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Abstract

We study revenue maximization for digital auctions, where there are infinitely many
copies of a good for sale. There are n buyers, each of whom is interested in obtaining
one copy of the good. The buyers’ private valuations are drawn from a joint distribution
F . The seller does not know this distribution. The only information that she has are
the mean µi and variance σ2

i of each buyer i’s marginal distribution Fi. We call such
auctions parametric auctions.

We construct a deterministic parametric auction that, for a wide class of distri-
butions, guarantees a constant fraction of the optimal revenue achievable when the
seller precisely knows the distribution F . Furthermore, our auction is a posted price
mechanism and it is maximin optimal among all such mechanisms. That is, it is the
posted price mechanism that maximizes revenue in the worst case over an adversarial
choice of the distribution.
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1 Introduction

In a Bayesian auction of a digital good, there is one good for sale, available in an unlimited
number of copies, and n buyers, each interested in buying one copy of the good. Each buyer
i has a value vi for the good, and the vector (v1, ..., vn) is drawn from a joint distribution F .

There are many real-world examples of such a setting, including but not limited to, selling
music online, selling copies of a computer program, and giving non-exclusive licenses for a
patent.

How much revenue can we guarantee to the seller in such a setting? If F is a product
distribution and the seller knows F , then an adaptation of Myerson’s optimal auction [16]
guarantees the maximum revenue that any incentive compatible mechanism can obtain.

We work with strictly weaker assumptions. Namely,

1. F is an arbitrary joint distribution; and

2. The seller only knows the mean µi and standard deviation σi of each buyer i’s marginal
distribution Fi.

We call such an auction a parametric auction. For a digital goods setting we construct a
parametric auction A, that simultaneously

(i) achieves a significant fraction of the optimal revenue, and

(ii) is maximin optimal among all parametric posted price mechanisms.

That is, our auction is a posted price mechanism and, for any other parametric posted price
mechanism A, and for every pair of parameter vectors (µ1, ...., µn) and (σ1, ..., σn), there
exists a distribution F —whose marginals have the given parameters— for which our A
obtains strictly more revenue than A.

Since A is a deterministic posted price mechanism, it is dominant strategy truthful and
very practical to implement. Furthermore, because we only require knowledge of the first
two moments of the distribution, the seller can easily learn the information that she needs
from a limited amount of data, while it may be infeasible to learn the whole distribution F .

There are several auctions designed without knowledge of the full distribution. Our auc-
tion presents some advantages over these existing mechanisms. To enable a better comparison
with previous work, we first establish some notation and state our results.

2 The Model

Digital Goods Settings. We study digital goods settings. There is one seller, who has
infinite identical copies of a good for sale. There are n buyers, each of whom wants to buy
at most one copy. We assume that buyers’ valuations are drawn from a joint distribution
F . The ith buyer’s valuation Vi is distributed over some domain Di ⊂ R+ and has marginal
cumulative distribution function Fi : Di → [0, 1], where Fi(x) = Pr[Vi ≤ x]. We denote by
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V = (V1, ..., Vn) the vector of valuation random variables, and by D = D1 × ... × Dn its
domain. We denote by v = (v1, ..., vn) ∈D the vector of realized valuations. When we want
to emphasize player i’s valuation, we write the vector v = (v1, ..., vn) as v = (vi, v−i).

Auctions. An auction is given by a pair (A,P ) where A : D × ∆(D) → [0, 1]n is an
allocation rule and P : D ×∆(D)→ (R+)n is a payment rule. If the auctioneer faces a bid
vector v = (v1, ..., vn), then she sells to player i with probability Ai(v), and charges her a
price Pi(v).

We emphasize that A(v,F ) not only depends on the valuations v1, ..., vn but also on the
distribution F , but will sometimes write Ai(v,F ) = Ai(v) when F is clear from context.
Furthermore, we will often take v−i as fixed and write Ai(v,F ) = Ai(vi).

We denote by Rev((A,P ),F ) =
∫
D

∑n
i=1Ai(v)Pi(v)dF (v) the expected revenue ob-

tained by an auction (A,P ) when valuations follow distribution F , and by Revi((A,P ),F ) =∫
D
Ai(v)Pi(v)dF (v) the expected revenue obtained from player i.

