Knightian Robustness from Regret Minimization

Alessandro Chiesa
Silvio Micali Zeyuan Allen Zhu
MIT

April 1, 2014

Abstract

We consider auctions in which the players have very limited knowledge about their own valuations. Specifically, the only information that a Knightian player i has about the profile of true valuations, θ^{*}, consists of a set of distributions, from one of which θ_{i}^{*} has been drawn.

We analyze the social-welfare performance of the VCG mechanism, for unrestricted combinatorial auctions, when Knightian players that either (a) choose a regret-minimizing strategy, or (b) resort to regret minimization only to refine further their own sets of undominated strategies, if needed.

We prove that this performance is very good.

1 Introduction

In [CMZ14b] we motivate the problem of mechanism design for Knightian players, and prove that (1) dominant-strategy mechanisms for single-good and multi-unit auctions cannot provide good social-welfare efficiency, but (2) the second-price and Vickrey mechanisms deliver good social-welfare performance, for these two settings, in undominated strategies.

In this report, we prove that the VCG mechanism guarantees good social welfare in the presence of Knightian players who either (a) choose a regret-minimizing strategy, or (b) resort to regret minimization only to refine further their own sets of undominated strategies, if needed.

2 Model

We study unrestricted combinatorial auctions, where there are n players and m distinct goods. The set of possible allocations \mathcal{A} consists of all possible partitions A of [m] into $1+n$ subsets, $A=\left(A_{0}, A_{1}, \ldots, A_{n}\right)$, where A_{0} is the (possibly empty) set of unassigned goods and A_{i} is the (possibly empty) set of goods assigned to player i.

For each player i, a valuation is a function mapping each possible subset of the goods to a non-negative real, and the set of all possible valuations is $\Theta_{i}=\left\{\theta_{i}: 2^{[m]} \rightarrow\right.$ $\left.\mathbb{R}_{\geq 0} \mid \theta_{i}(\varnothing)=0\right\}$. The profile of the players' true valuations is $\theta^{*}=\left(\theta_{1}^{*}, \ldots, \theta_{n}^{*}\right) \in \Theta$.

The set of possible outcomes is $\Omega \stackrel{\text { def }}{=} \mathcal{A} \times \mathbb{R}_{\geq 0}^{n}$. If $(A, P) \in \Omega$, we refer P_{i} as the price charged to player i. We assume quasi-linear utilities. That is, the utility function U_{i} of a player i maps a valuation θ_{i} and an outcome $\omega=(A, P)$ to $U_{i}\left(\theta_{i}, \omega\right) \stackrel{\text { def }}{=} \theta_{i}\left(A_{i}\right)-P_{i}$.

If ω is a distribution over outcomes, we also denote by $U_{i}\left(\theta_{i}, \omega\right)$ the expected utility of player i.

2.1 Knightian Valuation Uncertainty

In our model, a player i 's sole information about θ^{*} consists of \mathcal{K}_{i}, a set of distributions over Θ_{i}, from one of which θ_{i}^{*} has been drawn. (The true valuations are uncorrelated.) That is, \mathcal{K}_{i} is i 's sole (and private) information about his own true valuation θ_{i}^{*}.

Furthermore, for every opponent j, i has no information (or beliefs) about θ_{j}^{*} or \mathcal{K}_{j}.
Given that all he cares about is his expected (quasi-linear) utility, a player i may 'collapse' each distribution $D_{i} \in \mathcal{K}_{i}$ to its expectation $\mathbb{E}_{\theta_{i} \sim D_{i}}\left[\theta_{i}\right] .{ }^{1}$ Therefore, for unrestricted combinatorial auctions, a mathematically equivalent formulation of the Knightian valuation model is the following:

Definition 2.1 (Knightian valuation model). For each player i, i 's sole information about θ^{*} is a set K_{i}, the candidate (valuation) set of i, such that $\theta_{i}^{*} \in K_{i} \subset \Theta_{i}$.

We refer to an element of K_{i} as a candidate valuation.
In Knightian valuation model, a mechanism's performance will of course depend on the inaccuracy of the players' candidate sets, which we measure as follows.

