £, compute M&ES MR Pt and HPT from
MM MITYPTL gnd HTTUPT by running PEso that the kth coin toss of P? is
the kth blt of R?.

(b) Execute H7, := H™', GooD' := Goop™~!, BAD :=BAD""!, and Vg €
GOOD”, Vb € BAD', Vr € L, HY, := (H;,Mgf’[b]).

() Run A oninput H7 sothat A'skth coin tossis the k-bit of R4. If C is the
sequence of coin tosses made by A in this execution of step 3, then HY, := (H%,C). If
A outputs | € Goop' in this execution cf step 3, then BAD' :=BAD' U{j), GOOD" :=
Goopn”™ - {j), and Vg € cooDp', Vz € £, H} := HA,M”’ (71), and go to step (c).
Else " A has output for each bad player b and label x an n-message vector M .”

(d) Letting C be the sequence of coin tosses made by A since the last execution
of step (b), set C, =C and Vb € BAD", Vx € L, M;_ = M.

The execution corresponding to the above processis E= Eji,..., Er, where

E-= (H], M{_,, M* Tyeey Hyy ML, MT, ., Ch, H,, C%, BAD",GOOD"),

—1

where HY = {(z, H"®) : x € L}, M ={(x,M]"T):xe L}, M, ={(x,M]): x €
L}, and CT = {(z,C"") : x € C). That is, each quantity relative to protocol P* is
labeled with x.

The notions of randomly ezecuting a concurrent protocol and that of a random
execution of a concurrent protocol are obtained in the natural way.

A concurrent protocol P : x € £ — P* can ke called at a prescribed round r by
another protocol Q vey much like an ordinary subprotocol. (I nthis case, the players



888 PESECH FELDMAN AND SILVIO MICALI

Q-histories at round r must specify, for eachx € £, the inputs p7,...,p% on which to
run protocol P*; that is, Vz € £, each QT specifiesp?.)

Sequenced protocols. We will also need the notion of a sequenced protocol. This
consists of a pair o protocols (P, Q), where Q is run after P and on the histories of
P. In this paper we actually need to consider only the case of sequenced protocols
(PQ), where Pis R-round. Thus after an execution E of P, for all player 7, i’s input
to Q consists o 4’s round-R history in E.

Like any other protocol, a sequenced protocol may be caled as a subprotocol.
Note that if (P, Q) isa sequenced protocol, then Pand Q can never be executed con-
currently. However, if (P, @1),...,(Pk, Qk) are sequenced protocols, then it might
be possible to concurrently execute P, ..., P, and then concurrently execute subpro-
tocols Q1,....Qn, running each @; on the history o the execution of F;.

Message bounds. As we have seen, at each round in the execution of a protocol
P = (P,...,P), the adversary sends a message to each currently good player g,
which then feeds it to P, (among other inputs). Thus by sending g arbitrarily long
messages, the adversary could arbitrarily increasetheamount of g's local computation.
To meaningfully discuss complexity issues, we thus need to modify the mechanics of
protocol execution by introducing message bounds.

The message bound is a variable internal to .each processor that at each round
evaluates to a positive integer or to +oo a special value greater than all positive
integers. If at round r the message bound of a currently good player g is set to
a positive integer k, then g is allowed to compute the k-bit prefix of any incoming
messageat round r in k computational steps; only after this truncation will a message
become part o theinput,to P,.

A simple and flexible way to specify the message bounds of a player at every round
isto give him a specia input, the message-bound input: in any execution in which the
valued thisinput isv, a player setsto v the message bound of every round. (Withan
eye to complexity, these special inputs will be presented in unary; in fact, because we
charge v steps for extracting the v-bit prefix o a string, we do not wish this operation
to be exponential in the message-bound input.) Alternatively, a protocol can specify
the message bound o round r within the code o round r itself —and thus may set
it to a lower value when shorter messages are expected (from the good players). In
either way, if it wishes to keep its own running time under control, a protocol must
set the message bounds of each round to finite values. (If it failsto do so in even
a single round, it will be in that round that the adversary will send extremely long
messages.)

Let us now seewhat happensto message boundsif a protocol P callsa subprotocol
Q. If Q has message-bound inputs, then P calls Q, specifying the values o these
inputs, as for al other inputsd Q. If Q sets its own message bounds as part o its
code at each round, then it isenough for Pto call Q. In either case, throughout the
execution of Q, Q's message bounds are to be enforced; only after the call isover and
the execution of P is resumed will P’s message bounds become effective again.

Complexity measures. \WWe now wish to discuss the two notionsof round complexity
and local complexity. In so doing, we focus directly on the two cases that are really
relevant to this paper; that is, constant round complexity and polynomially bounded
local computation. We leave to the reader —if she so desires—thetask of generalizing
these notions in meaningful ways.

DEFINITION 9. Let P ke a protocol with fault tolerance ¢. We say that P runs
in an expected constant number o rounds if there exists a positive constant d such
that for all numbers d players n, for all ¢-adversaries A, andfor all proper initial



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 889

quantities 1 Q, the expected number of rounds for a random execution of P(n) with
A(n) on IQ to halt isd.

In measuring the amount of local computation in an execution of a protocol P
with an adversary A, we count only the steps taken by the currently good players.
(The adversary attacking the protocol can, of course, compute as much as it wants,
but its steps do not contribute to the local computation of the protocol.) Recall that
we have defined protocols to be uniform programs. Thus before running a protocol
P in an n-size network, the players must first run P on input n so as to compute the
exact n-tuple of programs, P(n), that they should execute. (Player i will, in fact,
execute the ith component of P(n).) We thus also count as P’s local computation
the steps necessary for the players of an n-size network to compute P(n).

Following the current tradition, we identify efficiency with polynomial-time com-
putation, and we insist that our polynomial-time bounds hold for any possible adver-
sary attacking the protocol.

DEFINITION 10. Let P be a protocol with fault tolerance ¢. We say that P runs
in (expected) polynomial time if there exists a polynomial Q such that the following
hold:

1. For all sufficiently large n, the (expected) number of steps for protocol P to
output P(n) = (P1,...,P,) oninput n isless than Q(n).

2. For all integers n, for all 4-adversaries A, and for all initial quantities | Q,
if L isthe sum of the lengths of the inputs of the players outside the initially bad set,
the (expected) number of protocol steps for a random execution o P(n) with A onl Q
to halt is less than Q(n+ L).

(Herehby "protocol step” we mean any step executed by F, for any currently good
player g.) '3

Notice that to establish the local complexity of a given protocol P, we regard
as an input the size n o the network in which P is run. This is indeed necessary
because we consider the steps used to compute P(n) as local computation, but it is
also reasonable with respect to the rest of P’s local computation. Indeed, even for
protocols that have no inputs (and thus L = 0, as in the case o our protocol OC of
section 7), we expect that when they are "redly" executed among n players, at least
n messages will be sent, which entails that the local computation is at least O(n).!4

Notice also that although we have not demanded that a protocol set its message
bounds to finite values for the purpose of defining its local complexity, the amount of
local computation of a protocol P can be small —or just bounded, for that matter—
only if P sets proper message bounds.

4. Presentation and organization. We have chosen to build our Byzantine
agreement algorithm in a modular way. We first introduce graded broadcast, asimple
primitive weakly simulating the capability of broadcasting. We then use this primitive
to build another one: graded verifiable secret sharing. Both primitives are of indepen-
dent interest. Next: we present a technical construction from graded verifiable secret

13 Note that the notion of polynomial time is convenient in that we should not worry too much
about fine tuning the balance between the effort of computing P(n) and that necessary to run the
protocol, nor should we worry about whether the polynomia Q should be evaluated on n + L or—
say—the maximum between n and L, or n times the maximum length of the inputs of the initially
good players. These specific choices would instead be crucial for defining that a protocol runsin a—
say—quadratic amount of time. Similarly, around complexity that isconstant (and thus independent
of all possible quantities affecting the computation) is "more or less uncontroversially defined;"
however, the same cannot be said if the round complexity of a protocol were--say — quadratic.

M n any case, in a Byzantine agreement protocol each player has a single-bit input, and thus
L = 0O(n) in a network of size n.



890 PESECH FELDMAN AND SILVIO MICALI

sharing to a special protocol for collectively generating a special coin flip, that is, a
bit that is both sufficiently random and sufficiently often visible by all good players.
Finally, we show that Byzantine agreement is reducible to this special coin-flipping
protocol.

Let us now discuss the additional choiceswe have made in presenting our proto-
cols.

Proofs. Everything important becomes easy with time, and we believe that this
will be the fate of adversarial computation. However, at this stage of its development,
it isso easy to make mistakes that we have chosen to expand our proofs more than
is legitimate and bearable in a more familiar setting. (Proofs are, after all, social
processes and ought only to be convincing to a given set of researchers at a given
point in time.) We have, however, consistently broken our proofs up into shorter
claims so as to enable the reader to skip what she personally considers obvious.

Steps. As usual, we conceptually organize the computation of our protocols into
steps. The primary reason for grouping certain instructions in a step is clarity of
exposition. As a result, one step may require many rounds to be implemented, while
another may require only one round.

In this paper, we adopt the convention of treating each step as a subprotocol
in itself; that is, executing a step composed of certain instructions means calling a
protocol consisting d those instructions. In view of our mechanism for subprotocol
calling, a consequence of our convention isthat each step starts being executed at a
"new" round; that is, a step requires at least one round to be implemented.

Theadvantage d thisconvention isthat we gain a moreimmediate correspondence
between steps and rounds. For instance, the number of rounds of a protocol simply
becomes the sum of the number of rounds of its steps; for another example, in our
proofs, it will be quite easy upon encountering the expression "round r” to realize
which is its corresponding step.

A (superficial) disadvantage of our convention isthat our protocols "seem longer"
since one round may be artificially added for each step. In fact, whenever the last
round of a given step consists solely o internal computations of the processors, it.
can be merged in any practical implementation with the first. round o the following
step. This is no great loss, however, since we are not interested in claiming O(1)
improvements in the running times of our protocols.

Random selections. Aswe haveseen, by saying that a player i flipsa coin, we mean
that hereadsthenext unread bit,of astring R;. The used theexpression "flipsa coin”
isjustified by the fact that we will be focusing on random executions of our protocols,
in which case, since each bit o R; isindependently and unifornily selected, all coin
tosses of ¢ are "genuine" and independent. In describing our protocols, however,
we make use of additional suggestive language. By saying that i "randomly selects
element e in a set Sof cardinality k,” we mean that the elements of the set are put
in one-to-one correspondence with the integer interval [0, & — 1] and that the player i
keeps on reading [log k| corisecutive unread bits from string R; until the “name” o
an element in Sis found.!® Thus when executing an instruction of the type “vy € T
randomly select, e, € S”—where both T and S are finite sets—all of the resulting
selections will be random (since no portion of R; isskipped) and independent (Since

15 Thusthe possibility that an execution diverges exists here, though wedo not “protect” ourselves
against such an event for two reasons. First, handling divergence properly would have translated into
much heavier definitions and notations without adding much to the specific content of this paper.

Second, we focus on random executions, and the probability of divergence in a random execution is
0.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 891

no overlapping portions of R; are ever used). This notation holds for adversaries as
well.

Hiding message bounds. Only one of our protocols, Gradecast, makes use of
message-bound inputs; all others specify their message bounds at each round in their
codes. To lighten these codes, however, we omit making the message bounds explicit
at any round in which they can be simply computed. For instance, if round r» — 1
consists, for al players, o the instruction

"if predicate P is true, then send your name to all players; else send them
the empty word ¢,”
then for any good player, the message bound for round r is [logn], the maximum
length of a player's name (assuming that the name of a player i is encoded by the
binary representation of integer 4).'6

Sending and receiving. When processor j is instructed to send a valuev to the
processor i, we let v* denote the value actually received by i since it can be different
from v in case j is bad. It may happen that such a value v* must itself be sent to
other processors. In this case, we may write v** for (v*)*.

It is implicitly understood that whenever a message easily recognizable as not
being of the proper form issent to a good processor, thisinterpretsit ase, the empty
string. Any predicate of ¢ is defined to evaluate to false.

For any string a, we let distribute a denote the instruction d sending ¢ to every
processor.

For every nonempty string a, the expression tally(s), which occurs in round r + 1
d the codefor player i of agiven protocol, denotes the number o players that sent a
toi inround r. If P isa predicate, the notation P(tally(x)) is shorthand for "there
exists a nonempty string = such that P(tally(z)).”

Sdf and others. Variables internal to processor i will sometimes carry the sub-
script i to facilitate the comparison of internal variables d different processors.

Whenever processor i should perform an instruction for all j, thisincludes j =ii.
For example, when i sends a message to all players, he also sends a message to himself.
A distinguished processor followsthe codefor all playersin addition to hisspecial code.

Math. We are concerned only with integral intervals. Thusif X and y are integers,
the expression [z,y] stands for the set of integers{i : z <i <y}.

If Sis aset, we let S? stand for the Cartesian product of S and itself and 2°
stand for the set of subsets of S.

All logarithms in this paper are in base 2 (but we still use the natural base e for
other purposes).

Genders. We will refer to a player asa "he" and an adversary as a “she.”*”

Protocols. To describea protocol P, we just describe P(n), leaving it to thereader
to check that this code can be uniformly generated on input n.

Comments. Weinterleave the code of our protocolswith clearly labeled comments.
Often, we label short comments by writing them within quotation marks. In fact, in
our protocols, all words within quotation marks are comments, not instructions.

Numberings. Definitions and claims that appear within the proof o a lemmaor
theorem are not expected to have interest--or even "meaning’--outside of their local

16 Of course, our "English" protocols can be implemented in polynomial time only if a proper
encoding is used. For instance, if for sending the name of a player ¢ we chose to send a string
consisting of 2¢ 1’s, some of our English protocols would not have a polynomial-time implementation.
However, any "reasonable" encoding would do.

17 This gender assignment has been made at random. (Moreover, any additional motive is no
longer valid.)



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 893

5.2. A graded broadcast protocol.

ProTOCOL Gradecast(n)

Input for every player i: h, the identity of the sender, and k, the message bound.
Additional input for sender h: a, the sender's message.

1. (for sender h): Distribute o.

2. (for every player i): Distribute a* .

3. (forevery playeri): If tally(z) > 2n/3, distribute z; otherwise, send no messages.
4. (for every playeri):

4.1. If tally(z) > 2n/3, output (X,2) and halt. Else:

4.2. If tally(xz) > n/3, output (x,1) and halt. Else:

4.3. Output (g,0) and halt.

THEOREM 1. Gradecast is afour-round, polynomial-time, graded broadcast pro-
tocol with fault tolerance 1/3.

Proof. That protocol Gradecast is four-round and polynomial-time is obvious.
Before proving the remaining properties, let us establish the following smple claim.

Cramm T1-1. In any execution d Gradecast with message bound k, no good player
sends a message longer than k.

Proof. A good player may send messagesonly at steps 1, 2, and 3. If he sends a
message at step 1, then he is the dealer, and the only message he sends in this step
is his input string a, which is guaranteed to be no longer than k. As for steps 2 and
3, what a good player distributes is a message that he has received at the start o
the same step; thus, due to the message-bound mechanism, such a messageisat most
k-bit long. |

Let us now show that Gradecast isagraded broadcast protocol with fault tolerance
1/3. First, consider property 1. Let i be a player that is good throughout the entire
execution of the protocol, and assume that grade; = 0. Then because of message
bounding, there must exist a nonempty string X, whose length is at most k, such
that i computes tally(X) > n/3 in step 4. Thusi must receive X from at least a
good player g at the start of round 4. Because X isat most k bits long and because
o Clam T1-1, this implies that g had actually distributed X in round 3. In turn,
this implies that g had received X as the round-2 message from at least 2n/3 players.
Letting w (w < n/3) of these players be bad, because of Claim T1-1, at least 2n/3 —w
good players had thus distributed X in round 2. Therefore, at most n/3 good players
could have distributed any value other than X in round 2. Thus for any k-bit string
Y,Y # X, at most n/3 good players and hence < 2n/3 players overall could have sent
Y toagood player in round 2. Thus no good player may have distributed Y in round
3, nor—because of Claim T1-1—may a good player have distributed astring Y’ longer
than k whose k-bit prefix coincides with Y. Hencefor all good players, tally(Y') < n/3
at round 4 (which, in particular, implies that value; is uniquely determined). Now let
j be another player, good until the end of the protocol, whose output has a positive
grade component. Since this implies that there exists astring Z, whose length is at
most k, such that j has received Z from at least n/3 players in step 4, and since
we have just proved that Z cannot be different from X, it must be that in step 4
tally(X) > n/3 also for player j; that is, aso value; = X, which proves property 1.

Property 2 follows from the fact that if a good player i sets grade; = 2, then he
has received a k-bit string X from at least 2n/3 players in round 4. Therefore, by
Claim T1-1, at least n/3 good players distributed X in step 3; thus al good players
must have received X at the start of round 4 from at least n/3 players, and thus all
good players must decide according to 4.1 or 4.2.



894 PESECH FELDMAN AND SILVIO MICALI

Property 3 is easily verified since if h is good, al good players receive and dis-
tributeain rounds 2 and 3. 0

Remarks.

¢ Protocol Gradecastisstill a graded broadcast protocol with fault tolerance 1/3
when it is run on a network whose communication lines are not private (i.e., if the
adversary can monitor the messages exchanged by the good players).

o If al message bounds were dropped from Gradecast, the resulting protocol
would still satisfy properties1, 2, and 3 of graded broadcast but would no longer be
polynomial-time.

Theorem 1 guarantees that certain relationships hold among internal variables of
good processors whenever protocol Gradecast is executed with a113-adversary. These
variables, being internal, are not observable by the adversary. The following smple
lemma, however, guarantees that the adversary can infer them from her history—
actually, from just a portion o her history, something that will be useful much later
in this paper.

