
SI.4IL.I .I.' COMPIIT.
VoI. 26. No. '4, pp. 873-933. At~gllst 1!397

@ 10Y7 Society for Industrial and Applied Mathematics
001

AN OPTIMAL PROBABILISTIC PROTOCOL FOR SYNCHRONOUS
BYZANTINE AGREEMENT"

PESECH FELDMAN~ AND SILVIO b11CXLIt

Abs t r ac t . Broadcasting guarantees the recipient of a message that everyone else has received
the same message. This guarantee no longer exists in a setting in which all communication is person-
to-person and some of the people involved are untrustworthy: though he may claim to send the same
message to everyone. an untrustworthy sender may send different messages to different people. In
such a setting, Byzantine agreement offers the "best alternative" to broadcasting. Thus far, however,
reaching Byzantine agreement has required either many rounds of communication (i.e., messages had
to be sent back and forth a number of times that grew with the size of the network) or the help of
some external trusted party.

In this paper, for the standard communication model of synchronous networks in which each
pair of processors is connected by a private communication line, we exhibit a protocol that, in
probabilistic polynomial time and without relying on any external trusted party, reaches Byzantine
agreement in an expected constant number of rounds and in the worst natural fault model. In fact,
our protocol successfully tolerates that up to 113 of the processors in the network may deviate from
their prescribed instructions in an arbitrary way, cooperate with each other, and perform arbitrarily
long computations.

Our protocol effectively demonstrates the power of randomization and zero-knowledge compu-
tation against errors. Indeed, it proves that "privacy" (a fundamental ingredient of one of our
primitives), even when is not a desired goal in itself (as for the Byzantine agreement problem), can
be a crucial tool for achieving correctness.

Our protocol also introduces three new primitives-graded broadcast, graded verifiable secret
sharing, and oblivious common coin-that are of independent interest, and may be effectively used
in more practical protocols than ours.

Key words. broadcasting, Byzantine agreement, fault-tolerant computation, raridomization

A M S s u b j e c t classifications. 68Q22, 68R05? 68bI15, 94A60. 94.499, 94B99

PII. SO097539790187084

1. The problem.
A motivating scenario. PVe are in Byzantium, the night before a great battle. The

Byzantine army, led by a commander in chief, consists of n legions, each one separately
encamped with its own general. The empire is declining: up to 113 of the generals-
including the commander in chief-may be traitors. No radios (sic!) are available:
all communication is via messengers on horseback. To make things worse, the loyal
generals do not know who the traitors are. During the night each general receives
a messenger with the order of the commander for the next day: either "attack" or
"retreat." If all the good generals attack, they will be victorious; if they all retreat,
they will be safe: but if some of them attack and some retreat they will be defeated.
Since a treasonous commander in chief may give different orders to different generals,
it is not a good idea for the loyal ones to directly execute his orders. Asking the
opinion of other generals may be quite mislezding too: traitors may represent their
orders differently to different generals, they may not send any information to someone,

* Received by the editors August 30, 1990; accepted for publication (in revised form) July 31,
1995. An earlier version of this work was presented a t the 1988 XCbI Symposium on the Theory of
Computing (STOC).

http://www.siam.or,a/journals/sicomp/26-4/18708.html
t Laboratory for Computer Science, bIassachusetts Institute of Technology, Cambridge, MA

02139. Current address: OHR SOhIXYACH, 22 Shimon Hatzedik. Jerusalem, Israel.
f Laboratory for Computer Science, bIassachusetts Institute of Technology, Cambridge, bIX 02139

(silvioOtheory.lcs.mit.edu). The research of this author was supported in part by NSF grants DCR-
84-13577 and CCR-9121466. XRO grant DAAL03-86-K-0171, and ONR grant N00014-92-5-1799.

874 PESECH FELDMAN AND SILVIO MICALI

and they may claim to have received nothing from someone else. On the other hand,
should the honest generals always-say-atta.ck (independently of the received orders
and of a.ny discussion), they would not follow any meaningful strategy. ?lTha.t they
need is a way to exchange messages so as to always reach a common decision while
respecting the chief's order, should he happen to be honest. They need Byzantine
agreement.

Byzantine agreement. As insightfully defined by Pease, Shostak, and Lamport
[32], Byzantine agreement essentially consists of providing "the best alternative" to
broadcasting when all communication is person-to-person (as in an ordinary telephone
network) and some of the people involved are untrustworthy. In order to briefly de-
scribe what this alternative is, we must first sketch its classic underlying communi-
cation model, the most convenient and simplest one in which the need for Byzantine
agreement arises.

Modernizing the motivating scenario a bit, generals are processors of a computer
network. Every two processors in the network are joined by a separate communica-
tion line, but no way exists to broadcast messages. (Thus, though a processor can
directly send a given message to all other processors, each recipient has no way to
know whether everyone else has received the same message.) The network otherwise
has some positive features. Each processor in it has a distinct identity and knows the
identities of the processors on the other end of its lines. The net,work is synchronous,
that is, messages are reliably delivered in a sufficiently timely fashion: there is a com-
mon clock, messages are sent at each clock tick (say, on the hour) and are guaranteed
to be delivered by the next tick (though not necessarily simultaneously). Each com-
munication line is private, that is, no one can alter, inject! or read messages traveling
along it. Indeed, the only way for an adversary to disturb the communication of two
good processors is by corrupting one of them. IlTe will refer to such a network as a
standard network since it is the one generally adopted for discussing the problem of
Byzantine agreement. '

Now assume that each of the processors of a standard network has an initial value.
Then, speaking informally, a Byzant,ine agreement protocol should guarantee that for
an.y set of initial values, the following two properties hold:

1. Consensus: All honest (i.e., following the protocol) processors adopt a com-

e mon vaiue.
2. Validity: If all honest processors start with the same value, then they adopt

that value.2
Byzantine faults. Having briefly discussed our communication model, are must

now mention our fault model. Processors become faulty when they deviate from their
prescribed programs. "Crashing (i.e., ceasing all activities) is a benign u7ay for a
processor in a network to become faulty. The faulty behavior considered in this paper
is instead much more adversarial: faulty processors may deviate from their prescribed
programs in an arbitrary fashion, perform an arbitrary amount of computation, and

Standard networks are advantageous t o consider in t h a t they allow one t o focus on the novel
characteristics of Byzantine agreement without. being distracted by legitimate but "orthogonal" con-
cerns. We wish t o stress, however, tha t , while t h e absence of broadcasting is crucial for the problem
of Byzantine agreement to be meaningful, we shall see in section 9.1 that most of the fine details of
the adopted comn~unication model can be significantly relaxed without affecting our result.

Notice t h a t we have stated Byzantine agreement a bit more generally than in the motivating
scenario; namely, the processors are not given their initial values by a distinguished member of their
group but have their own individual sources for these values. Consider, for instance, the case of party
bosses who, before an election, call each other on the phone t o select a common candidate t o back:
even though their initial choices d o not, arise from the suggestion of a distinguished boss, they still
need Byzantine agreement.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 875

even coordinate their disrupting actions. Modeling software and hardware faults as
nlalicious behavior may not be unreasonable when dealing with the interaction of
very complex programs, but it is actually very meaningful, and even mandatory, if
there are people behind their computers. Indeed. whenever we wish to emphasize the
possibility of human control-and thus that of malicious behavior-we do employ the
term "player" instead of processor.

The goal of the faulty players is to disrupt either the consensus or the validity
requirement or simply to delay reaching Byzantine agreement for as long as possible
(as when, say, they prefer the status quo to any of the two alternatives being voted
on). Here is an example of what malicious players may do against a simple-minded
protocol.

Assume that the honest generals of the motivating scenario try to reach agreement
as follows: they send their initial orders to each other and then execute the most
"popular" order. Then the dishonest generals can easily cause disagreement. To
make our example more dramatic, let us suppose that 213 of the generals are loyal,
that half of the loyal ones start with the value "attack," and that the other loyal half
start with "retreat."3 In this situation, the traitors simply tell every loyal general in
the first half that their initial value is "attack and every loyal one in the second half
that their value is "retreat." Consensus is then disrupted in a most dramatic way:
half of the loyal generals will attack and the other half will retreat. Indeed, reaching
Byzantine agreement is a tricky bu~ ines s .~

The signzjicance of Byzantine agreement. Byzantine agreement is widely Fonsid-
ered the standard bearer in the field of fault-tolerant distributed computation. While
it is indisputable that this problem has attracted an enormous amount of attention,
we are skeptical about its relevance in the context of errors naturally occurring in a
distributed computation. In our opinion, Byzantine agreement is relevant to the field
of secure compu.tation protocols, which includes problems such as electronic elections, -
electronic negotiations, or electronic bids.

Secure protocols (see [30] for a satisfactory and general definition) is a new and
exciting branch of mathematics that has experienced impressive growth in recent
years. A problem in this field consists of enabling a group of mutually distrustful
parties to achieve, in a interaction in which some of the players do not follow the
rules of the game, the same results that are obtainable by exchanging messages in a
prescribed manner when there is total and honest collaboration. Indeed, it is thanks
to insights from the field of secure prolocols that we have succeeded in finding our
optimal probabilistic solution to the synchronous Byzantine agreement problem.

Byzantine agreement plays an important role in secure protocol theory; essen-
tially, it dispenses with the need to hold a meeting when, because of the presence of
adversaries among us, it is useful to establish in a public manner who said what or
what was decided upon. In the simplest secure protocol or in the most complex one,

These initial values are not a t all unlikely if they represent (as in our motivating scenario) the
individual version of a n alleged unique message sent by a dishonest party. In any case, consensus
and validity are very strong requirements: they should hold for any initial values!

As we shall mention in the next section, a t least t rounds of communications are needed to
reach Byzantine agreement whenever (1) t parties are dishonest and (2) the honest ones follow a
deterministic protocol. This fact immediately yields an alternative way to dismiss the simple-minded
strategy discussed above: it is deterministic and can be implemented in two rounds, no matter how
many players there are and no matter how many of them can be faulty. The same fact allows one to
dismiss a good deal of other simple-minded strategies as well. As we shall see, it is only through a
careful use of randomization that a strong majority of honest players may reach Byzantine agreement
very fast.

876 PESECH FELDhjIAN AND SILVIO MICALI

the honest players cannot possibly make any progress without keeping a meaningful
and consistent view of the world. This is u-ha,t Byzantine agreement gives us.

The quality of a Byzantine agreem,en.t protocol. Several aspects are relevant in
determining the quality of a Byzantine a.greement protocol. As for most protocols,
the amount of local computation and the total number of message bits exchanged
continue to be important. But in this archetypal problem in distributed adversarial
computation, two are the most relevant (and most investigated) aspects: the round
complexity and the fault model.

The round complexity measures the amount of interaction that a protocol requiresS5
Since, at each clock tick, a player may send messages to more than one processor (and
their recipients will receive them by the next tick), the round ~omplexit~y of a protocol
naturally consists of the total number of roun.ds (i.e., clock pulses and thus "waves"
of messages) necessary for completing the protocol.

The fault model specifies what. can go wrong (while still being tolerable somehow)
in executing a prot,ocol, namely the following: How many processors can become
faulty? How much can they deviate from their prescribed programs? HOW long can
faulty processors comput,e to pursue their disruptive goals?

In this light: the goal of a Byzantine agreement protocol naturally consists of
simultaneously "decreasing" the round complexity while "increasing" the fault model.

Our solution. \Ve present a probabilistic-polynomial-time protocol that, reaches
Byzantine agreement in an expected constant number of rounds (thus minimizing the
round complexity) while tolerating the maximum possible number of fa.ulty players
and letting them exhibit a most malicious behavior.

2. previous solutions a n d ours.

2.1. The worst na tura l fault model. Though several weaker models for Byzan-
tine agreement can be considered (see the excellent surveys of.Fischer [19] and Chor
and Dwork [ll] for a more comprehensive history of this subject), in this paper, we
concentrate on a most adversarial setting. Speaking informally for now: the worst
(natural) fault model is charact,erized by the following three conditions:

1. the good players are bound to polynomial-time computation;
2. a constant fraction of the total number of players may become fau1t.y; and
3. the faulty players can deviate from their prescribed instructions in any ar-

bitrary way, perform arbitra.rily long computations, and perfect,ly coordinate their
actions.

The worst fa,ult model is not only the most difficult one to handle but, also, in our
opinion, the most meaningful one to consider. Condition 1 essentially expresses that
for a Byzantine agreement protocol to be useful, the computational effort required
by the honest processors should be reasonable. Condition 2 properly captures our
intuition about the nature of faults, independently of whether we consider players as
machines or people controlling machines. Indeed, while we do expect that the number
of faulty players grows with the size of the network, it would be quite counterintuitive
to expect that it grows sublinearly in t,his size. (For instance, assume that in a neturork
of n players the number of bad ones is n / logn. Then this would mean t,hat, while
we expect 1% of a group of 1000 players to be fa.ulty, we expect a sma,ller percentage
of faulty players in a much larger group.) Condition 3 essentially captures that there
may be people behind their computers: dishonest people follow whatever strategy is

In a distributed setting, this is the most, expensive resource. Typically, the time invested by the
processors for performing their local computation is negligible with respect to the time necessary to
send electronic mail back and forth several times.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 877

best for them, try much harder than honest ones, and effectively cooperate with one
another. In any case, by successfully taming malicious faults, we would a fortiori
succeed in taming all other more benign-though not necessarily more reasonable-
ones.

Let us thus review the main protocols in this difficult model.

2.2. Previous solutions. Dolev et al. [12] exhibited the first solution in the
worst fault model. Letting n denote the total number of players in the network and
t denote an upperbound on the number of faulty players, they showed that as long
as t < 7213, Byzantine agreement can be reached deterministically in O (t) rounds.
Recently, by a different protocol, Moses and Waarts [31] tightened their number of
rounds to be t + 1 for t < n/8. This is optimal for their choice of t? since Fischer and
Lynch [20] proved that t rounds are required by any deterministic protocol if t faults
may occur in its execution.

In light of the lower bound mentioned, all hope for faster agreement is entrusted to
probabilism. Indeed, since the pioneering work of Ben-Or [5], randomization has been
extensively used for reaching agreement. In particular, Rabin's notion of a common
coin [34] has emerged as the right version of probabilism for this setting. A network
with a common coin can be.described as a network in which a random bit becomes
available to all processors at each round but is unpredictable before then. The interest
of this notion is due to a reduction of Rabin showing that as long as t < n/4, Byzantine
agreement can be reached in expected constant number of rounds with the help of
a common coin. Of course, commsn coins are not a standard feature of a point-to-
point network; thus this reduction raises a natural and important question: Are there
eficient Byzantine agreement protocols implementable "within the network" and in
the worst fault model?

. Prior to our work, no efficient within- the-network Byzantine agreement protocol
was known for the worst fault model. Rabin [34] devised a cryptographic Byzantine
agreement protocol running in an expected constant number of rounds but relying
on a incorruptible party external to the n e t ~ o r k . ~ Bracha [6] exhibited Byzantine
agreement protocols that do not require trusted parties, but his protocols are slow-
ers (they run in expected O(1ogn) rounds) and are not explicitly constructed (their
existence is proved by counting arguments). Chor and Coan [8] exhibit an explicit
and within-the-network Byzantine agreement protocol, but their solution, though at-
tractively simple, is much slower (their protocol tolerates any t < n/3 faults but
runs in O(t/ logn) rounds; thus it requires expected O(n/ log n) rounds in the worst
fault model). Feldman and Micali [18] explicitly exhibited a cryptographic within-
the-network protocol that, after a preprocessing step consisting of a single Byzantine
agreement (on some specially generated keys), allows any subsequent agreement to be
reached in an expected constant number of round^.^ While their protocol is actually
very practical after the first agreement has been reached, the first agreement may

Rabin's algorithm uses digital signatures-which implies that dishonest processors are bound
to polynomial-time computation-and a trusted party-i.e., an incorruptible processor outside the
network. In his solution, if the trusted party distributes k pieces of reliable information to the
processors in the networks in preparation, then these processors can, subsequently and without any
external help, compute k common coins. Thus the number of reachable agreements is bounded by the
amount of information distributed by the trusted party in the preprocessing stage. A cryptographic
Byzantine agreement protocol with a trusted party but without the latter limitation was later found
by the authors in [Is], in addition to other results mentioned later on.

Thus their protocol does not require any preprocessing if a trusted party distributes the right
keys beforehand. The present result can thus be viewed as removing cryptography and preprocessing
from their protocol.

878 PESECH FELDMAN AND SILVIO MICALI

very well be the most important one (i.e.: whether or not to hold a meeting).
To complete t.he picture, let us mention that Dwork, Shmoys, and Stockmeyer

[16] found a beautiful Byzantine agreement protocol running in expect,ed constant
round but not. in the worst fault model. (Their algorithm tolerates only O(n/ logn)
faults.)

2.3. Our solution. The main theorem in this paper can be informally stated as
follow~s:

There exists an explicit protocol P reaching Byzantine agreement in the worst
fault model and running in in an expected constant number of rounds. Protocol 'P
actually tolerates any number of faults less than one third of the total number of
processors.

Our protocol is probabilistic in the "best possible way": it is always correct and
probably fast; that is, an unlucky sequence of coin tosses may cause our protocol to
run longer, but when it halts both consenslls and validity are guaranteed to hold.
Our algorithm not only exhibits optimal (within a constant) round complexity, but
it also achieves optimal fault t,olerance. In fact, Karlin and Yao [28] have extended
the earlier deterministic lower bound of [32] by showing that even probabilistically
Byzantine agreement is unreachable if i = n/3 faults may occur.'

3. Model of computation. As of today, unfortunately, no reasonable treat-
ment of the notion of probabilistic computation in a malicious fault model can be
conveniently pulled off the shelf. (A comprehensive effort in this direction-in the
more general context of secure computation.-was made in [30], but this paper has
not yet appeared in print.g) Thus u7e have found it necessary to devote a few pages
to discuss-though only at a semiformal level- of definitions in what we intended to
be a purely algorithmic paper.

The definitions below, presented only at a semiformal level, focus solely on what
we immediately need to discuss our Byzantine agreement protocol, purposely ignoring
many other subtle issues (a.ddressed in the quoted paper [30]). MTe only wish to clarify
what it means that, in the execution of an n-party protocol, t of the processors may
make errors (i.e., deviate from their prescribed instructions) in a most malicious way
and that the protocol tolerates these faults.

Basic notation. Below we assume that a proper encoding scheme is adopted.
Thus. we can treat a string or a set of strings over an arbitrary alphabet as a binary
string, we may consider algorithms that output (the encoding of) another algorithm,
etc.

We assume that each finite set mentioned in our paper is ordered. If S1, . . . , Sk
are finite sets, we let the instruction Qxl E Sl . . . 'dxk E Sk Alg(x1, . . . xk) stand for
the program consisting of running algorithm Alg first on input the first element of
S = S1 x . . . x Sk, then ("from scratch," i.e., in a memoryless fashion) on input the
second element of S , and so on.

This remains true, as proved by Dolev and Dwork 1141, even if one abandons t h e worst fault,
model so as to include cryptographic protocols (against faulty processors with polynomially bounded
resources). Thus t h e optimality of our algorithm is retained in this setting as well.

Byzantine agreement aims only a t guaranteeing conectness in the presence of an adversary
(about what was decided upon) but, not a t keeping secret t h e original single-bit inputs of t h e players.
A secure protocol must instead simultaneously ensure tha t a given computation (on inputs some
of which are secret) is both correct and private, that. is, roughly, not revealing t h e initially secret
individual inputs more than is implicitly done by the desired output of t h e computation. This is
much more difficult both t o handle and t o formalize.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 879

The symbol ":=" denotes the assignment instruction. The symbol "0" denotes
the concatenation operator. If a is a string and T is a prefix of a, we denote by the
expression "a/rl ' the string p such that a = T o p.

If Alg is a probabilistic algorithm, I is a string, and R is a infinite sequence of
bits, by running running Alg on input I and coins R we mean the process of executing
Alg on input I so that, whenever Alg flips a coin and R = bo R', the bit b is returned
as the result of the coin toss and R := R'.

Protocols. To avoid any issue of nonconstructiveness, we insist that protocols be
uniform.

D E F I N I T I O N 1. Let n be an integer greater than 1. An n-party protocol i s an
n-tuple of probabilistic algorithms, PI, . . . , P,, where each Pi (which is intended to be
run by player i) satisfies the following property. On any input (usually representing
player i's previous history in an execution), Pi halts with probability 1 computing
either an n-tuple of binary strings (possibly empty, representing i 's messages to the

- . other players for the next round) or a triple consisting of an n-tuple of strings (with
the same interpretation as before), the special character TERMINATE, and value v (as
its output).

~Votice that each time that Pi is run, one also obtains as "side products" the
sequence of coin tosses actually made by Pi and the sequence of its "future" coin
tosses.

A protocol 2.9 a probabilistic algorithm that, for all integers n > 1, on input the
unary representation of n, outputs (the encoding of) an n-party protocol.

In this paper, the expression round denotes a natural number; in the context of
an n-party protocol, the expression player denotes &n integer in the closed interval
[l,nl.

Executing protocols without adversaries. Let us first describe the notion of exe-
cuting -a protocol when all players are honest. Intuitively, each party runs his own
component of the protocol. The only coordination with other parties is via messages
exchanged in an organized fashion. Namely, there is a common clock accessible by all
players, messages are sent at each clock tick along private communication channels,
and they are received by the next tick. The interval of time between two consecutive
ticks is called a round. At the beginning of a round, a player reads the messages
sent to him in the previous round, and then runs (his component of) the protocol to
compute the messages he sends in response. These outgoing messages are computed
by a player by running the protocol on the just-received incoming messages and its
own past "history," (i.e., an encoding of all that has happened to the player during
the execution of the protocol up to the last round). We now describe this intuitive
scenario a bit more precisely, though not totally formally. In so doing, parties, hard-
ware, private communication channels, and clocks will disappear. However, they will
remain in our terminology for convenience of discourse.

D E F I N I T I O N 2. Let n be an integer > 1, P = (PI , . . . , P,) be an n-party protocol,
P I , . . . , p n be finite strings, and R1,. . . , R, be infinite binary sequences. Then by
executing P on private inputs pl , . . . , p , and coins R1, . . . , R,, we mean the process
of generating, for each player i and round r , the quantities

H:,. a string called the history of player i at round r (a triple consisting of (1)
i ' s history prior to round r , (2) the messages received by i in round r , and (3) the
coin tosses of i in round r) !

AIL7 the messages sent by player i in round r (a n n-tuple of strings whose j th
entry. ~;ll:+[j]: is called the message sent by i to j in round r),

the messages received by player i at round r (a n n-tuple of strings, whose

880 PESECH FELDMAN AND SILVIO MICALI

jth entry, AfLi[j], is called the message received by i from j in round r) :
C;? the coin tosses of i in round r (a substring of I&) , and
RS, the coin tosses of i after round r (a substring of Ri)

by executing the follou~ing instruction,s:
(Start) Set Cf = E, RQ = Ri, M; = = (E , . . . , c), an.d H: = (pi, A@+,. Cf).
"Only the individual input is available at the start of an execution: no m.essage

has yet been sent or received: and no coin has been flipped. "
(Halt) Say that player i halts a t round r (and his output is a) i f r is the minimum

round s for which Pi, on input H:-' and coins R,, computes a triple wh,ose second
entry is the special character TERMINATE (and whose third entry is o.) If i halts in
round r , then V s > r , Ad:+ := (E , . . . :E), A4Li := (A I L [i] , . . . , A f : - [i]) , C: := E,
R: := R;, and H: := (H:-', Ad:i, E) .

(Continue) If i has not halted in a round < r , run Pi on input H:-' an.d coins
R:-' so as to compute either (a) an n-tuple of string M or (b) a triple (A~,TERMINATE, v
where M is an n-tuple of strings, TERMIP:ATE is a special character, and v is a
string. If C is actually the entire sequence of coin tosses that Pi has made in
this computation-and thus C is a prefix of RI-'-then C: := C, Rr := R~- ' /C,
ML := Ad, MLi := (A4,T,[i],.. . , AdL,[i]), and H,T := (H%~- ' , M:,, C;).