Definition 2.2. The candidate set K_{i} of a player i is (at most) δ-approximate if, for each subset $S \subseteq[m]$, letting $K_{i}(S) \stackrel{\text { def }}{=}\left\{\theta_{i}(S) \mid \theta_{i} \in K_{i}\right\}, \sup K_{i}(S)-\inf K_{i}(S) \leq \delta$.

An auction is (at most) δ-approximate if each K_{i} is δ-approximate.

2.2 Social Welfare, Mechanisms, and Knightian Dominance

Social welfare. The social welfare of an allocation $A=\left(A_{0}, A_{1}, \ldots, A_{n}\right), \operatorname{SW}(A)$, is defined to be $\sum_{i} \theta_{i}^{*}\left(A_{i}\right)$; and the maximum social welfare, MSW, is defined to be $\max _{A \in \mathcal{A}} \mathrm{SW}(A)$. (That is, SW and MSW continue to be defined relative to the players' true valuations θ_{i}^{*}, whether or not the players know them exactly.)

More generally, the social welfare of an allocation A relative to a valuation profile $\theta, \operatorname{SW}(\theta, A)$, is $\sum_{i} \theta_{i}\left(A_{i}\right)$; and the maximum social welfare relative to $\theta, \operatorname{MSW}(\theta)$, is $\max _{A \in \mathcal{A}} \operatorname{SW}(\theta, A)$. Thus, $\operatorname{SW}(A)=\operatorname{SW}\left(\theta^{*}, A\right)$ and $\operatorname{MSW}=\operatorname{MSW}\left(\theta^{*}\right)$.

Mechanisms and strategies. A mechanism M specifies, for each player i, a set S_{i}. We interchangeably refer to each member of S_{i} as a pure strategy/action/report of i, and similarly, a member of $\Delta\left(S_{i}\right)$ a mixed strategy/action/report of i.

After each player i, simultaneously with his opponents, reports a strategy s_{i} in S_{i}, M maps the reported strategy profile s to an outcome $M(s) \in \Omega$.

[^0]If M is probabilistic, then $M(s) \in \Delta(\Omega)$. Thus, as per our notation, $U_{i}\left(\theta_{i}, M(s)\right) \stackrel{\text { def }}{=}$ $\mathbb{E}_{\omega \sim M(s)}\left[U_{i}\left(\theta_{i}, \omega\right)\right]$ for each player i.

Note that $S_{i}=\Theta_{i}$ for the direct mechanisms in the classical setting.
The VCG mechanism. In our auctions, the VCG mechanism, denoted VCG, maps a profile of valuations $\theta \in \Theta_{1} \times \cdots \times \Theta_{n}$, to an outcome (A, P), where
$A \in \arg \max _{A \in \mathcal{A}} \operatorname{SW}(\theta, A)$ and, for each player $i, P_{i}=\operatorname{MSW}\left(\theta_{-i}\right)-\sum_{j \neq i} \theta\left(A_{i}\right)$. Ties are broken by preferring subsets with smaller cardinalities. ${ }^{2}$

Knightian regret-minimizing strategies. Given a mechanism M, the (maximum) regret of a pure strategy s_{i} of a player i with candidate set K_{i} is

$$
R_{i}\left(K_{i}, s_{i}\right) \stackrel{\text { def }}{=} \max _{\theta_{i} \in K_{i}} \max _{s_{-i}}\left(\max _{s_{i}^{\prime}} U_{i}\left(\theta_{i}, M\left(s_{i}^{\prime}, s_{-i}\right)\right)-U_{i}\left(\theta_{i}, M\left(s_{i}, s_{-i}\right)\right)\right)
$$

A pure strategy s_{i} is regret-minimizing among all pure strategies of a player i with a candidate set K_{i}, in symbols $s_{i} \in \mathrm{RM}_{i}^{\text {pure }}\left(K_{i}\right)$, if $R_{i}\left(K_{i}, s_{i}\right) \geq R_{i}\left(K_{i}, s_{i}^{\prime}\right)$ for all other pure strategies s_{i}^{\prime} of i. We let $\mathrm{RM}^{\text {pure }}(K) \stackrel{\text { def }}{=} \mathrm{RM}_{1}^{\text {pure }}\left(K_{1}\right) \times \cdots \times \mathrm{RM}_{n}^{\text {pure }}\left(K_{n}\right)$.