LemMmMA 1. For any given adversary A, any execution d Gradecast with A is
computablefrom A’s initial history and coin tosses after round 0 if the sender is bad
at the start d the protocol, and from A's initial history and coin tosses after round 0
and the sender's message otherwise.

Proof. As for any determinist protocol, an execution of Gradecast with an ad-
versary is solely determined by (1) the inputs of the initially good players and (2)
the adversary's history and coin tosses after round 0. Now, for protocol Gradecast,
guantity (1) coincides with the sender's message if the sender isinitially good, and is
empty otherwise. 0

The use of protocol Gradecast in our paper isso extensive that it is worth estab-
lishing a convenient notation.

Notation. After an execution of Gmdecast in which player 7 is the sender, we use
the following terminology:

o If a player j outputs a pair (v,2), we say that j acceptsi’s gradecast of v, or
accepts v fromi. If we do not wish to emphasize the value v, we may simply say that
| accepts i's gradecast.

e If j outputs (v,z), for X > 1, we say that j hearsi's gradecast of v, or hears v
fromi. If we do not want to emphasize the value v, we smply say that j hears i’s
gradecast.

e If j outputs (v,0) for some value v, we say that j rejectsi’s gradecast.

In what follows, we shall make extensive use of Gradecast as a subprotocol. It will
thus be convenient to specify a call to Gradecast at step = of an n-party protocol in a
compact way. In particular, since message bounds are necessary only for guaranteeing
the polynomiality of Gradecast, it will be convenient to keep them in the background
asmuch as possible. For instance, if we are guaranteed that, when executing Gradecast
at step z of a given protocol, the sender's message is a single bit, we avoid explicitly
specifying that Gradecast is called with message bound k = 1. More generally:

e |f, given the possible choices for string a, k is the least upper bound to the
length of a, then

z: (for player i): gradecast o
means that step z consists of executing Gradecast(n) with sender i, sender's message

a, and message bound k.
e If, given the possible choices for the strings o;, k is the least upper bound to




OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT

their length, then
z: (for every player i): gradecast o;

means that step z consists of executing Cradecast concurrently n times, one for each
label i € [1,n],sothat inexecution i thesender isi, his messageis o;, and the message
bound is k.

e |f, given the possible choicesfor the strings a,, & is the least upper bound to
their length, then

z: (for player i): Vz € S, gradecast a,

means that step z consists o executing Gradecast concurrently, once for each label
X € S, so that in execution X, the sender is i, his message is a,, and the message
bound is k.

e If, given the possible choicesfor the strings o;;, k is the least upper bound to
their length, then

z: (for every player i): Vz € S, gradecast o;

means that step z consists o executing Gradecast concurrently, once for each label
Xi, wherex € S and i € [1,n],so that in execution xi, the sender is, his message is
ozi, and the message bound is k.

Any of the above calls can be made dependent on whether a given property
P holds: with the understanding-that if P is not true, then the gradecast still takes
place, but the sender's message i s the empty string. For instance, if, given the possible
choicesfor the strings a, Kk isthe least upper bound to their length, then

z: (for playeri): if P, Vz € S, gradecast o,

means that step z consists of executing Gradecast concurrently, once for each label
X € S, so that in execution x, thesender isi, the message bound is k, and the sender's
message is @ if P evaluates to TRUE (in general, on x and i’s current history) and
¢ otherwise.

Therefore, step z dwaysconsistsof four rounds. Indeed, though a bit wasteful, the
above convention is convenient to keep our protocols and subprotocols fixed-round.?9

6. Graded verifiable secret sharing. We now need to adapt the earlier and
powerful notion of verifiable secret sharing, developed for a different communication
model, to the present scenario.

6.1. Verifiablesecret sharing and collective coin flipping. The somewhat
paradoxical concept of wverifiable secret sharing (VSS for short) was introduced by
Chor et a. [9], who also provided its first cryptographic implementation (tolerating
O(logn) faults). Informally, a VSS protocol consists of two stages. In the first stage,
a dedler "secretly commits" to a value of its choice. In the second stage, this value
is recovered. The value is secret at the end of stage 1 in the sense that no subset of
playersof suitably small sizecan guessit better than at random, even if they exchange
al of the information in their possession thus far (which good players never do in the
first stage). The value is committed in stage 1 in the sense that a good player can
verify that there exists a unique (and unknown) value X such that whenever stage 2

20 By adopting more complex mechanics for subprotocol calling, we may interpret the above (con-
ditioned) steps differently, and occasionally save rounds and messages.



896 PESECH FELDMAN AND SILVIO MICALI

is performed, with or without the help of the dealer and no matter what the current
or future bad players might do, al of the good players will recover X. Moreover, this
unique but unknown z isthe value originally chosen by the dealer.

Verifiable secret sharing has by now found very sophisticated applications, 2! but
we will be interested in the simpler, origina application of [9]: enabling a group of
players, a minority o which may be faulty, to generate a common and random bit.
Informally, VSSalowssuch playersto "collectively flipa coin" asfollows. Each player
privately selects his own random bit and secretly commits to it in stage 1 of a VSS
protocol. When all have done so, all of these committed bits are recovered in stage 2
d the corresponding VSS protocol and the common, random bit isset to be the sum
modulo 2 of al the decommitted bits.

Since we have aready mentioned that the problem of Byzantine agreement is re-
ducible to that d generating a common random bit, the possibility existsaf using VSS
for reaching Byzantine agreement. Indeed, as we shall see, we will use a specia ver-
sion of VSS (graded VSS) and a much more special version of the above coin-flipping
algorithm (oblivious common coin) so as to produce a bit that is "common enough"
and "random enough” to reach Byzantine agreement in constant expected time. Why
don't we use ordinary VSS to collectively flip acoin in the straightforward way? The
reason is simple: we want to use collective coin flipping for reaching fast Byzantine
agreement in our point-to-point communication networks, but all implementations of
VSS prior to our work either made use of broadcasting (an unavailable primitive in
our networks!) or Byzantine agreement (which for us is a goal and not a tool!).

6.2. The notion of graded verifiable secret sharing. We now introduce a
weaker version of VSS that is more easily obtainable on our networks without broad-
casting. We call it graded verifiable secret sharing (graded VSSfor short). Informally,
thisisasegquenced protocol with two components: Graded Share-Verify, which roughly
corresponds to stage 1 of a VSS protocol, and Graded Recover, which roughly corre-
sponds to stage 2. To properly define graded VSS, we need the notion of a an event
becoming "fixed" at some .point of the execution o a protocol.

DEFINITION 12. Let X be an event that may occur only after round r in an
execution of a protocol P, and let E e an ezecution of P. We say that X isfixed at
round r in E if X occurs in every execution £’ coinciding with E up to round r.

DerINITION 13. Let P ke a sequenced protocol, P = (Graded Share-Verify,
Graded Recover), in which

e all players have a common input consisting of the identity of a distinguished
processor, the dealer, and (the encoding of) a set of integers, called the candidate-
secret set;

e the dealer has an additional input, called the secret, consisting of an. element of
the candidate-secret set; and

e each processor z is instructed to output a value verification, € {0.1,2) at the
end of Graded Share-Verify and an element of the candidate-secret set at the end of
Graded Recover (if this latter component is ever executed on the history of the first
one).

We say that P is a graded verifiable secret sharing protocol with fault tolerance
¢ if the following four properties hold:

1. Semiunanimity. For all initial quantities (1Q), for all c-adversaries A, and
for all executions o Graded Share-Verify with A on 1Q, if a good player i outputs

21 For instance?since [26], it has become the crucial subroutine of all subsequent completeness
theorems for protocols with honest majority, most notably those in [2], (3], [10}, |21}, and [35].



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 897

verification; = 2, then verification; > 0 for all good players j.

2. Acceptance of good secrets. For all 1Q c-adversaries A and for all executions
of Graded Share-Verify with A on |Q, if the dealer is always good, then verification; =
2 for all good playersi .

3. Verifiability. For all on1Q c-adversaries A and for all executions E of Graded
Share-Verify with A on 1Q, if verification, > 0 for a good player i, then there ezists
a value a in, the candidate-secret set such that the event that all good players output
a when executing Graded Recover (ontheir historiesin E) is fizred at the end of E.
Moreover, if the dealer is always good in E, a = the secret.

4. Unpredictability. For all c-adversaries A, for all players h, for all integer
m, and for all cardinality-m set S, if

e sisrandomly choseninS,

e Graded Share-Verify is randomly executed with A, dealer h, candidate-secret
set S, and secret s, and

e dealer his good throughout this execution, and the adversary outputs a value
ae S (asher “guess” for the secret) at its end,
then Prob(a = s) = 1/m.

Here the probability is taken not only over the coin tosses of P and A but also
over the choice of s. 22

Remarks.

e Notice that simply saying—in the verifiability condition—"all good players out-
put a in Graded Recover” is not sufficient for our purposes. In fact, although the
adversary cannot prevent the good players from outputting the same value, this for-
mulation still allows her to decide what the value of a should be while executing -
Graded Recover. (An example of this has been constructed by the second author.)
Thus Graded Share-Verify would not model a secret commitment as discussed above.
For this we need the value of ato be fized at the end of Graded Share- Verify (when a
coincides with the dealer's secret and is totally unpredictable to the adversary if the
dedler iscurrently good).

e A definition of VSS can be obtained from the above definition of graded VSS
by replacing throughout “verification; = 2' by “verification, > 0.” (The definition of
VSS obtained in this way is actually, in our opinion, the most general and satisfactory
one in the literature to date.) Similarly, jumping ahead, from our protocol Graded-
VSS, one can easily derive a verifiable secret sharing protocol with broadcasting by
essentially replacing all gradecast instructions with broadcast instructions. (It isthe
transformation of a verifiable secret sharing protocol with broadcasting to a graded

22 An equivalent formulation of Unpredictability that does not require that the secret be chosen
at random in the candidate secret set can be informally described as follows.

Let PS(A,h,HY, Hﬂ(h}, S,s) denote the probability space over the final histories of A obtained
by first randomly executing Graded Share- Verify with adversary A, dealer h, initial adversarial
history H&, initial histories (in a suitable encoding, of al initially good players other than dealer
h) H‘l{h}, candidate-secret set S, and secret s and then outputting the final adversarial history if
dealer h has not been corrupted. Then unpredictability can be reformulated as follows:

4. For al c-adversaries A, Vh, VHY, VH_(n}, ¥S, and Vs, 82 € S,

PS(A,h,Hg,HQ{h},s,sl) = PS(A,h, HY, Hﬁ{h},s, s2).

(Thereason for including the histories of all players except the dealer is that we want to maintain
unpredictability even when Graded Share-Verify iscalled asa subprotocol. In which case, though the
prior histories of the players do not affect the execution of Graded Share-Verify, they will appear — for
the corrupted players—in the final history of A.)

Personally, we find the above formulation (after properly "cleaning it up") generally preferable,
but the one in the main text is in a more convenient form for the purposes of this paper.



898 PESECH FELDMAN AND SILVIO MICALI

VSS protocol without broadcasting that proves to be trickier.)

e Let P be a graded verifiable secret sharing protocol with fault tolerance c.
P= (GSV,GR). Then if there are too few players (i.e., if [n-c| =0), even asingle
player (over than thedealer) may at theend of an execution of GSV possess sufficient
information to predict with probability 1 the dealer's secret. However, this does not
contradict Unpredictability. Indeed, this property demands that no adversary can
predict a good dealer's secret better than at. random, and whenever |n - c| = 0, she
cannot corrupt. any player. (The reader who perceives this phenomenon as awkward
may prefer to define graded verifiable secret sharing protocols only when there are
sufficiently many players. Personally, we prefer to define protocolsso that any number
o players greater than 1 is admissible, and we find it awkward to make exceptions
for c-fault-tolerant protocols.)

6.3. A graded verifiable secret sharing protocol. This subsection is de-
voted to constructing the first graded VSS protocol. The basis of our construction
was provided by an ingenious VSS protocol developed by Ben-Or, Goldwasser, and
Wigderson [3]. Their protocol runsin O(n) rounds— whenthere may be O(n) faults—
in a specia type of communication network: the standard-plus-broadcast network.
This is a network in which not only each pair o users,communicate via their own
private line, but all processors also share a broadcast channel.?® We have adapted
their protocol to our needs in two phases:

1 First, we haveimproved their result by providing a VSS protocol for standard-
plus-broadcast networks, FastVSS that (1) runsin a constant number of rounds and
(2) isconceptually simpler.?? (Ben-Or, Goldwasser, and Wigderson have told us that
they have independently found a constant-round version of their result, but it ismore
complicated than ours.)

2. Second, we havetransformed Fast VSS(aprotocol for standard-plus-broadcast
networks) into GradedVSS. a constant-round graded VSS rotocol for standard net-
works (i.e., without any broadcasting facilities).

For the sake of conciseness, since the focus o this paper ison stand rd networks,
we forgo providing an explicit description of FastVSS (Below we present just the
basic intuition behind it since this can effectively be used for GradedVSS as well.)
Indeed, in our protocol Graded VSS we have merged the above two steps into a single
one. (Thereader can, however, easily reconstruct the code o FastVSSfrom that of
GradedVSS.) We will, however, provide separate intuition for each of the above two
phases.

Phase 1: FastVSS In FastVSS, the dealer encodes his own secret in a special and
redundant way. Namely, if the adversary can corrupt at most t players, the dealer
selects a bivariate polynomial f (z,y) of degreet in each variable such that f (0.0)
equals his secret. He then privately gives to player i the polynomials P;(y) = f(i.y)
and Q;(z) = f(x.i) as his shares of the secret, an z-share and a y-share. As we shall
see, the shares of any <t playersdo not betray the secret at.all. On the other hand,
as expressed by the following lemma, any ¢+ 1 genuine z-shares determine the secret
(and the same is true for the y-shares).

23 Actually, they share a bit more powerful means of communication: each recipient of a message
m traveling along this special shared channel is guaranteed not only that all processors receive the
same string m that he does but. also that all processors know who the sender of m is.

24 The protocol of [3] made use of Reed-Solomon codes. while our FastVSS does not rely on any
error-correcting codes— or at least it succeeds in hiding them awav while remaining self-contained in
avery simple manner.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 899

Our choice of encoding for the dealer's secret does not guarantee verifiability per
se. In fact, a good player cannot check whether his received x-share is genuine or—
say—a random polynomial of degreet. It is here that the y-shares comeinto play. In
fact. FagVSS performs several checks centered around the following simple property:
if two playersi and j both hold genuine shares, then it should be that P;(j) = Q;(z).

Unpredictability is guaranteed since FastVSS is constructed so that, in every
check, the information about the secret of a good dealer obtainable by the adversary
can be computed from the shares in her possession—which we have already claimed
to be insufficient to predict the dealer's secret.

Phase 2: From VSS to graded VSS. Our transformation of FastVSSinto Grad-
edVSS possesses a somewhat general flavor: it appears to provide a compiler-type
algorithm that, on input any known VSS protocol for standard-plus-broadcast net-
works, outputs a graded VSS protocol running in a standard network, with the same
fault tolerance of the input protocol and with essentially the same time and number
o rounds.?® Thissimple transformation is thus potentially useful: one may be able to
turn more efficient VSS protocols developed in the future into more efficient graded
VSS protocols.

Quiteintuitively, theessenceaf our transformation consists of replacing the broad-
cast instructions of theinput VSS protocol by gradecast instructions and then of prop-
erly branching on the grade produced by each gradecast. Asthe expression "properly”
indicates, however, some care is needed in deciding how to branch. Though some de-
gree of freedom is available, it is crucial to exploit the fact that grades are 3-valued.
It should be noticed that after a gradecast instruction of GradedVSS, we sometimes
branch based on whether the gradecast is accepted or not (i.e.. on whether the result-
ing grade is 2 or less than 2) and other times based on whether the gradecast is heard
or not (i.e., on whether the resulting grade is > 1 or equal to 0). Now, although some
d these "accepted-or-not" branchings could be replaced by "heard-or-not" branchings
(and vice versa), it can be shown that adopting only a single type of branching does
not work. Carrying VSS from standard-plus-broadcast networks to standard ones
without losing too much meaning is indeed the very reason that we have introduced
our 3-vaued graded broadcasting primitive.

(If going from VSS protocols to graded VSS protocols requires a minimum of
attention, the "reverse" transformation is instead quite straightforward. Protocol
FastVSS isin fact immediately obtainable from protocol GradedVSS.)

Before presenting protocol GradedVSS, let us state and prove a variant of the
classic Lagrange interpolation theorem.

LEMMA 2. Let p ke a prime, t ke a nonnegative integer, zy,...,z;+; ke distinct
elementsin Z,, and @y (y)....,Q:+1(y) e polynomialsmod p o degreet. Then there

exists a unique bivariate polynomial F(z,y) d degreet (in each d the variablesz and
y) such that

(%) F(z;,y) =Qi(y) fori=1,..., t+1.
Proof. Define (Lagrange interpolation)

o o2

J#Fi

i=1 : H(l‘i —IJ).

i

25 While our transformation works for all known VSS protocoals, it isstill conceivable that it cannot
be applied to some future "bizarre" one.



900 PESECH FELDMAN AND SILVIO MICALI

Then F(z,y) has degree t and satisfies (x). We now argue that this polynomial is
unigue. Now assume that there exist two different t-degree bivariate polynomials
Fi(z,y) and Fy(z,y) that satisfy (x). We will prove that the polynomial

R(z.y) = Fi(z.y) — Fa(z,y) = ) _rija'y)
]
isidentically 0. Foreach k=1,...,t+1, we have

t

Y ryakyt = Rizy) L Fi(ery) - Folery) © Quly) - Quly) = 0.

i,j=0

Thatis,foreachk =1,...,t+1, thepolynomial iny E;.:O(E::O ri; T3 )y’ isidentically
0. Thus for each fixed 7, zf=0 rga,=0fork=1,...,¢ + 1, that is, the polynomial
Yi_oriat evaluates to 0 at the t + 1 points a1,...,2:41. Thisimplies that r;; =0
forali=1,...,t+1 Thus R(z,y) isidentically 0, which provesthe uniqueness of
Flz, y)- 0

Notation for protocol GradedSV. In most of the scientific literature, the upper
bound on the number of corruptabl e processors, denoted by t, isintegral and explicitly
given as an input to a fault-tolerant protocol. Having t as an input to each protocol
would, however, be a bit cumbersome in our case: we have quite a few subprotocol
callsand thus we would need to continuously specify the value o t for each call. Also,
we are primarily interested in the highest possible value of t (ie., t = {(n — 1)/3})
and our protocols—with the singular exception o Graded VSS—do not become more
efficient for smaller values of t. However, to alow the reader to appreciate how the
efficiency of GradedVSSdecreases with t, weset t = |(n — 1)/3| at itsstart (rather
than making t an input to the protocol).