Truthfulness and Monotonicity. If player i obtains the good with probability Ai and
pays a price Pi, her utility is Aivi−Pi. A buyer with valuation vi can attempt to increase her
utility by lying, and reporting a bid v′i 6= vi. An auction is dominant strategy truthful (DST)
if players have no incentive to misreport their true valuation. That is, for every player i, for
every valuation vector v, and every v′i 6= vi, we have vi ·Ai(v)− Pi(v) ≥ vi ·Ai(v′)− Pi(v′),
where v′ = (v′i, v−i). It is well known [16, 1] that the auction (A,P ) is DST if and only if
Ai(vi, v−i) is monotonic in vi and Pi(vi, v−i) = Ai(vi, v−i)vi−

∫ vi
0
Ai(zi; v−i)dzi. An important

corollary is that, for any monotonic allocation rule A(·), there exists a unique payment
rule P (·) that makes the auction (A,P ) truthful. Thus, it suffices to specify a monotonic
allocation rule A(·) to specify a dominant strategy truthful auction.

Individual Rationality An auction is ex-post individually rational if Ai(v)·vi−Pi(v) ≥ 0
for all v ∈D and all players i.

Deterministic Auctions. The value Ai(v) is the probability that player i obtains the
good given that the bid vector is v. We focus on deterministic allocations, where Ai(v) ∈
{0, 1}. If an allocation Ai(v) is deterministic and truthful, then monotonicity implies that,
for every v−i, there exists a reserve price p∗(v−i), possibly depending on the distribution F ,
such that the auction sells to player i when vi > p∗(v−i). The payment that makes this
allocation truthful is charging player i a price of p∗(v−i) dollars if she wins.

Deterministic Posted Price Mechanisms A posted price mechanism for digital goods
is a digital auction where player i is offered a take-it-or-leave-it price pi(F ) that does not
depend on the other players’ bids. Player i gets a copy of the good if and only if vi > Pi(F ).
When F is a known product distribution, the optimal digital auction is a posted price
mechanism. Player i is given a price p∗i = argmaxpi pi · (1− Fi(pi)).
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Approximately Optimal Auctions We denote by Rev(OPT,F ) the optimal revenue
achievable by a truthful auction which has knowledge of the distribution F . For any auction
A and distribution F , the competitive ratio of A is given by

Rev(A,F )

Rev(OPT,F )
.

Parametric Auctions Player i’s valuation is a random variable Vi with mean E[Vi] = µi,
and variance E[(Vi − µi)

2] = σ2
i . We will write µ = (µ1, ..., µn) and σ = (σ1, ..., σn).

Informally, an auction (A,P ) is parametric if its allocation and payment functions can be
computed from the valuation vector v and the µ,σ parameters. More formally, we have the
following definition.

Definition 1. A parametric auction is a pair of functions (A,P ) such that

1. A : Rn × Rn × Rn → [0, 1]n

2. P : Rn × Rn × Rn → Rn

3. Ai(v,µ,σ) is the probability that player i wins a copy of the good when bids are v and
the mean and standard deviation vectors of the distribution are µ,σ.

4. Pi(v,µ,σ) is the price that player i has to pay when bids are v and the mean and
standard deviation vectors of the distribution are µ,σ.

For convenience of notation, whenever µ and σ are clear we will write A(v) and P (v).

Monotone Hazard Rate and Regularity. Given a differentiable cumulative distribution
function Fi, let fi(v) = d

dv
Fi(v) be its induced density function. The function hi(v) = fi(v)

1−Fi(v)

is called the hazard rate of Fi. The distribution Fi has a monotone hazard rate if hi(v) is
increasing. The distribution Fi is called regular if the virtual valuation function φi(v) =
v − 1

hi(v)
is increasing. An immediate consequence is that any distribution with a monotone

hazard rate is regular.

c-Informative Distributions. Let c > 0 and let F be a distribution over the real numbers
with mean µ and variance σ2. We define F to be c-informative if µ

σ
> c. We denote by

Fc = {F : E[F ] = µ, V ar(F ) = σ2, µ
σ
> c} the set of all c-informative distributions. Note

that any distribution F with a monotone hazard rate is 1-informative 1 and any distribution
F over [0, B] satisfying µ > c ·B is c-informative.