When allowing mixed strategies, the (expected) regret of a (possibly mixed) strategy σ_{i} of a player i with candidate set K_{i} is

$$
R_{i}\left(K_{i}, \sigma_{i}\right) \stackrel{\text { def }}{=} \max _{\theta_{i} \in K_{i}} \max _{s_{-i}}\left(\max _{s_{i}^{\prime}} U_{i}\left(\theta_{i}, M\left(s_{i}^{\prime}, s_{-i}\right)\right)-\mathbb{E}_{s_{i} \sim \sigma_{i}} U_{i}\left(\theta_{i}, M\left(s_{i}, s_{-i}\right)\right)\right)
$$

We similarly define $\mathrm{RM}_{i}^{\text {mix }}\left(K_{i}\right)$ as the set of strategies of a player i that minimize regret among all mixed strategies, and let $\mathrm{RM}^{\text {mix }}(K) \stackrel{\text { def }}{=} \mathrm{RM}_{1}^{\text {mix }}\left(K_{1}\right) \times \cdots \times \mathrm{RM}_{n}^{\text {mix }}\left(K_{n}\right)$.

3 Result

In δ-approximate combinatorial auctions with n players and m goods, the VCG guarantees social welfare $\geq \mathrm{MSW}-2 \min \{n, m\} \delta$ in pure regret-minimizing strategies:

[^1]Theorem 1. In a combinatorial Knightian auction with n players and m goods, for all δ, all products K of δ-approximate candidate sets, all profiles $\theta \in K$, and all profiles of strategies $v \in \operatorname{RM}^{\text {pure }}(K)$, it holds that

$$
\operatorname{SW}(\theta, \operatorname{VCG}(v)) \geq \operatorname{MSW}(\theta)-2 \min \{m, n\} \delta
$$

Discussion. Theorem 1 says that, in combinatorial Knightian auctions, the performance of the VCG in (pure) regret minimizing strategies is very good. Moreover, because of the result proved in [CMZ14a], the same holds for when a player resorts to regret minimization only to refine further his own sets of undominated strategies. ${ }^{3}$

Theorem 1 is less intuitive than it seems, because in a combinatorial, Knightian, VCG auction it is not obvious which strategies are regret-minimizing. Consider a player i who (1) happens to know that his true valuation for some subset of the good S lies in some interval $\left[x_{S}, x_{S}+\delta\right]$, and (2) chooses to play a pure, regret-minimizing strategy v_{i}. At first glance, it would appear that $v_{i}(S)$ should coincide with the center of the interval, that is, $v_{i}(S)=x_{S}+\delta / 2$. In reality, however, $v_{i}(S)$ need not even belong to the interval $\left[x_{S}, x_{S}+\delta\right]$. Nevertheless, we prove that it cannot lie too far from the interval.

We would like to mention that Theorem 1 continues to hold when mixed regretminimizing strategies are allowed, but with a worse bound. Roughly, $\min \{n, m\}$ is replaced by n^{2} (or even $n \log n$ if the valuations are set-monotone). ${ }^{4}$

Proof. We begin by noting that, because the VCG is dominant-strategy-truthful in the exact-valuation model, the (maximum) regret of a pure strategy v_{i} of a player i with candidate set K_{i} in the VCG mechanism becomes

$$
\begin{aligned}
R_{i}\left(K_{i}, v_{i}\right) & \stackrel{\text { def }}{=} \max _{\theta_{i} \in K_{i}} \max _{v_{-i}}\left(\max _{v_{i}^{\prime}} U_{i}\left(\theta_{i}, \operatorname{VCG}\left(v_{i}^{\prime}, v_{-i}\right)\right)-U_{i}\left(\theta_{i}, \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)\right) \\
& =\max _{\theta_{i} \in K_{i}} \max _{v_{-i}}\left(U_{i}\left(\theta_{i}, \operatorname{VCG}\left(\theta_{i}, v_{-i}\right)\right)-U_{i}\left(\theta_{i}, \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)\right)
\end{aligned}
$$