THEOREM 2. GradedVSS is a graded verifiable secret sharing protocol with fault
tolerance1/3 that runsin expected polynomial time; GradedSV is a 25-round protocol,
and GradedR is a two-round protocol.

Proof. The claims about the number of rounds of GradedSV and GradedR are
trivially verified. Equally simple to verify isthe claim about the running time. (Recall
that our choiced notation allows us to hide our message bounds.) The only difficulty
that perhaps arisesis about the computation of the primep instep 1 of GradedSV(n).
Actualy, this prime can be found in deterministic polynomia time. In fact, for all
sufficiently large k, there is a prime in the interval [k, 2k]. Thus, letting k be the
maximum between n and m, we can in poly(k) time (and thus in time polynomial in
n plusthetotal length of our inputssince h < nand m is presented in unary) consider
al integers in [k,2Kk] in increasing order until one is found that is proved prime by
exaustive search o its divisors.

Let us now address the other claims.

Semiunanimify. If any good player G outputs verification = 2, he has received
recoverablefrom at least 2t + 1 players, of which at least t +1 are good. Thus every
other good player g has received recoverablefrom at least t 1 players, so he outputs
verification, > 1.

Acceptance d good secrets. Let usfirst show that if the dealer isgood (throughout
GradedSV), then no good player gradecasts badshare in step 6. Since in this step a
good player G can gradecast badshare only in three cases, let us show that none of
them can occur.

Casel. Assumethat G has accepted the gradecast of disagree(j) from a player %
in step 4. Then because of property 2 of any gradecast protocol, the dealer has heard



OPTIMAL PROBABILISTIC BYZAXTINE AGREEMENT 901

PROTOCOL GradedSV(n)
Input for every player i: h. the identity of the dealer, and m. a unary string
encoding the candidate-secret interval [0.m — 1.

1

(for every player i): Compute p. the smallest prime greater than n and m,
and set t = |(n - 1)/3].

Comment. All computations are done modulo p.
(for dealer h): Randomly select a t-degree bivariate polynomial f (x,y) such
that £(0.0) =s. “In other words, set agy = s, foradl (i.j) € [1,t]? - {(0,0)},
randomly select a;; in [0,p - 1]. and set f (x.y) = 3, ;ai2'y’.” For all i,
privately send (P;,Q;) to player i, where P, = Pi(y) = f(i,y) and Q; =
Qi(x) = f(z.1).

Comment. f(0,0) = s, your secret. P;(j) =@Q,(i) for al i and j.
(for every player i): For al j. if the dealer has not sent you a pair of t-degree
polynomials mod p, send ¢ to player j; else, privately send j the value @} (3).
(for every player i): For al j, if Pr(j) # (Q3(#))*, gradecast disagree (j).

Comment. Either j or the dealer is bad or both are bad.
(for dealer h): For al (i,j) € [1.n]?, if you heard disagree (j) from player i
in step 4, gradecast (<, 7, Q;(3)). :

Comment. : or j is bad or both are bad: what you reveal is already known
to the adversary.
(for every player i): For al (k,j) € [1.n]?, if you accepted disagree (j)from
player k in step 4 and

e inthe previous step you did not accept from the dealer exactly onevalue

of the form (k,j, V), where V € [0.p — 1}; or

e you accepted such a value and k = i, “i.e., you are player k," but
V # P7(j); or
. ® you accepted such avalue and j =i, “i.e., you are player j,” but V #
Qf (k).

gradecast badshare. "The dealer is bad."
(fordealer h): For all i, if you heard badshare from player i in step 6, gradecast
(i, Pi(y), Qi(x)).
Comment. i is bad: what you revedl is aready known to the adversary.
(for every player i): If
(@) you gradecasted badshare in step 6. or
(b) you accepted badshare from more than t playersin step 6: or
(c) for each player j whosegradecast of badshare in step 6 you have accepted,
a step ago you did not accept from the dealer the gradecast of a value
(.U, V), whereU and V are t-degree polynomials, or you accepted such
avaue but Qf (j) # U(3) or P (j)# V (i),
distribute badshare. " The dealer is bad."
(for each player i): If tally(badshare) < t, distribute recoverable.
(for each player i):
If tally(recoverable) > 2t, output verification, = 2.
Comment. The secret is recoverable and al good players know it.
Else: If tally(recoverable) > t, output verification; = 1.
Comment. You know that the secret is recoverable, but other good players
may not know it.
Else: Output verification; = 0.
Comment. The secret may or may not be recoverable.




902 PESECH FELDMAN AND SILVIO MICALI

PrRoTOCO. GradedR(n)
1. (for every player i): Distribute P’ and Q7.
2. (for every playeri):

For each player |, set Pj(y) = P;* and Qi(y) = Q;*. If you have accepted

badshare from j in step 6 of GradedSV and you have heard (§ U(y),V(z))

from the dealer in step 7, reset P;(y) = U(y) and Q’(z) = V().
Comment. P}(y) and Q%(z) are your own view of player j's final shares.

Let count;(j) consist of the number of players k for which P} (k) = Q3.().
Comment. If a good player has output verification > 0 in GradedSV, all
good players are given count > 2t + 1. However, a bad player may be
given count > 2t + 1 by some good player and a low count by another
good player.

If possible, select a set of t + 1 players k such that count;(k) > 2t + 1. Let

k1,...,ki+1 be the members of this set.
Comment. If a good player has output verification > 0 in GradedSV,
there will be such a set. In this case, although different good players
may select different sets and some of these sets may contain bad players,
each set determines the same bivariate polynomial

Compute the unique bivariate polynomia P(z,y) such that P(k;,y) =

P (y) j € [Lt T 1] and output P(0,0) mod m as the dealer’s secret.

k's gradecast and has thus responded in step 5 by gradecasting (k, j,Q;(k)). Since
the dealer's gradecast is proper, it is necessarily accepted by G.

Case 2. If G gradecasts disagree(j) in step 4, the dealer acceptsthis proper grade-
cast and thus properly responds by gradecasting (G, ], Q;(G)), and Q;(G) coincides
with G’s x-share, P;(y), evaluated at point j sincefor agood dealer P5(j) = Pg(j) =
f(G.5) = @i(G). |

Case 3. If G has accepted disagree(G) from k in step 4, the dealer has at least
heard this value and has thus responded by properly gradecasting (k,G. Q¢ (k)). This
value is thus accepted by G; moreover, since the dealer is good, Q5 (z) = Q¢(z) and
thus Q; (k) = Qg(k). Thus if the dealer is good, in no case does a good player
G gradecast badshare in step 6. This implies that no good player can distribute
badshare in step 8 according to conditions 8(a) or 8(b). 'Moreover, as long as the
dealer continues to be good in step 7, a good player G cannot distribute badshare
because o 8(c) aswell. In fact, if G has accepted badshare from j in step 6, the dealer
has at least heard this value and responded by properly gradecasting the polynomials
P;(y) and Q,(z); since G accepts al proper gradecasts, and because when the dealer
isgood P} (i) = P;(i) = Qi(j) = Q;(j) fordli and j, al of G's checksin steps 8 will
be passed. We conclude that if the dealer is good in GradedSV, only the bad players
may distribute badshare in step 8. Thus, since they are at most t in number, all good
players G will distribute recoverable in Step 9 and output werificationg = 2 in step
10.

Verifiability. Let Sbe an execution of GradedSV in which at most t < n/3 players
are corrupted and a good player outputs verification > 0, and let R be an execution
o GradedR on the histories of S. We need to show that (1) there exists a value o
such that the event that all good players output o5 in R isfixed at theend of Sand
(2) os coincides with the dealer's secret if heis aways good in S.

To thisend. let usestablish a convenient notation and a sequence of simple claims
relativeto S and R. Recall that, since (GradedVSS, GradedR) isa sequenced protocol,




OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 903

any player good in R (actually, in R’s first round) is always good in S.

LocAL DEFINITION. In an execution d Graded VSS aplayer issaid to kesatisfied
if he is good throughout the execution and does not distribute badshare in step 8.

CLAIM T2-0. In'S, there is a set of t + 1 satisfied players.

Proof. The proof is by contradiction. Were our claim false, then since there are at
least 2t T 1 good playersin S, at least t + 1 of them would have distributed badshare
in step 8. Thus no good player would have distributed recoverablein step 9, and no
good player would have output verification> 0 in step 10. [ |

Due to condition 8(a), we also know that a satisfied player does not gradecast
badshare in step 6 either; thus for al satisfied players: and j, P;(5) = Qj(i). In view
of Claim T2-0 and Lemma 2, we can thus present the following (local) definition.

LocaL DEFINITION. In execution S, we let Gs denote the lexicographically first
set oft T 1 satisfied players,2® and we let Fs denote the unique, bivariate, t-degree
polynomial associated with Gs by Lemma 2: that is, F(i,y) = P}(y) Vi € Gs.

CLAIM T2-1. Vi € Gs, P (y) = Fs(3,y) and QI (z) = Fs(z,1).

Proof. Clearly, P*(y) = Fs(i,y) Vi € Gs by construction. We now prove the
second set of equalities. Leti € Gs; since weare dealing with polynomials of degreet,
it isenough to provethat Fs(z,i) equals Q7 (x) at t+1 points. Indeed, for al j € Gs,
we have

( : ) by const ruction

Fs(jyi P} (i) = Qi (9),
where the last equality has been checked to hold by satisfied player j in step 4 since
good player i sent him @ (j) instep3.- =

CramMm T2-2. Let G andi begood in R, and let i aso ke satisfied in S. Then
P; = PF and Q; = @F.

Proof. Informally, we must show that G’s own view o ¢’s final shares coincides
with that of i himself. Being good in R, i sends P and @} to Ginstep 1o R. Thus
G sets PE = Py and QF = Q? at the beginning of step 2 o R. Finally, G does not
reset these variables in the remainder of step 2. Indeed, he may reset these variables
only under certain conditions, which include having accepted badshare from i in step
6 of GradedSV; however, no satisfied player gradecasts badshare instep 6. ®

CLAIM T2-3. Let G and g be good in R. Then PZ(y) = Fs(g,y) and Q5 (z) =
FS(mvg)'

Proof. We prove only the first equality since the second one is proved similarly.
To this end, it is enough to show that Fs(g,y) and PgG(y) agree on every i € Gs.
Indeed, by Claim T2-3, we have

VieGs, Fs(g.i)=Qi(9)-
We now prove that
Vi€ Gs, Q;(g) = Fy(i).

We break the proof of the above statement into two cases:

(a) G does not reset PE(y) (i.e., PZ(y) coincides with the polynomial in y that
gsenttoGinsteplad R);

(b) G resets PY (y) (i.e., P (y) is the polynomial in y gradecasted by the dealer
instep7d S).

26 Any uniquely specified set of t+ 1 satisfied players in Swould do.



904 PESECH FELDMAN AND SILVIO MICALI

Case (). In this case. Py (y) = P;(y). We must now argue that if 7 € Gs, then
Q;(g) = P, (i). To begin with, notice that since ¢ privately sent value Qf (g) togin
step 3d S, player g could compare these two values. We now show that P, (i) # @5 (9)
leadsto a contradiction. In fact, if the latter inequality holds, g gradecasts disagree(i)
in step 4 S. Since 7 accepts this gradecast, to remain satisfied he must accept
(9,1, Q7 (g)) from the dealer instep 5 of S. Thiscauses player g to gradecast badshare
in step 6 o S—either because he does not accept the dealer's answer or because he
accepts exactly the same answer that i does by property 1 of gradecast and thus we
still have Q;(g) # P, (i). Since i must accept g’s gradecast of badshare, to keep him
satisfied, the dealer must reply by gradecasting g's x-share and y-share in step 7of S
in order to have these values accepted by i. Thus these shares are at least heard by
G, who thus resets PgG and Qgc. This contradicts the assumption that we are in Case
(a).

Case (b). In this case, G must have first accepted the gradecast of badshare from
ginstep 6. Since g is good, this gradecast must have been accepted by good player
I aswdl. Sincei is satisfied, he must also have accepted the value replied by the
dedler, (g,U(y),V(z)). By property 1 of gradecast, U and V are the same values
heard by G and are thus G’s own view of g's final shares; that is, U(y) = P¢ (y) and
V(z) = QQG(:J:). The reason that now Qf (g) = PgG(i) is that i satisfactorily checked
instep 8 that @7 (g) = U(i). [ |

CLAIM T2-4. For al G good in R and for al k, countg(k) > 2t +1= PF(y) =
fS(kv y)

Proof. Since PE(y) and Fs(k,y) are t-degree univariate polynomials, it is suffi-
cient'to show that they agree on t T 1 points. Indeed, if countg(k) > 2t +1 and the
bad players are at most t, there must exist t +1 good players g such that

def. of coun Clai -
PS(g) oI mte QO (k) “MET®3 £s(k,g).  w

We are now ready to prove that in step 2 o R, every good player G computes the
bivariate polynomial Fs and thus outputs Fs(0,0) mod m. To this end, first notice
that there will be at least t + 1 players k such that counte(k) > 2t + 1. In fact, for
all good players g; and g2, we have

> Claim T2-3 Claim T2-3
PS(g2) =T Fs(gr.ge) U= T QS (g0).

Thus countg(g;) will he at least 2t + 1, that is, at least the number of good players
g2; since there are at least 2t + 1 such players g, it will be possible for G to select
tt+1 players for which countg > 2t + 1. Let. ky,...,ki41 be the ones he actually

selects—some o them possibly bad. Then G outputs the polynomial P(z,y) such
that

Viel,...,t+1], Plky)=PEy) "L Fs(kiy).

Thusby Lemma 2, P and Fs must be equal, and all good playersoutput Fs(0, 0) mod
m at theend of R. Because R wasjust any execution of GradedR on the historiesof S,
because Fs isdetermined by execution S. and because Fs(0,0) mod m is guaranteed
to belong to the candidate-secret interval [0, — 1], thisshowsthat the event that, dl
good playersin an execution of GradedR on the histories of Soutput o5 = Fs(0.0)
mod m is fixed at the end of S.

Let us now show that if the dealer is good throughout S. Fs actually coincides

with the polynomial f(z.y) originaly selected by the dealer in step 2 of S. By



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 905

Lemma 2, it is enough to prove that there are t + 1 distinct values v such that
Fs(v,y) = f(v.y). Thisisour case. In fact, letting G be a fixed good player, for any
good player g, we have

Claim T2-3 . Claim T2-2 px good dealer by def.
Fs(goy) " =" PE(y) TR Py () ST Py(y) V=T f(g.y)-

Because a good dealer chooses f (x,y) so that f(0,0) coincides with his secret, which
belongs to the candidate-secret interval {0, m — 1], whenever the dealer is good, the
value output by the good playersin R, os = F5(0,0) mod m, fixed at the end of S,
coincides with the dealer's secret.

Because S was just any execution of GradedSV in which verification, > 0 for
some good player i, this completes the proof that Verifiability holds for GradedVSS.

Unpredictubility. An appealing, rigorous, and general proof of Unpredictability
is obtainable utilizing the notion of "secure (or zero-knowledge) computation™ [30].
As we have remarked, however, such a notion has not yet been published, and it is
too difficult to be quickly summarized here. Therefore. we shall use an ad hoc and
"quick-and-dirty" argument.

Our proof consists of showing that, in an execution of GradedSV in which the
dedler is never corrupted. there exists a special piece of information (astring), in-
dependent of the secret, from which the adversary's history can be deterministically
computed. Because the adversary cannot but predict the secret on the basis of her
history (and of her coin tosses, which are clearly independent of the secret), this proves
that the adversary cannot predict the secret better than at random.

Theexistence of such aspecial pieceof information followsin part from the general
mechanics of (any) protocol execution, and in part from the specific characteristics
o our GradedSV protocol. We find it useful to present separately the following two
parts of our argument: we present the first part in claims T2-5 and T2-6 and the
second part in claim T2-8. Let us first establish some convenient notation.

Loca definitions. Let P be a protocol, A be an adversary, E be an execution of
Pwith A, and r bearound in E. Then:

e we say that a player is eventually bad in E if he is corrupted at some point
of it and always good otherwise.
e we denote by MAS—EB the set of messages (labeled with their senders and
receivers) sent by the always good playersto the eventually bad onesin round
r.
o We refer to the quantities
1. BAD™
2. the round-r history of A,
3. the round-r histories of the eventually bad players.
4. the coin tosses of A after round r, and
5. the coin tosses of the eventually bad players after round r
as the final quantities d round r. (Thus, the fina quantities of round 0
include A's initial history.) If zisastep of Pand r isx's last round, we refer
to round r’s final quantities as the final quantities d step X.

CLAIM T2-5. Given a protocol P and an adversary A in an execution of P with
A, the fina quantities of a round r (r> Q) are computable from the final quantities
of round r — 1 and MAC—EB,

Proof. The proof consists of recalling Definition 4 (i.e., how a protocol is executed
with an adversary) and verifying that one can execute instructions 0-4 o Definition
4 to the extent necessary to compute the desired fina quantities.



