
Delegating Computation on Costly Data

Pablo D. Azar∗

MIT
Silvio Micali†

MIT

September 10, 2015

Abstract

Collecting and processing large amounts of data is becoming increasingly crucial
in our society. We model this task as evaluating a function f over a large vector
x = (x1, . . . , xn), which is unknown, but drawn from a publicly known distribution X.
In our model learning each component of the input x is costly, but computing the
output f(x) has zero cost once x is known.

We consider the problem of a principal who wishes to delegate the evaluation of
f to an agent, whose cost of learning any number of components of x is always lower
than the corresponding cost of the principal.

We prove that, for every continuous function f and every ε > 0, the principal can—
by learning a single component xi of x—incentivize the agent to report the correct value
f(x) with accuracy ε.

∗Email: pazar@mit.edu. Address: MIT Economics. 77 Massachusetts Ave. E19-750, Cambridge MA,
02139.
†Email: silvio@csail.mit.edu. Address: MIT CSAIL. 32 Vassar Street, 32-G644, Cambridge, MA 02139.

1



1 Introduction

Our society is more and more data intensive. Every day, firms need to gather and process
multiple pieces of data to make products and decisions. In this paper we investigate how to
delegate to a rational agent the process of first obtaining multiple pieces of data and then
aggregate them into a “compact” final result. In our model, obtaining the pieces of data is
expensive, but the algorithmic operations to process them are free.

A bit more formally, in our setting a risk-neutral principal wants to learn the output of
a continuous function f : Rn → R on an input x = (x1, ..., xn). The input x is unknown, but
drawn from a known distribution X. Furthermore, the function f depends on all its inputs,1

and once the entire input vector (x1, . . . , xn) is known, f(x1, . . . , xn) can be computed at
no cost. Learning the inputs, however, is costly. Specifically, the principal can learn any k
coordinates of x at a cost of γ(k). There also exists a risk-neutral agent, who can learn any
k coordinates of x at a smaller cost, c(k) < γ(k), where both c(k) and γ(k) are increasing
with k. Since the agent has a lower cost, it would be socially optimal for the agent to learn
the whole vector x, and then compute y = f(x) and report y to the principal, assuming that
the principal’s value from learning y is higher than the agent’s cost c(n). However, since the
principal cannot monitor the agent’s actions, she cannot necessarily trust him to learn the
whole (x1, . . . , xn) nor to report the correct y. Thus, we must find a way to incentivize the
agent to act on the best interests of the principal in this new framework.

Let us illustrate the usefulness of our goals by means of two examples.

Example 1: Scientific Data. Each input xi is the result of an expensive but replicable
physical experiment, which the agent can perform more cheaply than the principal.

Example 2: Proprietary Data. An information company has a proprietary database
about the behavior of n individuals, and the principal is an outsider wishing to obtain
some aggregate function of these data in order—say—to price a new product. Here,
the agent is the information company itself, and while the principal can recreate each
individual’s data from scratch with non-trivial cost, the information company —after
sinking a fixed cost into creating its database—can retrieve each record very cheaply.

Although our framework and results apply also when the number of inputs n > 1 is small
and each input component xi consists of just a few digits, our results are most relevant when
n is large and each xi has a large number of significant digits, so that it would be impractical
for an agent to report the entire input vector (x1, . . . , xn) to the principal. Typically, in
fact, it is when (x1, . . . , xn) is huge that one wishes to deal instead with an aggregate value
f(x1, . . . , xn).2 Indeed, when the input vector x is large,3 the principal should not insist on
the agent revealing all the data he has learned, but on his reporting the right answer f(x)!

1More formally, for all x and all i ∈ {1, ..., n}, there exists x′i such that f(x−i, xi) 6= f(x−i, x
′
i).

2As an example, when f is Lipschitz continuous with Lipschitz constant 1, so that |f(x)−f(x′)| < δ when
‖x− x′‖∞ < δ, the number of significant digits that we would need to send to communicate f(x) increases
with 1

δ , while the number of significant digits needed to commmunicate the entire vector (x1, . . . , xn) increases
at a rate that is n times larger.

3E.g., the Large Hadron Collider at CERN produces 30 petabytes of data every year [12].

2



We investigate delegation of computation over costly inputs in two settings, described below.

1.1 Exact Computation

In our first setting, the exact computation case, the principal wants to learn y = f(x1, . . . , xn)
exactly. We show that, for an important class of functions, the principal can incentivize the
agent to reveal f(x) using a direct mechanism. Informally, in a direct mechanism

1. The agent

a. chooses a subset SA of the input coordinates and learns the correponding subvector
xSA

= {xi : i ∈ SA} at a cost of c(|SA|), and

b. reports a value z(xSA
), allegedly equal to y = f(x1, . . . , xn).

2. The principal

a. chooses a (random) subset S of the input coordinates and learns xS = {xi : i ∈ S},
and

b. pays the agent a reward R(z, xS) which is a continuous function of z and xS.

A direct mechanism is

(a) incentive compatible if the agent maximizes his expected payoff ES[R(z, xS) − c(|SA|)]
only by choosing SA = {1, . . . , n} and announcing z = f(x1, . . . , xn),

(b) individually rational if the expected reward is at least c(n), the cost to a truthful agent
of learning the whole input vector (x1, . . . , xn).

Our First Result: The Mechanism M1 A function f : [0, 1]n → R is separable if
f(x1, . . . , xn) =

∑n
i=1 fi(xi). We show that if f is separable and each fi is bounded, then the

principal can correctly learn f(x1, . . . , xn) by means of a direct, incentive compatible, and
individually rational mechanism M1 in which the principal queries just one input herself.

As we shall see, mechanismM1 is a crucial subroutine for our more general mechanisms.

Our Second Result: The Limits of Direct Contracts. Our first result raises the ques-
tion of whether direct contracts can be used to delegate the exact computation of functions
that are not separable. In our second theorem, we show that this is not the case even for a
very simple non-separable function. Indeed we show that for

f(x) =
n∑
i=1

∏
j 6=i

xj

no direct contract can incentivize the agent to reveal f(x) unless the principal queries the
entire input vector (x1, . . . , xn) herself.

1.2 Approximate Computation

In our second setting, the ε-approximate computation case, the principal wants to learn z
such that |z − f(x)| ≤ ε, for some arbitrarily small ε > 0.

3



Our Third Result: Approximately Delegating Arbitrary Continuous Functions.
We show that for any continuous function f : [0, 1]n → R, any input x ∈ [0, 1]n and any
ε > 0, there exists a (non direct) mechanism M2 that incentivizes the agent to reveal a z
which is within distance ε of f(x).

In mechanism M2:

• The principal queries only one coordinate of the input vector x

• The principal and the agent interact in 2 rounds, in each of which one sends a message
to the other.

