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Abstract

We consider players that have very limited knowledge about their own val-

uations. Specifically, the only information that a Knightian player i has about

the profile of true valuations, θ∗, consists of a set of distributions, from one of

which θ∗i has been drawn.

We prove a “robustness” theorem for Knightian players in single-parameter

domains: every mechanism that is weakly dominant-strategy truthful for clas-

sical players continues to be well-behaved for Knightian players that choose

undominated strategies.



1 Introduction

In [CMZ14] we motivate the problem of mechanism design for Knightian players,

and prove that (1) dominant-strategy mechanisms for single-good and multi-unit

auctions cannot provide good social-welfare efficiency, but (2) the second-price and

Vickrey mechanisms deliver good social-welfare performance, for these two settings,

in undominated strategies.

In this report, we prove a “robustness” theorem for single-parameter domains.

Namely, consider a mechanism M for a single-parameter domain and suppose that

M , when players have perfect information about their own valuations, is weakly

dominant-strategy truthful. Now consider the same mechanism M , but with Knigh-

tian players that, not having any dominant strategy to play, choose to play undom-

inated strategies. We prove that the set of undominated strategies is well-behaved,

in the sense that these strategies do not deviate from the players’ approximate infor-

mation about his own valuation.

2 Model

In a classical single-parameter domain, there is a set A, the set of all possible alloca-

tions; for each player i there exists a publicly known subset Si ⊆ A; and the set of

possible valuations for player i, Θi, consists of all functions mapping A to the reals,

subject to the following constraints: for each θi ∈ Θi,

(1) θi(x) = 0 ∀x 6∈ Si and

(2) θi(x) = θi(y) ∀x, y ∈ Si.

We denote the true valuation of player i by θ∗i .

(The term “single-parameter” derives from the fact that each θi ∈ Θi coincides

with a single number: i’s value for, say, the lexicographically first element of Si. The

term “classical” emphasizes that each player knows exactly his own true valuation.)

The set of possible outcomes is Ω
def
= A×Rn

≥0. If (A,P ) ∈ Ω, we refer Pi as the price

charged to player i. We assume quasi-linear utilities. That is, the utility function Ui

of a player i maps a valuation θi and an outcome ω = (A,P ) to Ui(θi, ω)
def
= θi(A)−Pi.
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If ω is a distribution over outcomes, we also denote by Ui(θi, ω) the expected

utility of player i.

Single-parameter domains are general enough to include several settings of inter-

est: in particular, provision of a public good1 [Cla71], bilateral trades [MS83], and

buying a path in a network [NR01].

2.1 Knightian Valuation Uncertainty

In our model, a player i’s sole information about θ∗ consists of Ki, a set of distributions

over Θi, from one of which θ∗i has been drawn. (The true valuations are uncorrelated.)

That is, Ki is i’s sole (and private) information about his own true valuation θ∗i .

Furthermore, for every opponent j, i has no information (or beliefs) about θ∗j or Kj.
Given that all he cares about is his expected (quasi-linear) utility, a player i may

‘collapse’ each distribution Di ∈ Ki to its expectation Eθi∼Di
[θi].

2 Therefore, for

single-parameter domains, a mathematically equivalent formulation of the Knightian

valuation model is the following:

Definition 2.1 (Knightian valuation model). For each player i, i’s sole information

about θ∗ is a set Ki, the candidate (valuation) set of i, such that θ∗i ∈ Ki ⊂ Θi.

We refer to an element of Ki as a candidate valuation.

In Knightian valuation model, a mechanism’s performance will of course depend on

the inaccuracy of the players’ candidate sets, which we measure as follows.

Definition 2.2. Let K⊥
i

def
= inf Ki and K>

i
def
= supKi.

The candidate set Ki of a player i is (at most) δ-approximate if K>
i −K⊥

i ≤ δ.

A single-parameter domain is (at most) δ-approximate if each Ki is δ-approximate.

1Indeed, in the provision of a public good, A has just two elements, a (i.e., the good is provided),
which different players may value differently, and b (i.e., the good is not provided), which all players
value 0.

2Whatever the auction mechanism used, this equivalence holds for any auction where each Θi is
a convex set. In particular, this includes unrestricted combinatorial auctions of m distinct goods.
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2.2 Social Welfare, Mechanisms, and Knightian Dominance

Social welfare. The social welfare of an allocation A ∈ A, SW(A), is defined to be∑
i θ
∗
i (A); and the maximum social welfare, MSW, is defined to be maxA∈A SW(A).