For simplicity's sake (since each Pi, on any input, halts with probability I) , above
we have neglected dealing with protocol "divergence." Also for simplicity, we let a
player, at each round, run his own version of the protocol, Pi, on the just-received
messages and on the ent,ire history of his execution of the protocol. This is certainly
wasteful. In most practical examples, in fact,, it suffices to remember very little of the
past history. Also notice that t,he current round number is not an available input to
Pi, but it can be easily derived from the current history. In our prot,ocols, however,
we make players very much aware of the round number. In fact, we actually spell out
what each Pi should do separately for each round. Notice also that the strings Ri
need not to be given "in full." It suffices that a, mechanism is provided that "retrieves
and deletes" &'s first bit.

Adversaries. We nouT allow malicious errors to occur in the execution of a protocol.
A processor that has made an error is called faulty or bad. To formalize the idea that
faulty processors may coordinate their strat,egies in an optimal way, we envisage a
single external entity, the adversary, that chooses which processors to corrupt and
sends messages on behalf of the corrupted processors. Since we wish our adversary
to be as strong as possible, u7e allow it to be a nonuniform proba.bilistic algorithm.
(In fact, in our protocol, we might as well assume that an adversary is an arbitrary
probabilistic noncomputable function.)

DEFINITION 3. Let n. be an integer. greater th,an 1. A n n-party adversary is a
probabilistic algorithm that: on. any input (u.sually representin.g A's previous activity
in an execution) halts with probability 1 an.d outputs either an inleger in th.e ra.nge
[I, n] (the identity of a newly corrupted player) or a sequence of pairs (j , AJ), where
j is an integer between 1 and n (th,e identity of a corn~pted player) and Af is an
n-tuple of strings (the messages sent by j in the current round). A n adversary, A, is
a sequence of n-party adversaries: A = {A(n.) : n = 2, 3 , . . .}.

Executing protocols uiith an, adversary. \Ve now define what it means for an n-
party protocol P to be executed with an n-party adversary A. A enters the execution
with an initial adversarial history, a string denoted symbolicallg by H:: and an
initially bad set, BAD' C [I, n] . String HI may contain some a priori knowledge
about the inputs of t,he players, the result of previous protocols, and so on. Set BAD'

represents the players corrupted at round 0, that is, before the protocol starts. (In

OPTIhIAL PROBABILISTIC BYZANTINE AGREEMENT 881

other words, if P were the first protocol "ever to be executed," BADO would be empty.
If, as we shall see, P were called as a subprotocol, BADO would comprise all the players
that have been corrupted prior to calling P.) Adversary A may, at any round, corrupt
an additional processor, j. When this happens, all of j's history becomes available
to A;'' as for all corrupted processors, all future messages sent to j will be read by
A; and A will also compute all of the messages that j will be sending. Essentially,
j becomes an extension of A. Thus if k E BAD', k's private input is what becomes
available to A at the start of P, and A will totally control player k for the entire
execution of P.

Since we want to prepare for the worst, we let the adversary be even more powerful
by allowing rushing; that is, we let the message delivery (which is not simultaneous) be
as adversarial as possible. At the beginning of each round, all currently good players
read the messages sent to them in the previous round and compute the ones that
they wish to send in the present round. We pessimistically assume that the messages
addressed to the currently corrupted processors are always delivered immediately, and
if based on this information the adversary decides to corrupt an additional processor j ,
we pessimistically assume that it succeeds in doing so before j has sent any messages to
the currently good players, thus giving A a chance to change these messages. Further,
we consistently "iterate this pessimism" within the same round. That is, once j is
corrupted in round r , we assume that the messages addressed to j by the currently
good processors are immediately delivered, while j has not yet sent any messages to
the remaining good players. This way A may decide whom to corrupt next in the
same round, and so on: until A does not wish to corrupt anyone else in round r .
At this point, A computes all messages sent by the corrupted processors in round r.-
These "bad" messages will be read by the good processors (of course, each processor
receives the messages addressed to him), together with all "good" messages, at the
beginning of round r + 1:

The privacy of the communication channels of a concrete network is captured
in the formulation below by the fact that messages exchanged between uncorrupted
processors are never an available input to the adversary algorithm.

The history of a bad player is essentially frozen at the moment in which he is
corrupted because A has essentially subsurned hirn from that point on.

DEFINITION 4. Let n be an integer > 1, H i , pl, . . . , p, be finite strings, R A , R1 ,
. . . , R, infinite binary sequences, BAD' be a subset of [I, n] and GOOD' be its comple-
ment, P = (P I , . . . , P,) be an n-party protocol, and A be an n-party adversary. Then
by executing P with A on initial adveraarial history H i ! inputs p l , . . . ,p,, initially
bad set BAD', and coins RA and R1,. . . , R,,, we mean the process of (i) generating,
for all players i and rounds r , the quantities

Hi', ibIr-, f\.iLi? C,', and Rr (*whose interpretation, as well as their setting for
T = 0, is the same as in Definition 2)
and the new quantities

H.i (a string called the history of the adversary at round r) ,
CAi (a binary string called the coin tosses of the adversary at round r) ,
RL (a n infinite subsequence of RA called the coin tosses of A after round r),

and
BAD' and GOOD' (two sets of players called, 7*especti,velg. the bad players at

round r and the good players at round r , s~ich that Vrt GOOD^ = [I, n.] - BAD')

lo This is a clean but pessimistic approach (which makes our result stronger). In practice, though
j niay wish to fully collaborate with A by sharing all information he has. he may still have trouble
in remembering-say-all previously received messages o r all previously made coin tosses.

882 PESECH F E L D M A N A N D SILVIO MICALI

by setting C i = E and R\ = RA and (ii) executing th,e following instructions for
r = 1,2, . . . :'

0. TEMPH; := Hi- ' ; TEMPRL := RL-'; TEMPGOOD' := GOOD'-^; TEMPBAD'

:= BAD'-'.
"Because A's history, future coin tosses, and sets of good and bad players
dynamically change within a round, we shall keep track of these changes in
temporary variables. However, their final values within round r , respectively,
H i , R L , GOOD', and BAD', are unambiguously defined. "

1. ('Just as when all processors are honest," Vg E GOOD'-', generate A/ii+,
"the messages that g wishes to send in this round (which may be reset i f g
is corrupted in this round)," C;, and Rl by running P, on input Hi-' and
coins Ri-' .

2. Vg E GOOD'-' and Vb E BAD'-', TEMPH; := (TEMPH;, g, b: Mi,[b]).
3. Run A on input TEMPH; and coins TEMPR:.

If i n this execution of step 3 A has output j E TEMPGOOD' and made the
sequence of coin tosses C , then

TEMP BAD^ := TEMPBAD' U { j) , TEMP GOOD^ := TEMPGOOD' - { j) ,
TEMPH; := (T E M P H L , H;-', C;, C) ('so that from H;-' and C; A can
reconstruct, all of the messages that j wished to sen.d in round r , and
from T E M P H L and C she can reconstruct why she has corrupted j,"
TEMPRL := T E M P R ~ I C "adjust A's future coin tosses, ''
b'g E TEMPGOOD', T E M P H L := (T E M P H L , ~ , j, M i - [j]) , lli.e., accord-
ing to rushing, A is also given the messages that the currently good
players wish to send to j in this round, " and
go to step 3 "to corrupt next processor."

Otherwise, i f i n this execution of step 3, A has output, Vb E TEMPBAD' , a
vector Mb E ((0 , l) *) n "as b's round-r messagesx" and ma,de the sequence
of coin tosses C , then

Vb E BAD', ML+ := Mb,
TEMPH; := (TEMPH; , C) "SO that she can reconstruct the bad players '
messages of round T , " and
TEMPR: := T E M P R L I C , and "adjust the final round-r quantities as
follows."

4. Letting C be the sequence of coin tosses A has made since the last execution
of step 2,

H i := TEMPH;; C> := C; and RL := TEMPR;;
GOOD' := TEMPGOOD' and BAD' := TEMPBAD' ;

V i , j E [l , n] , M L i b] := M;+[i];
b'g E GOOD', H; := (H i - ' : M L g , C ;) ;
Vb E BAD'-', Hi := (H:-', bad), and Yh E BAD' - BAD'-', H[:=
(H:-', CL, bad).

Let E be the sequence (of tuples of quantities resu1tin.g from. the above computa-
tion) so defined:

E = E o , E 1 , ...,
where

By convention, if A's output is not of this format, then it is assumed tha t j14~, = (6.. . . , t)

Vb E TEMP BAD^.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 883

We call E the execution of P with A on initial quantities H i , BAD', and pl, . . . ,p , ,
and coins RA and R1,. . . , &. The value E, is called round r of E . If R is a positive
integer, by the expression E up to round R, in symbols Elo,R1, we mean the finite
subsequence Eo, . . . , ER.

(Note: The quantities H l , n/ILi, Cc, Rz, HL. C:, R';. BAD', and
GOOD' may carry an additional superscript or prefi to emphasize the protocol during
the execution of which they have been generated.)

Remark. The ability of an adversary to corrupt players at arbitrary points in
time of a protocol is crucial in a randomized protocol. For a deterministic protocol,
the adversary's optimal strategy may be calculated beforehand, but it may profitably
change during the execution of a randomized protocol. For example, consider a prob-
abilistic protocol for randomly selecting a "leader," that is, a processor to be put in
charge of a given task. Depending on the specifics of the protocol, it may be impossi-
ble for the adversary to corrupt a few players beforehand and coordinate their actions
so that one of them is guaranteed to be elected leader. It is, however, very easy for
her to wait and see which processor is selected as leader and then corrupt it! (This
feature models a "real-life" phenomenon: nobody is born a thief, but some may be-
come thieves if the right circumstances arise To capture this realistic feature, we
must allow'-and successfully deal with-adversaries that can corrupt players, during
run time, in a dynamic fashion.)

Fractional adversaries. Above we have presented the mechanics of executing
a protocol with an adversary exhibiting what is essentially an arbitrarily malicious
behavior. To keep things meaningful, however, we wish to put a cap on the number
of players that an adversary may corrupt without otherwise limiting its actions in
any way. In fact, we assume that no n-party adversary may corrupt n players in an
execution with an n-party protocol (otherwise, no meaningful property about such an
execution 'could possibly be guaranteed).

We will actually be focusing on adversaries that may corrupt at most a constant
fraction of the players. Let c be a constant between 0 and 1; we say that an adversary
A is a c-adversary if for all n > 1 and all n-party protocols P, in any execution
with P on an initially bad set with < cnz elements, the cardinality of the bad set
always remains < m. Whenever we consider an execution of an n-party protocol with
a c-adversary, we implicitly assume that the initially bad set contains less than cn
players.

We also assume that no more than one adversary is active in an execution of
a protocol. Actually, because the adversary that never corrupts any processor is a
special type of adversary (indeed, a c-adversary for all possible c E (0, I)), we shall
assume that in every execution of a protocol there is exactly one adversary active.
Thus the expression "an execution of protocol P really means "an execution of
protocol P with adversary A, for some adversary A."

Initial quantities. As we have seen, to run an n-party protocol with an n-party
adversary A, we need to specify, other than the coin tosses of A and the n players, the
following initial quantities: (1) the initial adversarial history H i , (2) the initially bad
set BAD', and (3) the inputs (p l , . . . , p,). For the purpose of defining the mechanics
of executing an n-party protocol with an n-adversary, we define ZQ,,, the set of the
initial quantities (of size n) in a most "liberal" manner; that is, ZQ, = {0,1)* x
2{1....,n) ((0, l)*),. In an accordingly liberal manner, we let ZQ = {ZQn : n > 1)
be the set of all (possible) initial quantities.

In general, however, it is meaningful to prove properties of protocols if the ini-
tial quantities of their executions satisfy a given constraint (e.g., reaching Byzantine

884 PESECH FELDMAN AND SILVIO MICALI

agreement on "the message" sent by a given member of a network is meaningful only
if the identity of this sender is a. common input to all processors in the network).
We actually prefer to dismiss nonmeaningful initial quantities from consideration al-
together. That is, we define each n-party protocol P (n) t.ogether with the set of its
own proper initial quantities, denoted by ZQ;, on which-and solely on which-P(n)
can be run. Thus whenever we say that some specific values I Q are initial quantities
for P(n) , it is assumed that I Q E Z Q ~ . Also, whenever we refer to an execution of
a protocol P with some specific initial quantities IQ, if I Q E I&,, we actually refer
to an execution of P (n) on initial quantities IQ-quantities which actually belong to
I&:. (Indeed, it should be noticed that n can easily be computed from any member
of I&,.) In summary, all initial quantities of a protocol are deemed to be proper-and
we shall use the expression "proper" only for emphasis.

Notice that by specifying the proper initial quantities of a given protocol, one
could easily "cheat" by disallowing certain initial adversarial histories or initially bad
sets so as to make protocol design artificially easy. In this paper, however, the proper
initial quant.ities of a protocol will never in any way constrain the initial adversar-
ial history or the initially bad set, except for its cardinality. hjoreover, in this paper,
proper initial quantities will never irnpose any restrictions on the inputs of the initially
corrupted players. \&Then defining a new prot,ocol, though, we find it convenient to de-
scribe the generic element of its (proper) initial quantities by specifying (in particular)
the inputs of all players, with the understanding that all constraints on the initially
bad players must be dropped; that is, by saying that (Hi, BAD', (pl, . . . , p,)) E I&:,
we simply mean that the private input of player i is pi if i does not belong to BAD'.

(In other words, if we wish a more extensive notation,.an element of ZQ: is of the
form (H:, BADO, {(i,p,) : i @ BADO)).)

Random executions and probabilities.
DEFINITION 5. Let n be an integer > 1, P be an n.-pa.rty protocol, A be an n-party

adversary, and I Q E I@. By randomly executing P with A on initial quantities
IQ, we mean the process consisting of generating the infin.itely long bit sequences RA,
R1,. . . , R, by randomly and independently selecting each of their bits in (0: I) and
then executin,g P with A on initial quantities I Q and coins RA, R1, R.,, . W e call
the execution resulting from this process a random execution of P with A on initial
quantities IQ.

Thus the probability that an event e occurs in a random execution of P with A
on initial quantities I Q is solely con~puted over the coin tosses of P and A. (Only if
we have assumed a probability distribution on the private inputs as well-and if we
explicitly say so-we may compute the probability of an event also over the random
choices in selecting the private inputs.) The probabilities of events that are most
important to us are those that are intrinsic properties of our protocols alone; that is,
we shall prove bounds for these probabilities that are valid for any a.dversaries, ariy
initial adversarial history, any initially corrupted players, and any players' inputs.

Fault toleran.ce. The fault tolerance of a, protocol is essentially the highest fraction
of faults it can tolerate.

DEFINITION 6. Let Q be a property (i. e.. a. predicate) and c be a constant betu~een
0 and 1 . W e say that a protocol P is a c-fault tolerant protocol (o r a protocol with
fault tolerance c) with respect to Q if Q (E) = true for any execution E of P with a
c-adversary.

If the property QJ is clear from context, we may simply say that P is a protocol
with fault i,olerance c rat,her than with fault t.olerance c with respect to Q.

Legal sh0rtcu.t~. For simplicity of discourse, we wish to "legalize" some handy

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 885

notation.
Highlighting something. When we want to focus only on some of the quantities

determining an execution, we just omit mentioning the others. For instance, the
sentence "Let E be an execution of n-party protocol P with n-party adversary A on
inputs pl , . . . ,p, and initial corrupted set BADO" stands for "Let E be an execution
of n-party protocol P with n-party adversary A on inputs pl, . . . , p,, initially bad set
BAD', initial adversarial history H i , and coin tosses R1, . . . , R, and RA, for some
string H i and bit sequences R1, . . . , R, and RA.17

Matching types. If P is an n-party protocol and we say that P is executed
with an adversary A, we implicitly assume that A is an n-party adversary. Any
adversary mentioned in the context of a protocol with fault tolerance c is meant
to be a c-adversary. If P is a protocol and A is an adversary, by saying that n
parties execute P with A, we mean that they execute P(n) with adversary A(n). By
saying that a value IQ represents some initial quantities, we implicitly assume that
IQ E (0, I)* x 211*"1 x ((0, l)*), for some positive integer n. By saying that a protocol
P is executed with adversary A on initial quantities I Q = (H!, B A D O , (pl , . . . , p,)),
we mean executing P (n) with A(n) on initial adversarial history H i , initially bad set
BADO, and inputs pl, . . . , p,. By an execution of protocol P with adversary A, we
mean an execution of P.(n) with A(n) for some number of players n (on some proper
initial quantities).

Good, bad, and end. In an execution of a protocol, we say that processor i is
good at round r if the adversary has not corrupted i a t a round 5 r, and say that it
is bad at round r otherwise. When, in an execution, the round under consideration
is not specified, we say that a player i is currently good (respectively, currently bad)'
to mean that it is good at round r (respectively, bad at round r) if the round under
consideration is r. We say that i is eventually bad in an execution if it is corrupted
at some round of it, and say that it is always good otherwise. When no confusion can
arise, we may use the simpler expression good (respectively, bad) instead of currently
or always good (respectively, currently or eventually bad).

We say that an execution of a protocol halts at round r if r is the smallest integer
s for which every good processor has halted in a round 5 s. (Note: If an execution
of an n-party protocol Q has not halted at round r, it continues to be considered
an execution of an n-party protocol after that round, whether or not some of the
good processors have halted by round r and no longer execute the protocol.) Let R
be a constant and P be a protocol; we say that P is an R-round protocol if in all
executions of P every good processor halts a t round R. (Note: In every executionoof
an R-round protocol, all good processors halt "simultaneously," but if an execution
of a protocol which is not R-round halts at round R, the good processors may not
halt in the same round of that execution.) We say that P is a fixed-round protocol if
it is an R-round protocol for some value R. All of our protocols, except for the last
one, are fixed-round. We say that a protocol does not halt before round r if in all its
executions no good processor halts a t a round 5 r.

Subprotocols. To facilitate the description of our Byzantine agreement protocol
and to make it possible to use parts of it in other contexts, we have constructed it in
a modular way. We thus need the notion of a subprotocol, that is, a protocol that is
called as a subroutine by another protocol. Fortunately, in this paper, all subprotocols
are fixed-round, they are called at rounds specified a priori by protocols (no execution
of which halts by those rounds), and n-party protocols call only n-party subprotocols.
(This simplifies our formalization somewhat; for instance, it makes it very clear when
the call starts and when it ends.)

886 PESECH FELDMAN AND SILVIO MICALI

Let Q be a > r-round protocol calling an R-round protocol P at a prescribed
round r . Then an execution of Q will be suspended once it reaches round r . At that
point, the input value of each player i , pi, is specified by either P itself (i.e., as when pi
is a constant) or player i's prior history, H:-'. (If this is the case, we formally assume
that there is a function 1: specified a priori, that, evaluated on H:-', determines
pi.) The execution of P on these inputs then starts. The good players execute P as if
it were (rather than a subprotocol) "the first protocol they ever execute in their life,"
that is, their execution is independent of their prior histories. The adversary, on the
other hand, is allowed to take advantage of what it has "learned" in the execution of
Q to fine tune its strategy in the execution of P.12 Moreover, should the adversary
corrupt an additional player k during the execution of P, she will get, in addition
to k's current history in the execution of P , its "suspended" history in Q. When
P ends, each player appends its final "P-history" to its "suspended Q-history," and
Q's computation is resumed. Processors corrupted in the execution of P are also
considered corrupted in the resumed execution of Q.

DEFINIT ION 7. Let n be an integer > 1, A be an adversary, P be an n-party
R-round protocol, Q be an n-party protocol calling P at roun,d r , and R;, RAP, R i ,
R?', . . . , R?', R:, . . . , RL, R?', . . . , R:' be infinite binary sequences. B y executing
Q with A on initial quantities I Q and coins

we mean the following:
1. To execute Q "a first time" with adversary A on initial quantities IQ and

coins R i , R?'., . . . , R:' "zlp to round r" so as to generate an execution up to round
R, E l , and thus quantities H;~, B A D ~ ~ Q , and H:~ for each player i.

2. (For each player i , we let pi be the input specified by H,''~.) To generate an
execution up t o round R, -E2, by running P with A on initial inputs P I , . . . ,p,, initial
'adversarial history H > ~ , initially bad set BAD'", and coins RAP, R;, . . . , R; as usual
ezcept for the following. If A corrupts a new player j at a round x, it receives as an
input not only the history of player j i n the present execution, H;'~, but also H;"~
("j 's suspended history in Q").

3. To generate an execution E 3 by running Q with A on initial adversarial his-
tory H:", initially corrupted set BAD^.^, and inputs (H:~, H ~ ' ~) , . . . , (HzQ, Ht lP) .

W e let the corresponding execution (of calling protocol Q with A on the above
initial quantities and coins) consist of the sequence E whose first r elements are the
elements of E l , next R elements are those of E 2 , and remaining elements are those of
E3. (I n other words, the execution of a protocol Q that calls an R-round subprotocol
P at round r is obtained by identifying, for each p f 11, R], round p of P with round
T + P ofQ.1

The notion of randomly executing a protocol and that of a random execution of
a protocols are extended i n the natural way to a protocol that calls a subprotocol at a
prescribed round.

The notion of a subprotocol is immediately generalized to allow nesting of sub-
protocols, that is, to allow Q itself to be a subprotocol. Assume that for 1 < x < k,
protocol Q, has called fixed-round protocol Q,+' at round r,. Then if protocol

l2 For instance, assume that a player j has been corrupted by A during the execution of Q before
P was called. Then it is conceivable that from the Q-history of player j at the time of the call, the
adversary may infer the Q-history at the time of the call of a good player i well enough t o predict i's
input t o P. (That is, Q may induce some correlation among the inputs of subprotocol P that need
not to be there if P were executed "from scratch.")

OPTIbIAL PROBABILISTIC BYZANTINE AGREEMENT 887

Q = Qk calls P a t round r , all of the mechariics for calling P , executing P, and
including the result of P's execution in the Q-histories remain the same, except that
if a new processor i is corrupted during the execution of P , the "suspended his-
tory" of player i learned by the adversary, rather than simply being H ~ " ~ , is actually
(H[,Q' , . . . , H:*Q~).

Concurrent protocols. Since it is the goal of this paper to squeeze as much compu-
tation as possible into a few rounds, we need to introduce the notion of concurrently
executing more protocols, each protocol on its own inputs.

D E F I N I T I O N . Let R be a positive integer, n be an integer > 1, and L be a finite
set (of labels). Then an (n-party R-round) concurrent protocol is a mapping from L
into the set of n-party R-round protocols.

For each x E L , we denote by P x the image of x under P and by P: the program
of player i within P x , that is, P x = (Pr , . . . , P:).

In an execution of a concurrent protocol P , the good players execute each of the
Px's independently of the others. This restriction does not apply to the adversary,
who can make use of the information learned in the execution of one of the protocols
to choose her actions in the execution of another. Moreover, if the adversary corrupts
player i at round p of the execution of a protocol Px, then i becomes corrupted in the
execution of every other protocol in P, but the total number of bad player increases
only by one. Let us now be more precise.

D E F I N I T I O N 8. Let R be a positzve integer, n be an integer > 1, L be a finite
set, P : x E L + P x be an n-party R-round concurrent protocol, A be an n-party

- -

adversary, H i be a string, RA be an infinite binary sequence, B A D O be a subset of
11, n], p?, . . . , pz strings, and RT, . . . , R: be infinite binary sequences. B y executing P
(or, equivalently, by concurrently executing V x E L P x) with adversary A on initial
adversarial history H i , initially bad set B A D O , inputs py, . . . ,pZ,, and coins RA and
RT, . . . , Rc, we mean performing the following instructions for each player i E [I, n]
and each ~ o u n d r = 0,1,. . .:

(a) V i E GOOD'-' and V x E f , compute w::', Ad::', c?~', and ~ 7 ~ ' from
T- l ,Pz bfr-l,P'

M+i t4 7 and H ~ ~ - ~ ~ ~ ~ by running P: so that the k th coin toss of P: i s
the k th bit of R:.

(b) Execute H i := H:-', GOOD' := GOOD'-^, BAD' := BAD'-', and Vg E
GOOD', Vb E BAD', V X E L , H i := (H L , i ~ f ; I f : ~ [b]) .