[^2]Moreover, by the very definition of the VCG, we have

$$
\left.U_{i}\left(\theta_{i}, \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)=\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)-\operatorname{MSW}\left(v_{-i}\right)\right)^{5}
$$

Therefore in the VCG case, we can further simplify the definition of regret as follows:

$$
\begin{align*}
R_{i}\left(K_{i}, v_{i}\right) & =\max _{\theta_{i} \in K_{i}} \max _{v_{-i}}\left(\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(\theta_{i}, v_{-i}\right)\right)-\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)\right) \\
& =\max _{\theta_{i} \in K_{i}} \max _{v_{-i}}\left(\operatorname{MSW}\left(\theta_{i}, v_{-i}\right)-\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)\right) . \tag{3.1}
\end{align*}
$$

For each player i, each candidate set $K_{i} \subset \Theta_{i}$, and each subset $T \subseteq[m]$, we let

$$
\begin{gathered}
K_{i}(T) \stackrel{\text { def }}{=}\left\{\theta_{i}(T)\right\}_{\theta_{i} \in K_{i}}, \quad K_{i}^{\perp}(T) \stackrel{\text { def }}{=} \inf K_{i}(T) \\
K_{i}^{\top}(T) \stackrel{\text { def }}{=} \sup K_{i}(T), \quad K_{i}^{\text {mid }}(T) \stackrel{\text { def }}{=}\left(K_{i}^{\perp}(T)+K_{i}^{\top}(T)\right) / 2
\end{gathered}
$$

To prove Theorem 1, we rely on two intermediate claims. The first one identifies, for every player i, a strategy v_{i} with regret no larger than δ.

Claim 3.1. For every player i, let $v_{i}^{*}(T) \stackrel{\text { def }}{=} K_{i}^{\text {mid }}(T)$ for each $T \subseteq[m]$. Then $R_{i}\left(K_{i}, v_{i}^{*}\right) \leq \delta$.

Proof of Claim 3.1. According to the first equality of (3.1), it suffices to show that

$$
\forall \theta_{i} \in K_{i} \forall v_{-i}, \quad \operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(\theta_{i}, v_{-i}\right)\right)-\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}^{*}, v_{-i}\right)\right) \leq \delta .
$$

Let $\omega_{1}=\operatorname{VCG}\left(\theta_{i}, v_{-i}\right)$ and $\omega_{2}=\operatorname{VCG}\left(v_{i}^{*}, v_{-i}\right)$.
Recall that, in a combinatorial auction, a valuation $\theta_{i} \in \Theta_{i}$ of player i maps subsets of $[m]$ to $\mathbb{R}_{\geq 0}$. For convenience, we extend θ_{i} to map an outcome $\omega=(A, P)$ to $\mathbb{R}_{\geq 0}$ as follows: $\theta_{i}(\omega) \stackrel{\text { def }}{=} \theta_{i}\left(A_{i}\right)$.

Under this notation, we have $v_{i}^{*}\left(\omega_{2}\right)+v_{-i}\left(\omega_{2}\right) \geq v_{i}^{*}\left(\omega_{1}\right)+v_{-i}\left(\omega_{1}\right)$, because the VCG maximizes social welfare relative to the strategy profile $\left(v_{i}^{*}, v_{-i}\right)$. Using this inequality, we deduce that

$$
\begin{aligned}
& \operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(\theta_{i}, v_{-i}\right)\right)-\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}^{*}, v_{-i}\right)\right) \\
= & \left(\theta_{i}\left(\omega_{1}\right)+v_{-i}\left(\omega_{1}\right)\right)-\left(\theta_{i}\left(\omega_{2}\right)+v_{-i}\left(\omega_{2}\right)\right) \\
= & \left(\theta_{i}\left(\omega_{1}\right)-\theta_{i}\left(\omega_{2}\right)\right)+\left(v_{-i}\left(\omega_{1}\right)-v_{-i}\left(\omega_{2}\right)\right)
\end{aligned}
$$