906 PESECH FELDMAN AND SILVIO MICALI

(Inessence, A's history and coin tosses after each point of the execution of round
r are computable given A's history and coin tosses after round r — 1 (available by
hypothesis), the history of each newly corrupted processor at. theend o round r — 1
(also available by hypothesis), and the message that each currently good processor g
wishesto send to each currently bad processor b in round r. Now, if g isalways good,
such a message is among the available inputs, and if g is eventually bad, it can be
computed by running P, on g’s history and g's future coin tosses at the end of round
r — 1, both d which belong to the available inputs. The history and coin tosses of
each eventually bad player ¢ after round r can be computed from the corresponding
and available quantities after round r — 1 by running P,.) |

Repeated application of Claim T2-5 immediately yields the following claim.

CLAIM T2-6. Given a protocol P and an adversary A, in an execution of P
with A, A's final history is computable from the final quantities of round 0 and
{MAC—EB . p=1,2,...).

Properties stronger than those of Claim T2-6 hold for our Gradecast and Grad-
edSV protocols. Indeed. Lemmalimpliesthat thefina quantities of round 0 and only
M4C—EB giffice for reconstructing an entire execution of Gradecast. (Notice that in
fact, in an execution of Gradecast, M{*¢~£B coincides with the sender's message
whenever the sender is always good.) As we show below for protocol GradedSV, the
final quantities of round 0 and M{*¢—£8 guffice for reconstructing the final history
of the adversary. (Noticethat in an execution of GradedSV, M;A¢—£B coincides with
the x- and y-shares o the eventually bad players whenever the dealer is always good.)

CLAaIM T2-7. Given an adversary A, in an execution of GradedSV with A in
which the dealer is good, A's final history is computablefrom the final quantities o
round 0 and the x- and y-shares d the eventually bad players.

Proof. Let usshow how we compute (one by one) thefinal quantities of each step
o GradedSV from-the quantities available by hypothesis. For thereader's convenience,
we recall (emphasizingit and omitting our comments) each step o GradedSV.

1. (For every player i): Compute p, the smallest prime greater than n and m,

andsett=|(n -1)/3].

This step consists of a single round in which no good player sends any message
(i.e., denoting by r the single round of this step, MAS—£5 isempty). Thus, as per
Claim T2-5, we compute the final quantities of step 1 from the final quantities of
round 0 alone.

2. (For dealer h): Randomly select a degree-t bivariate polynomial f (z,y) such

that f(0,0) = s. For al i, privately send (P;, Q;) to player i, where P, =
Py(y) =T (i.y) and Q; = Qi(z) = f (z.i).

This step consists of asingle round. Denoting it by r, MAS—£5 coincides with
the x- and y-shares d the eventually bad players (which are available by hypothesis).
Thus, as per Claim T2-5, we can compute the final quantities o step 2 from the final
quantities of step 1 and MACG—EB,

3. (For every playeri): For al j, if the dealer has not. sent you a pair d t-degree

polynomials mod p, send ¢ to player j; else, privately send j the value Q; (7).

This step also consists of a single round. Denoteit by =, and let ¢ be an always
good player and j be an eventually bad one. Because the dedler is good, the message
sent by ¢ to 7 isnot ¢ but. @7 (5) = Q:(j). Although we do not know @, we compute
Q;(j) by evaluating polynomial P; (which is available as the x-share of player j) at
point i. Doingso for each always good player and each eventually bad one, we compute
the entire MA¢—EB. We compute the final quantities of step 3 from MAC—EB and
the final quantities o step 2. as per Clam T2-5.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 907

4. (For every player i): For all j, if Pr(j) # (Q;(i))*, yradecast disagree(j).

Step 4 consists of four rounds in which n? simultaneous executions of Gradecast,
properly labeled. take place.?” Let us now show that for each execution of Gradecastin
which the sender is (currently) good, we readily compute the sender's message. Let i |
be thelabel of such an execution (and thusi its good sender). There are two mutually
exclusive casesto consider: (@) j isacurrently bad player and (b) j is currently good.
In case (a) the message (Q7(:))" sent by j toi instep 3 iscontained in A's history of
the previous round, and thus in the computed final quantities of step 3. In addition,
because both the dealer and i are good, we know that P;(j) = P;(j) = Q;(i). Thus
we compute Q;(¢) by evaluating polynomial @; (which is available as the y-share of
eventualy bad player j) on input i. Consequently, we compute whether i's message
in this execution of Gradecast is disagree (j). In case (b) we know a priori that j
has sent the proper quantity to i, and thus i will not gradecast disagree (). In
either case?therefore, whenever the sender is good we compute the sender's message.
Consequently, as per Lemma 1, we compute al executions of gradecast of step 4.

5. (For dealer h): For all (i,j) € [1,n]?, if you heard disagree (j)from player i

in step 4, gradecast (i,j,Q;(1)).

Because we have computed all executions of Gradecast of step 4, in particular
we have computed, for each label (i, ]jj, whether the dealer has heard disagree ()
from player i in execution (i,j). That is, we have computed whether execution (i,j)
o Gradecast occurs. Moreover, whenever this is the case we can also compute the
sender's message of execution (i,7). (The proof o this fact is similar to the corre-
sponding fact of step 4; namely. if both i and j are good, then we know that no
execution of Gradecast labeled i j occurs. Else, if i is good and j is bad, we com-
pute the sender's message, (i, j,Q;(7)), by evaluating polynomial Q;—available as
the y-share o bad player j—on input i.) Thus, as per Lemma 1, from these sender's
messages and from the final quantities of step 4, we compute the final quantities of
step 5 as wdl as the grades and values output by the good playersin step 5.

6. (For every playeri): For all (k,j) € [1,n]?, if you accepted disagree (j) from

player k£ in Step 4 and
e in the previous step you did not accept from the dealer exactly one value
of the form (k,j, V), where V € [0, p— 1]; or
e you accepted such a value and k =i but V # P?(j); or
e you accepted such a value and j =1 butV # Q;(k),
gradecast badshare.

Because we have reconstructed the grades and values output by the good players
in steps 4 and 5, we easily determine whether a good player gradecasts badshare in
step 6. Thus, as per Lemma 1 and per the computed final quantities of step 5, we
readily compute the final quantities of step 6 as well as all grades and values output
in it by the currently good players.

7. (For dealer h): For all i, if you heard badshare from player i in step 6,

gradecast (i,P;(y), Qi(z)).

Given the final quantitiesof step 6 and the grades and values output by the good
playersin step 6, we compute per Lemma 1 the final quantities of step 7 as well as
the grades and values output by the good players of step 7.

8. (For every player i): If

() you gradecasted badshare in step 6. or
(b) you accepted badshare frommore thant players in step 6: or

2

27 Recall the notation established at the end of section 6.



PESECH FELDMAN AND SILVIO MICALI

(c) for each player j whosegradecast d badshare in step 6 you have accepted,
if a step ago you did not accept from the dealer the gradecast of a value
(J,U,V)—where U and V are t-degree polynomials—or, if you accepted
such a vaue but Q; (j) # U(z) or P*(j) # V (i),

distribute badshare.

This step consists of a single round which we now denote by r. We then compute
MAG—EB py computing which good players distribute bcdshare. This determination
is easily made from the computed senders messages, grades, and outputs of step 6
and from the following three facts: (a) If both i and j are good, then ¢ does not
distribute badshare; (b) because the dealer is good, Q; (7) = Q:(j) and P (j) = P;(j5);
and (c) if i isgood and j is bad, then both Q;(j) and P;(j) are computable from the
available x- and y-shares of bad player j. Thus, as per Claim T2-5 and per the final
quantities of step 7, we compute the final quantities of step 8.

9. (For each playeri): If tally(badshare) <t distribute recoverable.

Note that we have just computed in step 8 which good players distribute badshare.
Moreover, whether or not in that step a bad player sends badshare to a good player
appears in A's history d step 8 (computed as part of the final quantities of step
8). Therefore, we compute tally(badshare) for each currently good player and thus
determine which currently good players wish to distribute recoverablein step 9. Thus,
as per Clam T2-5 and the fina quantities of step 8, we compute the final quantities
o step 9.

10. (For each player i):

If tally(recoverable) > 2t, output verification; = 2.
Else, if tally(recoverable) > t, output verif ication; = 1.
Else, Output verif ication; = 0.

Since in this last step no good player sends any message, given just the final
quantities of step 9, we compute, as per Claim T2-5, the final quantities of step 10.

Because the final history of the adversary is part of the final quantities o step
10, we have established our claim. [

We can now easily finish the proof of Unpredictability. In Claim T2-6 we saw that
A'sfina history in GradedSV depends solely on (1) the final quantities of round 0 and
(2) the x- and y-shares of the eventually bad players. Now, in a random execution of
GradedSV in which the dealer is always good and the secret s is randomly selected
in [0,m — 1], the value o the secret is clearly independent of quantities (1). Thus, to
prove that no strategy exists for the adversary to guess this secret with probability
greater than 1/m, it issufficient to show that the dealer's secret is aso independent of
the x- and y-shares o the t’ <t < n/3 players corrupted by A. Since we can modify
any adversary so that she corrupts an additional t — t' players just prior to finishing
her last round of GradedSV, we can actually limit ourselves to prove our claim for
the caset’ = t. (Infact: if the adversary is such that the z- and y-shares of the first
t' corrupted players are not independent of the dealer's secret, then by adding the
shares of t — ¢’ other players we cannot obtain shares that are independent o the
secret.) Thus, we now want to prove that for any choice of t eventually bad players,
by, ..., b, any choiceof 2t t-degree polynomials Py, (y), Qp, (X),- - - Po, (¥),Q@s, (X),and
any choice d secret s in [0,m — 1], there exists a unique bivariate polynomial F(z,y)
such that

(A) F(bi,y) = P (y) Vie[1,1],
(B) F(z,b) = Qs (z) Vi € [1.t] and
(C) F(0.0) =s.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 909

We first show F’s existence. Set by = 0 and let P, (y) be the univariate, t-degree
polynomial passing through the t + 1 points (0,s) and (b;. @5,(0)), i € [L,t]. Then,
by Lemma 2, there exists a unique bivariate polynomia F satisfying F'(b;,y) =
P, (y) Vi € [0t]. We now show that F enjoys three of the above required prop-
erties:

(A) By construction.

(B) Fix a € [1,t]. We prove that F(z,h) = Q,(z) by showing that these two
t-degree polynomias are equal at t + 1 points. In fact, by construction we
haveVj € [1,...,t] F(bj,b) = Py, (ba) = Qb,(b;). and F(0,bs) = Po(ba) =
@5, (0).

(C) By construction, F(0,0) = Py(0) = s.

The uniqueness of F is thus a consequence of the uniqueness of Fy(y). This proves
that "unpredictability” holds for GradedSV and thus completes the proof of Theorem
2. |

Remark. We have chosen the VSS protocol of [3] as the basis of our GradedSV
protocol becauseit relied solely on private and broadcast channels but not on cryptog-
raphy. (Several beautiful cryptographic VSS protocols are available, but our transfor-
mation would haveyielded a cryptographic graded VSS protocol, and thus a Byzantine
agreement algorithm tolerating only computationally bounded adversaries.) Another
ingenious VSS protocol for standard networks that, in addition, possess broadcast
channels, was found by Chaum, Crépeau, and Damgéard [10]. We could have aso
adapted their protocol inour setting, but at the expenses of some additional compli-
cations since their protocol allows a— controllable but positive—probability of error.

Theorem 2 guarantees that whenever protocol GradedSV is executed with a 1/3-
adversary, certain properties hold for the verification valuesof the good players. These
values, however, areinternal to the good players and not directly "observable" by the
adversary at that point. The following simple lemma, however, shows that these
values can be inferred from (a portion of) the adversarial history. We will make use
d thisresult in the next section.

LemMmA 3. At theend d any execution o GradedSV, the verification value output
by each good player is computablefrom thefinal history o the adversary.

Proof. If, in an execution of GradedSV, al players are good, then the dealer
must have been good throughout the protocol. Thus, due to property 2 o verifiable
secret sharing (acceptance of good secrets), we do know that every good player must
output 2 as his own verification value. Now assume that one or more players are
bad —including, possibly, the dealer. Then the verification value output by a good
player i at the end of GradedSV is determined by the number of players that sent
him recoverablein step 9. Now, the number of bad players that sent recoverable to
i is immediately evident from the messages sent from bad players to good players
(messagesthat are part of the final history of the adversary). Moreover, the number
of good players that have sent recoverable to i isimmediately computable from the
messages sent from the good players to the bad players (messages that are also part
of the final history of the adversary); in fact, a good player g sends recoverable to i if
and only if hedistributes it to all players, including the bad ones. 0

7. Oblivious common coins. In thissection, we want to show that processors
of a network with private channels can exchange messages so that, in the presence
of any 113-adversary, the outcome of a reasonably unpredictable coin toss becomes
available to al good players. We start by defining what this means.



910 PESECH FELDMAN AND SILVIO MICALI

7.1. The notion of an oblivious common coin.

DEFINITION 14. Let P be a fixed-round protocol i n which each processor z has no
input and s instructed to output a bit . We say that P is an oblivious common coin
protocol (with fairness p and fault tolerance c) iff for all bits b, for all c-adversaries
A, and for all initial quantities 1 Q, in a random execution of P with Aon | Q,

Prob(V good playersi, r; =b) > p.

We will refer to an execution of P as a coin; by saying that this coin is unanimously
b, we mean that r; = b for every good processor i .

Remarks.

e Our notion of an oblivious coin is a strengthening of Dwork, Shmoys, and
Stockmeyer's persuasive coin {16], which they implemented for at most O(n/logn)
faults.

e We chose the term oblivious to emphasize that, at the end of the protocol,
the good processors are "unaware" of whether the outcome of the reasonably un-
predictable coin toss is "common." That is, by following the protocol, each good
processor computes a bit, but it does not know whether the other good processors
compute the same bit. We shall see how to successfully cope with this ambiguity
in section 8, but let us first exhibit an oblivious common coin protocol with fault
tolerance 1/3.

7.2. An oblivious common coin protocol.

LEmMMA 4. Attheend of every execution of steps1—3 of OCwithal/3 adversary,
for every good player i and every player j, whether SUM;; = bad can be computed
from the final history of the adversary.

Proof. The adversary's history at the end of step 3of OC includes the adversary's
history at theend of step 1. Thus, as per lemma 3, from the latter history we compute
the value veriﬁcation?J for al good players i and players j.

Conseguently, as per Lemma 1, we compute each entire execution of Gradecast of
step 2 of OC. From this information we readily compute, for each good player i and
player j, whether conditions (3.a), (3.b), and (3.c) apply, and thus whether playeri;
(and consequently SUM;;) equals bad. O

LEMMA 5. In evey execution of OC with a 113-adversay, for all good players g
and G, SUMy¢ # bad.

Proof. Thisis so because of the following:

(a) By property 3 of graded broadcast, y accepts G's gradecast of G’s confidence
list.

(b) By the semiunanimity property of GradedSV, lveriﬁcatwngj — verification2)|
< 1for al labels hj.

(c) By the acceptance-of-good-secrets property of GradedSV, uem‘ﬁcatz’on’g;c =2
for each of the n — t good players h. O

LemmA 6. For all n > 1, for all executions of OC(n) with a 113-adversary, and
for all players j, there exists an integer sum; € [On — 1) such that for all good g,
either SUng = sumy Or SU]WgJ‘ = bad.

Proof. We distinguish three mutually exclusive cases.

Case 1. Player | looks bad to all good players. In this case, setting sum; = 1
trivially satisfies our claim.

Case 2: | looks okay to a single good player g and bed to all other good players.
In this case, choosing sum; = SUM,; satisfies our claim for the following reasons.
First, notice that SUM,; is a well-defined integer value belonging to the interval



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT a1

ProTOCOL OC(n)
Input for every player i: None.

1. (for every player i): For j = 1...n, randomly and independently choose a

value s;; € [0,n — 1]. "We will refer to s;; as theith secret assigned to j, or
the secret assigned to j by i."

Concurrently run GradedSV n? times, one for each label hj, 1< h,j < n. In
execution hj, the candidate-secret set is [0O,n — 1] "and thus the number of
possible secrets equals the number of players,” the dealer is h, and the secret
IS shj, “i.e., the dealer chooses sx; to be his secret whenever he is good."
Let verif icationfj be your output of execution hj, "that is, your own opinion
about the existence/recoverability of sp;.” .

. (for every player i): Gradecast the value (verification.’, ..., verification]™).

"This is your confidence list, that is, your own opinion about the exis-

tence/recoverability of each secret assigned to you."
. (for every player i): for al j, if

(a) in the last step, you have accepted |'s gradecast of a vector €; €
{0,1,2}", “i.e., ]'s own confidence list—thus if j's is good, €; =
(vem’ﬁcation}j, . veriﬁcation;‘j)”;

(b) for al h, |ve7‘iﬁcation?j — €;[h]] £ 1, "that is, your opinion about the
recoverability of every secret assigned to j differs by at most 1 from the
opinion that j has gradecasted to you"; and

(c) €5[h]=2for at least n — t valuesdf h,

set playerij = ok, "meaning that j looks okay'to you;" otherwise, set
playerij = bad, "in which case j looks bad to you and he is bad."

. (for every player i): "Recover al possible secrets:”

Concurrently run GradedR on the-n? histories of GradedSV that you gener-
ated in step 1, and denote by value?’ your output for execution hj.
If playerij = bad, set SUM;; = bad. Else: Set

SUM;; = Z value?j mod n.

h such that
ERTIES

"That is, if player j looks okay to i, SUM;; equals the sum modulo n o al
those secrets assigned to j that j himself thinks are optimally verified."
If for some player j, SUM;; = 0, output r; = 0; otherwise, output r; = 1.