(c) R u n A on input HL so that A ' s k t h coin toss is the k-bit of R A . If C is the
sequence of coin tosses made by A in this execution of step 3, then H i := (Hi, C) . I f
A outputs j E GOOD' i n this execution cf step 3, then BAD' := BAD' U { j) , GOOD" :=
GOOD' - { j) , and 'dg E GOOD', V x E f , HL := (H i , h ~ i < ~ [j]) , and go to step (c).
Else "A has output for each bad player b and label x an n-message vector M f . "

(d) Letting C be the sequence of coin tosses made by A since the last execution
of step (b), set C L = C and Vb E BAD', V x E L , AIL- = h I f .

The execution corresponding to the above process is E = E l , . . . , ER, where

where Hip = { (x , H;lx) : x E C) , Ad:- = { (x , Ilf2r2) : x E C), h I L i = { (x , M y) : x E
C) , and C l = { (x , Ciryz) : x E C) . That is, each quantity relative to protocol P 2 is
labeled with x .

The notions of randomly executing a concurrent protocol and that of a random
execution of a concurrent protocol are obtained in the natural way.

A concurrent protocol P : x E L + P x can be called at a prescribed round r by
another protocol Q v e y much like an ordinary subprotocol. (I n this case, the players

888 PESECH FELDMAN AND SILVIO MICALI

Q-histories at round r must specify, for each x E L, the inputs p;, . . . ?pE on which to
run protocol P x ; that is, Vx E L, each Qr specifies p:.)

Sequenced protocols. \Ire ulill also need the notion of a sequenced protocol. This
consists of a pair of protocols (P. Q), where Q is run after P and on the histories of
P. In this paper we actually need to consider only the case of sequenced protocols
(P, Q), where P is R-round. Thus after an execution E of P , for all player i, i's input
to Q consists of i's round-R history in E.

Like any other protocol, a sequenced protocol may be called as a subprotocol.
Note that if (P, Q) is a sequenced protocol, then P and Q can never be executed con-
currently. However, if (PI, Q1), . . . , (Pk7 Qk) are sequenced protocols, then it might
be possible to concurrently execute PI , . . . , Pk and then concurrently execute subpro-
tocols Q1, . . . : Q,, running each Qi on the history of the execution of Pi.

Message bounds. As we have seen, at each round in the execution of a protocol
P = (PI , . . . , P,), the adversary sends a message to each currently good player g,
which then feeds it to P, (among ot,her inputs). Thus by sending g arbitrarily long
messages, the adversary could arbitrarily increase the amount of g's local computation.
To meaningfully discuss complexity issues, we thus need t,o modify the mechanics of
protocol execution by introducing message bounds.

The message bound is a variable internal to .each processor that at each round
evaluates to a positive integer or to +co a special value greater than all positive
integers. If a t round r the message bound of a currently good player g is set to
a positive integer k, then g is allowed to compute the k-bit prefix of any incoming
message at round r in k computational steps; only after this truncation will a message
become part of the input, to PSr.

A simple and flexible way to specify the message bounds of a player at every round
is to give him a special input, the message-bound input: in any execution in which the
value of this input is v, a player sets to v the message bound of every round. (With an
eye to complexity, these special inputs will be presented in unary; in fact, because we
charge v steps for extracting the v-bit prefix of a string, we do not wish this operation
to be exponential in the message-bound input.) Alternatively, a protocol can specify
the message bound of round r within the code of round r itself-and thus may set
it to a lower value when shorter messages are expected (from the good players). In
either way, if it wishes to keep its own running time under control, a protocol must
set the message bounds of each round to finite values. (If it fails t o do so in even
a single round, it will be in that round that the adversary will send extremely long
messages.)

Let us now see what happens to message bounds if a protocol P calls a subprotocol
Q. If Q has message-bound inputs, then P calls Q, specifying the values of these
inputs, as for all other inputs of Q. If Q sets its own message bounds as part of its
code at each round, then it is enough for P to call Q. In either case, throughout the
execution of Q, Q's message bounds are to be enforced; only after the call is over and
the execution of P is resumed will P ' s message bounds become effective again.

Complexity m.easures. We now wish to discuss the two notions of round complexit,y
and local complexity. In so doing, we focus directly on the two cases that are really
relevant to this paper; t,hat is, constant round complexity and polynomially bounded
local computation. We leave to the reader-if she so desires-the task of generalizing
these notions in meaningful ways.

DEFINITION 9. Let P be a protocol with fault tolerance 6. M'e say that P runs
in an expected coristant number of rounds if there exists a positive constant d such
that for all numbers of players n, for all #-adversaries A, and for all proper initial

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 889

quantities IQ , the expected nmmber of rounds for a random execution of P(n) with
A(n) on I Q to halt is d.

In measuring the amount of local computation in an execution of a protocol P
with an adversary A, we count only the steps taken by the currently good players.
(The adversary attacking the protocol can, of course, compute as much as it wants,
but its steps do not contribute to the local computation of the protocol.) Recall that
we have defined protocols to be uniform programs. Thus before running a protocol
P in an n-size network, the players must first run P on input n so as to compute the
exact n-tuple of programs, P (n) , that they should execute. (Player i will, in fact,
execute the i th component of P(n) .) We thus also count as P's local computation
the steps necessary for the players of an n-size network to compute P(n) .

Following the current tradition, we identify efficiency with polynomial-time com-
putation, and we insist that our polynomial-time bounds hold for any possible adver-
sary attacking the protocol.

DEFINITION 10. Let P be a protocol with fault tolerance 4. We say that P runs
in (expected) polynomial time if there exists a polynomial Q such that the following
hold:

1. For all suficiently large n, the (expected) number of steps for protocol P to
output P(n) = (P I , . . . , P,) on input n is less,than Q(n).

2. For all integers n, for all 4-adversaries A, and for all initial quantities IQ,
if L is the sum of the lengths of the inputs of the players outside the initially bad set,
the (expected) number of protocol steps for a random execution of P(n) with A on I Q
to halt is less than Q(n + L).

(Here by "protocol step" we mean any step executed by P, for any currently good
player g.) l3

Notice that to establish the local complexity of a given protocol P , we regard
as an input the size n of the net,work in which P is run. This is indeed necessary
because we consider the steps used to compute P(n) as local computation, but it is
also reasonable with respect to the rest of P ' s local computation. Indeed, even for
protocols that have no inputs (and thus L = 0, as in the case of our protocol OC of
section 'i), we expect that when they are "really" executed among n players, at least
n messages will be sent, which entails that the local computation is at least O(n).14

Notice also that although we have not demanded that a protocol set its message
bounds to finite values for the purpose of defining its local complexity, the amount of
local computation of a protocol P can be small-or just bounded, for that matter-
only if P sets proper message bounds.

4. Presentation and organization. We have chosen to build our Byzantine
agreement algorithm in a modular way. We first introduce graded broadcast, a simple
primitive weakly simulating the capability of broadcasting. We then use this primitive
to build another one: graded verifiable secret sharing. Both primitives are of indepen-
dent interest. Next: we present a technical construction from graded verifiable secret

l3 Note tha t the notion of polynomial time is convenient in tha t we should not worry too much
about fine tuning the balance between the effort of computing P (n) and that necessary t o run the
protocol, nor should we worry about whether the polynomial Q should be evaluated on n + L or-
say--the maximum between n and L, or n times the maximum length of the inputs of the initially
good players. These specific choices would instead be crucial for defining that a protocol runs in a-
say--quadratic amount of time. Similarly, a round complexity t h a t is constant (and thus independent
of all possible quantities affecting the computation) is "more or less uncontroversially defined;"
however, the same cannot be said if the round complexity of a protocol were--say-quadratic.
'" In any case, in a Byzantine agreement protocol each player has a single-bit input, and thus

L = O (n) in a network of size n.

890 PESECH FELDMAN AND SILVIO MICALI

sharing t,o a special protocol for collectively generating a special coin flip, that is, a
bit that is both sufficiently random and sufficiently often visible by all good players.
Finally, we show that Byzantine agreement is reducible to this special coin-flipping
protocol.

Let us now discuss the additional choices we have made in presenting our proto-
cols.

Proofs. Everything important becomes easy with time, and we believe that this
will be the fate of adversarial computation. However, at this stage of its development,
it is so easy to make mistakes that we have chosen to expand our proofs more than
is legitimate and bearable in a more familiar setting. (Proofs are, aft.er all, social
processes and ought only to be convincing to a given set of researchers at a given
point in time.) \We have! however, consistently broken our proofs up into shorter
claims so as to enable the reader to skip what she personally considers obvious.

Steps. As usual, we conceptually organize the computation of our protocols into
steps. The primary reason for grouping cel-tain instructions in a step is clarity of
exposition. As a result, one step may require many rounds to be implemented, while
another may require only one round.

In this paper, we adopt the convention of treating each step as a subprotocol
in itself; that is, executing a step composed of certain instructions means calling a
protocol consisting of those instructions. In view of our mechanism for subprotocol
calling, a consequence of our convention is that each step starts being executed a t a.
"new" round; that is, a step requires at least one round to be implemented.

The advantage of this convention is that we gain a more immediate correspondence
between steps and rounds. For instance, the number of rounds of a protocol simply
becomes t,he sum of the number of rounds of its steps; for another example, in our
proofs, it will be quite easy upon encountering the expression "round r" to realize

. which is its corresponding st,ep.
A (superficial) disadvantage of our conventior, is that our protocols "seem longer"

since one round may be artificially added for each step. In fact, the last
round of a given step consists solely of int(erna1 computations of the processors, it.
can be merged in any pract.ica1 implementation with the first. round of the follou~ing
step. This is no great loss, however, since we are not interested in claiming O(1)
improvements in t,he running times of our prot,ocols.

Random selection,s. As we have seen, by saying that a player i flips a coin, we mean
that he reads the next unread bit, of a string Ri. The use of the expression "flips a. coin"
is justified by the fact t,hat we will be focusing on random executions of our protocols,
in which case, since each bit of Ri is independently and unifornily selected, all coin
tosses of i are "genuine" and independent. In describing our protocols, however,
we make use of additional suggestive language. By saying that 1: "randomly selects
element e in a set S of cardinality k," we mean that the elements of the set are put
in one-to-one correspondence with the integer interval [O, k - 11 and that the player i
keeps on reading [logkl corisecutive unread bits from string Ri until the "na~ne" of
an element in S is found.15 Thus when executing an instruction of the type "Vy E T
randomly select, e, E S"-where both T and S are fi11it.e sets-all of the resulting
selections will be random (since no portion of R., is skipped) and hdependent (since

l5 Thus the possibilit,y t h a t an execution diverges exists here, though we d o not "prot.ect" oursclves
against such an event for two reasons. First, handling divergence properly would have t.ranslat,cd into
much heavier definitions and notations withor~t adding much t o t.he specific content of t l ~ i s paper.
Second, we focus on rar~dom executions, and the probability of divergence in a random execution is
0.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 891

no overlapping portions of R, are ever used). This notation holds for adversaries as
well.

Hiding message bounds. Only one of our protocols, Gradecast, makes use of
message-bound inputs; all others specify their message bounds at each round in their
codes. To lighten these codes, however, we omit making the message bounds explicit
at any round in which they can be simply computed. For instance, if round r - 1
consists, for all players, of the instruction

"if predicate P is true, then send your name to all players; else send them
the empty word E,"

then for any good player, the message bound for round r is [lognl, the maximum
length of a player's name (assuming that the name of a player i is encoded by the
binary representation of integer i).16

Sending and receiving. When processor j is instructed to send a value v to the
processor i, we let v* denote the value actually received by i since it can be different
from v in case j is bad. It may happen that such a value v* must itself be sent to
other processors. In this case, we may write v** for (v*)'.

It is implicitly understood that whenever a message easily recognizable as not
being of the proper form is sent to a good processor, this interprets it as E , the empty
string. Any predicate of E is defined to evaluate to false.

For any string a, we let distribute a denote the instruction of sending o to every
processor.

For every nonempty string a, the expression tally(u), which occurs in round r + 1
of the code for player i of a given protocol, denotes the number of players that sent a
to i in round r . If P is a predicate, the notation P(tally(x)) is shorthand for "there
exists a nonempty string x such that P(tally(z))."

Self and others. Variables internal to processor i will sometimes carry the sub-
script i to facilitate the comparison of internal variables of different processors.

Whenever processor i should perform an instruction for all j , this includes j = i.
For example, when i sends a message to all players, he also sends a message to himself.
A distinguished processor follows the code for all players in addition to his special code.

Math. We are concerned only with integral intervals. Thus if x and y are integers,
the expression [z, y] stands for the set of integers {i : z 5 i < y}.

If S is a set, we let S2 stand for the Cartesian product of S and itself and 2'
stand for the set of subsets of S.

All logarithms in this paper are in base 2 (but we still use the natural base e for
other purposes).

Genders. We will refer to a player as a "he" and an adversary as a "she."'7
Protocols. To describe a protocol P , we just describe P(n) , leaving it to the reader

to check that this code can be uniformly generated on input n.
Comments. We interleave the code of our protocols with clearly labeled comments.

Often, we label short comments by writing them within quotation marks. In fact, in
our protocols, all words within quotation marks are comments, not instructions.

Numberings. Definitions and claims that appear within the proof of a lemma or
theorem are not expected to have interest--or even "meaningv--outside of their local

l6 Of course, our "English" protocols can be implemented in polynomial time only if a proper
encoding is used. For instance, if for sending the name of a player i we chose to send a string
consisting of 2i l's, some of our English protocols would not have a polynomial-time implementation.
However, any "reasonable" encoding would do.

l7 This gender assignment has been made a t random. (bloreover, any additional motive is no
longer valid.)

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 893

5.2. A graded broadcast protocol.

PROTOCOL Gradecast(n)
Input for every player i: h, the identity of the sender, and k, the message bound.
Additional input for sender h: a , the sender's message.
1. (for sender h): Distribute a.
2. (for every player i): Distribute a* .
3. (for every player i): If tally(z) > 2n/3, distribute z ; otherwise, send no messages.
4. (for every player i):
4.1. If tally(x) > 2n/3, output (x, 2) and halt. Else:
4.2. If tally(x) 2 n/3, output (x, 1) and halt. Else:
4.3. Output (E , 0) and halt.

THEOREM 1. Gradecast is a four-round, polynomial-time, graded broadcast pro-
tocol with fault tolerance 113.

Proof. That protocol Gradecast is four-round and polynomial-time is obvious.
Before proving the remaining properties, let us establish the following simple claim.

CLAIR/I TI-1. In any execution of Gradecast with message bound k, no good player
sends a message longer than k.

Proof. A good player may send messages only at steps 1, 2, and 3. If he sends a
message at step 1, then he is the dealer, and the only message he sends in this step
is his input string a, which is guaranteed to be no longer than k. As for steps 2 and
3, what a good player distributes is a message that he has received at the start of
the same step; thus, due to the message-bound mechanism, such a message is at most
k-bit long. W

Let us now show that Gradecast is a graded broadcast protocol with fault tolerance
113. First, consider property 1. Let i be a player that is good throughout the entire
execution of the protocol, and assume that gradei > 0. Then because of message
bounding, there must exist a nonempty string X , whose length is at most k, such
that i computes tally(X) 2 n/3 in step 4. Thus i must receive X from at least a
good player g at the start of round 4. Because X is a t most k bits long and because
of Claim TI-1, this implies that g had actually distributed X in round 3. In turn,
this implies that g had received X as the round-2 message from at least 2n/3 players.
Letting w (w < n/3) of these players be bad, because of Claim TI-1, at least 2n/3 - w
good players had thus distributed X in round 2. Therefore, a t most n/3 good players
could have distributed any value other than X in round 2. Thus for any k-bit string
Y, Y # X , at most n /3 good players and hence < 2n/3 players overall could have sent
Y to a good player in round 2. Thus no good player may have distributed Y in round
3, nor-because of Claim T1-1-may a good player have distributed a string Y' longer
than k whose k-bit prefix coincides with Y. Hence for all good players, tally(Y) < n/3
at round 4 (which, in particular, implies that valuei is uniquely determined). Now let
j be another player, good until the end of the protocol, whose output has a positive
grade component. Since this implies that there exists a string Z, whose length is at
most k, such that j has received Z from at least n /3 players in step 4, and since
we have just proved that Z cannot be different from X , it must be that in step 4
tally(X) > n /3 also for player j ; that is, also valuej = X , which proves property 1.

Property 2 follows from the fact that if a good player i sets gradei = 2, then he
has received a k-bit string X from at least 2n/3 players in round 4. Therefore, by
Claim TI-1, at least n /3 good players distributed X in step 3; thus all good players
must have received X at the start of round 4 from at least n/3 players, and thus all
good players must decide according to 4.1 or 4.2.

894 PESECH FELDMAN AND SILVIO MICALI

Property 3 is easily verified since if h is good, all good players receive and dis-
tribute a in rounds 2 and 3. O

Remarks.
a Protocol Gradecast is still a graded broadcast protocol with fault tolerance 113

when it is run on a network whose communication lines are not private (i.e., if the
adversary can monitor the messages exchanged by the good players).

a If all message bounds were dropped from Gradecast, the resulting protocol
would still satisfy properties 1, 2, and 3 of graded broadcast but would no longer be
polynomial- time.

Theorem 1 guarantees that certain relationships hold among internal variables of
good processors whenever protocol Gradecast is executed with a 113-adversary. These
variables, being internal, are not observable by the adversary. The following simple
lemma, however, guarantees that the adversary can infer them from her history-
actually, from just a portion of her history, something that will be useful much later
in this paper.

LEMMA 1. For any given adversary A, any execution of Gradecast with A is
computable from A's initial history and coin tosses after round 0 if the sender is bad
at the start of the protocol, and from A's initial history and coin tosses after round 0
and the sender's message otherwise.

Proof. As for any determinist protocol, an execution of Gradecast with an ad-
versary is solely determined by (1) the inputs of the initially good players and (2)
the adversary's history and coin tosses after round 0. Now, for protocol Gradecast,
quantity (1) coincides with the sender's message if the sender is initially good, and is
empty otherwise. 0

The use of protocol Gradecast in our paper is so extensive that it is worth estab-
lishing a convenient notation.

Notation. After an execution of Gmdecast in which player i is the sender, we use
the following terminology:

a If a player j outputs a pair (v, 2), we say that j accepts i's gradecast of v, or
accepts v from i. If we do not wish t o emphasize the value v, ure may simply say that
j accepts i's gradecast.

a If j outputs (v, x),.for x 2 1, we say that j hears i's gradecast of v, or hears v
from i. If we do not want to emphasize the value v, we simply say that j hears i's
gradecast.

If j outputs (v, 0) for some value v, we say that j rejects i's gradecast.
In what follows, we shall make extensive use of Gradecast as a subprotocol. I t will

thus be convenient to specif)? a call to Gradecast at step z of an n-party protocol in a
compact way. In particular, since message bounds are necessary only for guaranteeing
the polynomiality of Gradecast, it will be convenient to keep them in the background
as much as possible. For instance, if we are guaranteed that, when executing Gradecast
a t step z of a given protocol, the sender's message is a single bit: we avoid explicitly
specifying that Gradecast is called with message bound k = 1. hlore generally:

If, given the possible choices for string a, k is the least upper bound to the
length of a , then

z: (for player i): gradecast u

means that step z consists of executing Gradecast(n) with sender i, sender's message
a , and message bound k.

a If, given the possible choices for the stririgs oi, k is the least upper bound to

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT

their length, then

z: (for every player i): gradecast ai

means that step z consists of executing Cradecast concurrently n times, one for each
label i E [l, n], so that in execution i the sender is i , his message is ai , and the message
bound is I c .

If, given the possible choices for the strings a,, k is the least upper bound to
their length, then

z: (for player i): b'x E S, gradecast a,

means that step z consists of executing Gradecast concurrently, once for each label
x E S , so that in execution x, the sender is 7:, his message is a,, and the message
bound is k.

If, given the possible choices for the strings a,i, k is the least upper bound to
their length, then

r: (for every player i): b'x E S, gradecast u,i

means that step z consists of executing Gradecast concurrently, once for each label
xi, where x E S and i E [I, n], so that in execution xi, the sender is i, his message is
a,i-, and the message bound is k.

Any of the above calls can be made dependent on whether a given property
P holds: with the understanding.that if P is not true, then the gradecast still takes
place, but the sender's message is the empty string. For instance, if, given the possible
choices for the strings a,, k is the least upper bound to their length, then

z: (for player i): if P, b'x E S, gradecast cr,

means that step z consists of executing Gradecast concurrently, once for each label
x E S , so that in execution x, the sender is i, the message bound is k, and the sender's
message is a, if P evaluates to TRUE (in general, on x and i's current history) and
E otherwise.

Therefore, step z always consists of four rounds. Indeed, though a bit wasteful, the
above convention is convenient to keep our protocols and subprotocols fixed-round.20

6. Graded verifiable secret sharing. We now need to adapt the earlier and
powerful notion of verifiable secret sharing, developed for a different communication
model, to the present scenario.

6.1. Verifiable secret sharing and collective coin flipping. The somewhat
paradoxical concept of ve.r?i,fiable secret sharing (VSS for short) was introduced by
Chor et al. [9], who also provided its first cryptographic implementation (tolerating
O(1ogn) faults). Informally, a VSS protocol consists of two stages. In the first stage,
a dealer "secretly commits" to a value of its choice. In the second stage, this value
is recovered. The value is secret a t the end of stage 1 in the sense that no subset of
players of suitably small size can guess it better than at random, even if they exchange
all of the information in their possession thus far (which good players never do in the
first stage). The value is committed in stage 1 in the sense that a good player can
verify that there exists a unique (and unknown) value x such that whenever stage 2

20 By adopting more complex mechanics for subprotocol calling, we may interpret the above (con-
ditioned) steps differently, and occasionally save rounds and messages.

896 PESECH FELDMAN AND SILVIO MICALI

is performed, with or without the help of t.he dealer and no matter what the current
or future bad players might do, all of the good players will recover x. hloreover, this
unique but unknown x is the value originally chosen by the dealer.

Verifiable secret sharing has by now found very sophisticated applications, 21 but
we will be interested in the simpler, original application of [9] : enabling a group of
players, a minority of which may be faulty, to generate a common and random bit.
Informally, VSS allows such players to "collectively flip a coin" as follows. Each player
privately selects his own random bit and secretly commits to it in stage 1 of a VSS
protocol. \$?hen all have done so, all of these committed bits are recovered in stage 2
of the corresponding VSS protocol and the common, random bit is set to be the sum
modulo 2 of all the decommitted bits.

Since we have already mentioned that the problem of Byzantine agreement is re-
ducible to that of generating a common random bit, the possibility exists of using VSS
for reaching Byzantine agreement. Indeed, as we shall see, we will use a special ver-
sion of VSS (graded VSS) and a much more special version of the above coin-flipping
algorithm (oblivious common coin) so as to produce a bit that is "common enough"
and "random enough" to reach Byzantine agreement in constant expected time. Why
don't we use ordinary VSS to collectively flip a coin in the straightforward way? The
reason is simple: we want to use collective coin flipping for reaching fast Byzantine
agreement in our point-to-point communication networks, but all implementations of
VSS prior to our work either made use of broadcasting (an unavailable primitive in
our networks!) or Byzantine agreement (which for us is a goal and not a tool!).

6.2. The notion of graded verifiable secret sharing. We now introduce a
weaker version of VSS that is more easily obtainable dn our networks without broad-
casting. We call it graded verifiable secret sharing (graded VSS for short). Informally,
this is a sequenced protocol wit.h two components: Graded Sh.are- Verify, which roughly
corresponds to stage 1 of a VSS protocol, and Graded Recover, which roughly corre-
sponds to stage 2. To properly define graded VSS, we need t.he notion of a an event
becoming "fixed" at some .point of the execution of a protocol.

DEFINITION 12. Let X be an event that ma.y occur only after round r in an
execution of a protocol P , and let E be an ezecution o f P. W e say that X is fixed at
round r in E i f X occurs i n every execution E' coinciding uiith E up to round r .

