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Abstract

We consider auctions in which the players have very limited knowledge about

their own valuations. Specifically, the only information that a Knightian player

i has about the profile of true valuations, θ∗, consists of a set of distributions,

from one of which θ∗i has been drawn.

We analyze the social-welfare performance of the VCG mechanism, for un-

restricted combinatorial auctions, when Knightian players that either

(a) choose a regret-minimizing strategy, or

(b) resort to regret minimization only to refine further their own sets of un-

dominated strategies, if needed.

We prove that this performance is very good.



1 Introduction

In [CMZ14b] we motivate the problem of mechanism design for Knightian players,

and prove that (1) dominant-strategy mechanisms for single-good and multi-unit

auctions cannot provide good social-welfare efficiency, but (2) the second-price and

Vickrey mechanisms deliver good social-welfare performance, for these two settings,

in undominated strategies.

In this report, we prove that the VCG mechanism guarantees good social wel-

fare in the presence of Knightian players who either (a) choose a regret-minimizing

strategy, or (b) resort to regret minimization only to refine further their own sets of

undominated strategies, if needed.

2 Model

We study unrestricted combinatorial auctions, where there are n players and m dis-

tinct goods. The set of possible allocations A consists of all possible partitions A of

[m] into 1 + n subsets, A = (A0, A1, . . . , An), where A0 is the (possibly empty) set of

unassigned goods and Ai is the (possibly empty) set of goods assigned to player i.

For each player i, a valuation is a function mapping each possible subset of the

goods to a non-negative real, and the set of all possible valuations is Θi = {θi : 2[m] →
R≥0 | θi(∅) = 0}. The profile of the players’ true valuations is θ∗ = (θ∗1, . . . , θ

∗
n) ∈ Θ.

The set of possible outcomes is Ω
def
= A×Rn

≥0. If (A,P ) ∈ Ω, we refer Pi as the price

charged to player i. We assume quasi-linear utilities. That is, the utility function Ui

of a player i maps a valuation θi and an outcome ω = (A,P ) to Ui(θi, ω)
def
= θi(Ai)−Pi.

If ω is a distribution over outcomes, we also denote by Ui(θi, ω) the expected

utility of player i.

2.1 Knightian Valuation Uncertainty

In our model, a player i’s sole information about θ∗ consists of Ki, a set of distributions

over Θi, from one of which θ∗i has been drawn. (The true valuations are uncorrelated.)

That is, Ki is i’s sole (and private) information about his own true valuation θ∗i .
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Furthermore, for every opponent j, i has no information (or beliefs) about θ∗j or Kj.
Given that all he cares about is his expected (quasi-linear) utility, a player i may

‘collapse’ each distribution Di ∈ Ki to its expectation Eθi∼Di
[θi].

1 Therefore, for

unrestricted combinatorial auctions, a mathematically equivalent formulation of the

Knightian valuation model is the following:

Definition 2.1 (Knightian valuation model). For each player i, i’s sole information

about θ∗ is a set Ki, the candidate (valuation) set of i, such that θ∗i ∈ Ki ⊂ Θi.

We refer to an element of Ki as a candidate valuation.

In Knightian valuation model, a mechanism’s performance will of course depend on

the inaccuracy of the players’ candidate sets, which we measure as follows.

Definition 2.2. The candidate set Ki of a player i is (at most) δ-approximate if, for

each subset S ⊆ [m], letting Ki(S)
def
= {θi(S) | θi ∈ Ki}, supKi(S)− inf Ki(S) ≤ δ.

An auction is (at most) δ-approximate if each Ki is δ-approximate.

2.2 Social Welfare, Mechanisms, and Knightian Dominance

Social welfare. The social welfare of an allocation A = (A0, A1, . . . , An), SW(A),

is defined to be
∑

i θ
∗
i (Ai); and the maximum social welfare, MSW, is defined to

be maxA∈A SW(A). (That is, SW and MSW continue to be defined relative to the

players’ true valuations θ∗i , whether or not the players know them exactly.)

More generally, the social welfare of an allocation A relative to a valuation profile

θ, SW(θ, A), is
∑

i θi(Ai); and the maximum social welfare relative to θ, MSW(θ), is

maxA∈A SW(θ, A). Thus, SW(A) = SW(θ∗, A) and MSW = MSW(θ∗).