Note that, for every distribution F over R+, there exists a c such that F is c-informative.
In particular, the sets Fc cover the entire space of distributions over positive valuations:
∆(R+) = ∪c>0Fc.

1Barlow, Marshall and Proschan [5] noted that for a random variable X with monotone hazard rate,
E[X2] ≤ 2E[X]2. Since V ar(X) = E[X2]−E[X]2, this gives us V ar(X) ≤ E[X]2. Taking square roots, we
obtain σ ≤ µ.
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3 Our Results

A parametric lower bound on the competitive ratio. We construct a digital auction
A that is competitive with the optimal auction. The competitive ratio is constant in the
number of players and does not rely on any kind of symmetry, independence, or regularity of
the distribution F . However, it will be a function of the ratios µi

σi
. This is intuitive because

if σi is very large compared with µi, then the seller has very little information about Fi, and
one cannot expect her to collect significant revenue from player i.

More concretely, for any distribution F with parameter vectors µ,σ and for any player
i our auction satisfies

Revi(A,F )

Revi(OPT,F )
≥ ρ(

µi
σi

)

where ρ(·) is a function of µi
σi

that we define in section 5. We highlight that ρ(·) has the
following properties:

• ρ(µi
σi

) is always positive when µi, σi are positive.

• When each Fi has a monotone increasing hazard rate, ρ(µi
σi

) > 10.5%.

More generally, for any constant c and any c-informative distribution F with mean µ
and standard deviation σ, we will have ρ(µ

σ
) > ρ(c). Since for any mechanism A we have

Rev(A,F ) =
∑

iRevi(A,F ), we will be able to conclude that, as long as the marginals
F1, ..., Fn are c-informative distributions, our auction A will have a competitive ratio bounded
below by a constant

Rev(A,F )

Rev(OPT,F )
≥ ρ(c).

A parametric lower bound on the competitive ratio for posted price mechanisms
It is a priori possible that one could do better than a constant fraction of the optimal revenue.
That is, an auctioneer who knows only the first and second moments of the distribution F
could guarantee a profit arbitrarily close to optimal as the number n of players grows very
large. We show in section 6 that this is impossible if we restrict the auctioneer to use posted
price mechanisms. That is, for any parametric posted price mechanism A, and any parameter
vectors µ,σ there exists a distribution F with the given parameters such that

Revi(A,F )

Revi(OPT,F )
≤ ψ(

µi
σi

)

where ψ(·) is a function of µi
σi

with the following properties

• ψ(µi
σi

) < 1

• limµi
σi
→∞ ψ(µi

σi
) = 1

• limµi
σi
→0 ψ(µi

σi
) = 0.

That is, our upper bound on the competitive ratio is a constant less than one when µi
σi

is
constant. When µi is much larger than σi, then the upper bound is meaningless (indeed, as
µi becomes large, the revenue of our parametric auction A approaches the optimal auction).
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When σi is much larger than µi, no parametric posted price mechanism can obtain any
significant fraction of the optimal revenue. For these mechanisms, this result formalizes our
intuition that a very large standard deviation implies an “uninformative” distribution from
which we can not guarantee any revenue.

Maximin Optimality and the Digital Auction A. As said above, our digital auction
A is competitive with the optimal auction, where the competitive ratio depends on µi

σi
.

Examining the competitive ratio is a meaningful way to give revenue guarantees when the
full distribution is not known. However, there can be a multiplicity of parametric auctions
which achieve a constant competitive ratio, and it may be difficult to decide which one is
the “best.” Any definition of optimality for parametric auctions needs to take into account
the uncertainty that the seller has over the joint distribution F . Since this is a worst-case
uncertainty, our definition of optimality for parametric mechanisms is based on worst-case
revenue maximization.

Definition 2. Let M be a class of mechanisms and let Dµ,σ be the class of distributions
which have parameter vectors µ and σ. An auction A∗ is maximin optimal forM if A∗ ∈M
and, given parameter vectors µ and σ we have,

A∗ = argmax
A∈M

min
F∈Dµ,σ

Rev(A,F ).