Our Fourth Result: Round Optimality of M2 In our fourth result, we show that
one-round mechanisms cannot be used for approximate delegation of arbitrary continuous
functions unless the principal queries the whole input vector (x1, . . . , xn), which would defeat
the purpose of delegating the computation in the first place. Accordingly, our mechanism
M2 simultaneously minimizes the number of queries that the principal makes to the input
vector, and the number of rounds of interaction between the principal and the agent.

1.3 Optimality and Unlimited liability

We note that our mechanismsM1 minimizes the number of queries and interaction rounds,
among all incentive-compatible mechanisms that delegate separable functions, andM2 min-
imizes the number of queries and interaction rounds, among all incentive-compatible mech-
anisms that approximately delegate continuous functions. These properties hold for any
environment where the agent and principal are risk neutral. In particular, they hold when
the agent has limited liability and can only be paid a positive amount ex-post.

Of course, queries and rounds of interaction are not the only costs that the principal
faces. She must also bear the monetary cost of paying the agent’s reward. We highlight that
there is one setting where we can simultaneously minimize all three of these costs: namely,
when the agent also has unlimited liability.

With unlimited liability, the technique for minimizing the expected payment to the agent
is well known [8]: the principal charges the agent a fixed participation fee, equal to the
expected utility that the principal gets from the mechanism.4 In this way, the principal can
always find a mechanism that makes the agent’s IR constraint bind, without affecting the
number of queries or the number of communication rounds.

Auditing and Optimality When the agent has unlimited liability, there is a trivial in-
centive compatible, individually rational, and one-round mechanism in which the principal
learns f(x1, . . . , xn) exactly, minimizes the expected reward, and makes (in expectation)
arbitrarily few queries. Namely,

4The principal can compute this expected reward at zero cost because she knows the distribution X
from which the true input x is drawn and can take expectations with respect to this distribution without
gathering any costly information about the true input x. Of course, this would not be true in a model where
the principal has to pay a cost for every algorithmic operation that she makes.

4



The ε-Auditing Mechanism

1. The agent reports a value z, allegedly equal to y = f(x1, . . . , xn)

2. With probability (1− ε), the principal pays the agent 0.

3. With probability ε, the principal queries the entire input vector (x1, . . . , xn) and

pays the agent c(n)
ε

, if f(x1, . . . , xn) = z, and 0 otherwise.

The ε-Auditing mechanism, however, is not meaningful in many cases: for instance, when
γ(k) = +∞ for some k > 1. Consider first our example 1, where each xi is the result of a
replicable scientific experiment. Assume n = 100, and each experiment takes one day for the
agent to perform, but one year for the principal. Then, for every possible choice of ε, the
agent should never agree to participate in the ε-Auditing Mechanism, as the principal will
die before he could pay the agent a positive amount.

Consider now our example 2, where (x1, . . . , xn) is a proprietary dataset owned by an
information company. If the principal does not have enough money (or time) to learn herself
the entire vector (x1, . . . , xn), then the agent has no hope to be paid. (Problems also arise
even when the agent is able to reveal and prove to the principal the value of each xi in a
very cheap manner. Indeed, the information company must reveal all of his proprietary data
in order to get paid, and thus destroys its own business by enabling a competitor in the
process.)

In any case, even when the ε-Auditing Mechanism can be meaningfully used, we must
ask what is the ‘optimal mechanism to use once the auditing state is reached’. This is the
mechanism that would be observable (when there is no auditing, we only observe that there
is no auditing). Thus, we will focus on mechanisms that always make at least one query to
the input distribution. As we shall prove in sections 3 and 4, M1 and M2 both make only
one query to the input distribution and, under unlimited liability, are therefore “optimal
once the auditing state is reached” for their respective settings.

1.4 Additional Prior Work

In a prior setting, the buying and selling of information has been modeled via an agent,
who (costlessly) knows a distribution X about an uncertain state of the world x, and a
principal who wants to incentivize the agent to reveal the distribution X. This problem
has been addressed via strictly proper scoring rules [4, 7]. We differ from this traditional
setting in three important ways: (1) the agent has cost for gathering information, as in the
work of Osband [15], Clemen [5] and Lambert [11], (2) the principal only wants to learn an
aggregate function f(x) of the uncertain state of the world, not the entire state itself, and
(3) the principal can herself obtain any information that the agent can obtain, albeit at a
higher cost. As we will show, however, we can adapt the techniques from scoring rules to
apply to our different setting.

A different way to account for computation in the design of contracts has been studied
by Anderlini and Felli [2], and Al-Najjar, Anderlini and Felli [1]. Anderlini and Felli show
that when contracts are generated by a Turing Machine, then in some situations computable

5



contracts will be sub-optimal. Al-Najjar Anderlini and Felli show that when events cannot
be finitely described, sometimes the best contract is no contract at all. Since our model
focuses on the computation of continuous functions, where the complexity of a contract
depends only on the number of inputs queried, we bypass these impossibility results.

Another way in which complexity in contracts can be modeled is via how much time it
takes to resolve uncertainty in the state of the world. Using this, MacLeod studies what
type of contracts are more efficient in low and high complexity environments [13].

In a previous conference paper [3], we studied the problem of rational interactive proofs,
where the inputs are costlessly available to both principal and agent, computation is free
for the agent, and the principal is bound to act in polynomial time. Our results were in
the setting of computational complexity, and we were able to show that such a principal
can delegate combinatorial counting problems. In this setting we show characterizations for
multiple counting complexity classes including #P and the counting hierarchy CH.

2 The Model

Notation We denote the set {1, . . . , n} by [n]. For any S ⊂ [n], −S is the complement of

S (i.e., −S def
= [n] \S), and xs is the function mapping each i ∈ S to xi. (We emphasize that

knowledge of xS implies knowledge of the underlying coordinate set S.) We refer to each
subvector xS as a partial input.

If X = (X1, . . . , Xn) is a random variable over Rn, we define XS
def
= (Xi)i∈S and denote

the conditional random variable “X given that XS = xS” by X|xS. We refer to the process
of learning xS as querying the subset S.

If g is a function of a random variable x drawn from distribution X, we will write the
expectation of g as E

x←X
[g(x)]. We write the expectation of a function g(x, y) with respect

to two independent random variables x and y as E
x←X,y←Y

[g(x, y)].

We will often work with vectors that grow in size. Given a vector x = (x1, . . . , xn) ∈ Rn

and a real number y, we will denote the expanded vector (x1, . . . , xn, y) by x||y. We will
refer to a vector of length 0 as the empty vector.

Computational Environments A computational environment is a tuple, E = (f,X, x, c, γ),
where

• f : [0, 1]n → R is the target function.

• X ∈ ∆([0, 1]n) is a continuous distribution, which is common knowledge to the principal
and the agent.

• x = (x1, . . . , xn) is a random variable, a priori unknown to the principal or agent, drawn
from X.

• c : {0, . . . , n} → R is the agent’s cost function. For every set S ⊂ [n], c(|S|) is the cost
to the agent of learning xS.