Mechanisms and strategies. A mechanism M specifies, for each player i, a set

Si. We interchangeably refer to each member of Si as a pure strategy/action/report

of i, and similarly, a member of ∆(Si) a mixed strategy/action/report of i.

After each player i, simultaneously with his opponents, reports a strategy si in

Si, M maps the reported strategy profile s to an outcome M(s) ∈ Ω.

1Whatever the auction mechanism used, this equivalence holds for any auction where each Θi is
a convex set. In particular, this includes unrestricted combinatorial auctions of m distinct goods.
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IfM is probabilistic, thenM(s) ∈ ∆(Ω). Thus, as per our notation, Ui(θi,M(s))
def
=

Eω∼M(s)[Ui(θi, ω)] for each player i.

Note that Si = Θi for the direct mechanisms in the classical setting.

The VCG mechanism. In our auctions, the VCG mechanism, denoted VCG, maps

a profile of valuations θ ∈ Θ1 × · · · ×Θn, to an outcome (A,P ), where

A ∈ arg maxA∈A SW(θ, A) and, for each player i, Pi = MSW(θ−i) −
∑

j 6=i θ(Ai).

Ties are broken by preferring subsets with smaller cardinalities.2

Knightian regret-minimizing strategies. Given a mechanism M , the (maxi-

mum) regret of a pure strategy si of a player i with candidate set Ki is

Ri(Ki, si)
def
= max

θi∈Ki

max
s−i

(
max
s′i

Ui
(
θi,M(s′i, s−i)

)
− Ui

(
θi,M(si, s−i)

))
.

A pure strategy si is regret-minimizing among all pure strategies of a player i with

a candidate set Ki, in symbols si ∈ RMpure
i (Ki), if Ri(Ki, si) ≥ Ri(Ki, s

′
i) for all other

pure strategies s′i of i. We let RMpure(K)
def
= RMpure

1 (K1)× · · · × RMpure
n (Kn).

When allowing mixed strategies, the (expected) regret of a (possibly mixed) strat-

egy σi of a player i with candidate set Ki is

Ri(Ki, σi)
def
= max

θi∈Ki

max
s−i

(
max
s′i

Ui
(
θi,M(s′i, s−i)

)
− Esi∼σiUi

(
θi,M(si, s−i)

))
.

We similarly define RMmix
i (Ki) as the set of strategies of a player i that minimize

regret among all mixed strategies, and let RMmix(K)
def
= RMmix

1 (K1)×· · ·×RMmix
n (Kn).

3 Result

In δ-approximate combinatorial auctions with n players and m goods, the VCG guar-

antees social welfare ≥ MSW − 2 min{n,m}δ in pure regret-minimizing strategies:

2If giving subsets A or B ( A to player i provides the same social welfare, then the VCG will
give B to player i.
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Theorem 1. In a combinatorial Knightian auction with n players and m goods, for

all δ, all products K of δ-approximate candidate sets, all profiles θ ∈ K, and all

profiles of strategies v ∈ RMpure(K), it holds that

SW(θ,VCG(v)) ≥ MSW(θ)− 2 min{m,n}δ .

Discussion. Theorem 1 says that, in combinatorial Knightian auctions, the per-

formance of the VCG in (pure) regret minimizing strategies is very good. Moreover,

because of the result proved in [CMZ14a], the same holds for when a player resorts

to regret minimization only to refine further his own sets of undominated strategies.3

Theorem 1 is less intuitive than it seems, because in a combinatorial, Knightian,

VCG auction it is not obvious which strategies are regret-minimizing. Consider a

player i who (1) happens to know that his true valuation for some subset of the good

S lies in some interval [xS, xS + δ], and (2) chooses to play a pure, regret-minimizing

strategy vi. At first glance, it would appear that vi(S) should coincide with the center

of the interval, that is, vi(S) = xS + δ/2. In reality, however, vi(S) need not even

belong to the interval [xS, xS + δ]. Nevertheless, we prove that it cannot lie too far

from the interval.