(That is, SW and MSW continue to be defined relative to the players’ true valuations

θ∗i , whether or not the players know them exactly.)

More generally, the social welfare of an allocation A relative to a valuation profile

θ, SW(θ, A), is
∑

i θi(A); and the maximum social welfare relative to θ, MSW(θ), is

maxA∈A SW(θ, A). Thus, SW(A) = SW(θ∗, A) and MSW = MSW(θ∗).

General mechanisms and strategies. A mechanism M specifies, for each player i,

a set Si. We interchangeably refer to each member of Si as a pure strategy/action/report

of i, and similarly, a member of ∆(Si) a mixed strategy/action/report of i.

After each player i, simultaneously with his opponents, reports a strategy si in

Si, M maps the reported strategy profile s to an outcome M(s) ∈ Ω.

IfM is probabilistic, thenM(s) ∈ ∆(Ω). Thus, as per our notation, Ui(θi,M(s))
def
=

Eω∼M(s)[Ui(θi, ω)] for each player i.

Note that Si = Θi for the direct mechanisms in the classical setting, but may be

arbitrary in general.

Knightian undominated strategies. Given a mechanism M , a pure strategy si of

a player i with a candidate set Ki is (weakly) undominated, in symbols si ∈ UDi(Ki),

if i does not have another (possibly mixed) strategy σi such that

(1) ∀θi ∈ Ki ∀s−i ∈ S−i EUi
(
θi,M(σi, s−i)

)
≥ Ui

(
θi,M(si, s−i)

)
, and

(2) ∃θi ∈ Ki ∃s−i ∈ S−i EUi
(
θi,M(σi, s−i)

)
> Ui

(
θi,M(si, s−i)

)
.

If K is a product or a profile of candidate sets, that is, if K = (K1, . . . , Kn) or

K = K1 × · · · ×Kn, then UD(K)
def
= UD1(K1)× · · · × UDn(Kn).

Note that the above notion of an undominated strategy is a natural extension of

its classical counterpart, but other extensions are possible.

Weakly dominant-strategy truthfulness in classical settings. Finally, let us

recall what it means for a mechanism M to be weakly dominant-strategy truthful
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(weakly DST) when every player i knows θ∗i exactly. Namely, for each player i:

(0) Si = Θi

(1) ∀vi ∈ Θi ∀v′i ∈ Θi ∀v−i ∈ Θ−i Ui
(
vi,M(vi, v−i)

)
≥ Ui

(
vi,M(v′i, v−i)

)
(2) ∀vi ∈ Θi ∀v′i ∈ Θi \ {vi} ∃v−i ∈ Θ−i Ui

(
vi,M(vi, v−i)

)
> Ui

(
vi,M(v′i, v−i)

)
.

(For comparison, the notion of a DST mechanism omits the last condition above.)

3 Result

We prove the Knightian robustness of many mechanisms at once as follows.

Theorem 1. Let M be a weakly dominant-strategy truthful mechanism for classical

single-parameter domains. Then, in this domain with Knightian valuation uncer-

tainty, for every player i, UD(Ki) ⊆
[
K⊥
i , K

>
i

]
.

Discussion. The above theorem implies that the behavior of (weakly dominant-

strategy truthful) mechanisms in a δ-approximate single-parameter domains grace-

fully degrades with δ. In particular, it implies that, when applied to the provision of

a public good in the presence of n Knightian players, the VCG mechanism guaran-

tees, in undominated strategies, a social welfare ≥ MSW− 2nδ. As another example,

when applied to buying paths in a network, the VCG mechanism guarantees a social

welfare ≥ MSW − 2mδ, where m is the number of edges in the network. Finally,

we note that the proof of Theorem 1 easily extends to imply an analogous result for

the VCG mechanism for single-minded combinatorial auctions, which are not quite

single-parameter domains.3

More generally, Theorem 1 implies that, for all weakly dominant-strategy mecha-

nisms M (which include those of [Cla71, MS83, NR01])

‘the outcome M(v) is sufficiently good

whenever maxi |vi − θ∗i | is sufficiently small for all i and θ∗i ∈ Ki’.