6



• γ : {0, . . . , n} → R, the principal’s cost function. For every set S ⊂ [n], γ(|S|) is the
cost to the principal of learning xS.

Assumptions. Throughout the paper, we will have the following assumptions

0 Any sequence of purely algorithmic operations has zero cost for both the principal and
agent. (Thus, evaluating any function on known inputs, or computing an expectation
over a known distribution, can be performed at zero cost.)

1. For all proper subsets S ( [n], and all realizations xS of XS, the conditional random
variable f(X)|xS has a continuous probability distribution which assigns probability
zero to any individual point in the range of f .

2. The cost functions are monotonic. For all ` < k we have

γ(`) ≤ γ(k), c(`) ≤ c(k′).

3. The cost of querying zero inputs is zero

γ(0) = c(0) = 0.

4. The cost functions satisfy the increasing differences condition. For all `, k we have

c(k + `)− c(k) ≤ γ(k + `)− γ(k).

(I.e., it is always cheaper for the agent than for the principal to query ` extra inputs.)

3 Exact Computation

In this section, we prove our results for the exact computation setting. Before stating our
results, we define direct computational contracts, define boundedly separable functions, and
recall some facts about proper scoring rules.

3.1 Preliminaries

Definition 1.
For all k ≤ n, a k-query direct computational contract is a mechanismM specified by

• a function D mapping a real number z to a distribution D(z) over {S ⊂ [n] : |S| = k},
that is, over all input coordinate subsets of size k

• a continuous and concave reward function R mapping a real number z, and a partial
input xS to a real number R(z, xS).

Such a mechanism M = (D, R) has only one player, the agent, and is played as follows

Stage 0. Nature draws x← X. (The agent does not observe x.)

7



Stage 1. The agent queries a subset SA of the inputs (updating his beliefs about x to X|xSA
).

Stage 2. The agent reports a value z = z(xSA
) to the mechanism.

Stage 3. The mechanism draws a subset S of inputs from the distribution D(z).

In such a play, the agent’s reward is r = R(z, xS) and his utility is r − c(|SA|).

M is incentive compatible for a function f : [0, 1]n → R if the agent strictly maximizes
his utility by choosing SA = [n] in stage 1, and z = f(x) in stage 2.

M is individually rational for f if E
S←D , x←X

[R(f(x), xS)− c(n)] ≥ 0

Definition 2. A function f : [0, 1]n → R is boundedly separable if there exist bounded
functions f1, . . . , fn : [0, 1]→ R such that f(x1, . . . , xn) =

∑n
i=1 fi(xi).

Scoring Rules A strictly proper scoring rule5 is a function S : ∆(K) × K → R which
takes as input a distribution Ω over a finite set K and a sample ω ∈ K and which satisfies
the property

E
ω←Ω

S(Ω, ω) > E
ω←Ω

S(Ω′, ω)

for any Ω′ 6= Ω. A function which satisfies this property incentivizes a rational expert to
state his true beliefs about the distribution of ω.

Many such rules are known by now.6 We will use Brier’s scoring rule, defined by

BSR(Ω, ω) = 2Pr(Ω = ω)−
∑
α

Pr(Ω = α)2 + 1

where Pr(Ω = α) is the probability that distribution Ω assigns to the element α. The Brier
Scoring Rule is always in the interval [0, 3]. 7

3.2 Our First Theorem

Theorem 1. Let f : [0, 1]n → R be a boundedly separable function. Then there exists
a one-query, incentive compatible and individually rational direct computational contract
M1 = (R,D) for f .

Proof. We first prove theorem 1 assuming that the agent has zero costs: that is, c(|SA|) = 0
for all SA ⊂ [n]. Let f(x1, . . . , xn) = f1(x1) + . . . + fn(xn) and let B > 0 be a bound such
that |fi(x)| < B for every x ∈ [0, 1] and every i ∈ [n]. Let gi(x) = fi(xi) + B and note that

5For brevity and when the context is clear, we will often refer to strictly proper scoring rules simply as
proper scoring rules or scoring rules.

6The interested reader is referred to a paper by Gneiting and Rafterty [6], which includes a comprehensive
survey.

7Usually, the Brier Scoring Rule was defined as BSR(Ω, ω) = 2Pr(Ω = ω) −
∑
α Pr(Ω = α)2 − 1. Our

formula is the usual definition, plus 2. The reason we add 2 to the usual formulation of the scoring rule is to
ensure that the reward to the expert is non-negative. Note that adding a constant to this reward does not
affect incentives.

8



0 ≤ gi(x) ≤ 2B. Let g(x1, . . . , xn) =
∑n

i=1 gi(x) = f(x1, . . . , xn) + nB. We now give an
incentive compatible contract for g. Since, by construction, we have ensured that each term
gi(x) in the sum is non-negative, our mechanism can scale this term so as to interpret it as
a probability, and use some techniques from scoring rules to incentivize the agent.

Our mechanism M1 takes the agent’s report z as an input and produces a distribution
D(z) and reward function R(z, ·) as follows

MechanismM1(z) = (D(z), R(z, ·))

• D(z) is the uniform distribution over the singleton sets {{1}, . . . , {n}}.a

• The reward function R(z, ·) is defined as follows

– If z 6∈ [−Bn,Bn], then R1(z, xS) = −∞ for all xS.

(I.e., since the range of f is [−Bn,Bn], a z outside this range must be a lie.)

– If z ∈ [−Bn,Bn], then the mechanism

∗ Draws S = {i} from D. Since S is a singleton we denote it by S = i.

∗ Queries xi and computes gi(xi).

∗ Draws a random variable ω which is

equal to 1 with probability gi(xi)
2B

and

equal to 0 with probability 1− gi(xi)
2B

.

∗ Interprets z as a random variable Ωz over {0, 1} which is

equal to 1 with probability z+Bn
2Bn

and

equal to 0 with probability 1− z+Bn
2Bn

.

∗ Returns R1(z, xi) = BSR(Ωz, ω).

aAlthough the definition allows D to depend on z, in this case D does not depend on the agent’s
report. The same holds for our mechanism M2 for delegating any continuous function. The ability of
D to depend on the agent’s report is important to achieve the right level of generality, and thus gives
meaningfulness to our Theorem 2, which argues that n − 1-query direct contracts cannot be used to
delegate non-separable functions.

Let us now show that mechanism M1 is incentive compatible. Given a report z, the
agent’s expected reward is EiR(z, xi) = Eω BSR(Ωz, ω). Since Brier’s scoring rule is strictly
proper, this expected reward is maximized only when the agent reports z so that Ωz is equal
to the distribution from which the principal is drawing ω.

Let us now consider the probability that ω is equal to 1. This probability is equal to∑n
i=1 Pr(ω = 1|S = i)Pr(S = i). Since Pr(ω = 1|S = i) = gi(xi)

2B
and Pr(S = i) = 1

n
, we

have that

Pr(ω = 1) =
n∑
i=1

Pr(ω = 1|S = i)Pr(S = i) =
1

2Bn

n∑
i=1

gi(xi).