[0,n - 1]. This is so because each of the addenda contributing to SUMy; is a well-
defined integer (and thus taking the sum of these addenda mod n necessarily yields
a vaue in [0,n — 1]). Indeed, if value_f;j is an addendum o SUM,;, then in the
confidence list of j accepted by g, €;[h] = 2. Moreover, since j looks okay to g,
step 3(b) ensures that verification? > 0. In turn, by the verifiability property of
GradedSV, this guarantees that the corresponding secret is "well shared," that is,
that the value output by g running GradedR, value,’, belongs to the candidate-secret
set [0, n — 1], as we wished to prove.

Case 3. Player j looks okay to more than one good player. Let g and G be any
two such good players—thus SUM,; # bad # SUMg;. To begin with, notice that the




912 PESECH FELDMAN AND SILVIO MICALI

value €; isthe same for both g and G due to property 1 of graded broadcast. We now
show that SUM 4; = SUMg;. Indeed, we have

SUMg; = Z valuel | mod n
h such that
&, [h)=2
and
SUM,; = Z valuegj mod n.
h such that

c'][h]='.’.

First, notice that the set of values h for which €;[h] = 2 are the same for both G and
g—in fact, both g and G accepted j's gradecast of his own confidence list in step 2
and by virtue of property 1 of any graded broadcast protocol, their accepted lists are
equal.. Moreover, corresponding addenda in the two summations are equal. In fact,
since j looks okay to G, €;[h] = 2 implies that verification? > 0, which in turn, due
to the verifiability property of GradedVSS, implies that all good players will recover
the same value as the secret of execution hj of GradedSV. O

LEMMA 7.2 Letn>1 and let Sand G be subsets of [1,n].Let the set
O ={0y; € {ok,bad} : g€ G, j€[1,n]}

ke such that for all j € S, there exists g € G such that Og; = ok. Then for all 1/3-
adversaries A, in arandom execution of OC(n) with A(n) in which G is the set of
always good playersand Vg € G Vj € [1, n] playergi = Og;, the values{sum; : j € S)
are uniformly and independently distributed in [O,n — 1].

Before proving Lemma 7, let us consider a ssmpler but naive argument. We have
three good reasons for doing so: to use this naive argument as an introduction to our
subsequent proof; to reassure thereader that our subsequent proof, though admittedly
somewhat tedious, at least does not possess any obvious shortcuts; and to bring to
light a subtle point that, unless it becomes known, may become a common as well
as "fatal" logical trap in similar cryptographic contexts. For simplicity, let us state
our naive argument in a particularly simple case, that is, when S’s cardinality equals
1, S = {1}. In this case, all we have to prove is that the unique sum; is uniformly
distributed in {0, n - 1].

Naive argument: If SUM,; # bad, then sum; = SUM,; = o + 3 mod n, where

o= E value;‘] mod n
h such that & is good.
verification’? =2

28 We condition the uniform and independent distribution of the sum;’s on a rather rich set of
events. This is so because Lemima 7 will be invoked in rather diverse contexts, each with its own
"conditioning." and we wish to meke it very easy to see that it applies properly.



OPTIMAL PROBABILISTICBYZANTINE AGREEMENT 913

and

g= Z valuefj” mod n.
h such that h is bad,
veritication!;' =2

(These two values are well defined at the end of GradedSV, though no good player
knows them because he does not know who else is good.) Vdue a is uniformly
distributed in [0. n—1] and is, in addition, unpredictable to the adversary at theend of
step 1. Value 3 iscontrollable by the adversary (sinceeach secret that contributestoit
might have been chosen by the adversary via a processor h corrupted sufficiently early
in step 1). Nonetheless, since at theend of GradedSV each of the secrets contributing
to SUMy; isfixed, so is §; that is, 3 is fixed at a point in which « is unpredictable.
"Thus" no matter how much theadversary can control 3, o+ is uniformly distributed
in[0,n - 1].

Why is this naive? The flaw in the above argument is that, in principle, the
unpredictability of o may be consistent with the fact that, say, a + 3 always equals
0. Indeed, in principle, the adversary may be capable of guarateeing that 8 = —a
mod n without knowing o nor (necessarily!) 3.2° This "magic correlation," though
possible in principle, is actually impossible to achievein our protocol due to many of
its specificities, which have been ignored by the above reasoning. For instance, our
protocol is such that the value 3 is actually "known" to the adversary at the end
of step 1. This and other specificities are indeed an integral part o the following
simulation-based argument, which properly corrects and formalizes the above naive
argument. The reader who, at this point, findsit obvious can proceed to Theorem 3.

Proof of Lemma-7. The proof is by induction on k, the cardinality o the set
S. For k = 0, our statement is vacuously true. We now prove the inductive step
by contradiction. Assume that our statement holds for k — 1 but not for k. Then a
simple averaging argument implies the following proposition.

PrRoPOSITION P1. There exist an integer n > 1, a subset G C [1,n], a set of
values O = {O,; € {ok,bad): g€ Gi €[1,n]), a subset S’ C {1,n], whose cardinality
isk — 1, an additional player j ¢ S’ such that Vi € §' U {j}3g € G Og4 = 0k, a set of
k-1 values {v; € [On—-1] : i € S'), an additional valuev € [0,n—1], a distinguished

29 Mutatis mutandis, consider the following simpler scenario (simpler because it envisages compu-
tationally bounded players and thus the possibility of successfully using uniquely decodable encryp
tions) in which this is indeed the case. Two players desire to compute a common and random bit in
the following manner. First, player 1 chooses a random bit b1 and announces its encryption E{b1).
Then player 2 chooses a random bit b2 and announces its encryption E2(b2). Then player 1 releases
his own decryption key, d, and, finaly, player 2 releases his own decryption key, dz. Thiswill enable
both players to compute bits b; and b2 and thus b, their sum modulo 2. Issuch ab a random bit
if, say, player 2 is bad? The answer is no. Player 2 may force bit b to be 0. Although he cannot
predict &1, he may exploit the fact that player 1 announces his encrypted bit first. (Recall that in our
scenario, simultaneity isnot guaranteed! Messages arrive by the next clock tick, but the adversary is
allowed "rushing.") The strategy of player 2 is as follows. First, he announces the same ciphertext
that player 1 does. Then he announces the same decryption key that player 1 does. Thisisaquite
serious problem and does not have easy solutions. Simply requiring that the second player announce
a different value than the one announced by the first is not a solution. However, discussion of this
point is beyond thescope of this paper. (Let usjust say that Micali devised a cryptographic protocol
that enables two mutually distrusting people to announce independent values— but the protocol and
its proof are not at all straightforward. Dolev, Dwork, and Naor [15] have provided a new type of
public-key cryptosystem that would make easy to solve this and similar problems. Neither method,
however, can be applied to the context of this paper. where the adversary is not restricted in the
amount of computation she can perform and thus could break any public-key cryptosystem.)



914 PESECH FELDMAN AND SILVIO MICALI

player G E G such that Og; = ok, a constant € > 0, a1/3-adversary A, a string H,
and a subset B C {1, n]. whose intersection with G is empty, such that, in a random
execution of OC(n) with A(n) on initial adversarial history H and initially bad set
B, letting “G = AG” denote the event that the set of always good players coincides
with G and defining

X =(G=AG) A (Vie[l,n] Vg €, playery; = Oy;).

then

(a) Prob(X) >¢;

(b) Prob(Vi € S, sum; = v; | X) = (1/n)*"!: and

(c) Prob(Vi € S, sum; = v; A sum; =V | X) > (1/n)k.30

CLAIM L7-0. Letn, S', G, O, j,v, G, ¢, A, H, B, and X be as in Proposition
P1, and let Y be the event defined as follows:

Y=X A (Vi€S, sum; =v;).

Then in a random execution of steps 1-3 of OC(n) with A on initial adversarial
history H and initially bad set B in which G is not corrupted! the following holds:

1. Y occurs With positive probability.

2. Whether Y occurs is computable on the following inputs: (2.1) the set of the
always good players, (2.2) the vectors €; € {0,1,2}™ accepted by at least one good
player in step 2, and (2.3) for all good players g and for all playersx # j, g’s history
of execution gx of GradedSV.

3. If Y occurs (and thus G € G is good), the secret sg; (i.e., the secret—
randomly selected in [0,n — 1] —of execution Gj of GradedSV, where good G is the
dealer) is predictable with probability > 1/n on inputs (2.1), (2.2), and (2.3) above.

Proof of Claim L7-0.1. First, notice that, because G € G, G is not corrupted
whenever X occurs. 'Thus Prob(Y | G good) = Prob()) = Prob(Y | X) - Prob(X).
Now Prob(X) > ¢ by Proposition P1(a), and Prob() | X) = (1/n)*~1 by Proposition
P1(b).

Proof of Claim L7-0.2. Inputs (2.1) and (2.2) are by definition sufficient to de-
termine whether X holds: and if this is the case, Vi € S', sum; # bad, and thus
sum; = sum,,; for some good player g who has accepted i's gradecast of avector €; in
step 3. Also, inputs (2.3) and (2.4) are more than sufficient to compute which actual
valuein [0,n.— 1] sum,; takes because this value depends only on é; and g's history
o execution hi of GradedSV, h =1,...,n, none of which coincides with execution G j
sincei € S'and S # .

Proof of Claim L7-0.3. If Y occurs, SUMg; # bad and, on inputs (2.1), (2.2),
and (2.3), one can compute al addenda that contributeto SUMg;. with the singular
exception o valuel’. Indeed. for each h.# G such that &[] = 2, the occurrence of
Y implies that G is good, that playerq; = ok, that |verification’y — &[h]] < 1, and
thusthat veriﬁcation’éj > 0. Inturn, vcriﬁca,tion'g > 0 impliesthat the secret of each
such execution hj is recoverable no matter what the currently bad players (and those
which may become bad while running GradedR) may do. In particular, the secret of
each such execution hj is recoverable if no more players are corrupted during GradedR
and the bad players do not send any messages during GradedR. Thus when one has
the histories of the currently good players (i.e., those in G) at the end of each such

30 statement (c)is equivalent to the following statement:
(€) Prob(Vi € S, sum; =v; A sumy; =V | X') # (1/n)k.
In fact, (c) clearly implies (¢) and the converse can again be established by averaging.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 915

execution hj of GradedSV; one can run GradedR so as to reconstruct valuel for each
of the above labels hj. Having done this, one can trivially compute the sum modulo
n Of these values; that is, one can compute

hj ,
W= value | mod n
h such that h# G

&jlh]=2

and output v —w as a prediction for valuegj = sgj. We now show that Prob(v —w =
valuegj) > 1/n. Indeed, given the above notation, in Proposition P1 we can rewrite
inequality (c) as follows:

(c) Prob(sum; = v | Y).Prob(Y | X) > (1/n)*.

Thus, since Prob(Y | X) = (1/n)*~*, Proposition P1(b) implies that

Prob(sum; = v |Y) > 1/n.

Now, V\_/henever Y occurs, we have, in particular, SUMg; # bad, and thus sum; =
valueS? + w mod n. Therefore, as we wanted,

Prob('valuegj =v—w|Y)>1/n. |

Notice that Claim L7-0 is not (yet!) a violation o the unpredictability of Grad-
edSV.3' To reach such a contradiction, we now show that (lettingn, ', G, O, G, 7,
v, ¢, A, H, B, and X be asin Claim L7-0 and Proposition P1) Claim L7-0 implies
the existence of a 1/3-adversary for GradedSV, A' (= A}, 5/ ¢ 0.jv.G.e.a,1,8): that
in a random execution with GradedSV(n) succeeds in achieving the following two
goals. First, her random execution with GradedSV(n) coincides with execution G| of
GradedSV in a random execution of thefirst threestepsof OC(n) with A(n). Second,
she possesses all inputs (2.1), (2.2), and (2.3) relative to said execution of OC(n) with

Informal description d A" (= A}, s/ g 0.G.j.e.a.1.58)- Although adversaries A and
A are different and attack different protocols, they both act on networks with n
players. Thusfor any given player i € [1,n], we must specify at al points whether he
is a player executing GradedSV(n) with A or a player executing OC(n) with A. We
find it convenient to do so by writing i’ in the first case and 4 in the second.

Let us now describe the behavior of A" in a random execution, E', with GradedSV
when the dealer is G’ and both the adversarial history and the initially bad set are
empty. During E', A" orchestrates and monitors portions of a “virtual” execution,
E, of OC(n) with adversary A. (We thus think of adversary A' as acting in the
actual network N’—where GradedSV(n) isexecuted—andof A asacting in the virtual
network N where OC(u) is executed.)

Since we shall only consider n-party executions of protocols GradedSV and OC
(where n is as in Proposition P1) in the proof of our lemma, we may more simply
write GradedSV and OCinstead of, respectively, GradedSV(n) and OC(n).

Adversary A' causes E to start by letting the adversarial history o A be H, the
initially bad set be B (where H and B are as in Proposition P1), and the initial

31 Indeed, for this to be the case, it is necessary that a 1/3-adversary succeed in predicting better
than at random the random secret of a good dealer in a random execution between this adversary and
GradedSV, that is, without assuming that such a random execution is embedded into an execution
of OC for which certain key quantities are an available inputs.



916 . PESECH FELDMAN AND SILVIO MICALI

histories o players1....,n bethose d a random execution o OC. As usual, the first
25 rounds o E consist,df the concurrent execution n? times of the 25-round protocol
GradedSV: one execution for each label h.j (where h and j are player names and h is
the dealer of execution hj).

For the first 25 rounds, adversary A' keeps E' in lockstep with E, identifying
execution G| (where G and j are asin Proposition P1) with E. By “lockstep,” we
mean that, for each round p > 0, the round-p quantities o E' and E depend on and
are generated after the round-(p— 1) quantities of both E' and E. By ".identifying"
E', with execution Gj d GradedSV in E, we mean that A’ corrupts processorsin N’
while interfering with the delivery o messagesin N in thefollowing way. Adversary
A' corrupts player j' in network N’ at round p if and only if A corrupts j in network
N at round p. (Sincethe computation of A starts with initially bad set B, adversary
A corrupts j' in network N’ at round 0 for all 7 € B.) Let us now discuss how A'
interferes with the delivery of messagesin network N. At every round p=1,...,25,
after A has ended her corruption process and computed the messages from each bad
player to each good one for all executions xy o GradedSV, A" acts as follows:

e For each execution xy # Gj, she delivers the proper messages to the proper
recipients in network N.

e For execution Gj, if A outputs m as the message from bad player b to good
player g, then A" hasbi send m to g in network N’; vice versa, if good player g’ sends
a message m’ to bad player b in execution E’, then A' delivers m' as the message
fromgtobinround p o execution Gj.

As we shall prove, after making this description a bit more precise, the virtual
execution E thusly generated is actually a "genuine" random execution of the first
three steps of OC(n) with A. Moreover, A" will be capable of computing inputs
(2.1), (2.2), and (2.3) specified in Claim L7-0. This will enable her to contradict the
unpredictability property of GradedSV. .

More formal description o A" (= A}, 5/ ¢ 0.6 je.a.n.p)- LE Us now describe a
bit more precisely the way A" acts in a random execution of GradedSV(n) in network
N', where the dedler is G, the candidate-secret set is [0,n -- 1], the dedler's secret
is randomly chosen in said candidate-secret Set, the initial adversarial history equals
the empty string, and the initialy' bad set is empty. We have already specified each
player's version of GradedSV and the mechanics of an execution of an n-party protocol
with an adversary. Thus, choosing the players and adversary's coin tosses at random,
our description of A specifiesthe values taken by al possible players quantities A7,
M _, M7, Cl, and R}, as well as the values taken by the adversarial quantities
HY%,, C%,, and R’ and by the sets BAD'” and GOOD"".

In order to determine her actions in network N’, adversary A will construct only
in part the quantities H*Y, MY, MZ3¥, CI*¥ and R*Y, wherei € [1,n] and
zy € [1,n)?, but she will construct al of the possible quantities H73, C%, and R, and
the sets BAD™ and Goop".

She generates these quantities with the same mechanics o a random execution
of the first three steps of protocol OC(n) with adversary A. initially bad set B, and
initial adversarial history H. The quantities generated thusly by A" however, fall
short of constituting such a random execution because they are incomplete. Indeed,
they miss some Gj-labeled quantities—e.g., H"’ whenever i € coop”.2

32 Since the quantities reconstructed by A' relative to network N do not quite constitute an
execution of OC(n) with A, and since it can be recognized that these quantities can be integrated
so as to yield a virtual execution only after the entire behavior of A" has been described. it. would
be improper during our description to use suggestive expressions— such as "good at round r*—that,,



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 917

It will be clear from our description. however. that if there is no  for which
BAD" contains G, then if one were to integrate these missing quantities with the
corresponding quantities of E (i.e., the execution of GradedSV(n) with A" in network
N’), one would obtain a random execution of OC(n) with A, on initially bad set B
and adversarial history H, in which G is not corrupted.

Notice that A is active in network N' for 25 rounds because GradedSV(n) is
a 25-round protocol. Notice aso that the number of rounds in step 1 of OC(n) is
also 25 if one imagines(as we do) that in each execution xy of GradedSV(n), the
dealer randomly chooses the secret in round 0. Thus for r = 1....,25 and each label
zy € [1,n]?, theith round of step 1 is the ith round of an execution of GradedSV.
Indeed, for r = 0,...,25, adversary A' decides her action at round 7 in network N'
“simultaneously” with her generation of round-r quantitiesin virtual network N (i.e.,
after having generated round-(r — 1) quantities in network N and before generating
round-(71) quantities in network N).

Tofacilitateseeing that the round-r quantitiesgenerated by A for virtual network
N follow the mechanics of an execution of OC(n) with A on initially bad set B and
adversarial history H. we break the instructions for this generation into instructions
1x—4#, thus matching the instructions 1-4 that we used in section 3 to describe how
a protocol is executed with an adversary.

LocaL DEFINITION. Let by,...,bx ke the elements d subset B; denote by £ the
set o all execution labels o GradedSV in step 1 (i.e., L= {hj: 1< h,j <n)) and
by £~ theset £L - {Gj).

Instructions for round r = 0.