[^3]$$
\leq\left(\theta_{i}\left(\omega_{1}\right)-\theta_{i}\left(\omega_{2}\right)\right)+\left(v_{i}^{*}\left(\omega_{2}\right)-v_{i}^{*}\left(\omega_{1}\right)\right)
$$

Suppose player i gets subset $T_{1} \subseteq[m]$ in outcome ω_{1}, and subset $T_{2} \subseteq[m]$ in outcome ω_{2}. Then

$$
\begin{aligned}
& \left(\theta_{i}\left(\omega_{1}\right)-\theta_{i}\left(\omega_{2}\right)\right)+\left(v_{i}^{*}\left(\omega_{2}\right)-v_{i}^{*}\left(\omega_{1}\right)\right) \\
= & \left(\theta_{i}\left(T_{1}\right)-v_{i}^{*}\left(T_{1}\right)\right)+\left(v_{i}^{*}\left(T_{2}\right)-\theta_{i}\left(T_{2}\right)\right) \\
\leq & K_{i}^{\top}\left(T_{1}\right)-K_{i}^{\text {mid }}\left(T_{1}\right)+K_{i}^{\text {mid }}\left(T_{2}\right)-K_{i}^{\perp}\left(T_{2}\right) \\
\leq & \frac{\delta}{2}+\frac{\delta}{2}=\delta . \quad \square
\end{aligned}
$$

Let us now prove another claim.
Claim 3.2. Let v_{i} be any strategy of player i such that $R_{i}\left(K_{i}, v_{i}\right) \leq \delta$. Then:
(a) for every $T \subseteq[m]$:

$$
K_{i}^{\mathrm{mid}}(T)-\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right) \leq \delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}, \text { and }
$$

(b) for every $T \subseteq[m]$ such that $v_{i}(T)>v_{i}\left(T^{\prime}\right)$ for all $T^{\prime} \subsetneq T$:

$$
\left|v_{i}(T)-K_{i}^{\text {mid }}(T)\right| \leq \delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}
$$

Proof. Since the case of $T=\varnothing$ is trivial, we assume below that $T \neq \varnothing$. We first prove part (a).

Suppose that (a) is not true. Then, there exists T such that

$$
\begin{equation*}
K_{i}^{\mathrm{mid}}(T)-\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right)>\delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2} \tag{3.2}
\end{equation*}
$$

We contradict our assumption on v_{i} by showing that $R_{i}\left(K_{i}, v_{i}\right)>\delta$.
To show $R_{i}\left(K_{i}, v_{i}\right)>\delta$, as per (3.1), we must find some v_{-i} and some θ_{i} so that

$$
\begin{equation*}
\operatorname{MSW}\left(\theta_{i}, v_{-i}\right)-\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)>\delta \tag{3.3}
\end{equation*}
$$

Let j be an arbitrary player other than i. We choose $\theta_{i} \in K_{i}$ such that $\theta_{i}(T)=$
$K_{i}^{\top}(T),{ }^{6}$ and v_{-i} as follows: for every $S \subseteq[m]$
$v_{j}(S) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}H & \text { if } S=\bar{T} \\ H+\varepsilon+\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right) & \text { if } S=[m] \\ 0 & \text { otherwise }\end{array} \quad\right.$ and $\quad v_{k}(S) \stackrel{\text { def }}{=} 0$ for every $k \notin\{i, j\}$.
Above, $\varepsilon>0$ is some sufficiently small real number, and H is some huge real number (that is, H is much bigger than $v_{i}(S)$ for any subset $\left.S\right) .{ }^{7}$ It then is easy to verify that the outcome $\operatorname{VCG}\left(v_{i}, v_{-i}\right)$ allocates \varnothing to player i, and $[m]$ to player j. Therefore,

$$
\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)=\theta_{i}(\varnothing)+v_{j}([m])=H+\varepsilon+\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right)
$$