9



Since Ωz is a random variable with Pr(Ωz = 1) = z+Bn
2Bn

, the agent maximizes his reward
by announcing z such that z + Bn =

∑
i gi(xi). Note that this is equivalent to announcing

z =
∑

i fi(xi), because each gi(xi) = fi(xi) + B. Thus, the agent maximizes his reward
by announcing z = f(x1, . . . , xn). Note that since we are currently assuming that the
agent’s cost function is identically 0, and since—by assumption 1—the agent cannot know
f(x1, . . . , xn) exactly unless he queries all the inputs, this mechanism incentivizes him to
query SA = [n].

The above argument shows that once the agent knows the entire vector (x1, . . . , xn), then
he is incentivized via a scoring rule approach to report z = f(x1, . . . , xn). The problem is
that this argument only applies when the agent’s cost function c is identically 0. When this
is not the case, we now prove that we can scale the reward R(z, x) by a large enough constant
so that the agent is incentivized to query the whole vector (x1, . . . , xn). As mentioned above,
once the agent has learned (x1, . . . , xn), the scoring rule guarantees that he will maximize
his reward by reporting z = f(x1, . . . , xn). This part of our proof is standard in the costly
information acquisition literature [11, 15, 5] and proceeds as follows.

For every partial input xSA
, let

z∗(xSA
) ∈ argmax

z
E

i←D1,x←X|xSA

[R(z, xi)]

ν(SA) = E
i←D1,x←X

[R(z∗(xSA
), xi)]

so that ν(SA) is the reward that the agent ultimately expects to receive when he chooses
to query set SA. Since the agent maximizes his expected reward by announcing z =
f(x1, . . . , xn), and since he can only learn f(x1, . . . , xn) by querying the whole set, we have
that ν([n]) > ν(SA) for any SA ( [n].

When we account for the agent’s cost, he is incentivized to query SA = [n] if and only if
[n] = argmaxSA

ν(SA)− c(|SA|). Let κ > 0 be such that, for any SA ( [n],

κ · ν({1, . . . , n})− c(n) > κ · ν(SA)− c(|SA|). (1)

Such a κ exists because ν([n]) > ν(SA) for any proper subset SA. Furthermore, since ν(SA)
can be computed by taking expectations over the commonly known distribution X, and
without the need to learn the true input x, the principal can compute κ at zero cost. Let

R̃(·, ·) def
= κ · R(·, ·) be a scaled reward function, and let ν̃(SA) be the reward that the agent

expects to receive when he chooses to query SA and the reward function is R̃. Then, by
construction, we have

ν̃([n])− c(n) > ν̃(SA)− c(|SA|)
for any proper subset SA. Thus, by changing the reward of function of M1 to be κ · R, we
can incentivize the agent to query the whole input (x1, . . . , xn) and to report f(x1, . . . , xn).

Finally, since ν([n]) is positive, we can choose κ so that inequality (1) holds, and also
κ · ν({1, . . . , n}) − c(n) ≥ 0. That is, so that M1 using the reward function κ · R is also
individually rational.

Q.E.D.

10



3.3 Query Optimality and Our Second Theorem

Since the mechanism M1 only makes one query we have the following corollary

Corollary 1. No direct computational contract that is incentive-compatible for separable
functions makes fewer queries than M1.

We now argue that the query optimality of mechanism M1 is intrinsically linked to the
fact that f is separable. Indeed, we show the following theorem

Theorem 2. There exists a continuous, bounded and non-separable function f : [0, 1]n → R
such that any direct computational contract M = (D, R) that is incentive compatible for f
must query the whole input vector (x1, . . . , xn).

The proof of Theorem 2 is given in appendix A.

4 Approximate Computation

Direct computational contracts are sufficient for delegating boundedly separable functions.
But to handle the delegation of arbitrary continuous functions in an approximate manner,
we need to define computational contract more generally, so as to allow multiple rounds of
communication between principal and agent. In addition, before proving our theorems, we
recall a result of Kolmogorov about representing continuous functions, as well as a basic fact
about Brier’s Scoring Rule.

4.1 Preliminaries

Definition 3.
A k-query, T-round computational contract for a function f : [0, 1]n → R is a mech-
anism M specified by

• A function D mapping a vector m to a distribution D(m) over a finite support D.

• A function S mapping a vector m to a set of input coordinates S(m) of size k,

• a continuous and concave reward function R mapping a vector m and a partial input xS
to a real number R(m,xS).

Such a mechanism M = (D,S, R) has a single player, the agent, and it is played over
T rounds. In each round, the agent sends a message to the mechanism and then receives a
random message from the mechanism.

At any round t ∈ {1, . . . , T}, the information available to the agent consists of the set StA
of all inputs he has queried so far, and of the vector mt of all messages exchanged with the
mechanism so far. Initially, S0

A = ∅ and m0 is the empty vector. A play of the mechanism
proceeds as follows.

Stage 0. Nature draws x← X. The agent does not observe x.

11



Round t. For each t ∈ {1, . . . , T}, round t consists of the following stages:

Stage 2(t− 1) + 1. The agent
chooses a function at(·) and a subset SA,t ⊂ [n],
queries the set SA,t and updates StA = St−1

A ∪ SA,t ,
sends the mechanism the message mt = at(xSt

A
) and updates mt = mt−1||mt.

Stage 2(t− 1) + 2. The mechanism draws a random element rt from the distribution
Dt = D(mt), and the agent updates his set of messages to mt = mt||rt.

At the end of this play, the mechanism queries the set S = S(mT ) and pays the agent the
reward r = R(mT , xS). The agent’s utility is r − c(|STA|).

M is ε-incentive compatible for f if there exists a function h : RT → R such that

|h(m1, . . . ,mT )− f(x)| < ε

where the sequence of messages m1, . . . ,mT is generated by an agent that, at each round
t ∈ {1, . . . , T} chooses at(·) and SA,t to maximize his expected utility given the information
xSt−1

A
,mt−1 available to him at the beginning of the round.

M is individually rational if

max
a1(·),SA,1

E
x←x,r1←D1

. . . max
aT (·),ST

A

E
x←X|(x

ST−1
A

,mT−1),rT←DT

[
R((m1, r1, . . . ,mT , rT ), xS(m))

]
−c(|STA|) > 0

Kolmogorov’s Superposition Theorem In Theorem 3, we will make use of the following
representation of continuous functions over compact sets.

Let f : [0, 1]n → R be an arbitrary continuous function. Then f has the representation

f(x) =
2n∑
q=0

Φ(
n∑
p=1

ψq,p(xp)) (2)

where Φq, ψq,p are continuous one-dimensional functions and the functions ψq,p are Lip-
schitz continuous and independent of the function f .