We would like to mention that Theorem 1 continues to hold when mixed regret-

minimizing strategies are allowed, but with a worse bound. Roughly, min{n,m} is

replaced by n2 (or even n log n if the valuations are set-monotone).4

Proof. We begin by noting that, because the VCG is dominant-strategy-truthful in

the exact-valuation model, the (maximum) regret of a pure strategy vi of a player i

with candidate set Ki in the VCG mechanism becomes

Ri(Ki, vi)
def
= max

θi∈Ki

max
v−i

(
max
v′i

Ui
(
θi,VCG(v′i, v−i)

)
− Ui

(
θi,VCG(vi, v−i)

))
= max

θi∈Ki

max
v−i

(
Ui
(
θi,VCG(θi, v−i)

)
− Ui

(
θi,VCG(vi, v−i)

))
,

3A pure strategy si of a player i with a candidate set Ki is (weakly) undominated, in symbols
si ∈ UDi(Ki), if i does not have another (possibly mixed) strategy σi such that

(1) ∀θi ∈ Ki ∀s−i ∈ S−i EUi

(
θi,M(σi, s−i)

)
≥ Ui

(
θi,M(si, s−i)

)
, and

(2) ∃θi ∈ Ki ∃s−i ∈ S−i EUi

(
θi,M(σi, s−i)

)
> Ui

(
θi,M(si, s−i)

)
.

4That is, vi(S) ≤ vi(T ) for all S ⊆ T ⊆ [m], all i, and all vi ∈ Θi.
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Moreover, by the very definition of the VCG, we have

Ui
(
θi,VCG(vi, v−i)

)
= SW

(
(θi, v−i),VCG(vi, v−i)

)
−MSW(v−i) .5

Therefore in the VCG case, we can further simplify the definition of regret as follows:

Ri(Ki, vi) = max
θi∈Ki

max
v−i

(
SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(vi, v−i)

))
= max

θi∈Ki

max
v−i

(
MSW

(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

))
. (3.1)

For each player i, each candidate set Ki ⊂ Θi, and each subset T ⊆ [m], we let

Ki(T )
def
= {θi(T )}θi∈Ki

, K⊥i (T )
def
= inf Ki(T ),

K>i (T )
def
= supKi(T ), Kmid

i (T )
def
= (K⊥i (T ) +K>i (T ))/2 .

To prove Theorem 1, we rely on two intermediate claims. The first one identifies,

for every player i, a strategy vi with regret no larger than δ.

Claim 3.1. For every player i, let v∗i (T )
def
= Kmid

i (T ) for each T ⊆ [m]. Then

Ri(Ki, v
∗
i ) ≤ δ.

Proof of Claim 3.1. According to the first equality of (3.1), it suffices to show that

∀θi ∈ Ki ∀v−i, SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(v∗i , v−i)

)
≤ δ .

Let ω1 = VCG(θi, v−i) and ω2 = VCG(v∗i , v−i).

Recall that, in a combinatorial auction, a valuation θi ∈ Θi of player i maps

subsets of [m] to R≥0. For convenience, we extend θi to map an outcome ω = (A,P )

to R≥0 as follows: θi(ω)
def
= θi(Ai).

Under this notation, we have v∗i (ω2) + v−i(ω2) ≥ v∗i (ω1) + v−i(ω1), because the

VCG maximizes social welfare relative to the strategy profile (v∗i , v−i). Using this

inequality, we deduce that

SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(v∗i , v−i)

)
=
(
θi(ω1) + v−i(ω1)

)
−
(
θi(ω2) + v−i(ω2)

)
=
(
θi(ω1)− θi(ω2)

)
+
(
v−i(ω1)− v−i(ω2)

)
5This is because, suppose that the VCG mechanism picks an outcome ω = VCG(vi, v−i), allocating

player i subset Ai and others A−i. Then, i’s price is MSW(v−i) − v−i(A−i) in ω. This induces a
total utility of θi(Ai) + v−i(A−i)−MSW(v−i) = SW((θi, v−i), ω)−MSW(v−i).
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≤
(
θi(ω1)− θi(ω2)

)
+
(
v∗i (ω2)− v∗i (ω1)

)
.

Suppose player i gets subset T1 ⊆ [m] in outcome ω1, and subset T2 ⊆ [m] in outcome

ω2. Then (
θi(ω1)− θi(ω2)

)
+
(
v∗i (ω2)− v∗i (ω1)

)
=
(
θi(T1)− v∗i (T1)

)
+
(
v∗i (T2)− θi(T2)

)
≤ K>i (T1)−Kmid

i (T1) +Kmid

i (T2)−K⊥i (T2)

≤ δ

2
+
δ

2
= δ . �

Let us now prove another claim.