(Invirtual network N):

Set H% = H, BAD® = B, Goop' = [1,n] — BAD?, and CY =s. Then construct a
binary string R4 by selecting randomly and independently each of its coins, and set
R% - R.4.33

For all xy € £~, randomly and independently select §, in {0,n — 1], and let Cy, .
denote the sequence of random bits used for this selection.

For all xy € £~ and for al i € [1,n], construct an infinite bit string R;Y by
choosing each of its bits randomly and independently. 3* Then reset RZV := C 0 RZY.

Finally. for al zy € £~ and for al i € [1,7], set C)"*Y = ¢, R)*Y = R, and
M>™ = M%™ = (s,...,s). and, if i # z, H"® = ((z,n), M%*Y, C¥*¥)—otherwise
(le, i =x),set H™ = ((x,n, Spy), MEZY, COF),

"In an execution of GradedSV(n) with dealer x, the input for any player other
than z is(x,m), that is, the name of the dealer and an encoding of the candidate-secret
set, [0.m —1]. The private input for x isinstead (x,m,s), that is, z is given his secret
as an additional input, unrelated to his sequence of future coin tosses. (Therefore,
should the dealer be corrupted by the adversary at round 1, she would discover his
input secret but not the random choices made to come up with that secret, even if
it were randomly selected.) In any execution Xy of GradedSV(n) as asubprotocol of
OC(n), there are two peculiarities. First, m = n (which iseasily reflected in theinitial
histories of the players in execution xy). Second, the dealer = of execution Xy is not
given his secret S,, as an outside input; rather, he randomly choosesiit in {0,n — 1]

though very useful in building up intuition, presuppose that we are already dealing with a genuine
execution. Notice, in fact, that all quantitiesrelative to the virtual network N are constructed using
only a syntactic description. Only in our comments do we use suggestive language.

33 This is expressed thusly for convenience. In reality, each R,y will be constructed on an "as-
needed basis."

34 Again, in redity. each R?Y will be constructed on an “as-needed basis."



918 PESECH FELDMAN AND SILVIO MICALI

prior to caling GradedSV(n). Therefore, should the adversary corrupt player x at
round 1 o her execution with OC(n), then, she should be able to discover not only
X's random secret relative to each execution zy but also the coin tosses that led x
to choose S;,. Thisisexactly what is accomplished by the above steps (which aso
accomplish giving these secrets suitable names—i.e.. S;y,—and making it evident that
al of them (for xy # Gj) are known to A')."

(In network N'):

Corrupt processors b, ..., b,

Instructionsfor r =1....,25.

0x (invirtual network N):

TEMPHY, := H,"': TEMPRY := R, !; TEMPGOOD" := GOOD"~!; TEMPBAD" :=
BAD™ L,

1% (invirtual network N):

For all g € coop™ ! and for al xy € £~, generate M]"*¥, “the messages g wishes
tosend in thisround (which may bereset if g is corrupted in this round),” C3*¥, and
R}*¥ by running GradedSV (n), on input H;~'*¥ and coins R&~ Y.

2% (invirtual network N):

For al zy € £~, for all g € coop™ !, for al b € BAD™™!, TEMPH", =
(TemPHY, g, b, 2y, M7 _ [b]).

"In other words; for each message m from a good player g to a bad player b
computed by running GradedSV relative to label xy € £, deliver m to A as usua
(i-e., specifying the name o the sender, the recipient, and the execution label). Then™:

For each message m' received by a bad player & from a good player g' in network
N' at round r, TEMPH", := (TEMPHY, g, b, Gj, m’).

3 (invirtual network N):

Run A on input TEMPH’; and coins TEMPR,.

(In hetwork N’ and in virtual network N):

If in this execution of step 3 A hasoutput j "asthe next player to corrupt,” then
HALT —"both the virtual execution in network N and the real execution in network
N' are terminated"— and output a random value in {0,n — 1] as your guess for the
secret of dealer G'. "You will be correct with probability 1/n. Else":

(Invirtual network N):

If A hasoutput g€ TEMPGOOD” and made the sequence o coin tosses C, then

TEMPBAD" := TEMPBAD" U {¢}, TEMPGOOD" := TEMPGOOD" — {q},

TEMPH; := (TEMPH,, zy, H]~1*¥,C7*¥, C),

TEMPRY, := TEMPR, /C,

Vzy € L7, Vg € TEMPGOOD", TEMPH, := (TEMPH,, g, q, 7y, M7:2¥[q]).

(In network N'):

Corrupt ¢’ in network N’, thereby learning his history H‘ST'” and coin tosses

Cé,r_l), aswell as M”_ ,[g'] for @l currently good players ¢',

“I.e., as well as each message sent by a currently good player ¢’ to . Note that
a player ¢’ (respectively, b) is currently good (respectively, bad) in network N’ if
g € TEMPGOOD" (respectively: b € TEMPBAD") in the virtual network N.”

(In virtual network N):

TEMPH, := (TEMPH'y,2y. ]}, C71. O),

Vg € TEMPGOOD", Vb € TEMPBAD", M5/ [b] := M, _[b].

Go to step 3* "to corrupt next processor."

If "A no longer wishes in this round to corrupt. additional players” if in this
execution o step 3 A hasoutput, for all zy € £ and for all b € TEMPBAD", a vector



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 919

MY € ({0,1}*)" “as b's round-r messages” and made the sequence of coin tosses C,
then:

(In virtual network N):

Vzy € L7, Vb€ BAD", M"Y := MY,

TEMPH', := (TEMPH',, C) “s0 that she can reconstruct the bad players messages
of round r,”

TEMPRy := TEMPR', /C;

(In network N):

Vb € BAD", MJ_ = M,

"In other words, for each message m from a bad player b to a currently good
player g in network N relative to execution Gj, have & send m to g’ as his round-r
message in network N'."

4x (Invirtual network N):

"Adjust the final round-r quantities as follows™ Letting C be the sequence of
coin tosses that A has made since the last execution of step 2,

H7% := TEMPH; C} :=C; and R’y := TEMPR;

GOOD' := TEMPGOOD” and BAD" := TEMPBAD";

Vzy € L™, Vk,i € [1,n], M"2Y[k] := M, ""[i]; and

Vk € [1,n], Vi € BAD, M"S7[k} := M[ il

"Adversary A' does not know the messages exchanged among good processors
in network N’ and thus does not construct the corresponding messages in execution
Gj."

Vxy € L=, Yg € GooD", H»*¥ := (H;~h*¥, MI%Y, Cp%Y);

"A' does not know the histories of the good players in N and thus does not
construct H}¢3.”

Yoy € L, Vb € BAD™L, HI V% .= (H]™"*¥ bad), and Vb € BAD" — BAD"" !,
b b
Hy™ == (Hy ™Y™Y, Cp™, bad).

"Thus far, each time that a new round was added to the partial virtual execution
of OCwith A, the execution o GradedSV with A also progressed one round. At this
point, however, the rounds added to the partial virtual execution only dlow A to
make additional internal computations and, possibly, additional corruptions, but her
execution with GradedSV remains at round 25.

At thestart of the execution o step 2df OC(n), the prior history of a good player
consists of an n®-vector, { H25*¥ : xy € £}. But at this point of thecomputation in the
virtual network N, there is no quantity H;></. However, there is a quantity HZ>*¥
whenever g € Goop® and Ty € L~ . sucha quantity H:*>*¥ specifies the quantlty
verification;? (viasome proper input functlon Tytems2=3), Thusfor all ry € L~ andfor
al g € coop?3, verification;¥ is computable by A because she has already computed
st zy »

Additional instructions for round 25.

LocaL DEerINITION. We denote by steps 2-3 the protocol consisting of steps 2
and 3 d OC(n).

For all g € coop?®, set vemﬁcatzon 7 to be the verification value output at round
25 by player ¢’ in the execution of GmdedSV( ) with you in network N'.

"Although these values are internal to good processors of network N’ and thus
invisibleto you, you can compute them—by virtue o Lemma 3—from your knowledge
of the sets o good and bad players and the messages exchanged between good and
bad players."



920 PESECH FELDMAN AND SILVIO MICALI

For all g € Goop®, set HZ*%7 = rcS7, where rc$7 is a reserved character that
(viatheinput function Z;**7**~3) specifies verification? .

Execute subprotocol steps 2-3 with A (with the initial adversarial history being
the computed quantity H3>, the initially bad set being the computed quantity BAD?®,
and the prior history of each good player g being the (“thusly completed”) vector
{HZ>*Y : 2y € L}). handling corruptions as follows,

"Inthisexecution of Gradecast asasubprotocol, you know the sender, thesender's
message, the set of initially bad players, the active adversary and theinitial adversar-
ial history. Thus you do not need to know the players prior histories exactly in order
to exactly reconstruct. all messages exchanged up to the next corruption. Indeed, the
good players do not rely on their prior histories (more than is needed to figure out
which message to gradecast). Once a corruption occurs, however, in order to update
the adversarial history in a proper manner, you need the corrupted player's prior
history."

Whenever A corrupts an additional player k, corrupt £’ in network N’ so asto
find his current. history, H;. In the current steps2-3 history of k, replace the reserved
character rcfj by the string H;, and deliver the thusly updated history to A (in the
syntactically proper manner).

Instructions for predicting the secret.

"If you have not already predicted the secret of G' at random, do the following”:

Detect whether event ) “of Claim L7-0" occurs.

"You can do that by virtue o Claim L7-0 because you may compute al inputs
(2.1), (2.2), and (2.3) envisaged in that claim."”

If Y has not occurred, then predict the secret of G' by outputting a random
number in [0,n - 1].

Else output the value v — w mod n as your prediction of the secret o G. “v is
the value of Proposition P1 and Claim L7-0 and

hj 9
e § valued, | mod n.’

h such that h # G
'ucrificat'mn;'J =12

Thisendsour description of A". Noticethat Steps2 and 3d OCtake, respectively,
four rounds and one round. Thus the subprotocol consisting of Steps 1-3aof OC isa
30-round protocol.

Let usnow more precisely clam (without proof) that if one replaces the missing
guantities constructed by A' for the virtual network N with the "corresponding”
guantities that arise in the execution of adversary A" with GradedSV(n) in network
N', one obtains a random execution o Steps 13 o OC(n) with A.

CLAM L7-1. Let E ke a random execution. of protocol GradedSV (n) with adver-
sary A in which the initially bud set is empty, the initial adversarial history is the
empty string, the dealer is G', the candidate-secret set is [0,n — 1], and the secret is
mndomly selected in [07 — 1].

e Foralr=0,...,25 for al zy € £L~. and for alli € [1.n] let H™ M Y[j],
MTZ¥[5], CI™Y. coopT, BAD', HY. and C7, be the network-N quantities generated by
A during E'.

e Forallr=1.....25 and for all ¢ € oo, let Hp, Mj_.. MZ . and Cy,. be,
respectively, the round-r history. messages sent, messages received, and coin tosses of
player d inE'".




OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 921

e Forallr =0,...,25 and for all g € coop", set H§C! = Hy., .'\r[g“_c,”j =M _,,
yrGi =My and CyCi =Cg > '

T e Forallr=1,...,25 ad forall xy € £, set HT = {H™ :zy € L}, M]_ =
(M= rzye L}, M7, = {MZ7" :zy € L}, and CT = {C7*Y 1 zy € L}

e For allr =26,...,30 and for al i € {1,n] let HT, M, M” . CT, Goop",
BaD”, H';. C7\. and R’ be the network-N quantities generated by A" when executing
protocol steps 2-3 with A during E'.

Then the sequence of tuples

where

E.=(H], M[_, M".,, CI, RI,...,
BT Mo ML, O By By Chs Ky BAD ,CO0R"),

is a random execution (up to round 30) of protocol OC(n) with adversary A, on ini-
tially bad set B and initial adversarial history H, inwhi ch player G is not corrupted.

The above claim follows from our description of A’ and by the observation that all
n? secrets o E have been randomly and independently selected in [0,n — 1]: secrets
syy for zy € £ by construction, and secret sg; (i.e., the secret of G' in execution E
o GradedSV(n) with A") by hypothesis.

Notice that A' is a 113-adversary (because A is a 113-adversary and because A
corrupts a player in E' if and only if A corrupts the corresponding player'in E), that
A" may compute all inputs (2.1), (2.2), and (2.3) envisaged in Claim L7-0, and that
A' never corrupts dealer G in an execution with GradedSV (n) when the initially bad
set is empty and the initial aclversarial history is the empty string.

Let us now show that A can predict the secret of G' with probability > 1/n.
Indeed, whenever A wishes to corrupt G, A' halts, outputting a random number
in [0,n — 1] a her prediction of the secret of G’. Thus she will be correct with
probability 1/n in these cases. If A does not corrupt G in E, but neither doesevent Y
(which A’ detects), then A" again guessesthe secret of G' at random and is right with
probability 1/n. However, whenever ) occurs, which by virtue of Claims L7-0 and
L7-1iswith positive probability, then A" (per Claim L7-0) correctly guesses the secret
of G’ with probability > 1/n. Finaly, because the event that A does not corrupt G
occurs whenever ) occurs, we have that A' correctly guesses the secret of G with
probability > 1/n. This contradiction of the unpredictability property o GradedSV
establishes Lemma 7. O

THeEOREM 3. OC is an expected-polynomial-time 32-round oblivious common coin
protocol with fairness> .35 and fault tolerance 1/3.

Proof. Theclaimsregarding round complexity and running timeare easy to verify.
(Recall that —though in a “hidden” way—we do make use of message bounds.) Let
us thus prove the other claims. We start with some convenient notation.

Let A be a 1/3-adversary and TQ € TQ9¢ be proper initial quantities for OC.
Then in an execution of OC(n) with a 113-adversary on ZQ, let C, denote the event
that the coin is unanimously 0, CZ°** denote the event that sum, = 0 for some good
player g (i.e., thecoin is unanimously 0 "thanks to a good player"), and C; denotethe
event that the coin is unanimously 1. Correspondingly, let Py, P{°*¢, and P, denote

35 Notice that some of these quantities might have already been computed by 4' for virtual network
N.in which case they would be reset to the same value.



922 PESECH FELDMAN AND SILVIO MICALI

the probabilities of Co, C‘g"“d and Cy, respectively, in a random execution of OC(n)
with A(n) on ZQ. (Notlcethat Co # —C;, where ~E denotes the complement of an
event E.)

We are now ready to lower-bound both P, and P;.

Lower-bounding Py. Since Py > P§°°¢, we lower-bound Py by lower-bounding
P36 If Sisa subset of [1,n], let “AG = S” denote the event that the set of
the always good players coincides with S. Notice that if Prob(AG = S) > 0 then
|S| > 2n/3 and that }_ 5/50,/3 Prob(AG = S§) = 1. (In fact, in any execution with
a 113-adversary, there must be at least 2n/3 aways good players.) Also notice that
(because for all good players G and g, SUM¢, # bad by Lemma 5) Lemma 7 implies
that whenever AG = S occurs, the values{sum, : g € S} are independently and
uniformly distributed in [0,n — 1]. Thus, because it is sufficient that any such value
equals 0 for the coin to be unanimously O, and because of S's cardinality, we have

Prob(~C§°? | AG = §) < (1 —1/n)*/3 < e=2/3,

Hence
Prob(C3°® | AG = 8) >1—e~%/3,
Thus
Prob(C§*?) = ) Prob(C§*** | AG = S) - Prob(AG = S)
|S{>2n/3
> Z e~ 2/3) Prob(4AG = 5)
|S|>2n/3
= (1—e~%/3) Z Prob(AG = §) =1 — e~ /3,

IS|>2n/3

Lower-bounding P;. If S C [1,n], let bad # S denote the following event: S=
{je [1,n]: V good g, SUM,; # bad). Notice that if Prob(bad # S) > 0, then S’s
cardinality is greater than 2n/3. (Indeed, SUM,¢c # bad for al good players g and
G.) Also notice that 37 g, ,, /3 Prob(bad # S) = 1. (Indeed, in any o our random
executions; there must be more than 2n/3 good players.)

We now lower-bound P, as follows.

Y Prob(Vj € S sum; # 0lbad # S) - Prob(bad # S)

|S|>2n/3
Lewins 7 > (1-1/n)"- Prob(bad # S)
|S|>2n/3
> Y (1-1/n)"-Prob(bad # S)>e™'- Y Prob(bad # §) = e~
|S|>2n/3 |S|>2n/3

Since our lower bounds on P, and P, do not depend on n, A, or 1Q, we have
proved that the fairness of protocol OC ismin(Py, P;) = min(1—e %3 e ) =¢"1 >
.35. O

36 The bad players may also contribute to raising the probability of the coin being unanimously
0. For instance, it is enough that, for some bad player j, the adversary acts so that for al good
9, SUMg; # bad. By Lemma 7, sum; then has a 1/n chance of being equal to 0. Our lower
bound, however, must hold for al possible adversaries; thus we have to disregard this probability
from our computation since it may be 0 for some adversaries. Instead, we must consider and guard
against such possible behavior of the adversary when lower-bounding the probability of the coin
being unanimously 1.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 923

8. Byzantine agreement from oblivious common coins.

8.1. The notion of Byzantine agreement. When Byzantine agreement is
needed, the values to be agreed upon may have arbitrary length. Without loss of
generality, however, we restrict our attention to the case where every initial value is
a single bit: in fact: in [13] and [37]. it is proved that general Byzantine agreement is
reducible to the binary case in a constant number of rounds.

DEFINITION 15. We say that a protocol P is a Byzantine agreement protocol
(with fault-tolerance c) if, for al c-adversaries A, any string H', any number of
players n, and any bits by,...,b, in any execution of P(n) with adversary A on
initial adversarial history HY and inputs by....,b,. there exists a bit d such that the
following two properties hold:

1. Consistency: Every good player that halts outputs d.
2. Validity: If there erists a bit b such that, for all initially good playeri,b; = b,
then d = h.