DEFINITION 13. Let P be a sequenced protocol, P = (Graded Share-Verify,
Graded Recover), in urhich

all players have a common input consisting of the identity of a distinguished
processor, the dealer, and (the encoding o f) a set of integers, called the candidate-
secret set;

the dealer has an additional input, called the secret, consisting of an. elem.ent of
the candidate-secret set; and

each processor a: is instructed to output a value verification, E {0,1: 2) at the
end of Graded Share-Verify and an element of the candidate-secret set at the end of
Graded Recover (if this latter comp0nen.t is ever executed on the h.istory of the first
one).

We say that P is a graded verifiable secret sharing protocol with fault tolerance
c if the followin,g four properties hold:

1. Semiunanimity . For ull initial quan,tities (IQ), for all c-adversaries A, and
for all executions of Graded Share-Verify with A on IQ, i f a. good player i outputs

21 For instance? since [26]> it ha< become t h e crucial subroutine of all s~ lbseq~len t completeness
theorems for protocols with honest majority, most notably those in 121, 131: [lo], 1211, and [Xi].

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 897

,verificationi = 2, then uerijcationj > 0 for all good players j .
2. Acceptance of good secrets. For all IQ c-adversaries A and for all executions

of Graded Share- Verijjj with A on IQ, i f the dealer is always good, then verificationi =
2 for all good players i.

3. Verifiability. For all on IQ c-adversaries A and for all executions E of Graded
Share- Verify with A on IQ, if verificationi > 0 for a good player i , then there ezists
a value a in, the candidate-secret set such that the event that all good players output
a when executing Graded Recover (o n their histories in E) is fied at the end of E.
Moreover, if the dealer is always good in E , a = the secret.

4. Unpredictability. For all c-adversaries A, for all players h , for all integer
m, and for all cardinality-m set S , if

a s is randomly chosen i n S ,
a Graded Share-Verify is randomly executed with A, dealer h , candidate-secret

set S , and secret s , and
a dealer h is good throughout this execution, and the adversary outputs a value

a E S (as her '$uess" for the secret) at its end,
then Prob(a = s) = l lm.

Here the probability is taken not only over the coin tosses of P and A but also
over the choice of s . 22

Remarks.
Notice that simply saying-in the verifiability condition-"all good players out-

put a in Graded Recover" is not sufficient for our purposes. In fact, although the
adversary cannot prevent the good players from outputting the same value, this for-
mulation still allows her to decide what the value of a should be while executing '

Graded Recover. (An example of this has been constructed by the second author.)
Thus Graded Share- Verify would not model a secret commitment as discussed above.
For this we need the value of a to be f ied at the end of Graded Share- Verify (when a
coincides with the dealer's secret and is totally unpredictable to the adversary if the
dealer is currently good).

A definition of VSS can be obtained from the above definition of graded VSS
by replacing throughout "verificationi = 2" by "verificationi > 0." (The definition of
VSS obtained in this way is actually, in our opinion, the most general and satisfactory
one in the literature to date.) Similarly, jumping ahead, from our protocol Graded-
VSS, one can easily derive a verifiable secret sharing protocol with broadcasting by
essentially replacing all gradecast instructions with broadcast instructions. (It is the
transformation of a verifiable secret sharing protocol with broadcasting to a graded

2' An equivalent formulation of Unpredictability that does not require that the secret be chosen
at random in the candidate secret set can be informally described as follows.

Let PS(A, h , H i , H!{h), S, s) denote the probability space over the final histories of A obtained
by first randomly executing Graded Share-Verijy with adversary A, dealer h, initial adversarial
history H i , initial histories (in a suitable encoding, of all initially good players other than dealer
h) H!{,.,), candidate-secret set S, and secret s and then outputting the final adversarial history if
dealer h has not been corrupted. Then unpredictability can be reformulated as follows:

4'. For all c-adversaries A, Vh, VH:, VH_{,,), V S , and Vsl, sn E S,

(The reason for including the histories of all players except the dealer is that we want to maintain
unpredictabilit~ even when Graded Share- Verify is called as a subprotocol. In which case, though the
prior histories of the players do not affect the execution of Graded Share- Verify, they will appear-for
the corrupted players-in the final history of A.)

Personally, we find the above formulation (after properly "cleaning it up") generally preferable,
but the one in the main text is in a more convenient form for the purposes of this paper.

898 PESECH FELDMAX AND SILVIO MICALI

VSS protocol \vithout. broadcasting t,hat proves t,o be trickier.)
Let P be a graded verifiable secret sharing protocol with fault t,olerance c.

P = (GSV, GR). Then if there are too few players (i.e., if Ln - c j = 0): even a single
player (over than the dealer) may at the end of an execution of GSV possess sufficient
information t,o predict with probability 1 the dealer's secret. However, t,his does not
contradict Unpredi~t~ability. Indeed, this property demands that no adversary can
predict a good dealer's secret bet,t,er than at. random, and whenever Ln cJ = 0, she
cannot corrupt. any player. (The reader who perceives this phenomenon as awkward
may prefer to define graded verifiable secret sharing protocols only when there are
sufficiently many players. Personally, we prefer to define protocols so that any number
of players great,er than 1 is admissible, and we find it awkward to make exceptions
for c-fault-tolerant protocols.)

6.3. A graded verifiable secret sharing protocol. This subsection is de-
voted to const.ructing the first graded VSS protocol. The basis of our construction
was provided by an ingenious VSS protocol developed by Ben-Or, Goldwasser, and
Wigderson [3]. Their protocol runs in O(n) rounds-when there may be O(n) faults-
in a special t,ype of communication network: the standard-plus-broadcast network.
This is a network in which not only each pair of users, communicate via their own
private line, but all processors also share a broadcast We have adapted
their protocol to our needs in t,wo phases:

1. First, we have improved their result by providing a VSS protocol for standard-
plus-broadcast networks, Fast VSS, that (1) runs in a constant number of rounds and
(2) is conceptually simpler.24 (Ben-Or, Goldwasser, and Wigderson have told us that
they have independently found a constant-round version of their result, but it is more
complicated than ours.)

2. Second, we have transformed Fast VSS (a prot,ocol for standard-plus-broadcast
networks) into ~ra.dedVss: a constant-round graded VSS rotocol for standanl net-
works (i.e., without any broadcasting facilities).

For the sake of conciseness, since the focus of this paper is on stand

a

rd networks,
we forgo providing an explicit description of Fast VSS. (Below we present just the
basic intuition behind it since t,his can effectively be used for GradedVSS as well.)
Indeed, in our protocol Gra.ded VSS, we have merged t,he above two steps into a single
one. (The reader can, however! easily reconstruct the code of Fast VSS from that of
GradedVSS.) We will, however, provide separate intuition for each of the above two
phases.

Phase 1: Fast VSS. In Fast I7SS, the dealer encodes his own secret in a special and
redundant way. Namely, if the adversary can corrupt at most t players, the dealer
selects a bivariate polynomial f (z, y) of degree t in each variable such that f (0.0)
equals his secret. He then privat,ely gives to player i the polynomials Pi(y) = f (i . y)
and Qi(x) = f (z . i) as his shares of the secret, an x-share and a y-share. As we shall
see, the shares of any < t players do not betray the secret at. all. On the other hand,
as expressed by the following lemma, any t + 1 genuine z-shares determine the secret
(and the same is true for the y-shares).

--

23 Actually, thcy share a bit more powerful means of communication: each recipient of a message
m traveling along this special shared channel is guaranteed not only tha t all processors receive the
same string rn t h a t he does but. also that all processors know who t h e sender of m is.

24 T h e protocol of 131 made use of Reed-Solomon codes. while our Fastl/SS does not rely on any
error-correcting codes-or at least it succeeds in hiding then1 awav while remaining self-contained in
a very simple manner.

OPTIMAL PROBABILISTIC BYZANTINE AGREEbIENT 899

Our choice of encoding for the dealer's secret does not guarantee verifiability per
se. In fact, a good player cannot check whether his received x-share is genuine or-
say-a random polynomial of degree t. It is here that the y-shares come into play. In
fact. Fast VSS performs several checks centered around the following simple property:
if two players i and j both hold genuine shares, then it should be that Pi(j) = Q j (i) .

Unpredictability is guaranteed since FastVSS is constructed so that, in every
check, the information about the secret of a good dealer obtainable by the adversary
can be computed from the shares in her possession-which we have already claimed
to be insufficient to predict the dealer's secret.

Phase 2: From VSS to graded VSS. Our transformation of FastVSS into Grad-
edVSS possesses a somewhat general flavor: it appears to provide a compiler-type
algorithm that, on input any known VSS protocol for standard-plus-broadcast net-
works, outputs a graded VSS protocol running in a standard network, with the same
fault tolerance of the input protocol and with essentially the same time and number
of rounds.25 This simple transformation is thus potentially useful: one may be able to
turn more efficient VSS protocols developed in the future into more efficient graded
VSS protocols.

Quite intuitively, the essence of our transformation consists of replacing the broad-
cast instructions of the input VSS protocol by gradecast instructions and then of prop-
erly branching on the grade produced by each gradecast. As the expression "properly"
indicates, however, some care is needed in deciding how to branch. Though some de-
gree of freedom is available, it is crucial to exploit the fact that grades are 3-valued.
It should be noticed that after a gradecast instruction of G,radedVSS, we sometimes
brandh based on whether the gradecast is accepted or not (i.e.. on whether the result-
ing grade is 2 or less than 2) and other times based on whether the gradecast is heard
or not (i.e., on whether the resulting grade is 2 1 or equal to 0). Now, although some
of these "accepted-or-not" branchings could be replaced by "heard-or-not" branchings
(and vice versa), it can be shown that adopting only a single type of branching does
not work. Carrying VSS from standard-plus-broadcast networks to standard ones
without losing too much meaning is indeed the very reason that we have introduced
our 3-valued graded broadcasting primitive.

(If going from VSS protocols to graded VSS protocols requires a minimum of
attention, the "reverse" transformation is instead quite straightforward. Protocol
FastVSS is in fact immediately obtainable from protocol Graded VSS.)

Before presenting protocol GradedVSS, let us state and prove a variant of the
classic Lagrange interpolation theorem.

LEMMA 2. Let p be a prime, t be a nonnegative integer, xl!. . . , xt+l be distinct
elements in Z,, and Ql (y), . . . , Qt+l(y) be polynomials mod p of degree t . Then there
exists a unique bivariate polynomial F(x , y) of degree t (in each of the variables x and
y) such that

Proof. Define (Lagrange interpolation)

*' While our transformation works for all known VSS protocols, it is still conceivable that it cannot
be applied to some future "bizarre" one.

900 PESECH FELDMAN AND SILVIO MICALI

Then F(x , y) has degree t and satisfies (*). We now argue that this polyno~nial is
unique. Now assume that there exist two different t-degree bivariate polynomials
Fl(x, y) and F2(x, y) that satisfy (*). We will prove that the polynonlial

is identically 0. For each k = 1 , . . . , t + 1, we have

That is, for each k = 1,. . . , t+ l , the polynomial in y c = o (C : = o rVx;)yj is identically

0. Thus for each fixed I , ri;x; = 0 for k = 1, . . . , t + 1, that is, the polynomial
c:=~ rijxi evaluates to 0 at the t + 1 points XI , . . . , q+1. This implies that r,; = 0
for all i = 1,. . . , t + 1. Thus R(x, y) is identically 0, which proves the uniqueness of
F(x,Y). 0

Notation for protocol GradedS11. In most of the scientific literature, the upper
bound on the number of corruptable processors, denoted by t, is integral and explicitly
given as an input to a fault-tolerant protocol. Having t as an input to each protocol
would, however, be a bit cumbersome in our case: we have quite a few subprotocol
calls and thus we would need to continuously specify the value of t for each call. Also,
we are primarily interested in the highest possible value of t (i.e., t = L(n - 1)/3])
and our protocols-with the singular exception of GradedVSS-do not become more
efficient for smaller values of t. However, to allow the reader to appreciate how the
efficiency of Graded VSS decreases with t, we set t = [(n - 1)/3] at its start (rather
than making t an input to the protocol).

THEOREM 2. GradedVSS is a graded verifiable secret sharing protocol with fault
tolerance 1/3 that runs in expected polynom,ial t2rn.e; GradedSV is a 25-round protocol,
and GradedR is a two-round protocol.

Proof. The claims about the number of rounds of GradedSV and GmdedR are
trivially verified. Equally simple to verify is the claim about the running time. [Recall
that our choice of notation allows us to hide our message bounds.) The only difficulty
that perhaps arises is about the computation of the prime p in step 1 of GradedSV(n.).
Actually, this prime can be found in deterministic polynomial time. In fact, for all
sufficiently large k, there is a prime in the interval [k,2k]. Thus, letting k be the
maximum between n and m, we can in poly(k) time (and thus in time polynomial in
n plus the total length of our inputs since h < n and m is presented in unary) consider
all integers in [k, 2k] in increasing order until one is found that is proved prime by
exaustive search of its dix r i s ~ r ~ . '

Let us now address the other claims.
Semiunanimify. If any good player G outputs verificationc = 2, he has received

recoverable from at least 2t + 1 players, of which at least t + 1 are good. Thus every
other good player g has received recoverable from at least t + 1 players, so he outputs
verificationg 2 1.

Acceptance of good secrets. Let us first show that if the dealer is good (throughout
GradedSV), then no good player gradecasts badshare in step 6. Since in this step a
good player G can gradecast badshare only in three cases, let us show that none of
them can occur.

Case 1. Assume that G has accepted the gradecast of disagree(j) from a player k
in step 4. Then because of property 2 of any gradecast protocol, the dealer has heard

OPTIMAL PROBABILISTIC BYZAXTINE AGREEMEKT 90 1

PROTOCOL GradedSV(n)
Input for every player i: h. the identity of the dealer, and m. a unary string

encoding the candidate-secret interval [O1m. - 11.
1. (for every player i): Compllte p: the smallest prime greater than n and m,

and set t = [(n - 1)/3J.
Comment. All computations are done modulo p.

3. (for dealer h): Randomly select a t-degree bivariate polynomial f (x, y) such
that f(O.0) = s. "In other words, set a00 = .s: for all (i. j) E [1,tI2 - {(0,0)),
randomly select aij in [O, p - 11. and set f (x. y) = xi,; ai;xi Y'." For all i,
privately send (P i ,Qi) to player i, where Pi = Pi(y) = f (i, y) and Qi =
Qi(x) = f (x: 2).

Comment. f (0, 0) = s: your secret. P i (j) = Q;(i) for all i and j .
3. (for every player i): For all j: if the dealer has not sent you a pair of t-degree

polynomials mod p, send E to player j ; else, privately send j the value Qt(j) .
4. (for every player i): For all j , if P:(j) # (QJ(i))*, gradecast disagree (j) .

Comment. Either j or the dealer is bad or both are bad.
5. (for dealer h): For all (i, j) E [I, nI2? if you heard disagree (j) from player i

in step 4, gradecast (i? j, Qj(i)). .

Comment. i or j is bad or both are bad: what you reveal is already known
to the adversary.

' 6. (for every player i): For all (k, j) E [l,n]< if you accepted disagree (j) from
player k in step 4 and

in the previous step you did not accept from the dealer exactly one value
of the form (k, j, V), where V E [O,p - I]; or
you accepted such a value and k = i, "i.e., you are k," but
v # P:(j); or

. you accepted such a value and j = i, "i.e., you are player j:" but V #
Qf (k),

gradecast badshare. "The dealer is bad."
7. (for dealer h): For all i , if you heard badshare from player i in step 6, gradecast

('i, P ~ (Y) , Qi(x)).
Comment. i is bad: what you reveal is already known to the adversary.

8. (for every player i): If
(a) you gradecasted badshare in step 6: or
(b) you accepted badshare frum more than t players in step 6; or
(c) for each player j whose gradecast of badshare in step 6 you have accepted,

a step ago you did not accept from the dealer the gradecast of a value
(j : U, V) : where U and V are t-degree polynomials, or you accepted such
a value but Qf (j) # Cr(i) or P; (j) # V(i),

distribute badshare. "The dealer is bad."
9. (for each player i): If tally(badshare) 5 t: distribute recoverable.

10. (for each player i):
If tally(recoverab1'e) > 2t, output verification, = 2.

Comment. The secret is recoverable and all good players know it.
Else: If tally(recoverab1e) > t , output verificatio~ = 1.

Comment. You know that the secret is recoverable, but other good players
may not know it.
Else: Output verification+ = 0.

Comment. The secret niay or may not be recoverable.

PESECH FELDMAN AND SILVIO MICALI

PROTOCOL GradedR(n)
1. (for every player i): Distribute Pi* and Qf .
2. (for every player i):

For each player j , set Pj(y) = P;" and Qf (y) = Qj*. If you have accepted
badshare from j in step 6 of GradedSV arid you have heard (j, U(y), V(x))
from the dealer in step 7, reset Pj(y) = U(y) and Q;(x) = V(x).

Comm.ent. Pj(y) and Q j (z) are your own view of player j's fin,al shares.
Let counti(j) consist of the number of players k for which Pi(k) = Qi(j) .

Comment. If a good player has output verification > 0 in GradedSV, all
good players are given count > 2t + 1. However, a bad player may be
given count > 2t + 1 by some good player and a low count by another
good player.

If possible, select a set of t + 1 players k such that cozlnti(k) 2 2t + 1. Let
kl, . . . , kt+l be the members of this set.

Comment. If a good player has output verification > 0 in GradedSV,
there will be such a set. In this case, although different, good players
may select different sets and some of these sets may contain bad players,
each set determines the same bivariate polynomial

Compute the unique bivariate polynomial P (x , y) such that P(kj , y) =
P,!, (y) j E [1, t + 11 and out.put 'P(0,O) mod m as the dealer's secret.

k's gradecast and has thus responded in step 5 by gradecasting (k, j, Qj(k)). Since
the dealer's gradecast is proper, it is necessarily accepted by G.

Case 2. If G gradecasts disagree(j) in step 4, the dealer accepts this proper grade-
cast and thus properly responds by gradecasting (G, j, Qj(G)), and Qj(G) coincides
with G's x-share, Pc(y), evaluated a t point j since for a good dealer P c (j) = PG(j) =
f (G, j) = Qj (GI.

Case 3. If G has accepted disagree(G) from k in step 4, the dealer h& at least
heard this value and has thus responded by properly gradecasting (k, G, Qc (k)). This
value is thus accepted by G; moreover, since the dealer is good, Qz(x) = QG(x) and
thus QL(k) = QG(k). Thus if the dealer is good, in no case does a good player
G gradecast badshare in step 6. This implies that no good player can distribute
badshare in step 8 according to conditions 8(a) or 8(b). ' Moreover, as long as the
dealer continues to be good in step 7, a good player G cannot distribute badshare
because of 8(c) as well. In fact, if G has accepted badsh,are from j in step 6, the dealer
has a t least heard this value and responded by properly gradecasting the polynomials
Pj(y) and Qj(x); since G accepts all proper gradecasts, and because when the dealer
is good P;(i) = Pj(i) = Qi(j) = Qf (j) for a11 i and j , all of G's checks in steps 8 will
be passed. We conclude that if the dealer is good in GradedSV, only the bad players
may distribute badshare in step 8. Thus, since they are at most t in number, all good
players G will distribute recoverable in Step 9 and output veri,ficationG = 2 in step
10.

Verifiability. Let S be an execution of GradedSV in which at most t < n.13 players
are corrupted and a good player outputs ue1:ification > 0, and let R be an execution
of GradedR on the histories of S. We need to show that (1) there exists a value as
such that the event that all good players output as in R is fixed at the end of S and
(2) us coincides with the dealer's secret if he is always good in S.

To this end. let us establish a convenient notation and a sequence of simple claims
relative to S and R. Recall that, since (GradedVSS, GradedR) is a sequenced protocol,

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 903

any player good in R (actually, in R's first round) is always good in S.
LOCAL DEFINITION. In an execution of Graded VSS, a player is said to be satisfied

if he is good throughout the execution and does not distribute badshare in step 8.
CLAIM T2-0. In S, there is a set o j t + 1 satisfied players.
Proof. The proof is by contradiction. Were our claim false, then since there are at

least 2t + 1 good players in S, at least t + 1 of them would have distributed badshare
in step 8. Thus no good player would have distributed recoverable in step 9, and no
good player would have output verification> 0 in step 10.

Due to condition 8(a), we also know that a satisfied player does not gradecast
badshare in step 6 either; thus for all satisfied players i and j , P,'(j) = Q5 (i). In view
of Claim T2-0 and Lemma 2, we can thus present the following (local) definition.

LOCAL DEFINITION. In execution S , we let Gs denote the lexicographically first
set o f t + 1 satisfied players,26 and we let Fs denote the unique, bivariate, t-degree
polynomial associated with Gs by Lemma 2: that is, 3 (i , y) = P,*(y) Vi E Gs.

CLAIM T2-1. Vi E Gs, P:(y) = Fs(i, y) and Qd(x) = Fs(x,i).
Proof. Clearly, P,*(y) = Fs(i, y) Vi E Gs by construction. Ure now prove the

second set of equalities. Let i E Gs; since we are dealing with polynomials of degree t,
it is enough to prove that Fs(x, i) equals Qf (x) at t + 1 points. Indeed, for all j E Gs,
we have

construction - -

where the last equality has been checked to hold by satisfied player j in step 4 since
good player i sent him Qf (j) in step 3.. m

CLAIM T2-2. Let G and i be good in R , and let i also be satisfied in S. Then
Pi' = P: and Q: = QF.

Proof. Informally, we must show that G's own view of i's final shares coincides
with that of i himself. Being good in R , i sends Pi* and Qf to G in step 1 of R. Thus
G sets P: = P,' and QF = Q: at the beginning of step 2 of R. Finally, G does not
reset these variables in the remainder of step 2. Indeed, he may reset these variables
only under certain conditions, which include having accepted badshare from i in step
6 of GradedSV;. however, no satisfied player gradecasts badshare in step 6.

CLAIM T2-3. Let G and g be good in R. Then P:(~) = Fs(g, y) and QF(x) =
Fs(x , 9).

Proof. We prove only the first equality since the second one is proved similarly.
To this end, it is enough to show that Fs(g, y) and P:(Y) agree on every i E Gs.
Indeed, by Claim T2-3, we have

We now prove that

We break the proof of the above statement into two cases:
(a) G does not reset P:(~) (i.e., P:(~) coincides with the polynomial in y that

g sent to G in step 1 of R) ;
(b) G resets PF(y) (i.e., P:(y) is the polynomial in y gradecasted by the dealer

in step 7 of S).

26 Any uniquely specified set of t + 1 satisfied players in S would do.

904 PESECH FELDhlAN AND SILVIO hlICALI

Case (a). In this case. P:(~) = P,'(y). Tl'p must now argue that if i E Gs3 t.hen
Qt(g) = P,'(i). To begin with, notice that since i pri~at~ely sent value Qf (g) to g in
step 3 of S: player g could compare these two values. \Ve now show that Pi (i) # Q: (g)
leads to a contradiction. In fact, if the latter inequality holds, g gradecasts disagree(i)
in step 4 of S. Since i accepts this gradecast, to remain satisfied he must accept
(9, i, Qf (g)) from the dealer in step 5 of S. This causes player g to gradecast badsh,are
in step 6 of S-either because he does not accept the dealer's answer or because he
accepts exactly the same answer that i does by property 1 of gradecast and thus we
still have Qf(g) # P,*(i). Since i must accept g's gradecast of badshare, to keep him
satisfied, the dealer must reply by gradecasting g's x-share and y-share in step 7 of S
in order to have these values accepted by i. Thus these shares are at least heard by
G, who thus resets P: and QF. This contra.dicts the assumption that we are in Case
(4.

Case (b). In this case, G must have first accepted the gradecast of badshare from
g in step 6. Since g is good, this gradecast must have been accepted by good player
i as well. Since i is satisfied, he must also have accepted the value replied by the
dealer, (g, U(y), V(x)). By property 1 of gradecast, U and V are the same values
heard by G and are thus G's own view of g's final shares; t,hat is, U(y) = PF(y) and
V (x) = Q f (x) . The reason that now Qf (g) = PF(i) is that i satisfactorily checked
in step 8 that Qf (g) = U (i).

CLAIM T2-4. For all G good in R and for all k, countG(k) > 2t + 1 * P:(~) =
3s(k ,y) .