On the other hand, $\operatorname{MSW}\left(\theta_{i}, v_{-i}\right) \geq \theta_{i}(T)+v_{j}(\bar{T})=K_{i}^{\top}(T)+H$, and therefore

$$
\begin{gathered}
\operatorname{MSW}\left(\theta_{i}, v_{-i}\right)-\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right) \geq\left(K_{i}^{\top}(T)+H\right)-\left(H+\varepsilon+\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right)\right) \\
\quad=K_{i}^{\top}(T)-\varepsilon-\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right)=\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}+K_{i}^{\operatorname{mid}}(T)-\varepsilon-\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right) .
\end{gathered}
$$

Finally, since $K_{i}^{\text {mid }}(T)-\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right)$ is strictly greater than $\delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}$, according to (3.2), there exists some sufficiently small $\varepsilon>0$ to make $\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}+$ $K_{i}^{\text {mid }}(T)-\varepsilon-\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right)>\delta$. This proves (3.3) and concludes the proof of Claim 3.2a.

We now prove part Claim 3.2b.
One side of Claim 3.2b is easy: that is, $v_{i}(T)-K_{i}^{\text {mid }}(T) \geq-\left(\delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}\right)$. Indeed, this inequality follows from $\max _{T^{\prime} \subseteq T} v_{i}\left(T^{\prime}\right)=v_{i}(T)$ and Claim 3.2a.

To show the other side, that is, $v_{i}(T)-K_{i}^{\text {mid }}(T) \leq \delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}$, we again proceed by contradiction. Suppose there is some T such that

$$
\begin{equation*}
v_{i}(T)-K_{i}^{\operatorname{mid}}(T)>\delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2} \tag{3.4}
\end{equation*}
$$

We contradict our assumption on v_{i} by showing that $R_{i}\left(K_{i}, v_{i}\right)>\delta$. Similarly to case (a), we need to find some v_{-i} and some θ_{i} so that inequality (3.3) holds.

Let j be an arbitrary player other than i. This time, we choose $\theta_{i} \in K_{i}$ such that

[^4]$\theta_{i}(T)=K_{i}^{\perp}(T),{ }^{6}$ and choose v_{-i} as follows: for every $S \subseteq[m]$
\[

v_{j}(S)=\left\{$$
\begin{array}{ll}
H & \text { if } S=\bar{T} \\
H-\varepsilon+v_{i}(T) & \text { if } S=[m] \\
0 & \text { otherwise }
\end{array}
$$ \quad and \quad v_{k}(S) \stackrel{def}{=} 0 for every k \notin\{i, j\} .\right.
\]

Again, $\varepsilon>0$ is sufficiently small, and H is huge..7 It then is easy to verify that the outcome $\operatorname{VCG}\left(v_{i}, v_{-i}\right)$ allocates T to player i and \bar{T} to player j. Therefore,

$$
\mathrm{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right)=\theta_{i}(T)+v_{j}(\bar{T})=K_{i}^{\perp}(T)+H .
$$

On the other hand, $\operatorname{MSW}\left(\theta_{i}, v_{-i}\right) \geq \theta_{i}(\varnothing)+v_{j}([m])=H-\varepsilon+v_{i}(T)$. Therefore,

$$
\begin{array}{r}
\operatorname{MSW}\left(\theta_{i}, v_{-i}\right)-\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \operatorname{VCG}\left(v_{i}, v_{-i}\right)\right) \geq\left(H-\varepsilon+v_{i}(T)\right)-\left(K_{i}^{\perp}(T)+H\right) \\
=v_{i}(T)-K_{i}^{\text {mid }}(T)+\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}-\varepsilon .
\end{array}
$$

Finally, since $v_{i}(T)-K_{i}^{\text {mid }}(T)$ is strictly greater than $\delta-\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}$ according to (3.4), there exists some sufficiently small $\varepsilon>0$ to make $v_{i}(T)-K_{i}^{\text {mid }}(T)+$ $\frac{K_{i}^{\top}(T)-K_{i}^{\perp}(T)}{2}-\varepsilon>\delta$. This proves (3.3) and concludes the proof of Claim 3.2b.

In sum, Claim 3.2 holds.
Now we return to the proof of Theorem 1. Let $v=\left(v_{1}, \ldots, v_{n}\right) \in \operatorname{RM}^{\text {pure }}(K)$ be a regret-minimizing pure strategy profile, and let $\theta \in K$ be a valuation profile.