3In such an auction, there are m distinct goods, and each player i values, positively and for the
same amount θ∗i , only the supersets of a given subset Si of the goods. This auction is not single-
parameter because Si is private, that is, known solely to i. Accordingly, i’s true valuation can be
fully described only by the number θ∗i and the subset Si. The VCG mechanism for single-minded
auctions ensures, in undominated strategies, a social welfare that is at least MSW − 2 min{n,m}δ.
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Proof. The theorem is obvious when Ki = {θ∗i } is a singleton: since reporting

the truth is a weakly dominant strategy, it dominates all other strategies so that

UD(Ki) = {θ∗i } must also be a singleton. For the rest of the proof we assume that Ki

has at least two distinct valuations.

We begin by recalling the following fact about dominant-strategy truthful mech-

anisms in single-parameter domains where each player perfectly knows his own true

valuation [AT01]:

Let M be a mechanism for a single-parameter domain, and let fi(v) ∈ [0, 1]

be the probability that the allocation chosen by M , under strategy profile v,

is in player i’s set Si. Then, M is dominant-strategy truthful if and only if

(a) f is monotonically non-decreasing, i.e., fi(vi, v−i) ≤ fi(v
′
i, v−i) whenever

vi ≤ v′i, and (b) player i’s expected price on input v, denoted by pi(v), equals

to vi · fi(vi, v−i)−
∫ vi
0
fi(z, v−i) dz.

Having recalled the above fact, we now prove that, for any Knightian player i with

candidate set Ki = [K⊥
i , K

>
i ],

vi ∈ UDi(Ki) =⇒ vi ∈ [K⊥
i , K

>
i ].

Let v⊥
i

def
= K⊥

i and v>
i

def
= K>

i , and consider any strategy vi ∈ UDi(Ki). If vi ∈ Ki =

[v⊥
i , v

>
i ] then we are done. Otherwise, suppose that vi < v⊥

i . (The other case, vi > v>
i ,

can be shown analogously.)

We first claim that, for player i, reporting v⊥
i is no worse than reporting vi. Indeed,

fixing any (pure) strategy sup-profile v−i for the other players and any possible true

valuation θi ∈ Ki, and letting v⊥ = (v⊥
i , v−i) and v = (vi, v−i), we compute that

E
[
Ui
(
θi,M(v⊥)

)]
− E

[
Ui
(
θi,M(v)

)]
=
(
fi(v

⊥)− fi(v)
)
· θi −

(
pi(v

⊥)− pi(v)
)

=
(
fi(v

⊥)− fi(v)
)
· θi −

(
v⊥
i · fi(v⊥)−

∫ v⊥i

0

fi(z, v−i) dz − vi · fi(v) +

∫ vi

0

fi(z, v−i) dz

)

=
(
fi(v

⊥)− fi(v)
)
· (θi − v⊥

i ) +

∫ v⊥i

vi

(
fi(z, v−i)− fi(v)

)
dz .

Now note that θi ∈ Ki implies that θi − v⊥
i = θi − K⊥

i ≥ 0. Moreover, by the

monotonicity of f , whenever z ≥ vi, it holds that fi(z, v−i) ≥ fi(v). Therefore we
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deduce that the above difference is greater than or equal to zero. We conclude that

reporting v⊥
i is no worse than reporting vi.

Next there are two subcases. If E
[
Ui
(
θi,M(v⊥)

)]
− E

[
Ui
(
θi,M(v)

)]
equals to

zero for all θi ∈ Ki and for all v−i, then, using the fact that Ki has at least two

distinct valuations, we conclude that for i, the allocation probability and (expected)

price in outcomes M(vi, v−i) and M(v⊥
i , v−i) are the same, independent of v−i. This

contradicts the fact that M is weakly dominant-strategy truthful in the classical

setting, since Ui(vi,M(vi, v−i)) must be strictly greater than Ui(vi,M(v⊥
i , v−i)) at

least for some v−i.

Otherwise, if there exist some θ∗i and some v∗−i that make the difference E
[
Ui
(
θi,M(v⊥)

)]
−

E
[
Ui
(
θi,M(v)

)]
non-zero, it must follow that the difference is strictly positive. For

such θ∗i and v∗−i, reporting v⊥
i is therefore strictly better than reporting vi, so by defi-

nition v⊥
i weakly dominates vi for player i, leading to a contradiction to vi ∈ UDi(Ki).

This concludes the proof of Theorem 1. �
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