Proof. Since Pf(Y) and 3s (k, y) are t-degree univariate polynomials, it is suffi-
cient'to show that they agree on t + 1 points. Indeed, if countc(k) > 2t + 1 and the
bad players are a t most t , there must exist t + 1 good players g such that

def. o f ~ o u n t c Clai lT2-3
pc (g) - ~ f (k) - 3s(k ,g) .

We are now ready to prove that in step 2 of 72, every good player G computes the
bivariate polynomial 3s and thus outputs Fs(0, 0) mod m. To this end, first notice
that there will be at least t + 1 players k such that countG(k) 2 2t + 1. In fact, for
all good players gl and g2, we have

Thus countc(gl) \vill he a t least 2t + 1, that is, at least the number of good players
g2; since there are at least 2t + 1 such players gl, it will be possible for G to select
t + 1 players for which coun , t~ 2 2t + 1. Let. kl , . . . , kt+l be the ones he act,ually
selects-some of them possibly bad. Then G outputs the polynomial P (x , y) such
that

Thus by Lemma 2, P and 3s must be equal, and all good players output Fs(O: 0) mod
m at the end of R. Beca.use R was just any execution of GradedR on the histories of S,
because .Fs is determined by execution S. and because 3s (0,O) mod m. is guaranteed
to belong to the candidate-secret interval [O, n2 --I]! this shows that the event that, all
good players in an execution of GradedR on t l ~ e histories of S output as = Fs(O.0)
mod m is fixed at the end of S.

Let us now show that if the dealer is good throughout S. 3s actually coirlcides
with the polynomial f (x. y) originally selected by the dealer in step 2 of S. By

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 905

Lemma 2, it is enough to prove that there are t + 1 distinct values v such that
Fs(u, 9) = f (v. 3). This is our case. In fact, letting G be a fixed good player, for any
good player g? we have

ClaimnT2-2 Pb (y) good dealer by def.
= P,(v) = f(g:v).

Because a good dealer chooses f (x, y) so that f (0, 0) coincides with his secret, which
belongs to the candidate-secret interval [O, m - 11, whenever the dealer is good, the
value output by the good players in R, as = Fs(O.O) mod m, fixed at the end of S,
coincides with the dealer's secret.

Because S was just any execution of GradedSV in which ve7-ificationZ > 0 for
some good player i, this completes the proof that Verifiability holds for GradedVSS.

Unpredictubility. An appealing, rigorous, and general proof of Unpredictability
is obtainable utilizing the notion of "secure (or zero-knowledge) computation" [30].
As we have remarked, however, such a notion has not yet been published, and it is
too difficult to be quickly summarized here. Therefore. we shall use an ad hoc and
"quick-and-dirty" argument.

Our proof consists of showing that, in an execution of GradedSV in which the
dealer is never corrupted. there exists a special piece of information (a string), in-
dependent of the secret, from which the adversary's history can be deterministically
computed. Because the adversary cannot but predict the secret on the basis of her
history (and of her coin tosses, which are clearly independent of the secret), this proves
that the adversary cannot predict the secret better than at random.

The existence of such a special piece of information follows in part from the general
mechanics of (any) protocol execution, and in part from the specific characteristics
of our GradedSV protocol. We find it useful to present separately the following two
parts of our argument: we present the first part in claims T2-5 and T2-6 and the
second part in claim T2-8. Let us first establish some convenient notation.

Local definitions. Let P be a protocol, A be an adversary, E be an execution of
P with A, and r be a round in E. Then:

we say that a player is eventually bad in E if he is corrupted at some point
of it and always good otherwise.
we denote by hl:G'EB the set of messages (labeled with their senders and
receivers) sent by the always good players to the eventually bad ones in round
r .
We refer to the quantities

1. BADT

2. the round-r history of A,
3. the round-r histories of the eventually bad players.
4. the coin tosses of A after round T , and
5. the coin tosses of the eventually bad players after round r

as the final quantities of round r . (Thus, the final quantities of round 0
include A's initial history.) If x is a step of P and r is x's last round, we refer
to round r's final quantities as the final quantities of step x.

CLAIM T2-5. Given a protocol P and an adversary A in an execution of P with
A, the final quantities of a round r (r > 0) are computable from the final quantities
of round r - 1 and IF^-^^.

Proof. The proof consists of recalling Definition 4 (i.e., how a protocol is executed
with an adversary) and verifying that one can execute instructions 0-4 of Definition
4 to the extent necessary to compute t,he desired final quantities.

906 PESECH FELDhlAN AND SILVIO MICALI

(In essence, A's history and coin tosses after each point of t.he execution of round
r are computable given A's history and coin tosses after round r - 1 (available by
hypothesis), t,he history of each newly corrupted processor at the end of round r - 1
(also available by hypothesis), and the message that each currently good processor g
wishes to send to each currently bad processor b in round r. Now, if g is always good,
such a message is among the available inputs, and if g is eventually bad, it can be
computed by running Pg on g's history and g's future coin tosses at the end of round
r - 1: both of which belong to the available inputs. The history and coin tosses of
each eventually bad player i after round r can be computed from the corresponding
and available quantities after round T - 1 by running P,.) H

Repeated application of Claim T2-5 immediately yields the following claim.
CLAIM T2-6. Given a protocol P and an adversary A, in an execution of P

with A, A's final history is comput.able from the final quantities of round 0 and
{ M , A ~ ' ~ ~ : 7- = l , 2 , . . .).

Properties stronger than those of Claim T2-6 hold for our Gradecast and Grad-
edSVprotocols. Indeed. Lemma 1 implies that the final quantities of round 0 and only
MtG'EB suffice for reconstructing an entire execution of Gradecast. (Notice that in
fact, in an execution of Gradecast, ~ 4 $ ~ - ~ ~ coincides with the sender's message
whenever the sender is always good.) As we show below for protocol GradedSV, the
final quantities of round 0 and A4PGdEB suffice for reconstructing the final history
of the adversary. (Notice that in an execution of GradedSV, ~ t ~ - ~ ~ coincides with
the x- and y-shares of the eventually bad players whenever the dealer is always good.)

CLAIM T2-7. Given an adversary A, 1:n an execution .of GradedSV with A in
which the dealer is good, A's final history is computable from the fin.al quantities of
round 0 and the x- and y-shares of the eventually bad players.

Proof. Let us show how we compute (one by one) the final quantities of ea.ch step
of GradedSVfrom.the quantities available by hypothesis. For the reader's convenience,
we recall (emphasizing it and omitting our comments) each step of GradedSV.

1. (For every player i): Compute p, the smallest prime greater than n and m,
and set t = [(n - 1)/3J.

This step consists of a single round in which no good player sends any message
(i.e., denoting by r the single round of this step, ~ p ~ + ~ ~ is empty). Thus, as per
Claim T2-5: we compute the final quantities of step 1 from the final quantities of
round 0 alone. .

2. (For dealer h): Randomly select a degree-t bivariate polynomial f (x, y) such
that f (0, 0) = s. For all i, privately send (Pi; Qi) to player i, where Pi =
Pi(y) = f (i: y) and Qi = Qi (z) = f (x: i).

This step consists of a single round. Denoting it by r, ~ 4 e ~ - ~ ~ coincides with
the x- and y-shares of the eventually bad players (which are available by hypothesis).
Thus, as per Claim T2-5, we can compute the final quantities of step 2 from the final
q~ant~ities of step 1 and A f t G v E B .

3. (For every pla,yer i): For all j: if the dealer h,as not. sen.f you a pa.ir of t-degree
polynom,ials m,od p, send E to player j ; else, privately send j the value Qf(j) .

This step also consists of a single round. Denote it by r: and let i be an alwa~7s
good player and j be an eventually bad one. Because the dealer is good, the message
sent by i to j is not E but. Qf (j) = Qi(j). Although we do not know Qi, we compute
Q f (j) by evaluating polynomial Pj (which is available as the x-share of pla.yer j) at
point i. Doing so for ea.ch always good player and each eventually bad one, we compute
the entire n/l,AGWEB. We compute the final quantities of step 3 from ~ 4 : ~ ' ~ ~ and
the final quantities of step 2. as per Claim T2-5.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 907

4. (For every player i): For all j , i f P,"(j) # (Q.7 (i))", yradecast disagree(j).
Step 4 consists of four rounds in which n2 simultaneoi~s executions of Gradecast,

properly labeled. take place.27 Let us now show that for each execution of Gradecast in
which the sender is (currently) good, we readily compute the sender's message. Let i j
be the label of such an execution (and thus i its good sender). There are two mutually
exclusive cases to consider: (a) j is a currently bad pla,ver and (b) j is currently good.
In case (a) the message (Q;(i))* sent by j to i in step 3 is contained in A's history of
the previous round, and thus in the computed final quantities of step 3. In addition,
because both the dealer and i are good, we know that PT(j) = Pi(j) = Qj(i). Thus
we compute Qj(i) by evaluating polynomial Qj (which is available as the y-share of
eventually bad player j) on input i. Consequently, we compute whether i's message
in this execution of Gradecast is disagree (jl. In case (b) we know a priori that j
has sent the proper quantity to i, and thus i will not gradecast disagree (j). In
either case? therefore, whenever the sender is good we compute the sender's message.
Consequently, as per Lemma 1, we compute all executions of gradecast of step 4.

5. (For dealer h) : For all (i, j) E [I , n]', if you heard disagree (j) from player i
in step 4, gradecast (i, j , Qj(i)).

Because we have computed all executions of Gradecast of step 4: in particular
we have computed, for each label (i, j j , whether the dealer has heard disagree (j)
from player i in execution (i, j). That is, we have computed whether execution (i, j)
of Gradecast occurs. hloreover, whenever this is the case we can also compute the
sender's message of execution (i, j) . (The proof of this fact is similar to the corre-
sponding fact of step 4; namely. if both i and j are good, then we know that no
execution of ~ r a d e c a s t labeled i j occurs. Else, if i is good and j is bad, we com-
pute the sender's message, (i? j, Qj(i)), by evaluating polynomial Qj-available as
the y-share of bad player j-on input i.) Thus, as per Lemma 1, from these sender's
messages and from the final quantities of step 4, we compute the final quantities of
step 5 as well as the grades and values output by the good players in step 5.

6. (For every player i): For all (k, j) E [I, nI2: if you accepted disagree (j) from
player k. in Step 4 and

in the previous step you did no t accept from the dealer exactly one value
of the form (k, j , V) , where V E [O! p - 11; or
you accepted such a value and k = i but V # P,+(j); or
you accepted such a value and j = i but V # Qf (k),

gradecast badshare.
Because we have reconstructed the grades and values output by the good players

in steps 4 and 5, we easily determine whether a good player gradecasts badshare in
step 6. Thus, as per Lemma 1 and per the computed final quantities of step 5, we
readily compute the final quantities of step 6 as well as all grades and values output
in it by the currently good players.

7. (For dealer h): For all i , if you heard badshare from player i i n step 6,
gradecast (i, Pi(y), Qi(z)).

Given the final quantities of step 6 and the grades and values output by the good
players in step 6, we compute per Lemma 1 the final quantities of step 7 as well as
the grades and values output by the good players of step 7.

8. (For every player i): If
(a) y0.u gradecasted badshare in step 6: or
(b) you accepted badshare from more than t players in step 6: or

27 Recall the notation established at the end of section 6.

PESECH FELDMAN AND SILVIO MICALI

(c) for ea.ch player j whose gradecast of badshare in step 6 you have accepted,
if a step ago you did not accept from the dealer the gradecast of a value
(j, U, V) -where U and V are t-degree polynomials-or, if you accepted
such a value but Qz (j) # U(i) or Pi* (j) # V(i),

distribute badshare.

This step consists of a single round which we now denote by r . We then compute
M , A ~ - ~ ~ by computing which good players distribute bcdshare. This determination
is easily made from the computed senders' messages, grades, and outputs of step 6
and from the following three facts: (a) If both i and j are good, then i does not
distribute badshare; (b) because the dealer is good, Q f (j) = Qi(j) and P:(j) = Pi(j);
and (c) if i is good and j is bad, then both Qi(j) and Pi(j) are computable from the
available x- and y-sha.res of bad player j . Thus, as per Claim T2-5 and per the final
quantities of step 7, we compute the final quantities of step 8.

9. (For each pla.yer i): If tally(badshare) 5 t distribute recoverable.
Note that we have just computed in step 8 which good players distribute badshare.

Moreover, whether or not in that step a bad player sends badshare to a good player
appears in A's history of step 8 (computed as part of the final quantities of step
8). Therefore, we compute tally(badshare) for each currently good player and thus
determine which currently good plajrers wish to distribute recoverable in step 9. Thus,
as per Claim T2-5 and the final quantities of step 8, we compute the final quantities
of step 9.

10. (For each player i):
IftallyCrecoverable) > 2t, output veri ficationi = 2.
Else, if tally(recozierab1e) > t , ou.tput veri f icationi = 1.
Else, Output veri f icationi = 0.

Since in this last step no good player sends any message, given just the final
quantities of step 9, we compute, as per Claim T2-5, the final quantities of step 10.

Because the final history of the adversary is part of the final quantities of step
10, we have established our claim.

We can now easily finish the proof of Unpredictability. In Claim T2-6 we saw that
A's final history in GradedSVdepends solely on (1) t,he final quantities of round 0 and
(2) the x- and y-shares of the eventually bad players. Now, in a random execution of
GradedSV in which the dealer is always good and the secret s is randomly selected
in [0, - 11, the value of the secret is clearly independent of quantities (1). Thus, to
prove that no strategy exists for the adversary to guess this secret with probability
greater than l l m , it is sufficient to show that the dealer's secret is also independent of
the x- and y-shares of the t' 5 t < n/3 players corrupted by A. Since we can modify
any adversary so that she corrupts an additional t - t' players just prior to finishing
her last round of GradedSV, we can actually limit ourselves to prove our claim for
the case t' = t. (In fact: if the adversary is such that the z- and y-shares of the first
t' corrupted players are not independent of the dealer's secret, then by adding the
shares of t - t' other players we cannot obtain shares that are independent of the
secret.) Thus, we now want to prove t,hat for any choice of t event.ually bad players,
bl, . . . , bt, any choice of 2t t-degree polynomials Pb, (y), Qb, (x), . . . , Pb, (y), Qb, (x), and
any choice of secret s in [0, m. - 11, there exists a unique bivariate polynomial F (x , y)
such that

(A) F(bi, Y) = Phi (Y) vi E [I , t],
(B) F (x , b,) = Qb, (2) V i E (1. t] , and
(C) F(O.0) = s.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 909

IVe first show F's existence. Set bo = 0 and let Pho(g) be the univariate, t-degree
polynomial passing through the t + 1 points (0, s) and (bi, Qbi (O)) , i E [I, t]. Then,
by Leninla 2, there exists a unique bivariate polynomial F satisfying F(bi, y) =
pbi(y) Vi E [0, t] . We now show that F enjoys three of the above required prop-
erties:

(A) By construction.
(B) Fix a E [l , t] . We prove that F(x, b,) = Qba (5) by showing that these two

t-degree polynomials are equal at t + 1 points. In fact, by construction we
have V j E [I , . . . , t] F(bj, b,) = Pbj (bo) = Qb,, (bj), and F(0, b,) = Po(b,) =

Qb, (0).
(C) By construction, F(0,O) = Po(0) = s.

The uniqueness of F is thus a consequence of the uniqueness of Po(g). This proves
that "unpredictability" holds for GradedSV and thus completes the proof of Theorem
2.

Remark. We have chosen the VSS protocol of [3] as the basis of our GradedSV
protocol because it relied solely on private and broadcast channels but not on cryptog-
raphy. (Several beautiful cryptographic VSS protocols are available, but our transfor-
mation would have yielded a cryptographic graded VSS protocol, and thus a Byzantine
agreement algorithm tolerating only computationally bounded adversaries.) Another
ingenious VSS protocol for standard networks that, in addition, possess broadcast
channels, was found by Chaum, Crbpeau, and Damgard [lo]. We could have also
adapted their protocol in our setting, but at the expenses of some additional compli-
cations since their protocol allows a-controllable but positive-probability of error.

Theorem 2 guarantees that whenever protocol GradedSV is executed with a 113-
adversary, certain properties hold for the verification values of the good players. These
values, howber, are internal to the good players and not directly "observable" by the
adversary at that point. The following simple lemma, however, shows that these
values can be inferred from (a portion of) the adversarial history. We will make use
of this result in the next section.

LEILI~IA 3. At the end of any execution of GradedSV, the verification value output
by each good player is computable from the final history of the adversary.

Proof. If, in an execution of GradedSK all players are good, then the dealer
must have been good throughout the protocol. Thus, due to property 2 of verifiable
secret sharing (acceptance of good secrets), we do know that every good player must
output 2 as his own verification value. Now assume that one or more players are
bad-including, possibly, the dealer. Then the verification value output by a good
player i at the end of GradedSV is determined by the number of players that sent
him recoverable in step 9. Now, the number of bad players that sent recoverable to
i is immediately evident from the messages sent from bad players to good players
(messages that are part of the final history of the adversary). hloreover, the number
of good players that have sent recoverable to i is immediately computable from the
messages sent from the good players to the bad players (messages that are also part
of the final history of the adversary); in fact, a good player g sends recoverabbe to i if
and only if he distributes it to all players, including the bad ones. 0

7. Oblivious common coins. In this section, we want to show that processors
of a network with private channels can exchange messages so that, in the presence
of any 113-adversary, the outcome of a reasonably unpredictable coin toss becomes
available to all good players. We start by defining what this means.

910 PESECH FELDMAN AND SILVIO MICALI

7.1. The notion of an oblivious common coin.
DEFINITION 14. Let P be a fixed-round protocol i n which each processor z has no

input and is instructed to output a bit r,. W e say that P is an oblivious common coin
protocol (with fairness p and fault tolerance c) i f for all bits b, for all c-adversaries
A, and for all initial quantities I Q , in a random execution of P with A on I Q ,

Prob(V good players i , ri = b) 2 p.

We will refer to an execution of P as a coin; by saying that this coin is unanimously
b, we mean that ri = b for every good processor i.

Remarks.
Our notion of an oblivious coin is a strengthening of Dwork, Shmoys, and

Stockmeyer's persuasive coin [16], which they implemented for a t most O(n/ logn)
faults.

We chose the term oblivious to emphasize that, at the end of the protocol,
the good processors are "unaware" of whether the outcome of the reasonably un-
predictable coin toss is "common." That is, by following the protocol, each good
processor comput.es a bit, but it does not know whether the other good processors
compute the same bit. We shall see how to s~~ccessfully cope with this ambiguity
in section 8: but let us first exhibit an oblivious common coin protocol with fault
tolerance 1 /3.

7.2. An oblivious common coin protocol.
LEMMA 4. /It the end of every execution of steps 1-3 of OC with a 113 adversary,

for every good player i and every player j , whether SUMij = bad can be computed
from the final history of the adversary.

Proof. The adversary's history a t the end of step 3 of OC includes the adversary's
history at the end of step 1. Thus, as per lemma 3, from the latter history we compute
the value verification? for all good players i and players j.

Consequently, as per Lemma 1, we compute each entire execution of Gradecast of
step 2 of OC. From this information we readily compute, for each good player i and
player j , whether conditions (3.a), (3.b), and (3.c) apply, and thus whether playerij

(and consequently SUAlij) equals bad. O
LEMMA 5. In elre y execution of OC with a 113-adversa y, for all good players g

and G, SUMgG # bad.
Proof. This is so because of the following:
(a) By property 3 of graded broadcast, y accepts G's gradecast of G's confidence

list.
(b) By the semiunanimity property of GradedSli, 1 verification:j - verification2 I

L 1 for all labels h j .
(c) By the acceptance-of-good-secrets property of GradedSV, ~eri f icat ion;~ = 2

for each of the n - t good players h. D
LEMMA 6. For all n > 1 , for all executions oaf OC(n,) with a 113-adversary, and

for all players j 7 there exists an in.teger sumj E [0, n - 11 such that for all good g,
either SUMgj = sumj or SUAlgj = bad.

Proof. We distinguish three mutually exclusive cases.
Case 1: Player j looks bad to all good players. In this case, setting sum.j = 1

trivially satisfies our claim.
Case 2: j looks okay to a single good player y and bad to all other good players.

In this case, choosing 3u.m.j = SUMgj sat,isfies our claim for the following reasons.
First, notice that SUMSj is a well-defined integer value belonging to the interval

OPTIMAL PROBABILISTIC BYZANTINE AGREE,MENT 91 1

PROTOCOL OC(n)
Input for every player i: None.

1. (for every player i): For j = 1. . . n , randomly and independently choose a
value sij E [0, n - 11. "We will refer to sij as the i th secret assigned to j, or
the secret assigned to j by i."
Concurrently run GradedSV n2 times, one for each label h j , 1 < h? j 5 n. In
execution h j , the candidate-secret set is [0, n - 11 "and thus the number of
possible secrets equals the number of players," the dealer is h: and the secret
is Sh j , "i.e., the dealer chooses shj to be his secret whenever he is good."
Let veri f icationy be your output of execution h j , "that is, your own opinion
about the existence/recoverability of shj."

2. (for every player i): Gradecast the value (verif;cation~', . . . , verification^).
"This is your confidence list, that is, your own opinion about the exis-
tence/recoverability of each secret assigned to you."

3. (for every player i): for all j , if
(a) in the last step, you have accepted j's gradecast of a vector Zj E

(0, 1,2In, "i.e., j's own confidence list-thus if j's is good, Zj =

(verificationjj, . . . , verification^)";
(b) for all h, ~verificationy - Zj [h]l 5 1, "that is, your opinion about the

recoverability of every secret assigned to j differs by at most 1 from the
opinion that j has gradecasted to you"; and

(c) Zj [h] = 2 for at least n - t values of h,
set playerij = ok, ''meaning that j looks okay'to you;" otherwise, set
playerij = bad, "in which case j looks bad to you and he is bad."

4: (for every player i): "Recover all possible secrets:"
Concurrently run GradedR on the -n2 histories of GradedSV that you gener-
ated in step 1, and denote by valuey your output for execution hj.

I If playerij = bad, set SUMij = bad. Else: Set
!

"That is, if player j looks okay to i , SUMij equals the sum modulo n of all
those secrets assigned to j that j himself thinks are optimally verified."
If for some player j, SUMij = 0, output ri = 0; otherwise, output ri = 1.

[O,n - 11. This is so because each of the addenda contributing to SUMgj is a well-
defined integer (and thus taking the sum of these addenda mod n necessarily yields
a value in [O,n - 11). Indeed, if value? is an addendum of SUhlgj, then in the
confidence list of j accepted by g, $[h] = 2: Moreover, since j looks okay to g,
step 3(b) ensures that verification? -> 0. In turn, by the verifiability property of
GradedSV, this guarantees that the corresponding secret is "well shared," that is,
that the value output by g running GradedR, value?, belongs to the candidate-secret
set [O, n - 11, as we wished to prove.

Case 3: Player j looks okay to more than one good player. Let g and G be any
two such good players-thus SUMgj # bad # SLr~'LIGj. To begin with, notice that the

912 PESECH FELDh4AN AND SILVIO hlICALI

value e'j is the same for both g and G due to property 1 of gra.ded broadcast. We now
show that SC'A1\IIgj = SUMGj. Indeed, we have

and

First, notice that the set of values h for which Zj[h] = 2 are the same for both G and
g-in fact, both g and G a.ccept.ed j's gradecast of his own confidence list in step 2
and by virtue of property 1 of any graded broadcast protocol, their accepted 1ist.s are
equal.. Moreover, corresponding addenda in the two summations are equal. In fact,
since j looks okay to G, $[h] = 2 implies that verification? > 0, which in turn, due
to the verifiability property of GradedVSS, implies that all good players will recover
the same value as the secret of execution h j of GradedSV. U

L E M MA 7.28 Let n > 1 and let S and G be subsets of [I, n]. Let th.e set

be such that for all j E S , there exists g E G such.that O g j = ok. Then for all 113-
adversaries A, in a random execution of OC(n) with A(n.) in which G is the set of
always good players an.d Vg E G V j E [I, n] playergi = O g j 9 the values {sum,j : j E S)
are uniformly an,d independen,tly distributed in [0, n - 11.