For every player i, the strategy v_{i}^{*} (i.e., the one reporting the 'middle points') has a regret at most δ, owing to Claim 3.1. Since v_{i} minimizes regret among all his strategies, we immediately have $R_{i}\left(K_{i}, v_{i}\right) \leq R_{i}\left(v_{i}^{*}, K_{i}\right) \leq \delta$. This shows that v_{i} satisfies the initial hypothesis of Claim 3.2.

Now, letting $\left(A_{0}, A_{1}, \ldots, A_{n}\right)$ be the allocation in the outcome $\operatorname{VCG}\left(v_{1}, \ldots, v_{n}\right)$, we immediately have $v_{i}\left(A_{i}\right) \geq v_{i}\left(T^{\prime}\right)$ for any $T^{\prime} \subsetneq A_{i}$ by the definition of the VCG. Furthermore, by our choice of the tie-breaking rule, this inequality must be strict: that is, $v_{i}\left(A_{i}\right)>v_{i}\left(T^{\prime}\right)$ for any $T^{\prime} \subsetneq A_{i}$. Therefore, letting $T=A_{i}, T$ satisfies the hypothesis in Claim 3.2b. Thus, we conclude that

$$
\begin{align*}
\forall i \in[n], \quad\left|v_{i}\left(A_{i}\right)-K_{i}^{\text {mid }}\left(A_{i}\right)\right| \leq \delta-\frac{K_{i}^{\top}\left(A_{i}\right)-K_{i}^{\perp}\left(A_{i}\right)}{2} & \leq \delta-\left|\theta_{i}\left(A_{i}\right)-K_{i}^{\text {mid }}\left(A_{i}\right)\right| \\
& \Longrightarrow\left|v_{i}\left(A_{i}\right)-\theta_{i}\left(A_{i}\right)\right| \leq \delta . \quad \tag{3.5}
\end{align*}
$$

Notice that, if $A_{i}=\varnothing$, then $v_{i}(\varnothing)=\theta_{i}(\varnothing)=0$.
Next, letting $\left(B_{0}, B_{1}, \ldots, B_{n}\right)$ be the allocation that maximizes the social welfare under θ, we have

$$
\begin{equation*}
\sum_{i=1}^{n} v_{i}\left(A_{i}\right) \geq \sum_{i=1}^{n} \max _{T^{\prime} \subseteq B_{i}} v_{i}\left(T^{\prime}\right) \tag{3.6}
\end{equation*}
$$

because the VCG maximizes social welfare relative to $v=\left(v_{1}, \ldots, v_{n}\right)$. Moreover, according to Claim 3.2a we have

$$
\begin{array}{r}
\forall i \in[n], \quad K_{i}^{\operatorname{mid}}\left(B_{i}\right)-\max _{T^{\prime} \subseteq B_{i}} v_{i}\left(T^{\prime}\right) \leq \delta-\frac{K_{i}^{\top}\left(B_{i}\right)-K_{i}^{\perp}\left(B_{i}\right)}{2} \leq \delta-\left|\theta_{i}\left(B_{i}\right)-K_{i}^{\operatorname{mid}}\left(B_{i}\right)\right| \\
\Longrightarrow \theta_{i}\left(B_{i}\right)-\max _{T^{\prime} \subseteq B_{i}} v_{i}\left(T^{\prime}\right) \leq \delta . \tag{3.7}
\end{array}
$$

Also notice that, if $B_{i}=\varnothing$, then $\theta_{i}\left(B_{i}\right)=\max _{T^{\prime} \subseteq B_{i}} v_{i}\left(T^{\prime}\right)=0$.
We are now ready to compute the social welfare guarantee.

$$
\begin{align*}
& \operatorname{SW}(\theta, \operatorname{VCG}(v))=\sum_{i=1}^{n} \theta_{i}\left(A_{i}\right) \geq \sum_{i=1}^{n} v_{i}\left(A_{i}\right)-\sum_{i \in[n], A_{i} \neq \varnothing} \delta \\
\geq & \sum_{i=1}^{n} \max _{T^{\prime} \subseteq B_{i}} v_{i}\left(T^{\prime}\right)-\sum_{i \in[n], A_{i} \neq \varnothing} \delta \tag{using}\\
\geq & \sum_{i=1}^{n} \theta_{i}\left(B_{i}\right)-\sum_{i \in[n], A_{i} \neq \varnothing} \delta-\sum_{i \in[n], B_{i} \neq \varnothing} \delta \tag{3.7}\\
\geq & \operatorname{MSW}(\theta)-2 \min \{n, m\} \delta .
\end{align*}
$$

This concludes the proof of Theorem 1.