A Basic Property of Brier’s Scoring Rule In our proof of Theorem 3, we will use the
following well known property of Brier’s scoring rule on binary distributions

Lemma 1 Let v, w be real numbers in [0, 1] and let V,W be random variables over {0, 1}
such that Pr(V = 1) = v, Pr(W = 1) = w. Then

E
ω←V

[BSR(V, ω)−BSR(W,ω)] = 2(v − w)2

For completeness, the proof is given in Appendix B.

12



4.2 Our Third Theorem

Theorem 3. For all continuous functions f : [0, 1]n → R and all ε > 0, there exists a
1-query, 2-round, computational contract M2 that is ε-incentive compatible and individually
rational.

Proof. As in the proof of Theorem 1, we first prove Theorem 3 assuming that the agent’s
cost function is identically zero. We then use this result to prove the more general result
when the agent’s cost function is arbitrary.

Case 1: c(·) ≡ 0. Let f(x1, . . . , xn) =
∑2n

q=0 Φ(
∑n

p=1 ψq,p(xp)) as in Kolmogorov’s Su-
perposition Theorem. Since the functions ψq,p are Lipschitz continuous, there exists an M
such that |ψq,p(x)− ψq,p(x′)| < M |x− x′| for any x, x′ ∈ [0, 1]. Furthermore, because of this
Lipschitz condition, the family of functions {ψq,p}q,p has the following two properties

• Uniform boundedness: there exists a constant B > 0 such that |ψq,p(x)| ≤ B for every
x ∈ [0, 1] and every q, p.

• Uniform equicontinuity: for every ε > 0 there exists a δ > 0 such that |x − x′| < δ
implies |ψq,p(x)− ψq,p(x′)| < ε for every q, p and every x, x′ ∈ [0, 1].

Because of uniform boundedness, we can interpret the domain of the “outer” function
Φ as the compact set [−nB, nB]. Since any continuous function with a compact domain is
bounded and uniformly continuous, we have that Φ is bounded and uniformly continuous.
Denote by C the bound on Φ.

Intuition. The intuition behind our contract is to interpret f(x) =
∑2n

q=0 Φ(
∑n

p=1 ψq,p(xp))

as a boundedly separable function f̃(w0, . . . , w2n) =
∑2n

q=0 Φ(wq) where each wq =
∑n

p=1 ψq,p(xp)
is itself a function of x. If the principal knew the value wq for a random index q—then she
could use the computational contract from Theorem 1 to incentivize the agent to reveal
f(x) = f̃(w) =

∑2n
q=0 Φ(wq) using the mechanism M1.

However, the principal does not know the value of wq(x). Since wq(x) is itself a boundedly
separable function of x, the principal might attempt the following mechanism

Round 1. Use mechanismM1 to incentivize the agent to reveal f̃(w(x)) =
∑2n

q=0 Φ(wq(x)). This
mechanism needs to query wq(x) for a uniformly random q. To obtain wq(x), go to
round 2.

Round 2. Use mechanismM1 to incentivize the agent to reveal the boundedly separable function
wq(x) =

∑n
p=1 ψq,p(xp) by querying a uniformly random input coordinate p.

The problem with this approach is that the agent gets two rewards: one for announcing
f̃(w) and one for announcing wq(x). Accordingly, it is possible that the agent would lie
about wq (thus, getting a lower reward in round 2), to manipulate the mechanism in round
1 and receive a higher reward overall.

The way to avoid this problem is to make the reward from round 2 so high that the
agent has no incentive in round 2 to reveal a value vq whose distance from wq(x) is greater

13



than δ, for some δ that we will choose. We will argue that the agent will be incentivized in
step 1 to announce f̃(v1, . . . , vn) =

∑2n
q=0 Φ(vq), instead of the true value f̃(w1, . . . , wn) =∑2n

q=0 Φ(wq). Nevertheless, by using the uniform continuity of f̃ , we will guarantee that the

agent’s announcement is ε-close to the true value f̃(w) = f(x).

The Contract M2. We formalize the above intuition via the following contract and
analysis.

MechanismM2 = (D,S, R)
A play of M2 proceeds as follows

• In stage 1, the agent announces z, allegedly in the set [f(x)− ε, f(x) + ε]

• In stage 2, the mechanism announces q, drawn from D1 = Uniform({0, . . . , 2n})

• In stage 3, the agent announces vq, allegedly close to
∑n

p=1 ψp,q(xp)

• In stage 4, the mechanism announces p, drawn from D2 = Uniform({1, . . . , n}).

Given the message vector m = (z, q, vq, p), define

• S(m) = {p} ⊂ [n], and

• R(m,xS(m)) the value computed as follows

– Let ω1(vq) be a random variable which is

equal to 1 with probability Φ(vq)+C

2C
and

equal to 0 with probability 1− Φ(vq)+C

2C
.

– Let ω2 be a random variable which is

equal to 1 with probability ψp,q(xp)

2B
and

equal to 0 with probability 1− ψp,q(xp)

2B
.

– Interpret z as a random variable Ωz which is

equal to 1 with probability z+(2n+1)C
(2n+1)2C

and

equal to 0 with probability 1− z+(2n+1)C
(2n+1)2C

– Interpret vq as a random variable Ωvq which is

equal to 1 with probability vq+nB

2Bn
and

equal to 0 with probability 1− vq+nB

2Bn
.

– Return the reward

R(m,xS(m)) = R((z, q, vq, p), xp) = BSR(Ωz, ω1) + θ ·BSR(Ωvq , ω2)

where θ > 0 is a constant, which we determine later.

14



ε-incentive compatibility. The reward function depends on z only throughBSR(Ωz, ω1(vq)).
Thus—taking his choice of vq in stage 3 as given—the agent is incentivized to reveal z in
stage 1 such that the distribution Ωz equals the distribution from which ω1 is drawn. We
have that

Pr(ω1 = 1) =
2n∑
q=0

Pr(q)Pr(ω1 = 1|q) =
1

2n+ 1

2n∑
q=0

Φ(vq) + C

2C

=
1

(2n+ 1)2C
(

2n∑
q=0

Φ(vq) + (2n+ 1)C).

Since Pr(Ωz = 1) = z+(2n+1)C
(2n+1)2C

, we conclude that Pr(Ωz = 1) = Pr(ω1 = 1) if and only if

z =
2n∑
q=0

Φ(vq).

Note that z is not necessarily the true value f(x1, . . . , xn) =
∑2n

q=0 Φ(
∑n

p=1 ψp,q(xp)),
since vq 6=

∑n
p=1 ψp,q(xp). Note furthermore that the agent is not incentivized to announce

vq =
∑n

p=1 ψp,q(xp), since vq enters his reward both via Ωvq and via ω1, which is defined in
terms of vq. While announcing vq 6=

∑n
p=1 ψp,q(xp) always decreases the term θBSR(Ωvq , ω2)

in the agent’s reward, it may increase the term BSR(Ωz, ω1) enough to make such a deviation
profitable.