Before proving Lemma 7, let us consider a simpler but nai've argument. \TTe have
three good reasons for doing so: to use t.his naive argument as an introduction to our
subsequent proof; to reassure the reader that our subsequent proof, though admittedly
somewhat tedious, at least does not possess any obvious shortcuts; and t,o bring to
light a subtle point that, unless it becomes known, may become a common as well
as "fatal" logical trap in simi1a.r cryptographic contexts. For simplicity, let us state
our naYve argument in a particularly simple case, that is, when S's cardinality equals
1, S = (1). In this case, a.11 we have to prove is that the unique sumj is uniformly
distributed in [O. n - 11.

Naive ar9umen.t: If SI,TA4gj # bad, then sum? = SUMyj = a + ,8 mod n: where

h such t h a t 11 is good.
t~cr i j i~a t zon"~ =2 I

28 We condition the uniform and independent distribution of the s m ~ ~ , ' s on a rather rich set of
events. This is so because Lemlna 7 will be invoked in rather diverse cc)nt.exts, each with its own
"conditioning." and we wish to make it very easy to see that it applies properly.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT

and

h such that h is bad,
verification'" =2

(These two values are well defined at the end of GradedSV, though no good player
knows them because he does not know who else is good.) Value a is uniformly
distributed in [O. n- 1] and is, in addition, unpredictable to the adversary at the end of
step 1. Value ,8 is controllable by the adversary (since each secret that contributes to it
might have been chosen by the adversary via a processor h corrupted sufficiently early
in step 1). Konetheless, since at the end of GradedSVeach of the secrets contributing
to SUMgj is fixed, so is P; that is, 0 is fixed at a point in which cw is unpredictable.
"Thus" no matter how much the adversary can control P, a+P is uniformly distributed
in [0, n - 11.

Why is this naive? The flaw in the above argument is that, in principle, the
unpredictability of cr may be consistent with the fact that, say, a + ,O always equals
0. Indeed, in principle, the adversary may be capable of guarateeing that P = -a
mod n without knowing cw nor (necessarily!) p.29 This "magic correlation," though
possible in principle, is actually impossible to achieve in our protocol due to many of
its specificities, which have been ignored by the above reasoning. For instance, our
protocol is such that the value is actually "known" to the adversary at the end
of step 1. This and other specificities are indeed an integral part of the following
simulation-based argument, which properly corrects and formalizes the above na'ive
argument. The reader who, at this point, finds it obvious can proceed to Theorem 3.

Proof o j Lemma-7. The proof is by induction on k, the cardinality of the set
S. For k = 0, our statement is vacuously true. We now prove the inductive step
by contradiction. Assume that our statement holds for k - 1 but not for k. Then a
simple averaging argument implies the following proposition.

PROPOSITION PI. There ezist an integer n > 1 , a subset G C [l , n] , a set of
values C? = { O g i E {ok , bad) : g E G i E [I, n]) , a subset S' c [l ,n], whose cardinality
is k - 1 , an additional player j 6 St such that Vi E S' U { j) 3 g E G Ogi = ok, a set of
k - 1 values {.vi E [0, n - l] : i E S') , an additional value v E [0, n - 11, a distinguished

29 Mutatis mutandis, consider the following simpler scenario (simpler because it envisages compu-
tationally bounded players and thus the possibility of successfully using uniquely decodable e n c r y p
tions) in which this is indeed the case. Two players desire to compute a common and random bit in
the following manner. First, player 1 chooses a random bit bl and announces its encryption E l (b l) .
Then player 2 chooses a random bit b2 and announces its encryption E z (b z) . Then player 1 releases
his own decryption key, d l , and, finally, player 2 releases his own decryption key, d z . This will enable
both players t o compute bits bl and b2 and thus 6, their sum modulo 2. Is such a b a random bit
if, say, player 2 is bad? T h e answer is no. Player 2 may force bit b t o be 0. Although he cannot
predict b l , he may exploit the fact that player 1 announces his encrypted bit first. (Recall that in our
scenario, simultaneity is not guaranteed! bfessages arrive by the next clock tick, but the adversary is
allowed "rushing.") The strategy of player 2 is as follows. First, he announces the same ciphertext
that player 1 does. Then he announces the same decryption key that player 1 does. This is a quite
serious problem and does not have easy solutions. Simply requiring that the second player announce
a different value than the one announced by the first is not a solution. However, discussion of this
point is beyond the scope of this paper. (Let us just say that Micali devised a cryptographic protocol
that enables two mutually distrusting people to announce independent values-but the protocol and
its proof are not a t all straightforward. Dolev, Dwork, and Naor [Is] have provided a new type of
public-key cryptosystem that would make easy to solve this and similar problems. Neither method,
however, can be applied t o the context of this paper. where the adversary is not restricted in the
amount of computation she can perform and thus could break any public-key cryptosystem.)

914 PESECH FELDhlAN AND SILVIO hlICALI

player G E G S U C ~ that O G j = okt a constanf E > 0, a 113-a.dversary -4, a Strin.g H,
and a subset B C 11: n]. whose intersection with g is em.pty, such th.at, i n a random
execution of O C (n) with A(n) o:z initial ad71ersurial history H and initially bad set
B, letting ''G = .4G" denote the event that th,e set of always good players coincides
with G and defin.in,g

X = (G = AG) A (tli E [I, n] Vg E G: pla.yergi = Ogi) :

then
(a) Prob(X) > E ;

(b) Prob(Vi 'i St, sumi = vi I X) = (l / ~ z) ~ - ' : and
(c) Prob(Vi E S t, sumi = vi A sumj = v I X) > (l l ~ z) ~ . ~ ~
CLAIM Li-0. Let a , S t, G, 0, j, v, G, E , -4, H, B, and X be as in Proposition

PI , and let y be the event defined as follows:

Y = X A (Vi E St
7 sum.i = vi).

Then i n a random execution of steps 1-3 of OC(n) with A on initial adversarial
history H and in,itially bad set B i n which G is not corrupted! the following holds:

1. y occurs with positiz~e probability.
2. Whether y occurs is computable on the following inputs: (2.1) the set of the

always good players, (2.2) the vectors e', E {0,1,2)" accepted by at least one good
player i n step 2, and (2.3) for all good players g and for all players x # j , g 's history
of execution gx of GradedSV.

3. If y occurs (and thu.s G E G is good), the secret s c j (i.e., the secret-
randomly selected i n [O, n. - 1] -of execution G j of GradedSV, where good G is the
dealer) is predictable with probability > l / n on inputs (2.1), (2.2)) and (2.3) above.

Proof of Claim L7-0.1. First, notice that, because G f G, G is not corrupt,ed
ulhenever X occurs. 'Thus Prob(Y I G good) = Prob(Y) = Prob(Y I X) - Prob(X).
Now Prob(X) > E by Proposition Pl(a) , and Prob(y I X) = (l / ~ ~) ~ - l by Proposition
Pl(b).

Proof of Claim Li-0.2. Inputs (2.1) and (2.2) are by definition sufficient to de-
termine whether X holds: and if this is the case, V i E S t, sumi # bad, and t.hus
sumi = sum.gi for some good player g who has accept.ed i's gradecast of a vector Zi in
step 3. Also, inputs (2.3) and (2.4) are more than sufficient to compute which actual
value in [0, n. - 11 sumgi takes because this value depends only on e'i and g's hist.ory
of execution hi of GradedSV; h. = 1 , . . . , n, none of which coincides wit,h execution G j
since i E Stand St 3 j .

Proof of Claim L'i-0.3. If y occurs, SUMGj # bad and, on inputs (2.1), (2.2),
and (2.3), one call compute all addenda that contribute to SUMGj: with the singular
exception of zialuep. Indeed. for each h. # G such that $[lj = 2, the occurrence of
Y implies that G is good, that playerGj = ok, that \verification2 - Zj[lr]l < 1; and
thus that verification2 > 0. In turn, verifica.tion2 > 0 implies that the secret of each
such execution h j is recoverable no matt,er what the currently bad players (and those
which may become bad while running GradedR) may do. In particular, the secret of
each such execution h j is recoverable if no more players are corrupted during GradedR
and the bad players do not send any messages during GradedR. Thus when one has
the hist'ories of the currently good players (i.e., those in G) at the end of each such

30 Statement (c) is equivalent to the following statement:
(E) Prob(Vi E S: sumi = z.! A sum.j = v 1 X) # (~ l n) ~ .

In fact, (c) clearly implies (E) and the converse can again be established by averaging.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 915

execution hj of GradedSV, one can run GradedR so as to reconstruct value2 for each
of the above labels hj . Having done this, one can trivially compute the sum modulo
-n of these values; that is, one can compute

w = (value2) mod .n
h such t ha t h # G \ Zj [h j=2

c' ' and output zJ - w as a prediction for value^' = s c j . We now show that Prob(u - w =
valuez) > l l n . Indeed, given the above notation, in Proposition P1 we can rewrite
inequality (c) as follows:

(c) P r o b (s ~ m ~ = v I Y) . Prob(y I X) > (l /n)k.
Thus, since Prob(Y I X) = (l /n)k-l , Proposition P l (b) implies that

Now, whenever y occurs, we have, in particular, SUMGj # bad, and thus sumj =

,
value2 + w mod n. Therefore, as we wanted,

Notice that Claim L7-0 is not (yet!) a violation of the unpredictability of Grad-
edSV.31 To reach such a contradiction, we now show that (letting n, St, G, 0, G, j ,
v, e, A, H, B, and X be as in claim L7-0 and Proposition PI) Claim L7-0 implies

) that the existence of a 1/3-adversary for GradedSV, A' (= A~,sr,G,O,j,v,G,c,A,H,B ,
in a random execution with GradedSV(n) succeeds in achieving the following two
goals. First, her random execution with GradedSV(n) coincides with execution G j of
GradedSV in a random execution of the first three steps of OC(n) with A(n). Second,
she possesses all inputs (2.1), (2.2), and (2.3) relative to said execution of OC(n) with

Informal description of A' (= A',,st,G,O,G,j,e,A,H,B). Although adversaries A' and
A are different and attack different protocols, they both act on networks with n
players. Thus for any given player i E [I, n], we must specify a t all points whether he
is a player executing GmdedSV(n) with A' or a player executing OC(n) with A. We
find it convenient to do so by writing it in the first case and i in the second.

Let us now describe the behavior of A' in a random execution, E', with GradedSV
when the dealer is G' and both the adversarial history and the initially bad set are
empty. During E', A' orchestrates and monitors portions of a "uirtual" execution,
E, of OC(n) with adversary A. (We thus think of adversary A' as acting in the
actual network N'-where GradedSV(n) is executed-and of A as acting in the virtual
network N where OC(u) is executed.)

Since we shall only consider n-party executions of protocols GradedSV and OC
(where n is as in Proposition P I) in the proof of our lemma, we may more simply
write GradedSV and OC instead of, respectively, GradedSV(n) and OC(n).

Adversary A' causes E to start by letting the adversarial history of A be H , the
initially bad set be B (where H and B are as in Proposition P I) , and the initial

31 Indeed, for this to be the case, it is necessary that a 1/3-adversary succeed in predicting better ,

than at random the random secret of a good dealer in a random execution between this adversary and
GradedS~ , that is, without assuming that such a random execution is embedded into an execution
of OC for which certain key quantities are an available inputs.

916 . PESECH FELDhIAN AND SILVIO XIICALI

histories of players 1.. . . , n be those of a random execution of OC. As usual, the first
25 rounds of E consist, of the concurrent execution n2 times of the 25-round protocol
GradedSV: one execution for each label h.j (where h and j are player names and h is
the dealer of execution h j) .

For the first 25 rounds, adversary A' keeps E' in lockstep with E, identifying
execution G j (where G and j are as in Proposition P I) with E'. By L'lockst3ep,'' we
mean that, for each round p > 0, the round-p quantities of E' and E depend on and
are generated aft.er the round-(p - 1) quantit.ies of both E' and E. By '.identifyingt'
E', with execution G j of GradedSV in E, we mean that -4' corrupts processors in N'
while interfering with the delivery of messages in N in the following way. Adversary
A' corrupts player j' in network N' at round p if and only if A corrupts j in network
N at round p. (Since the computation of A starts with initially bad set B, adversary
A' corrupts j' in network N' at round 0 for all j E B.) Let us now discuss how A'
interferes with the delivery of messages in network N. At every round p = 1, . . . , 25,
after A has ended her corruption process and computed the messages from each bad
player to each good one for all executions xy of GradedSV, A' acts as follows:

For each execution xy # Gj, she delivers the proper messages to the proper
recipients in network N.

For execution Gj , if A outputs m as the message from bad player b to good
player g, then A' has b' send m t,o g' in network N'; vice versa, if good player g' sends
a message m' to bad player b' in execution El, then A' delivers m' as the message
from g to b in round p of execut,ion Gj .

As we shall prove, after making this description a bit more precise, the virtud
execution E thusly generated is actually a "genuine" random execution of the first
three steps of OC(n) with .4. hloreover, A' will be capable of computing inputs
(2.1), (2.2), and (2.3) specified in Claim L7-0. This will enable her to contradict the
unpredictability pr0pert.y of GradedS V. .

More formal description of A' (= A~,s , ,G ,C3 ,G, j ,E ,A,H,B) . Let US now describe a
bit more precisely the way A' acts in a. random execution of GradedSV(n) in network
N', where the dealer is G', the candidat,e-secret set is [0, n -- 11, the dealer's secret
is randomly chosen in said candida.te-secret set, the initial adversarial history equals
the empty string, and the initially' bad set is empty. We have already specified each
player's version of GradedSV and the mechanics of an execution of an n-party protocol
with an adversary. Thus, choosing the players' and adversary's coin tosses a t random,
our description of A' specifies the values taken by all possible players' quantities H;,
Mi', , MLil, Ci', , and RL, as well as the values t,aken by the adversarial quantities
H2,, C i l , and R:, and by the sets B.~D" and GOOD".

In order to determine her actions in network AT', a,dversary A' will construct only
in part the quantities H,T3x", M"TzY, hfrsxl/, - t CiTtx", and R:'"", where i E [I , n.] and
xy E [1,nI2, but she will construct all of the possible quantit.ies HL, Ci , and RL and
the sets BAD^ and GOOD'.

She generates these quantities with the same mechanics of a random execution
of the first three steps of protocol OC(n,) uritli adversary A. initially bad set B , and
initial adversarial history H. The quantities generated thusly by A': however, fall
short of constituting such a random execution because they are incomplete. Indeed,
they miss some Gj-labeled quantities-e.g., ~ ~ ~ ' ~ j whenever i E GOOD^.^^

32 Since the quantities reconstructed by A' relative t.o network N do not quite constitute an
execution of OC(n) with A, and since it can be recognized that these quantities can be integrated
so as to yield a virtual execution only after the entire behavior of A' has been described. it. would
be improper during our description to use suggestive expressions-such as "good a t round rY-that,,

OPTIhIAL PROBABILISTIC BYZANTINE AGREEMENT 917

It will be clear from our description. however. that if there is no r for which
BAD" contains G, then if one were to integrate these rr~issing quantities with the
corresponding quantities of E' (i.e., the execution of GradedSV(n) with A' in network
N'), one would obtain a random execution of OC(n) with A, 011 initially bad set B
and adversarial history H , in which G is not corrupted.

Notice that A' is active in network N' for 25 rounds because GradedSV(n) is
a 25-round protocol. Notice also that the number of rounds in step 1 of OC(n) is
also 25 if one imagines (as we do) that in each execution xy of GradedSV(n), the
dealer randomly chooses the secret in round 0. Thus for r = 1.. . . ,25 and each label
xy E [I, n]" the i th round of step 1 is the i th round of an execution of GradedSV.
Indeed, for r = 0, . . . ,25, adversary A' decides her action at round r in network N'
L'simultaneously" with her generation of round-r quantities in virtual network N (i.e.,
after having generated round-(r - 1) quantities in network N and before generating
round-(rl) quantities in network N) .

To facilitate seeing that the round-r quantities generated by A' for virtual network
N follow the mechanics of an execution of OC(n) with A on initially bad set B and
adversarial history H. we break the instructions for this generation into instructions
lr-4*, thus matching the instructions 1-4 that we used in section 3 to describe how
a protocol is executed with an adversary.

LOCAL DEFINITION. Let b L , . . . , bk be the ele,ments of subset B; denote by L the
set of all execution labels of GradedSV in step 1 (i.e., L = {hj : 1 5 h, j 5 n)) and
by L- the set L - {Gj) .

 instruction.,^ for round r = 0.
(In virtual network 1V):
Set H i = H, BAD' = B, GOOD' = [l!n] - BAD', and C i = s. Then construct a

binary string RA by selecting randomly and independently each of its coins, and set
R i = RA.33

For all xy E L-, randomly and independently select S,, in [O: n - 11, and let C,, .
denote the sequence of random bits used for this selection.

For all xy E C- and for all i E [l ,n] , construct an infinite bit string R:, by
choosing each of its bits randomly and independently. 3"hen reset R,"y := CzyoRZY.

Finally. for all xy E L- and for all i E [l ,n] , set ~ . y . ~ ~ = 6, ~ 7 . ~ 1 ~ = RFY, and
M;Z' = 1~12:' = (s, . . . , s). and, if i # z , H P T ~ Y = ((z , n) , hf::', otherwise
(i.e., i = x) , set = ((x, n , S,J, ~f::~, c : ~ ~ ~) .

"In an execution of GradedSV(n) with dealer x, the input for any player other
than z is (x, m), that is, the name of the dealer and an encoding of the candidate-secret
set, [O. nl- I]. The private input for x is instead (x, m, s), that is, r is given his secret
as an additional input, unrelated to his sequence of future coin tosses. (Therefore,
should the dealer be corrupted by the adversary at round 1, she would discover his
input secret but not the random choices made to come up with that secret, even if
it were randomly selected.) In any execution xy of GradedSV(n) as a subprotocol of
OC(n). there are two peculiarities. First, m = ,n (which is easily reflected in the initial
histories of the players in execution xy). Second, the dealer z of execution xy is not
given his secret S,, as an outside input; rather, he randomly chooses it in [O,n - 11

though very useful in building up int.uition, presuppose that we are already dealing with a genuine
execution. Notice, in fact, that all quantities relative to the virtual network N are constructed using
only a syntactic description. Only in our comments do we use suggestive lariguage.

33 This is expressed thusly for convenience. In reality, each RA will be constructed on an "as-
needed basis."

34 Again, in reality. each RTY will be constructed on an .'as-needed basis."

918 PESECH FELDMAN AND SIL\rIO MICALI

prior to calling GradedSV(n). Therefore, should the adversary corrupt player x at
round 1 of her execution with OC(n), then, she should be able to discover not only
x's random secret relatoilre to each execution zy but also the coin tosses that led x
to choose STY. This is exactly what is accomplished by the above steps (which also
accomplish giving these secrets suitable names-i.e.. Sxy-and making it evident t,hat
all of them (for xy # Gj) are known to A')."

(In network A"):
Corrupt processors b',?. . . , bh,

Instructions for r = 1. . . . ,25.
O* (in virtual network N):
TEMPH; := HL-': TEMPR; := RL-'; TEMPGOOD' := GOOD'-l; TEMPBAD' :=

BAD'-'.

l * (in virtual network N):
For all g E GOOD'-' and for all xy E C-, generate MiEY, "the messages g wishes

to send in this round (which may be reset if ,o is corrupted in this round)," CitxY, and
R:=V by running GradedSV(n), on input H ~ - ' ~ " y and coins RT-'."y. 9

2* (in virtual network N):
For all xy E L-, for all g E GOOD'-^, for all b E BAD'-', TEMPH; :=

(TEMPHL, g, b, XY, JJ;- (bl).
"In other words; for each message m from a good player g to a bad player b

computed by running GradedSV relative to label xy E L-, deliver m to A as usual
(i.e., specifying the name of the sender, the recipient, and the execution label). Then":

For each message m' received by a bad player b' from a good player g' in network
N' a t round r , TEMPHL := (TEMPH;, g, b,Gj, m').

3* (in virtual network N):
Run A on input TEMPH; and coins TEMPRL.
(In hetwork AT' and in virtual network N):
If in this execution of step 3 A has output j "as the next player to corrupt," then

HALT-"both the virtual execution in network N and the real execution in network
N' are terminatedn-and output a random value in (0, n - 11 as your guess for the
secret of dealer GI. "You will be correct with probability l /n . Else":

(In virtual network N):
If A has output q E TEMP GOOD^ and made the sequence of &in tosses C, then
TEMPBAD' := T E ~ ~ P B A D ' U { q) , TEMPGOOD' := TEMPGOOD' - {Q),
TEMPH; := (TEMPH;, zy, H,'-l.x~, C;"Y, C),
TEMPR; := TEMPRLIC,
Vxy E C-: Vg E TEMP GOOD^, TEMPHL := (TEMPHL: g, q, xy, hllzY[q]).
(In network N') :

('-1) Corrupt q' in network IV', thereby learning his history H,, and coin tosses

c$-'), as well as [g'] for all currently good players g',
"i.e., as well as each message sent by a. currently good player g' to q'. Note that

a player g' (respectively, b') is currently good (respectively, bad) in network N' if
g E TEMPGOOD' (respectively: b E TEMPBAD') in the virtual netswork AT."

(In virtual network N) :
TEMPHL := (TEMPH;, zy. Hi;', C;;', C),
Vg E TEMPGOOD', Vb E TEMPBAD', M;fj[b] := Mi,- [b'].
Go to step 3* "to corrupt next processor."
If "A no longer wishes in t,his round to corrupt. additional players," if in this

execution of step 3 A has output, for all zy E L: and for all b E TEMPBAD', a vector

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 919

i~Ib"'J E ((0, l)*)n "as b's round-r messages" and made the sequence of coin tosses C,
then:

(In virtual network N):
Vxy E C-, Vb E BAD^, L%Il<Y := h I ~ y l
TEPVIPHL := (TE~IPH;: C) L ' ~ ~ that she can reconstruct the bad players' messages

of round r,"
TERIPRL := TEMPRL/C;
(In network N'):
~b E BAD'. 1 ~ ; - := ~ : ~ j .
"In other words, for each message m from a bad player b to a currently good

player g in network N relative to execution Gj, have b' send m to g' as his round-r
message in network N'."

4* (In virtual network N):
"Adjust the final round-T quantities as follows." Letting C be the sequence of

coin tosses that A has made since the last execution of step 2,
HL := TEMPHL; CL := C; and RI; := T E M P R ~ ;
GOOD' := TE~LIPGOOD' and BAD' := TEMPBAD';
Vxy E L-, Vk, i E [I, n], h IzY[k] . := hIL<Y[i]; and

V k E [1, n], Vi E BAD', [k] := [i];
"Adversary A' does not know the messages exchanged among good processors

in network N' and thus does not construct the corresponding messages in execution
Gj."

Vxy E 13-, Vg E GOOD', H,',"y := (H;-l*x~, n/i2;Y, C2xY);
"A' does not know the histories of the good players in N' and thus does not

construct ~ g " ~ j ."
~ x y 6 C, ~b E BAD^-^, H;-'~'~ := (H;-"~~, bad), and Vb E BAD+ - BAD'-',

7-1,xy H,'lXy := (Hb , C:xY, bad).

"Thus far, each time that a new round was added to the partial virtual execution
of OC with A, the execution of GradedS V with A' also progressed one round. At this
point, however, the rounds added to the partial virtual execution only allow A' to
make additional internal computations and, possibly, additional corruptions, but her
execution with GradedSV remains at round 25.

At the start of the execution of step 2 of OC(n), the prior history of a good player
consists of an n2-vector, {H,253zy : xy E L). But at this point of the computation in the
virtual network N, there is no quantity ~ , 1 ~ 9 ~ j . However, there is a quantity H i sX~
whenever g E and xy E L-. Such a quantity H,259xy specifies the quantity
ve r i f i~a t ion~~ (via some proper input function Z;;-teps2-3). Thus for all xy E C- and for
all g E GOOD^^, verificati~n;~ is computable by A' because she has already computed
~ 2 5 ~ 2 ~ -7 '

5'
Additional instructions for round 25.
LOCAL DEFINITION. We denote by steps 2-3 the protocol consisting of steps 2

and 3 of OC(n).
For all g E GOOD^^, set verification? to be the verification value output at round

25 by player g' in the execution of GradedSV(n) with you in network N'.
"Although these values are internal to good processors of network N' and thus

invisible to you, you can compute them-by virtue of Lemma 3-from your knowledge
of the sets of good and bad players and the messages exchanged between good and
bad players."