Claim 3.2. Let vi be any strategy of player i such that Ri(Ki, vi) ≤ δ. Then:

(a) for every T ⊆ [m]:

Kmid

i (T )−max
T ′⊆T

vi(T
′) ≤ δ − K>i (T )−K⊥i (T )

2
, and

(b) for every T ⊆ [m] such that vi(T ) > vi(T
′) for all T ′ ( T :

|vi(T )−Kmid

i (T )| ≤ δ − K>i (T )−K⊥i (T )

2
.

Proof. Since the case of T = ∅ is trivial, we assume below that T 6= ∅. We first

prove part (a).

Suppose that (a) is not true. Then, there exists T such that

Kmid

i (T )−max
T ′⊆T

vi(T
′) > δ − K>i (T )−K⊥i (T )

2
. (3.2)

We contradict our assumption on vi by showing that Ri(Ki, vi) > δ.

To show Ri(Ki, vi) > δ, as per (3.1), we must find some v−i and some θi so that

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
> δ . (3.3)

Let j be an arbitrary player other than i. We choose θi ∈ Ki such that θi(T ) =
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K>i (T ),6 and v−i as follows: for every S ⊆ [m]

vj(S)
def
=


H if S = T

H + ε+ maxT ′⊆T vi(T
′) if S = [m]

0 otherwise

and vk(S)
def
= 0 for every k 6∈ {i, j}.

Above, ε > 0 is some sufficiently small real number, and H is some huge real number

(that is, H is much bigger than vi(S) for any subset S).7 It then is easy to verify that

the outcome VCG(vi, v−i) allocates ∅ to player i, and [m] to player j. Therefore,

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(∅) + vj([m]) = H + ε+ max

T ′⊆T
vi(T

′) .

On the other hand, MSW(θi, v−i) ≥ θi(T ) + vj(T ) = K>i (T ) +H, and therefore

MSW
(
θi, v−i

)
−SW

(
(θi, v−i),VCG(vi, v−i)

)
≥
(
K>i (T )+H

)
−
(
H+ε+max

T ′⊆T
vi(T

′)
)

= K>i (T )− ε−max
T ′⊆T

vi(T
′) =

K>i (T )−K⊥i (T )

2
+Kmid

i (T )− ε−max
T ′⊆T

vi(T
′) .

Finally, since Kmid
i (T ) −maxT ′⊆T vi(T

′) is strictly greater than δ − K>i (T )−K⊥i (T )

2
, ac-

cording to (3.2), there exists some sufficiently small ε > 0 to make
K>i (T )−K⊥i (T )

2
+

Kmid
i (T ) − ε − maxT ′⊆T vi(T

′) > δ. This proves (3.3) and concludes the proof of

Claim 3.2a.

We now prove part Claim 3.2b.

One side of Claim 3.2b is easy: that is, vi(T ) − Kmid
i (T ) ≥ −(δ − K>i (T )−K⊥i (T )

2
).

Indeed, this inequality follows from maxT ′⊆T vi(T
′) = vi(T ) and Claim 3.2a.

To show the other side, that is, vi(T ) − Kmid
i (T ) ≤ δ − K>i (T )−K⊥i (T )

2
, we again

proceed by contradiction. Suppose there is some T such that

vi(T )−Kmid

i (T ) > δ − K>i (T )−K⊥i (T )

2
. (3.4)

We contradict our assumption on vi by showing that Ri(Ki, vi) > δ. Similarly to case

(a), we need to find some v−i and some θi so that inequality (3.3) holds.

Let j be an arbitrary player other than i. This time, we choose θi ∈ Ki such that

6Here we have implicitly assumed that K>
i (T ) = supKi(T ) = maxKi(T ), and thus we can pick

θi ∈ Ki so that θi(T ) = K>
i (T ). If this is not the case, one can construct an infinite sequence

θ
(1)
i , θ

(2)
i , · · · so that θi(T ) approaches to K>

i (T ), and the rest of the proof remains unchanged.
7Notice that when T = [m] we have T = ∅ and one cannot assign vj(∅) to be a nonzero number.