We now give a bound on how much the agent can profit by announcing vq instead of
wq =

∑n
p=1 ψp,q(xp). There are two effects that this deviation has on the expected reward:

• The first term of the expected reward changes by E
ω1

[BSR(Ωz, ω1(vq))−BSR(Ωz, ω1(wq)] ≤
3 since the Brier scoring rule is bounded above by 3 and below by 0.

• Given a fixed q, by lemma 1, the second term of the expected reward changes by

θ · E
ω2

[BSR(Ωvq , ω2)−BSR(Ωwq , ω2)] = − 2θ

(2Bn)2
(vq − wq)2.

Taking expectations over q, which is drawn uniformly from {0, 1, . . . , 2n}, the total
expected loss in reward is − 2θ

(2Bn)2
1

2n+1
‖v − w‖2

2.

This analysis shows that when the agent reports v such that ‖v − w‖2
2 > δ, the change

in his reward is bounded by

3− 2θ

(2n+ 1)(2Bn)2
δ.

When θ is high enough, this change in reward is always negative and the agent always prefers
not to announce a value v far away from w. In particular, if we set

θ >
3(2n+ 1)(2Bn)2

2δ
,

15



the agent is incentivized to report v such that ‖v − w‖2
2 ≤ δ.

Finally, we use the above analysis to show that the principal can incentivize the agent
to announce z such that |z − f(x)| < ε. For the desired approximation factor ε, let δ(ε) be
such that when ‖v − w‖2

2 < δ(ε), we have |
∑2n

q=0 Φ(vq)−
∑2n

q=0 Φ(wq)| < ε.8 Since the agent

is incentivized to announce v such that ‖v − w‖2
2 < δ(ε) when θ > 3(2Bn)2

2δ(ε)
and he is always

incentivized to announce z =
∑2n

q=0 Φ(vq), we conclude that the agent is always incentivized
to announce z such that |z − f(x1, . . . , xn)| < ε.

Case 2: c(·) 6≡ 0 The above argument only applies when the agent’s cost function
c is identically 0. When this is not the case, we prove that we can scale the reward
R((z, q, vq, p), xp) by a large enough constant κ so that the agent is incentivized to learn
enough inputs from the vector (x1, . . . , xn) in order to provide an ε-approximation to f . As
mentioned above, once the agent has learned this ε-approximation, the scoring rule guaran-
tees that he will maximize his reward by reporting it to the mechanism. In contrast with
the proof of Theorem 1, the agent

• does not need to learn the whole input (x1, . . . , xn), since he only needs to give an
approximation to f(x), and

• learns his set of inputs SA in two stages: by querying SA,1 in round 1 of the mechanism
and querying SA,2(z, q, xSA,1

) in round 2, after making his first-round announcement z,
and learning the mechanism’s random choice q and the partial input xSA,1

. The final
set of inputs SA that the agent learns is the union SA,1 ∪ SA,2.

Our argument proceeds by analyzing the agent’s optimization using backwards induction.
For any partial inputs xSA,1

, xSA,2
that the agent could learn, any z that the agent announces

in stage 1, and any random q that the mechanism could draw in stage 2, let

v∗q (z, xSA,1
, xSA,2

) ∈ argmax
v

E
x←X|(xSA,1

,xSA,2
),p←D2

[
R((z, q, v, p), xp)

]
ν2(z, q, xSA,1

, SA,2) = E
x←X|xSA,1

,p←D2

[
R((z, q, v∗q (xSA,1

, q, xSA,2
), p), xp)

]
so that ν2(z, q, xSA,1

, SA,2) is the reward that the agent ultimately expects to receive when
he learns xSA,1

and announces z in stage 1, receives q from the mechanism in stage 2, and
chooses SA,2 in stage 3. For any z, xSA,1

and any q, let

S∗A,2(z, q, xSA,1
) ∈ argmax

SA,2

ν2(z, q, xSA,1
, SA,2).9

Proceeding by backwards induction, for any set SA,1 we define

z∗(xSA,1
) ∈ argmax

z
E

x←X|xSA,1
,q←D1

[
ν2(z, q, xSA,1

, S∗A,2(z, q, xSA,1
))
]
,

8Note that δ(ε) does not depend on x since
∑2n
q=0 Φ(·) is uniformly continuous.

9There may be multiple such sets, but we shall argue that this multiplicity does not matter for our
argument.

16



ν1(SA,1) = E
x←X,q←D1

[ν2(z∗(xSA,1
), q, xSA,1

, S∗A,2(z, q, xSA,1
)]

so that ν1(SA,1) is the agent’s expected reward when he chooses set SA,1.
Let S∗A1

∈ argmaxS ν1(S). From case 1, we can infer that

• For any SA,1, the agent’s choice of set S∗A,2(z∗(xSA,1
), q, SA,1) in stage 3 will give him

enough information to report vq such that ‖v − w‖2
2 < δ.

• Given that the agent is reporting such a vq in stage 3, the agent chooses S∗A,1 in stage

1 to get enough information to learn z = z∗(xSA,1
) such that z =

∑2n
q=0 Φ(vq).

We now proceed to scale the reward so that, even when there is cost, the agent is always
incentivized to choose S∗A,1 in stage 1 and is incentivized to choose S∗A,2(·, ·, ·) in stage 3.
Choose κ > 0 such that

• For any SA,1 6= S∗A,1 and any SA,2, we have

κ · ν1(S∗A,1)− c(|S∗A,1|+ |SA,2|) > κ · ν(SA,1)− c(|SA,1|+ |SA,2|)

• For any z, any q and any xSA,1
, and any SA,2 6= S∗A,2(z, q, SA,1)

κν2(z, q, xSA,1
, S∗A,2(z∗(xSA,1

), q, SA,1))− c(|SA,1|+ |S∗A,2(z, q, SA,1))|) >

κν2(z, q, xSA,1
, SA,2)− c(|SA,1|+ |SA,2|)

Such a κ exists because S∗A,2(z, q, SA,1), S∗A,1 are chosen to maximize ν1 and ν2, respec-

tively. Let R̃(·, ·) def
= κ ·R(·, ·) be a scaled reward function. Let ν̃1

def
= κ · ν1, ν̃2

def
= κ · ν2 Then,

by our choice of κ, we have

• For any SA,1 6= S∗A,1 and any SA,2, we have

ν̃1(S∗A,1)− c(|S∗A,1|+ |SA,2|) > ν̃(SA,1)− c(|SA,1|+ |SA,2|)

• For any z, any q and any xSA,1
, and any SA,2 6= S∗A,2(z∗(xSA,1

), q, SA,1)

ν̃2(z, q, xSA,1
, S∗A,2(z∗(xSA,1

), q, SA,1))− c(|SA,1|+ |S∗A,2(z∗(xSA,1
), q, SA,1))|) >

ν̃2(z, q, xSA,1
, SA,2)− c(|SA,1|+ |SA,2|).

Thus, by changing the reward of function ofM2 to be κ ·R, we can incentivize the agent
to gather enough information to be able to report v such that ‖v−w‖2

2 < δ and z such that
|z − f(x)| < ε.