Notice that the above definition does not require that a Byzantine agreement
protocol ever terminate. A Byzantine agreement protocol is most interesting, however,
only if it terminates with positive probability, has high fault tolerance?and requires
only a "moderate computational effort” from the good players.

8.2. An optimal Byzantine agreement protocol. We are finaly ready to
construct our Byzantine agreement protocol from our discussed primitives. It consists
o three basic subprotocols: P,., P, and P,. Subprotocol P, includes instructions for
“randomly flipping" an oblivious common coin. Protocols P, and P, actually consist
o protocol P, , where the outcome of the coin flip-is forced to be, respectively, 0 and
1. Thus: although the coin flips of subprotocols 7, and P, are predictable, they have
the advantage that all good processors are “aware” of the result, and this result is
always the same for all good processors.

Thegoa o protocol P, isto-give the network a chance o reaching an "oblivious
agreement” (i.e., with positive probability. all players adopt the same bit without
knowing that this has happened). The goa of protocols Py and P, is to provide
a proof, if all players are in oblivious agreement, that agreement has indeed been
reached, so as to alow everyone to terminate. More precisely, if the good players
obliviously agree on O (respectively, 1), an execution of Py (respectively. P;) makes
them aware that they are in agreement on 0 (respectively, 1) and terminate.

Our Byzantine agreement protocol is not a fixed-round protocol. Rather, each
good player i keeps on executing, in order, subprotocols P, Py. and P; until he
individually terminates. 1t thus may happen that different good processors terminate
at different rounds. Nonetheless, in a random execution with a 113-adversary, our
protocol terminates with probability 1, and when that happens, the outputs o al
good players, though produced at different times, will always satisfy the consistency
and validity requirements.

THEOREM 4. BA is a Byzantine agreement protocol with fault tolerance 1/3 and
runs in expected polynomial time and in an expected constant number of rounds.

(More precisely, there exists a polynomial Q and constant ¢ such that, for any
number of playersn. any 113-adversary A, any initial quantities 1Q. and any positive
integer k. the probability that. in randomly executing BA(n) with A on IQ, the
protocol does not halt within Q(n)k BA-steps and ck rounds is less than 27%.)

Proof. Let us start by establishing a convenient notation.

LocaL DEFINITIONS. In an execution of BA, we cull a good player dead if he
has already terminated and aive otherwise.



924 PESECH FELDMAN AND SILVIO MICALI

ProTOCOL BA(n)
Input for player i: b;, a bit. “We actually consider b; as a variable of player i
whose initial value coincides with 7’s input bit."
Code for every P layer i.
0: For al players j, set B; = 0. “B; representsthe last one-bit message received
from player 7.”
(Subprotocol P;.)
1: Distribute b;.
2. For @l j, if b7 € {0.1}, then reset B; := b}; else, reset b] := B;. Let
count; = tally(1).
“In other words, for the purpose o computing tally(1), if you did not
receive a bit from player j, assume that he virtually sent you the same
bit that he really sent you last."
Run OC(n) and let r; be your output. Then:
(a) If count, € [0,n/3). then reset b; := 0. Else:
(b) If count; € {n/3,2n/3), then reset b; :== r;. Else:
(c) If count; € [2n/3,nN] then reset b; := 1.
(Subprotocol Py.)
3: Distribute b;.
4 For dl j, if b5 € {0,1}, then reset B; := b}; else, reset b; := B;. Let
count, = tally(1). Then:
(a) If count; € [0,n/3), then output O, distribute 0 in next round, and
TERMINATE
"In a round from now, you will be dead and will keep on virtually dis-
tributing 0. Every other good player is either dead and his output is 0,
or will terminate: outputting 0.
(b) If count; € [n/3.2n/3), then reset b; := 0. Else:
(c) If count; € [2n/3,n], then reset b; := 1.
(Subprotocol P,)
5: Distribute b;.
6. For al j. if b; € {0,1}, then reset B; := b}; else, reset b; := B;. Let.
count; = tally(1). Then: .
(a) If count; € [0,n/3). then reset b; := 0. Else:
(b) If count; € [n/3,2n/3), then reset b; := 1. Else:
(c) If count; € [2n/3,n], then output 1, distribute 1 in next round, and
TERMINATE.
"In a round from now: you will be dead and will keep on virtually dis-
tributing 1. Every other good player is either dead and his output is 1,
or will terminate outputting 1.”
Go to step 1.

Let P € {P,.P,.Po} and be {0,1). Within an execution of BA, we say that at
the start (at the end) of an execution of subprotocol P, the network is in agreement
on b if, for all good players g, either g is dead and his output is b or he is alive and
the current value of variable b, isb.

We say that at the start (at. the end) of an, execution of P, the network is in
agreement if there exists a. bit b such that the network isin agreement onb.

CLAIM T4-1. For any subprotocol P € {P,.P:1.Py}. any execution of P with a
1/3-adversary, and any alive good players g and G, |count, — countg| < n/3.



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 925

Proof. Only the bad processors may send different bits to different playersin the
same step. Thus, at any given step, the difference between the tallies (of 1) of two
good players is upper-bounded by the number of currently bad players and thus by
n/3. ®

Cramm T4-2. For al P € {P,, P,.Py}, for all executions of P with a 1/3-
adversary, and for all bits b, if the network is in agreement on b at the start of
the execution! it is in agreement on b at its end.

Proof. Since each execution of subprotocols P, and P, is in essence a special
execution of P, it is sufficient to prove our claim with respect to this latter protocol.
Assume that at the start of P,, the network is in agreement on O; that is, every
good dead player outputs 0 and. for all goocl aive players g. b, = 0. Then all good
players ("realy"” the alive ones and "virtually" the dead ones) distribute 0 in step
1. Thisimplies that only the bad players can distribute 1 in step 1; thus in step
2, for al goocl alive g, count, < n/3. As a consequence. independently of his own
output of subprotocol OC, at the end of step 2, each good aive player g sets b, := 0
in accordance with instruction 2(a); that is, the network isin agreement on 0 at the
end of P,. The case in which the network is in agreement on 1 at the start of P, is
handled similarly. [ |

Cramm T4-3. In any ezecution of BA with a 113-adversary, whenever a good
player outputs a bit, the network isin ugreement on that bit.

Proof. A good processor generates an output only during the execution of either
subprotocol P, or subprotocol Py. Let E be the first execution of either P, or Py
in which a good player produces an output, and let g be one such player. Assume
that £ is an execution of Py; then all good players are alive during E, and g must
output 0 at E’s end. Thus at E’s end, count, € [0,n/3). Therefore, by Claim T4-1,
for al good G, counts € [0.2n/3). This entails that, because of either rule (a) or
rule (b), every good player G resets b := 0; that is (because there are no dead good
players). the network isin agreement on 0 at the end of E (though only those good
players whose counter belongsto [0,n/3) are aware of this and will thus output 0 and
terminate). If there are no more executions of either P, or P, in which agood player
outputsa bit, then we are done. Otherwise, because of Claini T4-2, since the network
isin agreement on 0 at E’s end, it will remain in agreement on 0 thereafter. Thus,
whenever agood player outputs a bit later on, this bit must be 0, in accordance with
our claim. The case in which E is an execution of P, is argued in the "symmetric"
way. ]

Cram T4-4. For any rardom execution of BA with a 1/3-adversary and any
positive integer &, if the network is not in agreement at the start of the kth execution
of subprotocol P,., then the probability that it will be in agreement at its end is greater
than .35.

Proof. Because of Clairn T4-3, our hypothesis implies that al good players
are alive throughout our execution of P,. Moreover, since by Clam T4-1 we have
lcounty — count| < mn/3 for any good players g and G, one of the following two cases
must occur:

(0) Ygood i, count; € [0,2n/3), or

(1) Ygood i. count; E (n/3,n].

When case (0) occurs, if the oblivious common coin is unanimously 0, then each good
player i resets b; := 0 (if count; € [0, n/3] because of rule 2(a), if count; € (n/3,2n/3)
because of rule 2(b)) and thus the network is in agreement on 0. Similarly, when case
(1) occurs, if the oblivious common coin is unanimously 1, then every good processor
i resets b; := 1 arid thus—since there are no dead good players to worry about— the



926 PESECH FELDMAN AND SILVIO MICALI

network isin agreement on 1. Since either case (0) or case (1) must occur, and since
OC isan oblivious coin protocol with fairness .35, the probability that the network is
in agreement at the end o a random execution o P, (though the good players may
not be "aware" o this event.)is greater than .35. [ |

CLAIM T4-5. In any execution d BA with a 113-adversary, if at the beginning
of an execution d subprotocol P, (respectively, Py), the network is in agreement on
1 (respectively, 0), then one round after the end d the subprotocol execution, BA
terminates and the output o every good player is1 (respectively, 0).

Proof. Assume that the network is in agreement on 1 at the beginning of an
execution of P; (the “0 case" is similarly handled). Then all dead good processors
have output 1 prior to the present execution of P;, and all alive good processors
distribute 1 in the first step of the execution. Thus, since their tallies of 1 belong
to the interval (n/3.n}, al good (and alive) processors will perform instruction 4(c)
throughout this execution. Therefore, each one of them outputs 1 and will terminate
in the next round, unless he will get corrupted in the next round, an event that cannot:
in any case, change the output of the still uncorrupted players or the termination of
the protocol since. as usual, BA ends when all good players have terminated. [ |

It is now easy to complete the proof of Theorem 4; we start by proving our
claim about BA’s round complexity and fault tolerance. P, is a 36-round protocol,
while Py and P; are both two-round protocols. Protocol BA iterates the ordered
execution o Pr, Py, and P; until all good players terminate. Claim T4-4 guarantees
that, no matter what the initial quantities and the strategy of a 1/3-adversary may
be, in a random execution of BA, the probability that an "oblivious" agreement is
not reached after the 2kth execution of P, islessthan (.35)%% < 27%. Once oblivious
agreement is reached at the end of an execution of P,., Claim T4-5 guarantees that,
no matter what the actions of the 113-adversary may be, protocol BA hats—with
all the good processors "aware” o having reached Byzantine agreement—within the
next five rounds (i.e., at most one round after the end of P, if the agreement vas
on 1). Thus the probability that protocol BA does not reach Byzantine agreement
within 80k * 5 rounds is less than 2-*.

Let us now prove our claim about, the amount of local computation of protocol
BA. Having set (hidden) message bounds, the good processors do not waste running
time reading excessively long messages sent by the adversary. Moreover, except for
some occasional random selections; each round of protocol BA can be performed
in fixed polynomial-in-n time. As for those raridom selections, they consist of the
random choices o elementsin integer intervals of the form [0,z — 1]. Now, whenever
z is a power of 2, a random selection in [0,z — 1] can be performed by flipping log z
coins—and thus in fixed (asopposed to expected) polynomial time by a probabilistic
Turing machine. However, if z is not a power of 2, then the adopted strategy for this
task consists of randomly selecting a [log z]-bit string until a member of the desired
interval is found. Clearly, the probability that more than T such trials are needed is
lessthan 2-7. Sincein each iteration of P,, Py. and P;. at most Q2(n) such selections
(where Q is a given polynomia) must be rnade by the good players, since the rest
of the computation can be performed in fixed polynomial time, and because of our
recently proven claim about the round complexity of BA, our claim about the running
time of BA easily follows. O

Remarks.

e Our reduction of Byzantine agreement to (oblivious) common coins was inspired
by an earlier work of Rabin [34]. His reduction iS much simpler, but it assumes a
common coin that not only is ezternally provided but aso is not oblivious (i.e., al



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 927

players are guaranteed to see the same common random bit®"), and it requires that
the number of faults is < n/4.

o As we have seen?protocol B A enjoys the property of being aways correct and
probably fast; that is. our use of prohabilisrn introduces some uncertainty of how
long it will take to terminate (a modest uncertainty since we prove that the expected
number of roundsisconstant), but no possibility of error in the correctness o the final
agreement. This desirable property implies that one cannot get rid of "expected" in
our round complexity. In fact, an algorithm that reaches a guaranteed agreement in
a fixed number of rounds, no matter what the sequence o its coin tosses may be, is
immediately transformed to a fixed-round, deterministic algorithm. Thus the result
of Fischer and Lynch [20] would imply that at least O(n) rounds are needed if the
number of possible faults is O(n).

e In general, aswe havesaid, the input of a processor is a private value; that is, the
adversary has no way of knowing it unless she corrupts its corresponding processor
or this processor is instructed by the protocol to divulge it. Privacy of the initial
inputs is also a necessary condition for certain protocols to be meaningful. Thisis
indeed the case, for instance, with protocol GradedVSS—indeed, unless the input of
an honest dealer is secret, there is no hope that an aclversary cannot guess it better
than at random. In the case o Byzantine agreement, on the other hand, the privacy
of the initial inputs plays no role in defining the problem, which in fact remains
totally meaningful even if we assume that the players initial bits are known to the
adversary.”™ Indeed, it should be noted that our protocol BA instructs each good
player to distribute hisinput bit at the very first step, and it thus works even in the
case in which the adversary knows the input bits of all players in ‘advance.

e As we know, protocol BA relies on subprotocol OC. One may describe this
subprotocol as producing a bit that is "sufficiently random and common.” Such a
description would, however, be quite incomplete.. Namely, the output of OC is also
sufficiently unpredictable at the start of each execution of the protocol. In fact, if
the fairness o the coin that OC produces is positive, then we know that in any
random execution both 0 and 1 have a positive probability of being output. It should
be noticed that this unpredictability is used in our Byzantine agreement protocol:
in protocol P, "the obliviouscoin" is flipped after every processor ¢ distributes his
current value b;; thusinstep 1, the adversary must choose which values the bad players
distribute when the oblivious coinisstill unpredictable. Actually, the unpredictability
d the oblivious common coin flip is more than merely used in our protocol; it is
actually crucial to it: should the adversary know the result of the coin flips of OC
in advance, she could prevent agreement indefinitely. In fact, a bit more precisdly,
it can be shown that if all processors have as a common input—at the beginning
of the protocol —a sequence of truly random and independent (but also: necessarily,
predictable) coin tosses and use these bitsinstead of the outcomesdf OC in subprotocol
Py, al/3-adversary can easily and indefinitely prevent agreement from being reached.

The above discussion can be summarized by saying that our protocol BA relies
heavily on hiding—at least temporarily —information. We will further elaborate on
this crucial point in section 9.2.

e As we have indicated, the good processors need not terminate simultaneoudly.
Indeed, the adversary can force “staggered termination™ if she so desires.

e To avoid staggered termination, one may consider iterating subprotocol P, a

37 In his scenario, random coin flips are "predistributed” by a trusted party. Thus once they are

"revealed,” all good processors will see the same resullt.
38 Thisis a quite plausible scenario since bad guys tend to “know” more than good ones.



928 PESECH FELDMAN AND SILVIO MICALI

prescribed number o times. If this number of times islarge enough. upon termination.
agreement would be reached with high probability. However, such a protocol would be
unsatisfactory. First. from atheoretical point of view. it would introduce a probability
of error. (In other words, there would be a chance that upon termination the good
processors may not be in agreement—an event that is not allowed by our definition.)
Second, from a "practical™ point of view, to ensure that agreement is reached with
probability 1 — 27%, the envisaged protocol would have always to run P, k times.
By comparison, our protocol will run P, k times only "very seldomly,” that is, with
probability 2=%. (Truly, each time that our protocol runs 7., it also runs Py and
Ps, but these latter protocols require only two rounds each and are extremely simple.
The brunt o the computation is constituted by P, alone, which is a quite complex
34-round protocol.)

e It should be noticed that. since some good processors may be alive and some
others may be dead, in some executions of P.. there may not be a 2/3 majority of
good processors. In fact, the dead ones do not participate in the protocol but simply
"virtually" send a bit at given times. Under these circumstances. the coin tosses of
OC need not to be common or fair in any way. Thisis not a problem, though. As we
have shown, when a good processor terminates. the processors are in agreement and
agreement cannot be disrupted. Protocol P, is thus executed at most once without
an honest majority of players: in fact, all alive good processors will terminate one
round after the next execution of either Py or P;, whose coin toss the adversary does
not control.

9. Adjustments and improvements.

9.1. The model independence of our Byzantine agreement protocol.

Pros ad cons d sandurd networks. In presenting our Byzantine agreement
protocol, following a time-honored tradition, we have chosen standard networks (i.e.,
networks in which every pair of processors is connected by a dedicated and private
communication line) as its underlying communication model. This model has notably
simplified our argument and has helped usto focus on the essential distributed aspects
d the quintessentially distributed problem at hand without getting sidetracked by a
variety of important but quite different issues. (Essence, o course, is in the eyes
of the beholder!) Moreover, the standard-network model is quite realistic in some
contexts—for instance, in the case o computer networks whose processors are not
directly controlled by humans.?® Unfortunately, this is also the context in which,
in our opinion, Byzantine agreement is less meaningful, at least for the extremely
malicious fault model addressed in this paper—which, regrettably, belongs to the
domain of human interactions. As a matter of fact,, people being what they are,
private channels may proveto be too much of an abstraction. If a Byzantine agreenient
protocol were run in the context of an adversarial negotiation conducted in a computer
network, it would be remarkable that impostors would chivalrously confine themselves
to purely software attacks, refraining from tampering with the network itself. Indeed,
if they did, communication channels would not remain "private" for too long, no
matter how much metal they could be shielded with or how deep they could be
routed. We thus wish to briefly discuss what happens to our algorithm when its
communication model is more... “humanized.”

39 Indeed, when such computers malfunction. they may start running algorithms that are different
from their intended ones, may act— due to Murphy's law—its if the); coordinate their disruptful
efforts, and so on, but they cannot gain access to the dedicated line connecting two properly working
processors!



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 929

Other possible models. If the adversary may prevent messages between good
processors from being delivered. Byzantine agreement would be impossible. However,
we may still trust our network to be asynchronous; that is, the adversary might
delay messages arbitrarily long but cannot prevent them from everitualy reaching
their intentled recipients. (For a discussion of this model, consult. for instance, [19].)
Fortunately. our Byzantine agreement protocol has been ingeniously extended by
Feldman [17] and Canetti and Rabin [7] to work on asynchronous networks as well.