In that case we can choose H = 0, and the rest of the proof still goes through.
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θi(T ) = K⊥i (T ),6 and choose v−i as follows: for every S ⊆ [m]

vj(S) =


H if S = T

H − ε+ vi(T ) if S = [m]

0 otherwise

and vk(S)
def
= 0 for every k 6∈ {i, j}.

Again, ε > 0 is sufficiently small, and H is huge.7 It then is easy to verify that the

outcome VCG(vi, v−i) allocates T to player i and T to player j. Therefore,

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(T ) + vj(T ) = K⊥i (T ) +H .

On the other hand, MSW(θi, v−i) ≥ θi(∅) + vj([m]) = H − ε+ vi(T ). Therefore,

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
≥ (H − ε+ vi(T ))− (K⊥i (T ) +H)

= vi(T )−Kmid

i (T ) +
K>i (T )−K⊥i (T )

2
− ε .

Finally, since vi(T ) − Kmid
i (T ) is strictly greater than δ − K>i (T )−K⊥i (T )

2
according

to (3.4), there exists some sufficiently small ε > 0 to make vi(T ) − Kmid
i (T ) +

K>i (T )−K⊥i (T )

2
− ε > δ. This proves (3.3) and concludes the proof of Claim 3.2b.

In sum, Claim 3.2 holds. �

Now we return to the proof of Theorem 1. Let v = (v1, . . . , vn) ∈ RMpure(K) be a

regret-minimizing pure strategy profile, and let θ ∈ K be a valuation profile.

For every player i, the strategy v∗i (i.e., the one reporting the ‘middle points’)

has a regret at most δ, owing to Claim 3.1. Since vi minimizes regret among all

his strategies, we immediately have Ri(Ki, vi) ≤ Ri(v
∗
i , Ki) ≤ δ. This shows that vi

satisfies the initial hypothesis of Claim 3.2.

Now, letting (A0, A1, . . . , An) be the allocation in the outcome VCG(v1, . . . , vn),

we immediately have vi(Ai) ≥ vi(T
′) for any T ′ ( Ai by the definition of the VCG.

Furthermore, by our choice of the tie-breaking rule, this inequality must be strict:

that is, vi(Ai) > vi(T
′) for any T ′ ( Ai. Therefore, letting T = Ai, T satisfies the

hypothesis in Claim 3.2b. Thus, we conclude that

∀i ∈ [n], |vi(Ai)−Kmid

i (Ai)| ≤ δ − K>i (Ai)−K⊥i (Ai)

2
≤ δ − |θi(Ai)−Kmid

i (Ai)|

=⇒ |vi(Ai)− θi(Ai)| ≤ δ . (3.5)

8



Notice that, if Ai = ∅, then vi(∅) = θi(∅) = 0.

Next, letting (B0, B1, . . . , Bn) be the allocation that maximizes the social welfare

under θ, we have
n∑
i=1

vi(Ai) ≥
n∑
i=1

max
T ′⊆Bi

vi(T
′) (3.6)

because the VCG maximizes social welfare relative to v = (v1, . . . , vn). Moreover,

according to Claim 3.2a we have

∀i ∈ [n], Kmid

i (Bi)−max
T ′⊆Bi

vi(T
′) ≤ δ−K

>
i (Bi)−K⊥i (Bi)

2
≤ δ−|θi(Bi)−Kmid

i (Bi)|

=⇒ θi(Bi)− max
T ′⊆Bi

vi(T
′) ≤ δ . (3.7)

Also notice that, if Bi = ∅, then θi(Bi) = maxT ′⊆Bi
vi(T

′) = 0.

We are now ready to compute the social welfare guarantee.

SW(θ,VCG(v)) =
∑n

i=1 θi(Ai) ≥
∑n

i=1 vi(Ai)−
∑

i∈[n],Ai 6=∅ δ (using (3.5))

≥
n∑
i=1

max
T ′⊆Bi

vi(T
′)−

∑
i∈[n],Ai 6=∅

δ (using (3.6))

≥
∑n

i=1 θi(Bi)−
∑

i∈[n],Ai 6=∅ δ −
∑

i∈[n],Bi 6=∅ δ (using (3.7))

≥ MSW(θ)− 2 min{n,m}δ .

This concludes the proof of Theorem 1. �
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