We conclude by noting that

• We can further increase κ to ensure individual rationality.

• Even if there are multiple optimal choices for S∗A,1 and S∗A,2, all such choices guarantee
that the agent gathers enough information to report z within ε of f(x).

Q.E.D.

17



4.3 Our Fourth Theorem

Our mechanism M2 queries only one coordinate xp from the input vector, and uses two
rounds of interaction between the principal and the agent. This raises the question of whether
there exist one round contracts which can be used to approximately delegate continuous
functions and query few inputs. We show in the following theorem that this is not the case.

Theorem 4. There exists a continuous function f : [0, 1]n → R such that every one-round,
ε-incentive compatible contract M = (D, R) must query the whole input (x1, . . . , xn).

The proof of Theorem 4 is given in appendix C.

5 Discussion

Optimality and Unlimited Liability In the above discussions we have been careful to
minimize the number of queries that the mechanism makes to the input (as well as the
number of interaction rounds between the principal and the agent). In addition to the
query cost, the principal of course bears the monetary cost of paying the agent’s reward.
As we mentioned in the introduction, this monetary cost can be minimized for any of our
mechanisms when the agent has unlimited liability. The principal can simply charge the
agent a fixed fee equal to the agent’s expected utility from participating in the mechanism.
Since this fixed fee can be computed using expectations over X (rather than querying the
actual input x), the principal can compute this reward at no extra cost. Since the principal
minimizes her expected payment to the agent and the number of queries she makes, our
contracts are optimal in the unlimited liability scenario.

In the classical setting, this type of argument is known as “selling the firm” [8] and makes
the problem trivial. In this setting, the problem is still non-trivial because the principal still
needs to be convinced that the agent has computed a correct approximation to f(x) and
therefore needs to query some set S of inputs in order to verify the agent’s answer. Thus,
even when we sell the firm and minimize the principal’s monetary cost, the problem of
minimizing the principal’s query cost still stands.

Accounting for Algorithmic Cost In our results we assumed that data collection is
expensive but, once the data is available, running an algorithm on the collected data is free.
An advantage of this model over other ways of measuring computational complexity is that
we can precisely analyze how many pieces of data a principal has to observe in order to
incentivize the agent to evaluate a continuous function of the entire dataset. Indeed, we
showed that the principal only needs to observe a single piece of data.

An alternative approach would be to assume that the data is already available (and thus
cost free), while running algorithms on the available data has a cost that increases with
the number of operations performed. We are also interested in delegating computation to a
rational agent in this model. We believe that doing so is likely to require techniques from
computer science, such as computationally sound interactive proof systems [14] [9]—where

18



the agent gives a verifiable evidence to the principal that his answer is correct. This verifiable
evidence guarantees to the principal that no malicious agent (who may go out of his way
to cheat her) will be able to deceive her. Such guarantees are very strong but require very
complicated protocols. We believe that by properly modeling the rationality of the agent,
as we have done in this paper, we can vastly simplify these protocols.

References

[1] N. Al-Najjar, L. Anderlini and L. Felli Undescribable Events. The Review of Economic
Studies, 73(4): 849-868, 2006.

[2] L. Anderlini and L. Felli Incomplete written contracts: Undescribable states of nature.
The Quarterly Journal of Economics, 109(4):1085-1124, 1994.

[3] P. Azar and S. Micali Rational Proofs. Symposium on the Theory of Computing.
44:1017-1028, 2012.

[4] G.W. Brier. Verification of forecasts expressed in terms of probability. Monthly weather
review, 1950.

[5] R.T. Clemen Incentive contrats and strictly proper scoring rules. Test 11(1): 167-
189,2002.

[6] T. Gneiting and A.E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

[7] I. J. Good. Rational Decisions. Journal of the Royal Statistical Society, Ser. B 14:107-
114.

[8] B. Holmstrom . Moral hazard and observability. The Bell Journal of Economics,
10(1):74-91,1979.

[9] J. Kilian. A note on efficient zero-knowledge proofs and arguments. ACM symposium
on Theory of computing 24: 723–732. ACM, 1992.

[10] A. N. Kolmogorov. On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition. Amer. Math. Soc.
Transl 28: 55-59,1963.

[11] N.S. Lambert. Elicitation and evaluation of statistical forecasts. Manuscript, 2011.

[12] CERN Computing http://home.web.cern.ch/about/computing

[13] W.B. MacLeod. Complexity and contract. Revue d’conomie Industrielle 92(1): 149-178,
2000.

19



[14] S. Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2001.

[15] K. Osband. Optimal forecasting incentives. The Journal of Political Economy
97(5):1091-1112, 1989.

[16] S. Shavell. On moral hazard and insurance. The Quarterly Journal of Economics, 93(4):
541-562,1979.

Appendix

A Proof of Theorem 2

Theorem 2. There exists a continuous, bounded and non-separable function f : [0, 1]n → R
such that any direct computational contract M = (D, R) that is incentive compatible for f
must query the whole input vector (x1, . . . , xn).

Proof. First, we make some notation explicit. So far, we have denoted the reward of a
direct mechansim as a function R(z, xS) of the agent’s message z and the principal’s queried
partial input xS. Implicit in this notation is that the reward also depends on the principal’s
choice of S. In this proof, we will find it helpful to make this dependence explicit by writing
R(z, xS, S).

Let f(x) =
∑n

i=1

∏
j 6=i xj = x1x2 . . . , xn−1+x2x3 . . . xn+xnx1 . . . .xn−2. We show that any

direct contract which is incentive compatible for f must query the whole vector (x1, . . . , xn).
To show this, we proceed by contradiction. Let k < n and assume there is a k-query incentive
compatible contract M = (D, R) for delegating f . We will show that exists a symmetric
contract Msym = (Dsym, Rsym) for delegating f which has the property that

Rsym(z, xS, S) = Rsym(z, xS′ , S
′) for any S, S ′ such that xS = x′S (3)

To see this, let σ : [n] → [n] be a permutation. Let σ(S) = {σ(i) : i ∈ S} and define
fσ(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). Since f is a symmetric function we have fσ ≡ f .Since
M is a mechanism that incentivizes the agent to reveal f(x1, . . . , xn), the following is a
contract that incentivizes fσ.

Mσ = (Dσ, Rσ)

• Dσ is such that Pr(Dσ = S) = Pr(D = σ(S)).

• For any z, xS, the reward function Rσ(z, xS, S) = R(z, xS, σ(S))

We can use the mechanismMσ to construct a symmetric mechanism, where the principal
gives the same reward regardless of which set S she queries. The symmetric mechanismMsym

20



is constructed by taking a permutation σ at random and running the mechanism Mσ. The
mechanismMsym = (Dsym, Rsym) satisfies the property (3) . Furthermore,Msym queries all
sets with equal probability.