920 PESECH FELDMAN .4ND SILI'IO MICALI

For all g E GOOD^^, set = TC?, where r c p is a. reserved character that
(via the input function Z,"tc"S2-3) specifies verification? .

Execute subprotocol steps 2-3 with A (wit.h the init.ia1 adversarial history being
the computed quantity Hi5 , t.he initially bad set being the computed quantity BAD^^,
and the prior history of each good player g being the ("thusly complet,edV) vector
{H,259xy : xy E L)) . handling corruptions as follows.

"In this execution of Gradecast as a subprotocol, you know the sender, the sender's
message, the set of init.ially bad players, the active adversary and the initial adversar-
ial history. Thus you do not need to know the players' prior histories esa.ctly in order
to exactly reconstruct. all messages exchanged up to the next corruption. Indeed, the
good players do not rely on their prior histories (more than is needed to figure out
which message to gradecast). Once a corruption occurs, however, in order to update
the adversarial history in a proper manner, you need the corrupted player's prior
history."

Whenever A corrupts an additional player k, corrupt kt in network N' so as to
find his current. histor5 H i . In the current steps 2-3 history of k, replace t,he reserved
character r c y by the string H i and deliver the thusly updated history to A (in the
syntactically proper manner).

Instructions for predicting the secret.
"If you have not already predicted the secret of G' a t random, do the follon~ing":
Detect whether event y "of Claim L7-0" occurs.
"You can do that by virtue of Claim L7-0 because you may compute all inputs

(2.1), (2.2), and (2.3) envisaged in t,hat claim."
If y has not occurred, then predict the secret of G' by outputting a random

number in [0, n - 11.
Else output the value 21 - w mod n as your predict.ion of the secret of G'. "v is

the value of Proposition P1 and Claim L7-0 and

This ends our description of A'. Notice that Steps 2 and 3 of OCtake, respectively,
four rounds and one round. Thus the subprotocol consisting of Steps 1--3 of OC is a
30-round protocol.

Let us now more precisely claim (without proof) that if one replaces the missing
quantities constructed by A' for the virtual netswork N with the "corresponding"
quantities that arise in the esecut.ion of adversarr A' with GmdedSl/(n.) in network
N', one obtains a random execution of Steps 1-3 of OC(n.) with A.

CLAIM L7-1. Let E' be u ra.n.dom execution. of protocol Gra.dedSk'(n) with adver-
sary A' in which th.e initially bud set, i s empty, th,e initiu.1 adve7.sarlal history is the
empty string, the dealer is G', the candidate-secret set is [0, TI, - 11, and the secret is
mndomly selected 1:n [0, n. - 11.

For all r = 0 , . . . ,25. for all z y E C-. and for (~ l l i E [I. n] , let H,r'"\ i~<~z~[j].
M x Y [j], Ctr'xY: GOOD', BAD', Hi : and C i be th,e n,etmork-N quantities generated by
A' during E'.

For all r = 125 an.d for all y E GOOD', let H i , ? Ml,,? itfLgt, a.rid C,:,. be:
respectively, the rou7j.d-I. histoq~. messu,ges sent, m.es.snge,s received, and coin tosses of
player g' i n E'.

OPTIMAL PR.OBABILISTIC BYZANTINE AGREEMENT 921

For all r = 0 , . . . , 25 and ,for all g E cooor, set ~ ~ , ~ j B = H;, L Z I ; ~ ~ = Mi,-,
, j = and C T . G ~ = CT 36

-!I' . 9 9'

For all r = 1 , . . . ,25 and for all x y E C : set HC = { H ~ x V : xy E C) , M L =
{i\~Zr.x" A xy E E } , 11.12~ = {i\r[z!' : :xy C}, and C [= {Czr3xY : zy E C) .

For all! r = 26, . . . ,30 and for all i E [l , n] let H,P: !%) i\j[Li? Cr, GOOD^,
B X D ~ , HA:, C.:. and RL be the network-N quantities generated by A' when executing

steps 2-3 with A during E'.
Then the sequence of tuples

where

is a random execution (u p to round 30) of protocol OC(.n) with adversary A, on ini-
tially bad set B and initial ad71er.sarial history H , in which player G i s not compted .

The above claim follows from our description of -4' and by the observation that all
n2 secrets of E have been randomly and independently selected in [0, n - 11: secrets
s,y for 2.y E L by construction, and secret s c j (i.e., the secret of G' in execution E'
of GradedSV(n) with A') by hypothesis.

Notice that A' is a 113-adversary (because A is a 113-adversary and because A'
corrupts a player i.n E' if and only if A corrupts the corresponding player'in E), that
A' may compute all inputs (2.1), (2.2), and (2.3) envisaged in Claim L7-0, and that
A' never corrupts dealer G in an execution with GradedSV(n) when the initially bad
set is empty and the initial aclversarial history is the empty string.

Let us now show that A' can predict the secret of G' with > lln.
Indeed, whenever A wishes to corrupt G, A' halts, outputting a random number
in [O,n - 11 as her prediction of the secret of GI. Thus she will be correct with
probability 1/71 in these cases. If A does not corrupt G in E, but neither does event y
(which -4' detects), then A' again guesses the secret of G' at random and is right with
probability l ln. However, whenever y occurs, which by virtue of Claims L7-0 and
L7-1 is with positive probability, then A' (per Claim L7-0) correctly guesses the secret
of G' with probability > l l n . Finally, because the event that A does not corrupt G
occurs whenever y occurs, we have that A' correctly guesses the secret of G' with
probability > l ln. This contradiction of the unpredictability property of GradedSV
establishes Lemma 7. 0

THEOREM 3. OC is a n expected-polynomial-time 32-round oblivious common coin
protocol with fairness > .35 and fault tolerance 113.

Proof. The claims regarding round complexity and running time are easy to verify.
(Recall that--though in a "hidden" way-we do make use of message bounds.) Let
us thus prove the other claims. We start with some convenient notation.

Let A be a 1/3-adversary aLld ZQ E ZQ;' be proper initial quantities for OC.
Then in an execution of OC(n ,) with a 113-adversary on ZQ. let Co denote the event
that the coin is unanimously 0, C'iood denote the event that sum, = 0 for some good
player g (i.e., the coin is unanimously O "thanks to a good player"), and C1 denote the
event that the coin is unanimously 1. Correspondingly, let Po, piood, and PI denote

" Notice that some of these quantities might have already been conlputed by 4' for virtual network
N . in which case they would be reset t o the same value.

922 PESECH FELDhlAN AND SILVIO MICALI

the probabilities of Co, c:""~, and C1, respectively, in a random execut.ion of OC(n)
with A(n) on ZQ. (Notice that Co # -.el, where 1 E denotes the complement of an
event E.)

We are now ready t.o lower-bound both Po and PI .
Lower-bounding Po. Since Po 2 piood, we lower-bound Po by lower-bounding

~ , 9 ~ ~ ~ . ~ ~ If S is a subset of [l ,n] , let "AG = S" denote the event that the set of
the always good players coincides \vit,h S. Notice that if Prob(AG = S) > 0 then
IS\ > 2n/3 and that C I ~ 1 > 2 n 1 3 Prob(AG = S) = 1. (In fact, in any execution with
a 113-adversary, there must be at least 2n/3 always good players.) Also notice that
(because for all good players G and g: SUAJGg # bad by Lemma 5) Lemma 7 implies
that whenever AG = S occurs, the values {sum, : g E S) are independently and
uniformly distributed in [O,n - 11. Thus, because it is sufficient that any such value
equals 0 for the coin to be unanin~ously 0, and because of S's cardinality, we have

Hence

Thus

Lower-bounding P I . If S c [l, n], let bad # ,S denote the following event: S =
{j E [1,n] : V good g, SUA/Igj # bad). Notice that if Prob(bad # S) > 0: then S's
cardinality is greater than 2n/3. (Indeed, SU,\JgG # bad for all good players g and
G.) Also notice that CIS1>2n /3 Prob(bad # S) = 1. (Indeed, in any of our random
executions; there must be more than 2n/3 good players.)

We now lower-bound Pl as follows.

Since our lower bounds on Po and PI do not depend on n , A, or IQ, we have
proved that the fairness of protocol O C is min(Po, P I) = min(1- e-2/3, e-l) = e-I >
.35. 0

36 T h e bad players may also contribute t o raising the probability of the coin being unanimously
0. For instance, it is enough tha t , for some bad player j , the adversary acts so t h a t for all good
9, SUMG, # bad. By Lemma 7, sum3 then has a I/n chance of being equal t o 0. Our lower
bound, however, must hold for all possible adversaries; thus we have t o disregard this probability
from our computation since it may be 0 for some adversaries. Instead, we must consider and guard
against such possible behavior of the adversary when lower-bounding the probability of the coin
being unanimously 1.

OPT[>IAI, PROBAB[LISTIC BYZANTINE AGREEkIENT

8. Byzant ine agreement f rom oblivious common coins.

8.1. T h e not ion of Byzant ine agreement . When Byzantine agreement is
needed, t,he values to be agreed ilpon may have arbitrary length. Without loss of
cenerality. however, we restrict our attention to the case where every initial value is
b

a single bit: in fact: in [13] and [37]. it is proved that general Byzantine agreement is
to the binary case in i l constant nurrlber of rounds.

DEFINITION 15. bve .say that a protocol P i.s n Byzantine agreement protocol
(with fault-tolerance c) iA for all c-adversaric.s A: any) st7-in.q H:;: an,y number of

nrj and any bits bl. . . . , b,, i n an:y ezecvt.l,o.n of P(n) ,with adversary A on
initiul aduersarial history H; and inputs b L , . . . : b,t, there exists a bit d such that the
following two properties hold:

1. Consistericy: Euery good player that halts o ~ t p v t s d.
2. Validity: If there exists a bit b such that, for all initially good player i , b.i = b,

then d = b.
Notice that the above definition does not require that a Byzantine agreement

protocol ever terminate. A Byzantine agreement protocol is most interesting, however,
only if it torxninates with positive probability, hiu high fault tolerance? and requires
only a "moderate coxnputational effort" from the good plkiyers.

8.2. A n opt imal Byzant ine agreement protocol. LI-e are finally ready to
construct our Byziintine agreement protocol from our discussed primitives. It consists
of three basic subprotocols: P,., P I , and Po. Subprotocol P,. includes instructions for
"randomly flipping" an oblivious common coin. Protocols Po and PI actually consist
of protocol P, , where the outcome of the coin flip-is forced to be, respectively, 0 and
1. Thus: although the coin flips of subprotocols Po and Pl are predictable, they have
the advantage that all good processors are "atvare" of the result, and this result is
always the same for all good processors.

The goal of protocol 'P, is to.give the network a chance of reaching an "oblivious
agreement" (i.e., with positive probability. all players adopt the same bit without
knowing that this has happened). The goal of protocols and P I is to provide
a proof, if all players are in oblivious agreement, that agreement has indeed been
reached, so to allow everyone to terminate. More precisely, if the good players
obliviously agree on 0 (respectively, 1): an execution of Po (respectively. PI) makes
them aware that they are in agreernent on 0 (respectively, 1) and terminate.

Our Byzantine agreement protocol is not a fixed-round protocol. Rather, each
good player i keeps on executing, in order, subprotocols P,, Po. and PI until he
individually terminates. It thus may happen that different good processors terminate
at different rounds. Nonetheless, in a random execution with a 113-adversary, our
protocol terminates with probability 1, and when that happens, the outputs of all
good players, though produced at different times, will always satisfy the consistency
and validity requirexnents.

THEOREM 4. B.4 is a Byzantine agreement protocol with fault tolerance 113 and
runs in expected polynomial hime and in an expected constant number of rounds.

(More precisely, there exists a polynomial Q and constant c such that, for any
number of players n? any 113-adversary A? any initial qllaritities IQ. and any positive
integer k. the probability that. in randomly executing B.4(n) with A on IQ, the
protocol does not halt within Q (n) k BA-steps and ck rounds is less than 2-")

Proof. Let us start by establishing a convenient notation.
LOCAL DEFINITIONS. 111 un ezecut7;on of BA,, we cull a good player dead if he

has alread:lj terminated and alive otherwise.

924 PESECH FELDhlAN AND SILVIO MlCALI

PROTOCOL B A (n)
Input for player i: bi, a bit. "IVe actually consider bi as a variable of player i

whose initial value coincides with i 's input bit.''
Code for every P layer 1:.

0: For all players j , set B j = 0. "Bj represents the last one-bit message received
from player j."

(Subprotocol P,.)
1: Distribute bi.
2: For all j , if b; E (0: I) , then reset B j := bj; else, reset b; := Bj. Let

counti = tally(1).
"In other words, for the purpose of computing ta l ly(l) , if you did not
receive a bit from player j, assume that he virtually sent you the same
bit that he really sent you last.''

Run OC(n) and let ri be your output. Then:
(a) If count, E [O: 7213). then reset hi := 0. Else:
(b) If counti E [n./3,2n/3), then reset b; := ri. Else:
(c) If counti E [2n/3, n], then reset bi := 1.

(Subprotocol Po.)
3: Distribute bi.
4: For all j , if b; E {0,1} , then reset Bj := b;; else, reset b; := Bj. Let

count, = tally(1). Then:
(a) If counti E 10, n / 3) , then out,put 0 , distribute 0 in next round, and

TERMINATE

"In a. round from now: you will be dead and will keep on virtually dis-
tributing 0. Every ot,her good player is either dead and his output is 0 ,
or will terminate: out.put,ting 0."

(b) If count; E [n/3,2n./3), then reset b; := 0. Else:
(c) If counti E [2n /3 ,n] , then reset bi := 1.

(Subprotocol P I)
5: Distribute bi.
6: For all j: if b; E { 0 , 1) , then reset Bj := b;; else, reset b,f := Bj. Let.

counti = tally(1). Then: . .

(a) If counti E [O, 7x13); then reset bi := 0. Else:
(b) If counti E [n /3 ,2n /3) , then reset bi := 1. Else:
(c) If coun.ti E [2n/3 ,n] , ' then output 1, dist,ribut,e 1 in next round, and

TERMINATE.
"In a round from now: you will be dead and will keep on virtually dis-
tributing 1. Every other good player is either dead and his output is 1,
or will t,erminate out.putting 1 ."

Go to st.ep 1.

Let P E {P,: PI. IPg) and b E (0: 1) . Mlithin an execution of B A , we say that at
the start (at th.e end) of an execution oaf su.bprotoco1 P : the network is in agreement
on b iJ. for all good players g7 either g is dea,d a,n.d his output is b or he is a11:ve and
the current 11a~1u.e of variable bg is b.

W7e sap that at the start (at. the end) of an, execution of P, the network is in
agreement i f th,ere exists a. bit b such t1j.at th8e network is in agreemen,t on b.

CLA IM T4-1. For any subprotocol P E {P,.: P I , Po). any execution of P with a
113-adversaq, and any alive good players g and G, Icount, - countG] < n / 3 .

OPTIMAL PROBABILISTIC BYZANTINE ACR.EEhIENT 925

Proof. Only the bad processors m;ly send different bits to different players in the
same step. Thus, at any given st,ep, the difference between the tallies (of 1) of two
oood players is upper-bounded by the number of currently bad players and thus by
b

7113. .
CLAIM T4-2. For all P E {P, ,P l ,Po) , for all ezecution..~ of P with a 1/3-

adversa?, and for all bits b, if the network is in agreement on b at the start of
the execution! it is i n a!]reement on b at its end.

Proof. Since each execution of si~bprotocols Pl and Po is in essence a special
of P,., it is s~lfficient to prove our claim with respect to this latt,er protocol.

i\ssunie that a t the start of P T , the network is in agreerner~t on 0; that is, every
good deacl player outputs 0 and. for all goocl alive players g. h, = 0. Then all good
players ("really" the alive ones and "virtually" the dead ones) distribute 0 in step
1. This implies that only the bad players can distribute 1 in step 1; thus in step
2, for all goocl alive g , C O Z L T Z ~ ~ < n / 3 . As a consequence. independently of his own
output of subprotocol OC, a t the end of step 2, each good alive player g sets b, := 0

, in accordarice with instruction 2(a); that is, the network is in agreement on 0 a t the
end of P,.. The case in which the network is in agreement on 1 at the start of P, is
handled similarly.

C ~ x ~ a r T4-3. In any exec~~t ion of BA with a 113-adversary, whenever a good
player outputs a bit, the network is i n ugreement on that bit.

Proof. A good processor generates an output only during the execution of either
subprotocol P1 or subprotocol Po. Let E be the first execution of either PI or Po
in which a good player procluces an output, and le t g be one such player. Assume-
that E is an execution of Po: then all good players are alive during E, and g must
output 0 a t E 's end. Thus a t E's end, count, E [O: n / 3) . Therefore, by Claim T4-1,
for all good G, coun,tc: E [O,2n/3). This entails that , because of either rule (a) or
rule (b), every good player C: resets bc.:= 0: that is (because there are no dead good
players). the network is in agreement on 0 a t the elid of E (though only those good
players whose counter belongs to [0, n / 3) are aware of this and will t h i ~ s output 0 and
terminate). If there are no more executions of either P1 or in which a good player
outputs a bit, then we are done. Otherwise, because of Claini Td-2, since the network
is in agreement on 0 a t E 's end, it will remain in agreement on 0 thereafter. Thus,
whenever a good player outputs a bit later on, this bit must be O! in accordance with
our clairn. The case in which E is an execution of PI is argued in the "symmetric"
way. w

CLAIM T4-4. For any rar.dom execution of BA with a 1/3-ad.uersary and any
positive integer k, if the network is not in agreement at the start of the ktlb execution
of subprotocol P,, then the probability that i t will be in agreement at its end is greater
than .35.

Proof. Because of Clairn T1-3, our hypothesis implies that all good players
are alive throughout our execution of P,. Moreover, since by Claim T4-1 we have
Icount, - countcl < n / 3 for any good players g and G, one of the followi~ig two cases
must occur:

(0) Vgood i , counti E [O: 2n/3) , or
(1) Vgood i. COIL^^^^ E (n/3: n].

Lvhen case (0) occurs, if the oblivious common coin is unanimously 0: then each good
player .i resets bi := 0 (if co7.1nti E [O! n/3] because of rule 2(a), if counti E (n / 3 , 2 n / 3)
because of rule 2(b)) and thus the network is in agreement on 0. Similitrly. when case
(1) occurs, if the oblivious common coin is unanimously 1, then every good processor
i resets bi := 1 arid thus-since there are no dead good players to worry about-the

926 PESECH FELDhllAN AND SILVIO hiIlCALI

network is in agreement on 1. Since either case (0) or case (1) must occur, and since
OC is an oblivious coin protocol with fairness .35, the probabi1it.y that the network is
in agreement at the end of a random execut,ion of P, (though the good players may
not be "aware" of this event.) is greater t.han .35. .

CLAIM T4-5. In an.y execution of BA with a 113-adversary, if at the beginning
of an execution of subprotocol PI (respectively, PO), the network is in agreement on
1 (respectively, 0), then one round after the end of the subprotoco1 execution, BA
terminates and th.e output of every good pla.yer is 1 (respectively, 0).

Proof. Assume that the network is in agreement on 1 at the beginning of an
execution of PI (the "0 case" is similarly handled). Then all dead good processors
have output 1 prior to the present execution of P1, a.nd all alive good processors
distribute 1 in the first step of the execution. Thus, since their tallies of 1 belong
to the interval (7113, n,], all good (and alive) processors will perform instruct.ion 4(c)
throughout this execution. Therefore, each one of them outputs 1 and will terminate
in the next round, unless he will get corrupted in the next round, an event t.hat cannot:
in any case, change the output of the st.il1 uncorrupted players or t,he t>ermination of
the protocol since. as usual, BA ends when all good players have terminated. .

It is now easy to complete the proof of Theorem 4; we start by proving our
claim about BA's round con1plexit.y and fault tolerance. Pr is a 36-round protocol,
while Po and PI are both two-round protocols. Protocol BA iterates the ordered
execution of P,, Po, and PI until all good players terminate. Claim T4-4 guarantees
that, no matter what the initial quantities and the strategy of a 1/3-adversary may
be, in a random execution of BA, the probability that an "oblivious" agreement is
not reached after the 2kth execution of 73, is less than (.35)2k < 2-k . Once oblivious
agreement is reached a t the end of an execution of 'P,, Claim T4-5 guarantees that,
no matter what the actions of the 113-adversary may be, protocol BA halts-with
all the good processors "aware" of having reached Byzantine agreement-wit,hin the
next five rounds (i.e., at most one round after the end of PI if the agreement was
on 1). Thus the probability that protocol BA does not reach Byzantine agreement
within 80k + 5 rounds is less than 2-k .

Let us now prove our claim about, the amount of local computation of protocol
BA. Having set (hidden) message bounds, the good processors do not waste running
time reading excessively long messages sent by the adversary. Moreover, except for
some occasional random selections; each round of prot.0~01 BA can be performed
in fixed polynomial-in-n time. As for those raridom selections, they consist of the
random choices of elements in int,eger intervals of the form [0, z - 11. Now, whenever
z is a power of 2, a random selection in [0, z - 11 can be performed by flipping log z
coins-and thus in fixed (as opposed to expected) polynomial time by a probabilistsic
Turing machine. However, if z is not a. power of 2, then the adopted strategy for this
task consists of randomly selecting a [logzl-bit string until a member of the desired
interval is found. Clearly, the pr~babilit~y that more than T such trials are needed is
less than 2-T. Since in each iteration of P?, 'Po, and P I , at most Q(n) such selections
(where Q is a given polynomial) must be rnade by the good players, since tnhe rest
of the computation can be performed in fixed polynoniial time, and because of our
recently proven claim about the round complexity of BA, our claim about the running
time of BA easily follows. O

Remarks.
a Our reduction of Byzantine agreement to (oblivious) common coins was inspired

by an earlier work of Rabin [34]. His reduct,ion is mucli sinlplcr, but it assurnes a
common coin that 11ot only is externall?/ yro7rided but also is not oblivious (i.e., all

OPTIhl,\L PR.OBABILISTIC BYZANTINE ..\CREEMENT 927

are yua7,c~ntced to see the same comrrlon ranclorn bit3?): ant1 it requires that
the number of faults is < nl4.

As we have seen? protocol 13.4 eqjoys the property of being always correct and
fast; that is. our use of prohabilisrn introtiuces some uncertainty of how

long it will take to terminate (a modest uncertainty since we prove that the expected
number of rounds is constant), but 11o possibility of error in the correctness of the final
agreement. This desirable property implies that one cannot get rid of "expected" in
our rourld complexity. In fact, an algorithm that reaches a guaranteed agreement in
a fixed number of rounds, no matter what the sequence of its coil1 tosses may be, is
immediately trailsformed to a fixed-round, deterministic algorithm. Thus the result
of Fischer and Lynch [20] would imply that a t least O(n) rounds are needed if the
number of possible faults is O(n).

In general, as we have said, the input of a processor is a private value; that is, the
adversary has no way of knowing it unless she corrupts its corresponding processor
or this processor is instructed by the protocol to divulge it. Privacy of the initial
inputs is also a necessary condition for certain protocols to be meaningful. This is
indeed the case, for instance, with protocol C.r.adedVSS-indeed, unless the input of
an honest dealer is secret, there is no hope that an aclversary cannot guess it better
than at random. In the case of Byzantine agreement, on the other hand, the privacy
of the initial inputs plays no role in defining the problem, which in fact remains
totally meaningful even if we assume that the players' initial bits are known to the
adversary." Indeed, it should be noted that our protocol BA instructs each good
player to distribute his iriput bit at the very first step, and it thus works even in the
case in which the adversary knows the input bits of all players in 'advance.