References

[CMZ14a] Alessandro Chiesa, Silvio Micali, and Zeyuan Allen Zhu. Bridging utility maximization and regret minimization. ArXiv e-prints, abs/1403.6394, March 2014. http://arxiv.org/abs/1403.6394.
[CMZ14b] Alessandro Chiesa, Silvio Micali, and Zeyuan Allen Zhu. Knightian robustness of the Vickrey mechanism. ArXiv e-prints, abs/1403.6413, March 2014. http://arxiv.org/abs/1403.6413.

[^0]: ${ }^{1}$ Whatever the auction mechanism used, this equivalence holds for any auction where each Θ_{i} is a convex set. In particular, this includes unrestricted combinatorial auctions of m distinct goods.

[^1]: ${ }^{2}$ If giving subsets A or $B \subsetneq A$ to player i provides the same social welfare, then the VCG will give B to player i.

[^2]: ${ }^{3}$ A pure strategy s_{i} of a player i with a candidate set K_{i} is (weakly) undominated, in symbols $s_{i} \in \mathrm{UD}_{i}\left(K_{i}\right)$, if i does not have another (possibly mixed) strategy σ_{i} such that
 (1) $\forall \theta_{i} \in K_{i} \forall s_{-i} \in S_{-i} \quad \mathbb{E} U_{i}\left(\theta_{i}, M\left(\sigma_{i}, s_{-i}\right)\right) \geq U_{i}\left(\theta_{i}, M\left(s_{i}, s_{-i}\right)\right)$, and
 (2) $\exists \theta_{i} \in K_{i} \exists s_{-i} \in S_{-i} \quad \mathbb{E} U_{i}\left(\theta_{i}, M\left(\sigma_{i}, s_{-i}\right)\right)>U_{i}\left(\theta_{i}, M\left(s_{i}, s_{-i}\right)\right)$.
 ${ }^{4}$ That is, $v_{i}(S) \leq v_{i}(T)$ for all $S \subseteq T \subseteq[m]$, all i, and all $v_{i} \in \Theta_{i}$.

[^3]: ${ }^{5}$ This is because, suppose that the VCG mechanism picks an outcome $\omega=\operatorname{VCG}\left(v_{i}, v_{-i}\right)$, allocating player i subset A_{i} and others A_{-i}. Then, i 's price is $\operatorname{MSW}\left(v_{-i}\right)-v_{-i}\left(A_{-i}\right)$ in ω. This induces a total utility of $\theta_{i}\left(A_{i}\right)+v_{-i}\left(A_{-i}\right)-\operatorname{MSW}\left(v_{-i}\right)=\operatorname{SW}\left(\left(\theta_{i}, v_{-i}\right), \omega\right)-\operatorname{MSW}\left(v_{-i}\right)$.

[^4]: ${ }^{6}$ Here we have implicitly assumed that $K_{i}^{\top}(T)=\sup K_{i}(T)=\max K_{i}(T)$, and thus we can pick $\theta_{i} \in K_{i}$ so that $\theta_{i}(T)=K_{i}^{\top}(T)$. If this is not the case, one can construct an infinite sequence $\theta_{i}^{(1)}, \theta_{i}^{(2)}, \cdots$ so that $\theta_{i}(T)$ approaches to $K_{i}^{\top}(T)$, and the rest of the proof remains unchanged.
 ${ }^{7}$ Notice that when $T=[m]$ we have $\bar{T}=\varnothing$ and one cannot assign $v_{j}(\varnothing)$ to be a nonzero number. In that case we can choose $H=0$, and the rest of the proof still goes through.