Finally, to see that this leads to a contradiction, note that Msym incentivizes the agent
to reveal f (this is because each Mσ incentivizes the agent to reveal fσ ≡ f). Thus, there
exists at least one set S for which the reward Rsym(f(x), xS, S) > R(z, xS, S) for z 6= f(x).
However, since Msym is symmetric, we must have Rsym(f(x), xS′ , S

′) > Rsym(z, xS′ , S
′) for

all S ′ such that xS = xS′ . We can construct the contradiction by considering the inputs
x = (x1, x2, x3, . . . , xn) = (1, 1, 1, . . . , 1) and x̃ = (x̃1, x̃2, x̃3, . . . , x̃n) = (1, 1, 1, . . . , 1, 0). We
have f(x) = n and f(x̃) = 1. Let S = {1, . . . , n− 1} and note that xS = x̃S. By the above
argument, any set S must satisfy the two inequalities

Rsym(f(x), xS, S) > Rsym(f(x̃), xS, S)

Rsym(f(x̃), x̃S, S) > Rsym(f(x), x̃S, S).

Since x̃S = xS = (1, . . . , 1), this leads to the contradiction

Rsym(f(x), x̃S, S) = Rsym(f(x), xS, S) > Rsym(f(x̃), S, xS, S) =

Rsym(f(x̃), x̃S, S) > Rsym(f(x), x̃S, S)

which concludes the proof. Q.E.D.

B Proof of Lemma 1

Lemma 1. Let v, w be real numbers in [0, 1] and let V,W be random variables over {0, 1}
such that Pr(V = 1) = v, Pr(W = 1) = w. Then

E
ω←V

[BSR(V, ω)−BSR(W,ω)] = 2(v − w)2

Proof. Note that we have ‖V ‖2
2 = v2 + (1− v)2 and ‖W‖2

2 = w2 + (1− w)2 We have

E
ω←V

BSR(V, ω) = Pr(ω = 1)(2Pr(V = 1)−‖V ‖2
2 + 1) +Pr(ω = 0)(2Pr(V = 0)−‖V ‖2

2 + 1)

= 2v2 + 2(1− v)2 − v2 − (1− v)2 + 1 = v2 + (1− v)2 + 1 = 2v2 − 2v + 2.

We also have

E
ω←V

BSR(W,ω) = Pr(ω = 1)(2Pr(W = 1)−‖W‖2
2+1)+Pr(ω = 0)(2Pr(W = 0)−‖W‖2

2+1)

= 2vw + 2(1− v)(1− w)− w2 − (1− w)2 + 1 = 4vw + 2− 2v − 2w2.

Taking differences, we have

E
ω←V

[BSR(V, ω)−BSR(W,ω)] = 2(v2 +w2)− 2v− 4vw+ 2v = 2v2 + 2w2− 4wv = 2(v−w)2

Q.E.D.

21



C Proof of Theorem 4

Theorem 4. There exists a continuous function f : [0, 1]n → R such that every one-round
contract M = (D, R), that is ε-incentive compatible for f , must query the whole input
(x1, . . . , xn).

Proof. Let f(x) =
∑n

i=1

∏
j 6=i xj = x1x2 . . . xn−1 + x2x3 . . . xn + xnx1 . . . .xn−2 as in Theorem

2. In Theorem 2, we showed that there is no direct contract for f that makes less than n
queries to the input vector. The main difference between the setting in this proof and the
proof in theorem 2 is that the agent announces a real number z = m(x) instead of f(x), and
the principal recovers an approximation to f(x) by applying a continuous function h such
that |f(x)− h(m(x))| < ε.

The proof now proceeds analogously to the proof of theorem 2. Let

m∗(x) = argmax
z

E
S←D

[R(z, xS)].

For any z 6= m∗(x), there must exist a set S
The proof now proceeds analogously to the proof of theorem 2, given above. Let σ be

a permutation of [n] and let fσ(x) = f(xσ(1), . . . , xσ(n)) and let Mσ be as in the proof of
theorem 2. This mechanism now incentivizes the agent to reveal a message mσ(x) such that
|fσ(x) −mσ(x)| < ε. Since f is a symmetric function, we have fσ ≡ f and the mechanism
incentivizes the agent to reveal mσ(x) such that |f(x)−mσ(x)| < ε.

Let Msym be the mechanism which chooses a permutation σ uniformly at random
and runs Mσ. Let msym(x) = argmaxz ES←Dsym [Rsym(z, xS)] and note that msym(x) ∈
[minσmσ(x),maxσmσ(x)].10 Since mσ(x) is within ε of f(x) for every σ, we have |msym(x)−
f(x)| < ε, so the agent is incentivized to give an ε-approximation to f .

We now proceed as in the proof of Theorem 2, writing the reward Rsym explictly as
Rsym(z, xS, S) and recalling that

Rsym(z, xS, S) = Rsym(z, xS′ , S
′) for any S, S ′ such that xS = x′S

We can construct a contradiction by considering the inputs x = (x1, x2, x3, . . . , xn) =
(1, 1, 1, . . . , 1) and x̃ = (x̃1, x̃2, x̃3, . . . , x̃n) = (1, 1, 1, . . . , 1, 0). We have f(x) = n and
f(x̃) = 1. Let S = {1, . . . , n − 1} and note that xS = x̃S. Let z ∈ [f(x) − ε, f(x) + ε]
and z̃ ∈ [f(x̃)− ε, f(x̃) + ε], and note that (unless ε is very large), z is always different than
z̃. By the above argument, any set S must satisfy the two inequalities

Rsym(z, xS, S) > Rsym(z̃, xS, S)

10For illustration purposes, we assume in this footnote that R is differentiable with respect to z. Then
each Rσ(z, x) = ES←Dσ [Rσ(z, xS)] is a concave function of z. Thus, ∂Rσ

∂z (mσ(x), x) = 0 and decreases with

z. Let mmin(x) = minσmσ(x) and mmax(x) = maxσmσ(x). For every σ, we have ∂Rσ
∂z (mmin, x) ≤ 0

and ∂Rσ
∂z (mmax, x) ≥ 0. The function Rsym(z, ·) = Eσ Rσ(z, ·) is a convex combination of the concave

functions Rσ, and is therefore concave. Since derivatives are additive, we have
∂Rsym
∂z (mmin, x) ≤ 0 and

∂Rsym
∂z (mmax, x) ≥ 0. Since Rsym is concave in z, this means that msym(x) ∈ [mmin(x),mmax(x)]. When

Rσ is not differentiable (but still concave), we can apply the same argument using subgradients instead of
derivatives.

22



Rsym(z̃, x̃S, S) > Rsym(z, x̃S, S).

Since x̃S = xS = (1, . . . , 1), this leads to the contradiction

Rsym(z, x̃S, S) = Rsym(z, xS, S) > Rsym(z̃, S, xS, S) =

Rsym(z̃, x̃S, S) > Rsym(z, x̃S, S).

From this contradiction, we conclude that no one-round mechanism that makes k < n
queries can be ε-incentive compatible for f .

Q.E.D.

23