If the adversary is able to change the messages exchanged between two good pro-
cessors. Byzantine agreement would also be impossible since a single faulty processor
could impersonate as many processors as it likes. Alternatively, the adversary may
be capable of reading messages between good processors but not altering them.4% In
either case. one can still run our protocol using cryptography to simulate the privacy
of such “public” lines (assuming, of course, that the adversary is computationally
bounded). The basic underlying idea is that injecting or altering messages may be
made infeasible by secure digital signatures that are secure in the sense of [25], while
reading messages can be made infeasible by an encryption scheme that is secure in
the sense of [23]. (One caveat, however: for very subtle reasons that exceed the scope
of this paper, this basic strategy is surprisingly hard to implement correctly.)

If the adversary can "disconnect” two good processors, Byzantine agreement
would again be impossible. However, rather than assuming that our network is com-
plete, we may trust that it has some special. uncorruptable nodes that do not perform
any computation but simply reliably route properly labeled messages. (Indeed, this
may alow for quite sparse networks.) In this setting, our protocol would work es-
sentially without any changes and with the same efficiency. Alternatively, one may
consider networks with fewer communication lines but with sufficiently high connec-
tivity. Thisway. for every set of faulty processors with small enough cardinality, every
two goad processors are still connected by a path consistirig solely of good processors.
Solving the problem in this new setting would require encrypting each message and
sending it to its recipient through several node-disioint paths. This, of course, would
increase the running time of our protocol by a “network-topology” factor, but, most
likely, the same increase in running time would be suffered by other protocols.

9.2. Improvements of our results. Our results have been found useful in
several ways.

e As we have already mentioned in subsection 9.1, our Byzantine agreement pro-
tocol has been extended by Feldman [17] to work on asynchronous networks in which
each pair of players is connected by a private channel. His asynchronous protocol
tolerates up to t < n/4 faults. Using cryptography and assuming a computationally
bounded adversary. it regains optimal fault tolerance, t < n/3, in the asynchronous
case as well. Quite recently, Canetti and Rabin {7] have exhibited (for the same net-
works) an asynchronous Byzantine agreement protocol running in expected constant
time and possessing resiliency 1/3 against an adversary with unbounded computa-
tional capabilities— though alowing a probability of error. (Let us note in passing
that the notion of "constant time" must—and can—be meaningfully formulated in
the asynchronous setting.)

e Ben-Or and El-Yaniv [4] have extended our algorithm to to reach Byzantine
agreement in standard networks, in an expected constant number of rounds, for an
entire collection of players initial values.

0 This may bethe case in an ordinary telephone network, whose lines can be easily eavesdropped,
while the voices of its users may be hard to imitate.



930 PESECH FELDMAN AND SILVIO MICALI

e Using our results and those of [4]. Micali and Rabin [29] have obtained a VSS
protocol (i.e., a .'"nongraded one"!) that works in standard networks (rather than
standard-plus-broadcast ones), runs in polynomia time and an expected constant
number o rounds. and tolerates any n/3 faults in the worst model. They have aso
exhibited a nonoblivious common coin protocol, with fairness 1/2 and fault tolerance
1/3, that works in standard networks and runs in expected polynomial time and an
expected constant number o rounds. (Dolev, Dwork. and Yung have informed them
that they have independently found these same protocols.)

e Goldreich and Petrank [27] have shown how to modify our algorithm so as to
keep its expected running time and round complexity, while guaranteeing termination
in the worst case (i.e., with the most unlucky sequence of coin tosses) in t T O(logt)
rounds whenever the upper bound on the number of faulty playersist. (Thustermi-
nation is guaranteed in O(n) rounds in the worst-fault model.)

10. Significance.

10.1. The "right" significance of Byzantine agreement. Until now: we
have been advocating that Byzantine agreement is "the best one can do, in an adver-
sarial scenario. when broadcasting is impossible.” At this point,, having gained more
experience with adversarial behavior. we wish to point out. that this informal saying
is misleading in that it seems to imply that broadcasting is an available resource?
and only when you are deprived of it should you turn to Byzantine agreement as a
meaningful substitute. The truth is that, in an adversarial setting, closer scrutiny
. reveals broadcasting to be "amost always impossible.”

Consider, for instance, a radio network. The recipient of a message in such a
network cannot. tell whether a satellite has aimed its signal to his specific geographical
area. or to the whole country. Moreover, since imitating (or cutting and pasting
recorded pieces of) one's voice is quite possible, the recipient of .a radio message
cannot have any certainty about the identity of the sender of the message. Indeed, in
an adversarial setting, broadcasting is an abstraction. Thus a natural question arises:

In what "reasonable” communication models can one “concretely implement”
an abstract notion satisfactorily close to that o broadcasting?
Itisin light of this question that Byzantine agreement achieves, in our view, its true
significance: namely, it demonstrates that standard networks offer a reasonable com-
munication model to approximate: despite the presence of adversaries, the abstract
notion o a broadcasting. Better said:
We regard Byzantine agreement as showing that the abstraction of broad-
casting can be meaningfully approximated by "simpler" abstractions: strong
honest majority, synchrony. and private channels (and by even simpler ones:
as We have discussed in section 9.1).

10.2 The significance of our results. It isnow time to ask ourselves, “What
is the significance of our own result,?"

While our simplest primitives— Gradecast and, for small n, Graded V§S—are quite
practical, wedo not expect.our Byzantine agreement protocol to have a direct practical
impact,. In fact. though it does not have any monstrous “hidden constants’ and
is actually quite feasible. our protocol starts outperforming prior ones when run in
standard networks (or networks with “simulated standardness,” asdiscussed in section
9.1) with a few hundred players.*!

41 ghould standard networks of this size become feasible. our result actually opens the possibility
of artificially increusing the number of '‘playvers 0 as to increase the reliability of the network without



OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 931

However, our results should have an indirect practical impact. Solving a long-
standing open problem always marks a technical advance in a given field, and it is
reasonable to expect that in our case as well thisincreased level of understanding will
eventually translate into more practical protocols than ours.

More importantly. our techniques will be quite effective when dealing with much
more complex problems than Byzantine agreement, that is. with those problems for
which the existence of any solution is by itself a blessing and no superpractical answer
can be legitimately expected.*? In fact, it should be appreciated that our protocol
solves a more difficult problem than Byzantine agreement (afact that may perhaps
excuse some of our complications): it provides a reasonably fair and fault-tolerant
coin-flipping protocol in a quite unmanageable communication arid fault model.*?

Finally. scientists shall not live by technique alone. and we now wish to argue that
our result is more significant from a purely conceptual point of view.

Probabilism versus determinism. Can randomness speed up computation? This
is one of the most intriguing and fundamental questions of complexity theory. The
celebrated probabilistic algorithms for primality testing of Solovay and Strassen [36]
and Rabin [33] (and the more recent and equally beautiful ones for primality prov-
ing of Goldwasser and Kilian [22] and Adleman and Huang [1]) show that efficient
probabilistic solutions exist for problems for which no polynoniial-time solution is yet
known. We cannot, however. prove that no deterministic, polynomial-time primality
algorithm exists. Indeed, the fact that generating a sequence of coin tosses, indepen-
dently from the problem at hand, may help solve our problem much faster is quite
puzzling.

From this point of view, our result takes on a more serious significance. Namely,
contrasting its performance with the quoted t + 1-round lower bound [20} for any
deterministic protocol in which t malicious faults may occur, our Byzantine agreement
protocol offers a dramatic example that, at least in some-scenarios. probabilistic
solutions are provably vastly superior to all deterministic ones.

Such a speedup was already demonstrated by Rabin [34]. but by making the
additional assumption of a common source of randomness external to the network: a
common coin toss magically available to all processors at every clock tick. We instead
demonstrate that randomness alone (i.e., individual and independent random choices
made by individual processors), without any additional assumptions, suffices to beat
any deterministic Byzantine agreement protocol in a dramatic way.

Privacy versus correctness. Our probabilistic solution to the synchronous Byzan-
tine agreement problem sprung from recent advances in the fidld of zero-knowledge
computation. Roughly said. thisis the science of communication protocols that need
to satisfy both a correctness and a privacy requirement. (For example. following the
original application of Goldwasser, Micali, and Rackoff [24], a zero-knowledge proof
shows that a given statement indeed possesses a correct proof but does not reveal
what this proof might be.)

It should be noticed. however. that while Byzantine agreement has subtle correct-

making the time needed to reach agreement helplessly long. (In fact, if we know that— say — 10% of
the players are expected to become faulty during a decade, toensurethat 2/3 of them will beworking
properly in such a period, we are better off having a network of hundreds of processors rather than
just adozen of them.)

4? Indeed. the usefulness of our algorithm for solving the problems mentioned in section 10.1
provides some support for this claim, and it augurs wonderfully for future ventures.

43 Indeed, flipping a coin with adversaries does not get much easier even in friendlier scenarios
than ours.



932 PESECH FELDMAN AND SILVIO XIICALI

ness requirements, it has no constraints whatsoever about privacy.* Nonetheless. the
correctness and speed d our protocol depend in a fundamental way on GradedVSS, a
protocol where privacy isthe central issue. We thus wish to advocate a novd role for
privacy: namely. a tool for reaching correctness. Thisisless puzzling than it sounds.
Our intuition behind it issimple:
Error in, computation can. ke modeled as an adversary, and if your adversary
“knows little," she can do little to disrupt your computation.
Indeed, we believe that privacy will become a fundamental ingredient in the design
of fault-tolerant protocols. Are we right? Time will tell. But may our journey be
enjoyable in any case.

Acknowledgments. We are particularly grateful to Michael Fischer, Rosario
Gennaro, Nancy Lynch, and David Shmoys for their generous, attentive, and con-
structive criticism.

Special thanks go to Ray Sidney, Tal Rabin, and Philip Rogaway. As we have
already mentioned, the second author has collaborated with Philip Rogaway in mod-
eling computation in the presence of faults in more complicated scenarios than the
present one. The computational model of this paper has benefitted from the insights
gained during that collaboration.

We would also like to acknowledge Michael Ben-Or, Benny Chor, Cynthia.Dwork,
Peter Elias, Rosario Gennaro, Oded Goldreich, Shafi Goldwasser, and hlichael Rabin
for many wonderful discussions about the Byzantine agreement problem.

Thanks also to two anonymous refereesfor their wonderful comments. The present
version o our paper corresponds to the point in which one referee lamented that
formalization exceeded intuition and another that intuition outmatched formalization.

Finally, our main motivation for working on the Byzantine agreement problem
came from the beauty and novelty of the ideas of those who preceded us. We have
immensely enjoyed standing on such tall shoulders!

REFERENCES

1] L. M. ApLEMAN AND M. .4. HuaNG, Recognizing primes in random polynomial time, in Proc.
19th ACM Symposium on Theory of Computing, ACM, New York; 1987. pp. 462—469.

[2] D. BEAVER, S. MicaLl. AND P. Rocaway, The round complexity of secure protocols, in Proc.
22th ACM Symposium on Theory of Computing, ACM. New York, 1990.

[3] M. BEN-OR. S. GoLpwasser. AND A. WIGDERSON, Completeness theorems for fault-tolerant
distributed computing. in Proc. 20th ACM Symposium on Theory of Computing, ACM,
New York. 1988. pp. 1-10.

[4] M. BEN-OR anD R. Er-Yaniv, Interactive consistency in constant time. Distrib. Comput.,
1991. submitted.

[3] M. BEN-OR, Another advantage of free choice: Completely asynchronous agreement. protocols,
in Proc. 2nd Annual Symposium on Principlesof Distributed Computing, ACM, New York,
1983, pp. 27-30.

[6] G. BracHA. An “o(logn)” expected rounds randomized Byzantine generals protocol, in Proc.
17th ACM Symposium on Theory of Computing. ACM, New York, 1985.

{7) R.CaNETTI AND T. RABIN, Fast. asynchronous agreement with optimal resilience. in Proc. 25th
ACM Symposium on Theory of Computing, ACM, New York. 1993, pp. 42-51.

[8] B. CHor AND B. CoaN, A simple and efficient randomized Byzantine agreement problem, TGEE
Trans. Software Engrg., SE-1 1 (1985), pp. 531--539.

[9] B. CHOR. S. GOLDWASSER. S. MIcALL. AND B. AWERBUCH, Verifiable secret sharing and achiev-
ing simultancity in the presence of faults. in Proc. 26th Annual IEEE Syvmposium on Foun-
dations of Computer Science. IEEE Computer Society Press. Los Alamitos. CA, 1985,
pp. 383-395.

44 Indeed, our protocol B A starts by having each good processor distribute his own input value to
al players.



(19]
(20]
[21]
(22]
(23]
(24)
[25]

(26]

(27]

(28]
(29]

(30]
(31]

(32]
(331

(34}

[35]

(36]

(37]

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 933

D. Cuavm. C. CrREPEAU. AND |. DAMGARD, Multi-party unconditionally secure protocols, in
Proc. 20th ACXI Symposiuni on Theory of Computing, ACM, New York, 1988.

B. CHOR AND C. DwWORK, Rendomization in Byzantine agreement, in Randomness and Corn-
putation. S. Micali, ed., JAI Press, Greenwich. CT, 1989, pp. 433--498.

D. DoLev. M. FiscHER. R. FOWLER. N. LYNCH, AND H. STRONG. An efficient algorithm for
Byzantine agreement without tauthentication, Inform. and Control, 52 (1982), pp. 257-274.

D. DoLEv, The Byzantine generals strike ugain, .J. Algorithms, 3 (1982), pp. 14-30.

D. DoLeEv aAnD C. DwORK. manuscript, 1987.

D. DoLev. C. DwoRrK. aND M. NAOR, Non-malleable cryptography, in Proc. 23rd ACM Sym-
posium on Theory of Computing, ACM, New York, 1993, pp. 542-552.

C. DWORK. D. SHMOYS. AND L. STOCKMEYER, Flipping persuasively in constant ezpected time,
SIAM J. Comput., 19 (1990), pp. 472-499.

P. FELDMAN, Optimal algorithms for Byzantine agreement, Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, ILIA, 1988.

P. FELDMAN AND S. MicaLl, Byzantine agreement in constant ezpected time (and trusting no
one), in Proc. 26th Annual |EEE Symposium on Foundations of Computer Science, |EEE
Computer Society Press, Los Alatnitos, CA, 1985, pp. 267-276.

M. FIsCcHER, The consensus problemin unreliable distributed systems (a brief survey), in Proc.
International Conference on Foundations of Computation, 1983.

M. FisCHER anD N. LYNCH. A lower bound for the time to assure interactive consistency,
Inform. Process. Lett., 14 (1982}, pp. 183-186.

Z. GALIL. S. HABER. AND M. Yunc, Cryptographic computation: Secure falt-tolerant protocols
and public-key model, in Proc. CRY PTO '87, Springer-Verlag, Berlin, 1987, pp. 135-155.

S. GoLpwassieR AND J. KILIAN. Almost all primes can be quickly certified, in Proc; 18th ACM
Symposium on Theory of Computing, ACM, New York. 1986, pp. 316-329.

S. GOLDWASSER AND S. MicaLl, Probabilistic encryption, J. Comput. System Sci., 28 (1984),
pp. 270-299.

S. GOLDWASSER, S. MicaLl. aND C. RackorF, The knowledge complexity of interactive proof-
systems. SIAM. J. Comput., 18 (1989), pp. 186-208.

S. GOLDWASSER. S. MicaLl, AND R. RivesT, A digitul signature scheme secure against adaptive
chosen-message attacks, SIAM J. Comput., 17 (1988), pp. 281-308.

0. GOLDREICH. S. MicaLl, AND A. WIGDERSON, How to play any mental game, or a com-
pleteness theorem for protocols with honest majority, in Proc. 19th ACM Symposium on
Theory of Computing, ACM, New .York, 1987, pp. 218-229.

O. GoLDREICH AND E. PETRANK, The best of both worlds: Guaranteeing termination-in fast
randomized Byzantine agreement protocols, Inform. Process. Lett., 36 (1990), pp. 45-49.

A. KARLIN AND A. YAO, manuscript, 1987.

S. Micanl AND T. RaBin, Collective coin tossing without assumptions nor broadcasting, in
Proc. CRY PTO '90, Springer-Verlag, Berlin, 1990, pp. 253-266.

S. MicaLl aND.P. RoGcaway, Secure computation, in Proc. CRYPTO ’'91, Springer-Verlag,
Berlin, 1992; full paper available from authors.

Y. Moses anp 0. Waarts, Coordinated travel: (t+ 1)-round Byzantine agreement in polyno-

mial time, in Proc. 29th Annual |EEE Symposium on Foundations of Computer Science,

|EEE Computer Society Press. Los Alamitos, CA, 1988. pp. 246-255.

PEASE. R. SHOSTAK. AND L. LAMPORT, Reaching agreement in the presence of faults, J.

Assoc. Comput. Mach., 27 (1980), pp. 228-234.

M. RaBiN, Probabilistic algorithms for testing primnlity, J. Nuniber Theory, 12 (1980), pp. 128~
138.

M. RaBiN, Randomized Byzantine generals. in Proc. 24th Annual 1EEE Symposium on Foun-
dations of Computer Science, |[EEE Computer Society Press, Los Alamitos, CA, 1983,
pp. 403-409.

T. RaBIN AND M. REX-OR, Verifiable secret sharing and multiparty protocols with honest
majority, in Proc. 21th ACM Symposinm on Theory of Computing, ACM, New York,
1989.

R. SoLovay axp V. STrassen, A fast Monte-Carlo test for primality. SIAM J. Comput., 6
(1977). pp. 84-85.

R. TurpiN AND B. Coax, Extending binary Byzantine agreement to multivalued Byzantine
agreement, Inform. Process. Lett., 18 (1984), pp. 73-76.

XI.