As we know, protocol BA relies on subprotocol OC. One may describe this
subprotocol as producing a bit that is "sufficiently random and common." Such a
description would, however, be quite incomplete.. Namely, the output of OC is also
sufficiently unpredictub.le a t the start of each execution of the protocol. In fact, if
the fairness of the coin that O C produces is positive, then we know that in any
random execution both 0 and 1 have a positive probability of being output. It should
be noticed that this unpredictability is used in our Byzantine agreement protocol:
in protocol P,., "the oblivious coin" is flipped after every processor i distributes his
current value bi; thus in step 1, the adversary must choose which values the bad players
distribute when the oblivious coin is still unpredictable. Actually, the unpredictability
of the oblivious common coin flip is more than merely used in our protocol; it is
actually crucial to it: should the adversary know the result of the coin flips of OC
in advance, she could prevent agreement indefinitely. In fact, a bit more precisely,
it can be shown that if all processors have as a common input-at the beginning
of the protocol-a sequence of truly random and independent (but also: necessarily,
predictable) coin tosses and use these bits instead of the outcomes of OCin subprotocol
P,-, a 1/3-adversary can easily and indefinitely prevent agreement from being reached.

The above discussion can be summarized by saying that our protocol BA relies
heavily on hiding-at least temporarily-information. We will further elaborate on
this crucial point in section 9.2.

As we have indicated, the good processors need not terminate simultaneously.
Indeed, the adversary can force "staggerecl termination" if she so desires.

To avoid staggered termination, one may consider iterating subprotocol P, a

3' In his scenario, random coin flips are "predistributed" by a trusted party. Thus once they are
"revealed," all good processors will see the same result.

3R This is a quite plausible scenario since bad guys tend to '.know" more than good ones.

prescribed number of times. If this number of times is large enough. upon ternliriation.
agreement would be reached with high probability. However, such a protocol would be
unsatisfactory. First. from a theoretical point of view. it would introduce a probability
of error. (In other words, there would be a chance that upon termination the good
processors may not be in agreement-an event that is not allowed by our definition.)
Second, from a "practical" point of view, to ensure that agreenlent is reached with
probability 1 - the envisaged protocol would have ulu)ays to run 'P,. I; times.
By comparison, our protocol will run PT k times only "very seldomly," that is, with
probability 2 - k . (Trruly. each time that our protocol runs PT. it also runs Po and
PI, but these latter protocols require only two rounds each and are extremely simple.
The brunt of the computation is constituted by PT alone, which is a quite complex
34-round protocol .)

It should be noticed that. since some good processors may be alive and some
others may be dead, in some executions of F,. there may not be a 213 majority of
good processors. In fact, the dead ones do not participate in the protocol but simply
"virtually" send a bit at given times. Under these circumstances. the coin tosses of
OCneed not to be common or fair in any way. This is not a problem, though. -4s we
have shown, when a good processor terminates. the processors are in agreement and
agreement cannot be disrupted. Protocol PT is thus executed a t most once without
an honest majority of players: in fact, all alive good processors will terminate one
round after the next execution of either Po or PI. whose coin toss the adversary does
not control.

9. Adjustments and improvements.

9.1. The model independence of our Byzantine agreement protocol.
Pros and cons of standurd networks. In presenting our Byzantine agreement

protocol, following a time-honored tradition, we have chosen standard net,ulorks (i.e.,
networks in which every pair of processors is con:lected by a dedicated and private
communication line) as its underlying communicat.ion model. This model has notably
simplified our argument, and has helped us to focus on the es.sen.tia1 distributed aspects
of the quintessentially distributed problem at hand without getking sidetracked by a
variety of important but quite different issues. (Essence, of course, is in t.he eyes
of the beholder!) Moreover, the st,andard-net<work model is quit,e realistic in some
contexts-for instance, in the case of comput,er networks whose processors are not
directly controlled by hun~ans.~' Unfortunately, t,his is also t,lle context in which,
in our opinion, Byzantine agreement is less meaningful, a t least for the extrelnely
malicious fault model a.ddressed in this paper--u~liich, regretkably. belongs to the
domain of human int,eractions. As a matter of fact,, people being wha.t they are:
private channels may prove to be too much of an abstraction. If a Byzantilie agreenient
protocol were run in the context of an a.dversaria1 negot,ia.tion conducted in s cornputer
network, it would be remarkable that impostors would chivalrously confine themselves
to purely software attracks, refraining from tampering with the network itself. Indeed,
if they did, communication channels would not remain "private" for too long no
matter how much metal they could be shielded wit,h or how deep t.11~~. could be
routed. We thus wish to briefly discuss what happens t,o our algorithm when its
communication model is more ... 'il~umanized."

39 Indeed, when such colnputers rnalfunctior~. they may start running algorithms t,hat. are different
from their intended ones, may act-due 1.0 Murphy's law-its if the); coordinate their disri~ptful
efforts, and so on, but they carlr~ot gairl access to the dedicated line c o r ~ ~ t e c t , i ~ ~ g two p~.operly workirlg
processors!

OPTIhIAL PROBABILISTIC BYZANTINE AGREEMENT 929

Other poa.szble models. If the adversary rnay prevent niessages between good
processors from being tlelivered. Byzantine agreement would be impossible. However,
we may still trust our network to be asynchronous; that is, the adversary might
delay messages arbitrarily long but cannot prevent them from everitually reaching
their intentled recipients. (For a discussion of this model, consult. for instance, [19].)
Fortunately. our Byzantine agreement protocol has been ingeniously extended by
Feldman [17] and Canetti and Rabin [i] to work on asynchronous networks as well.

If the adversary is able to change the xriessages exchanged between two good pro-
cessors. Byzantine agreement would also be impossible since a single faulty processor
could impersonate as many processors as it likes. Alternatively, the adversary may
be capable of reading messages between good processors but not altering them.40 In
either case. one can still run our protocol using cryptography to simulate the privacy
of such -'public" lines (assuming, of course, that the adversary is computationally
bounded). The basic underlying idea is that injecting or altering messages may be
made infeasible by secure digital signatures that are secure in the sense of [25], while
reading messages can be made infeasible by an encryption scheme that is secure in
the sense of [23]. (One caveat, however: for very subtle reasons that exceed the scope
of this paper, this bczsic strategy is surprisingly hard to implement correctly.)

If the adversary can "disconnect" two good processors, Byzantine agreement
would again be impossible. However, rather than assuming that our network is com-
plete, we may trust that it has some special. uncorruptable nodes that do not perform
any computation but simply reliably route properly labeled messages. (Indeed, this
may allow for quite sparse networks.) In this setting, our protocol would work es-
sentially without any changes and with the same efficiency. Alternatively, one may
consider networks with fewer communication lines but with sufficiently high connec-
tivity. This way. for every set of faulty processors with small enough cardinality, every
two g o ~ d processors are still connected by a path consistirig solely of good processors.
Solving the problem in this new setting would require encrypting each message and
sending it to its recipient through several node-disjoint paths. This, of course, would
increase the running time of our protocol by a "network-topology" factor, but, most
likely, the same increase in running time would be suffered by other protocols.

9.2. Improvements of o u r results. Our results have been found useful in
several ways.

As we have already mentioned in subsection 9.1, our Byzantine agreement pro-
tocol has been extended by Feldman [I71 to work on asynchronous networks in which
each pair of players is connected by a private channel. His asynchronous protocol
tolerates up to t < n/4 faults. Using cryptography and assuming a computationally
bounded adversary. it regains optimal fault tolerance, t < n/3 , in the asynchronous
case as well. Quite recently, Canetti and Rabin [i] have exhibited (for the same net-
works) an asynchronous Byzantine agreement protocol running in expected constant
time and possessing resiliency 1/3 against an adversary with unbounded computa-
tional capabilities-though allowing a probability of error. (Let us note in passing
that the notion of "constant time" must-and can-be meaningfully formulated in
the asynchronous setting.)

Ben-Or and El-Yaniv [4] have extended our algorithm to to reach Byzantine
agreement in standard networks, in an expected constant number of rounds, for an
entire collection of players' initial v. CL 1 ues.

40 This rnay be the case in a n ordinary telephone network, whose lines can be easily eavesdropped,
while the voices of its users may be hart1 to imitate.

930 PESECH FELDhI.4N AND SILIrIO F\,IICALI

Using our results and those of [dl. hficali and Rabin [29] have obtained a I'SS
protocol (i.e.. a .'nongraded one"!) that works in standard networks (rather than
standard-plus-broadcast ones), runs in polynomial time and an expected constant
number of rounds. and tolerates any 7-113 faults in the worst model. They have also
exhibited a nonoblzvious common coin protocol, with fairness 1/2 and fault tolerance
113, that works in standard letw works and runs in expected polynomial t i~ne and an
expected constant nulriber of rounds. (Dolev, Dwork. and Yung have informed them
that they have independently found these same protocols.)

Goldreich and Petrank [27] have shown how to modify our algorithm so as to
keep its expected running time and round complexity, while guaranteeing termination
in the worst case (i.e.. with the most unlucky sequence of coin tosses) in t + O(1ogt)
rounds whenever the upper bound on the number of faulty players is t . (Thus termi-
nation is guaranteed in O(n) rounds in the worst-fault model.)

10. Significance.

10.1. The "right" significance of Byzant ine agreement. Until now: we
have been advocating that Byzantine agreement is "the best one can do, in an adver-
sarial scenario. when broadcasting is impossible." At this point,, having gained more
experience with adversarial beha.vior: we wish t.o point out. that this informal saying
is misleading in that it seems to imply that broadcasting is an available resource?
and only when you are deprived of it should you turn to Byzant,ine agreement as a
meaningful subst.it,ute. The truth is that, in an adversarial setting, closer scrutiny

. reveals broadcasting to be "almost alu-ays impossible."
Consider, for insi.ance, a radio net.work. The recipient of a message in such a

network cannot. tell whether a satellite has aimed it,s signal to his specific geographical
area. or to the whole country. hloreover, since imitating (or cutting and pasting
recorded pieces of) one's voice is quite possible, the recipient of .a radio message
cannot have any cert.ainty about the identity of the sender of the message. Indeed, in
an adversarial setsting, broadcasting is an a.bstraction. Tlius a natural question arises:

In what "reasonable" communication models can one "concretely implement"
an abstract notion sat,isfactorily close tlo that of broadczqt,ing?

It is in light of this question that. Byzantine agreement achieves, in our view, its true
significance: namely, it deillonstrates that st,andard networks offer a reasonable com-
munication model to approximate: despite t,he presence of adversaries, t.he abstract
notion of a broa.dcast.ing. Better said:

We regard Byzantine agreement as sho~ving t,hat the abstraction of broad-
casting can be meaningfully approximat,ed ky "simpler" abst.ractions: strong
honest n1ajorit.y: synchrony. and private channels (and by even simpler ones:
as we have discusscrd in sect.ion 9.1).

10.2. The significance of o u r results. It is now t.i~ne to ~ s k ourselves, "14'hat
is the significance of our ourn result,?"

14:hile our simplest ~>rin~it,ives-Gradecast and, for small n., Graded 1,'SS-are quite
pra,ctical, we do not expect. our Byzantine agreement prot,ocol t,o have a direct practical
impact,. In fact. t,hougli it does not liave any riioristrolis "hidden constants'' and
is act.ually quitme feasible. our protocol st,arts outpcrformirig prior ones when run in
standard networks (or net~vorks with "sinlulated st,andardsiess~" as discussed in section
9.1) with a few liulidred

41 Should standard nct,works of' this size become fcasiblc. our result itct.ual1-y opens t.lle possibility
of artificrally in.creusin.g t l ~ e riunlbcr of' plavers so as to ir~crease (.he relia1)ilil.y of t h c network wit,f~o~lt

OPTIhIAL PROBABILISTIC BYZANTINE AGREEMENT 931

However, our resldts should have an indirect practical impact. Solving a long-
open problem always marks a technical advance in it given field, and it is

reasonable to expect that in our case as well this increased level of understanding will
eventually translate into more practical protocols than ours.

hIore importantly. our techniques will be quite effective when dealing with much
more complex problems than Byzantine agreement, that is. with those problems for
which the existence of anv solution is by itself a blessing and no superpractical answer
can be legitimately expected.42 In fact, it should be appreciated that our protocol
solves a more difficult problem than Byzantine agreement (a fact that may perhaps
excuse some of our complications): it provides a reasonably fair and fault-tolerant
coin-flipping protocol in a quite unmanageable communication arid fault model.13

Finally. scientists shall not live by technique alone. and we now wish to argue that
our result is more significant from a purely conceptual point of view.

Probubllism versus determinism. Can randomness speed up comp~~tat ion? This
is one of the most intriguing and fundamental questions of complexity theory. The
celebrated probabilistic algorithms for primality testing of Solovay and Strassen [36]
and Rabin [33] (and the more recent and equally beautiful ones for primality prou-
ing of Goldwasser and Kilian [22] and Adleman and Huang [I]) show that efficient
probabilistic solutions exist for problems for which no polynoniial-time solution is yet
known. We cannot, however. prove that no deterministic, polynomial-time primality
algorithm exists. Indeed, the fact that generating a sequence of coin tosses, indepen-
dently from the problem a t hand, may help solve our problem much faster is quite
puzzling.

From this point of view, our result takes on a more serious significance. Namely,
contrasting its performance with the quoted t + 1-round lower bound [20] for any
deterministic protocol in which t malicious faults may occur, our Byzantine agreement
protocol offers a dramatic example that, a t least in some -scenarios. probabilistic .

solutions are provably vastly supen'or to all deterministic ones.
Such a speedup was already demonstrated by Rabin [34]. but by making the

additional assumption of a common source of randomness external to the network: a
common coin toss magically available to all processors a t every clock tick. We instead
demonstrate that randomness alone (i.e.. individual and independent random choices
made by individual processors), without any additional assumptions, suffices to beat
any deterministic Byzantine agreement protocol in a dramatic way.

Pnuacy cersus correctness. Our probabilistic solution to the synchronous Byzan-
tine agreement problem sprung from recent advances in the field of zero-knozuledge
computation. Roughly said. this is the science of conimunication protocols that need
to satisfy both a c0rrectne.s~ and a privacy requirement. (For example. following the
original application of Goldwaqser, RiIicali, and Rackoff [24], a zero-knowledge proof
shows that a given statement indeed possesses a correct proof but does not reveal
what this proof might be.)

It should be noticed. however. that while Byzantine agreement has subtle correct-

making the time needed to reach agreement helplessly long. (In fact, if we know that-say-10% of
the players are expected t o become faulty during a decade, t o ensure that 2/3 of them will be working
properly in such a period, we are better off having a network of hundreds of processors rather than
just a dozen of them.)
" Indeed. the usefulness of our algorithm for solving the problems mentioned in section 10.1

provides some support for this claim, and it augurs wonderfully for future ventures.
" Indeed, flipping a coin wit11 adversaries does not get much easier even in friendlier scenarios

than ours.

932 PESECH FELDhlAN AND SILVIO XIICALI

ness requirements, it has no constraints whatsoever about priva.cy.44 Nonetheless. the
correctness and speed of our protocol depend in a f~ndainent~al way on Gra,dedVSS, a
protocol where privacy is the central issue. \Jie thus wish t.o advocate a novel role for
privacy: namely. a tool for rea.ching correctness. This is less puzzling t,lian it sounds.
Our intuition behind it is simple:

Error in, computation can. be modeled as an adversary, and if your adversary
"knouis little," she ca.n, do little to disrupt gour computation.

Indeed, we believe that privacy will become a fundamental ingredient in the design
of fault-tolerant protocols. Are we right? Time will tell. But may our journey be
enjoyable in any case.

Acknowledgments. \Ve are particularly grateful to Michael Fischer, Rosario
Gennaro, Nancy Lynch, and David Slimoys for their generous, attentive, and con-
structive criticism.

Special thanks go to Ray Sidney, Tal Rabin, and Philip R.0gau.a~. As we liave
already mentioned, the second author has collaborated with Philip Rogaway in mod-
eling computation in the presence of faults in more complicat.ed scenarios than the
present one. The computat~ional model of this paper has benefitted from the insights
gained during that collaboration.

We would also like to acknou~ledge hlichael Ben-Or, Benny Chor, Cynthia. Dwork,
Peter Elias, Rosario Gennaro, Oded Goldreich, Shafi Goldwasser, and hlichael Rabin
for many wonderful discussions about the Byzantine agreement problem.

Thanks also t,o t,wo anonj.mous referees for their woriderful comments. Tlie present
version of our paper corresponds to the point in which one referee lamented that
formalizktion exceeded intuition and another that intuition outmatched formali~at~ion.

Finally, our main mot,ivation for working on the Byzantine agreement problem
came from the beauty and nozlelty of the ideas of those who preceded us. \Ve have
immensely enjoyed stlanding on such tall shoulders!

[l] L. M. ADLE~IAN A N D XI. .4. HUANG, Recognizing primes in random polynomio.1 time, in Proc.
19th .4CM Symposium on Theory of Computing, ACM, New York; 1987. pp. 462369.

121 D. BEAVER: S. ~ ~ I C : A L I . A N D P. RoGAM'AY, The round complexity of secure protocols, in Proc.
22th .4CM Symposium on Theory of Computing, AChl. New York, 1990.

(31 hl. BEN-OR. S. GOLDWASSEK. A N D A. IT^^^^^^^^, Completeness theorems for fault-tolerant
distributed compu.ting, in Proc. 20th .4CXl Symposir~m on Theory of Compllting, ACM,
New York. 1988. pp. 1-10.

[4] M. BEN-OR AKD R.. EL-YANI\:, Interactive consistency in constunt tim.e. Dist.rib. Comput.,
1991. submit,ted.

[5] h4. BEN-OR, Another advantage of free choice: Completely asynchronous agreement. protocols,
in Proc. 2nd Annual Symposirim on Principles of Distributed Cornprltirrg, ACh4, New York:
1983, pp. 27-30.

[6] G. BRACHA. A n "~ (logn) " ezpected munds ran.domized Byzanti.ne generals protocol, in Proc.
17th -4Ch4 Symposium on Theory of Computing. ACM, New \t'ork, 1985.

[7] R. CANETTI ~ l \ i l) T. R.ABIN, Fast. asynchronous agreem.enf with optim.al resilience. in Proc. 25th
ACh.1 Synlposium on Theory of Computing, ACXI? IVew York. 1'393, pp. 42-51.

[8] B. C I ~ O H AKD B. (1 0 . 4 ~ . A simple and eficient. mildomized Byzantine agreement problem, TGEE
Trans. Software Engrg., SE-I 1 (1985): pp. 531--539.

19) B. CHOR. S. GC)LL)M.ASSEK. S. LIICALI. A N D R. AWERHIICH, Verifiable sec~e t sharing and uchicv-
ing sirnultu7~(:it.y i n i.he presen,ce ojf'aults. in Proc. 26th Annual IEEE Syrr~posiunl on Foun-
dations of Comput.er Science. IEEE Computer Society Press. Los A1arnit.o~. CA, 1985,
pp. 383-395.

44 Indeed, our prot.oc.01 B A starts t,y having each good processor distributr his own irlpllt v,zlut. 1.0

all players.

OPTIMAL PROBABILISTIC BYZANTINE AGREEMENT 933

[lo] D. C~l:\r:ar. C.'. CR.EPEAU. .AND I. DAMC:,\R.D, :I/idtz-part?) unconditionall7~ secure protocols, in
Proc. 20th ACXI Symposiuni on Theory of Computing, ,4CbI, New York, 1988.

[11] B. C ~ 0 f r :\No C. DWOKK, Rando~nizution i n Byzantine agreement, in Randomness and Corn-
putation. S. blicali, ed., .JAI Press, Greenwich. CT, 1989, pp. 433-498.

[I?] D. DOLEV.)I. FISCHER. R.. FOWLER. N. LYNCH, AND H. STRONC:, A n ef ic ient algorithm for
Byzantine agreement without tauthentication, Inform. and Cot~trol, 52 (1982), pp. 257-274.

(131 D. DOLEV, The Byzantine generals strike ugain, J . Algorithms, 3 (1982), pp. 14-30.
1141 D. DOLEV A N D C. DWORK. manuscript, 1987.
[15] D. DOLEV. C . DWORK. A N D 11. NAOR. Non-mulleable cryptography, in Proc. 23rd ACM Sym-

posium on Theory of C:omputing, ACiLI, New York, 1993, pp. 542-552.
[16] C. DWORK. D. SHSIOYS. h N D L. STOCKSIEYER, Flipping persuasively in constant ezpected time,

SIX41 J. Cornput., 19 (l99O), pp. 472-499.
[17] P . F E L D ~ I A N , Optimal a1gorithm.s for Byzantine agreement, Ph.D. thesis, Massachusetts Insti-

tute of Technology, Cambridge, ILIA, 1988.
[18] P . FELD~I:\N A ND S. ~ [I C A L I , Byzantine agreement in constant ezpected time (and trusting n o

one), in Proc. 16th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alatnitos, CA? 1985, pp. 267-276.

[lg] LI. FtSCHER, The consensus problem i n unreliable distributed systems (a brief survey), in Proc.
International Conference on Foundations of Computation, 1983.

[20] >I. FISCHER .AND N. LYNCH. A lower bound f0.r the time to assure interactive consistency,
Inform. Process. Lett., 14 (1982), pp. 183-186.

[21] Z. GALIL. S. H.ARER, A N D A.1. YUNU, Cryptographic computation: Secure jalt-tolerant protocols
and public-key model, in Proc. CRYPTO '87, Springer-Verlag, Berlin, 1987, pp. 135-155.

(221 S. GOLDWASSER AND .J. KILIAN. Almost all primes can be quickly certified, in Proc; 18th ACM
Symposium on Theory of Computing, AChI, New York. 1986, pp. 316-329.

(231 S. GOLDW.ASSER AND S. ~ I I C A L I , Probabilistic encryption, J. Comput. System Sci., 28 (1984),
pp. 270-299.

[24] S. GOLD\V.ASSER. S. LLIICALI. .AND C. RACKOFF, The knowledge complexity of interactive proof-
systems. SIAiLI. J . Comput., 18 (1989), pp. 186-208.

[25] S. GOLDW.ASSER. S. ~ I I C A L I , A N D R. RIVEST! A digitul signature scheme secure against adaptive
chosen-message attacks, SIXkI J . Comput., 17 (1988), pp. 281-308.

[26] 0 . GOLDREICH. S. 311c~t.1, A N D A. WICDERSON, How to play any mental game, or a com-
pleteness theorem for protocols with honest majority, in Proc. 19th ACM Symposium on
Theory of Computing, AChI, New-York, 1987, pp. 218-229.

[27] 0 . GOLDRE~CH A N D E. PETR.ANK, The best of both worlds: Guaranteeing termination.in fast
randomized Byzantine agreement protocols, Inform. Process. Lett., 36 (1990), pp. 45-49.

[28] A. KARLIN AND A. YAo, manuscript, 1987.
[29] S. ~ [I C A L I A N D T . R c ~ ~ ~ ~ , Collective co,in tossing without assumptions nor broadcasting, in

Proc. CRYPTO '90, Springer-Verlag, Berlin, 1990, pp. 253-266.
[30] S. hI1c.ALt AND.^. ROG.~\VAY, Secure computation, in Proc. CRYPT0 '91: Springer-Verlag,

Berlin, 1992; full paper available from authors.
(311 Y. k I o s ~ s .AND 0 . \V.A.-\RTS, Coordinated travel: (t + 1)-round Byzantine agreement i n polyno-

mial time, iri Proc. 29th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press. Los Alamitos, CA, 1988. pp. 246-2.55.

[32] XI. PEASE. R. SHOSTLK. A N D L. LA~IPORT, Reacliing agreement in the presence of faults, J .
Assoc. Comput. Mach., 27 (IQXO), pp. 228-234.

[33] &I. R.ABIN. Probabilistic algorithms for testing primnlity, J . Nuniber Theory, 12 (1980), pp. 128-
138.

[34] hI. Rxarx, Randomized Byzantine generals. in Proc. 24th Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1983,
pp. 403-409.

[35] T . R,\srN AND L,I. REX-OR, C'erifiable secret sharing and multiparty protocols with honest
majority, in Proc. 21th ACbI Sympositlm on Theory of Computing, ACM, New York,
1989.

[36] R. SOLOVAY .AND V. STR.ASSEN, A fast Monte-Carlo test for primality. SIASI J . Comput., 6
(1977). pp. 84-85.

[37] R. TURPIN A X D B. CO.AN, Extending binary Byzantine agreement to multivalued Byzantine
agreement, Inform. Process. Lett., 18 (1981), pp. 73-76.