We highlight that, in the definition, A∗ is the unique mechanism maximizing worst-case
revenue. We show in section 7 that A is maximin optimal for the class of parametric posted
price mechanisms.

4 Comparison with Related Work

In the spirit of the Wilson doctrine [21], a good mechanism should require as little knowledge
about the valuations of the players as possible. Our paper adheres to this spirit by removing
the assumption that the seller knows the distribution of buyer valuations, and replacing it
by the strictly weaker assumption that the seller knows only the first and second moments
of these distributions. Let us now recall prior works that, like ours, weaken the assumption
that, in a Bayesian auction, the seller knows the distribution F .

Baliga and Vohra [3] and Segal [19] do not make any assumptions on seller knowledge.
However, their detail-free single-item auctions are competitive with the optimal auction
only when the buyers’ valuations are identically and independently distributed. Goldberg,
Hartline, Karlin, Saks and Wright [11] consider digital auctions where the valuations are
not necessarily drawn from a distribution and show how to achieve an interesting revenue
benchmark. However, when the valuations are random variables, their auctions guarantee a
constant fraction of the optimal auction’s revenue only if these random variables are identi-
cally and independently distributed [13]. In contrast, our results apply in the more general
setting where the buyers’ valuations are drawn from arbitrary joint distributions.
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Hartline, Mirrokni and Sundararajan [12] study how to market a digital good in a social
network. To prove their main results, they show that a digital auction that sets means as
reserve prices guarantees 1

e
of the revenue when valuations are drawn from distributions with

monotone hazard rates. When valuations are drawn from more general distributions2, such
a mechanism does not guarantee approximately optimal revenue anymore. In contrast, our
mechanism guarantees good revenue for the more general class of c-informative distributions.

Dhangwatnotai, Roughgarden and Yan [9] construct auctions for the setting where the
distributions F1, ..., Fn are assumed to exist, the seller does not know what they are, but has
access to at least one sample from each Fi. Their auctions work for general single-dimensional
matroid and downward closed environments, but require that the underlying distributions be
independent and regular, assumptions that we do not make. We also emphasize that testing
whether a distribution is indeed regular requires a large quantity of data and knowledge of
the virtual valuation function. In contrast, our assumption of c-informativeness can be easily
tested given only a small amount of data.

Leonardi and Roughgarden [15] consider another setting with limited seller information
for digital goods. They assume that the seller knows an ordering on the buyers that is
consistent with the ordering of the reserve prices that Myerson’s optimal auction would
charge. They construct an auction that guarantees a fraction 1

Ω(log∗ n)
of the optimal revenue.

We highlight that our assumption is incomparable with theirs.
Ronen [18] and Neeman [17] give an approximately optimal auction for correlated distri-

butions assuming that the seller knows the distribution F . Dobsinzki, Fu and Kleinberg [10]
improve on their results and give new auctions that have a better competitive ratio under
the same assumption.

Cremer and McLean [7] show that, when the distribution F is common knowledge and
sufficiently correlated, the seller can extract the full surplus from the buyers. However, their
mechanism is only ex-interim individually rational, in the sense that some states of the world
leave some buyers with negative utility.

Our notion of maximin optimality for digital parametric auctions follows Wald’s maximin
model for decision making under non-Bayesian uncertainty [20]. In this model, a decision
maker has to maximize a function f(a, s), that depends on her action a and an unknown state
of the world s. Wald’s model suggests that the player take an action a∗ = maxaminsf(a, s)
that maximizes the worst case payoff over all possible states of the world. As an example of
this concept in mechanism design, Chung and Ely [6] study the problem of an auctioneer who
knows the distribution of player valuations, but where the players can have arbitrary beliefs
about each other. They show that a dominant strategy truthful auction will guarantee the
maximum “worst-case revenue” in equilibrium, where the worst case is taken over the choice
of players’ beliefs.

A combination of approximate optimality and maximin optimality as desirable goals has
been used before in mechanism design. Chassang [8] designs simple dynamic contracts for
limited liability uncertain environments guaranteeing the principal a fraction of the best-
first surplus, even when the distributions of returns are not i.i.d. and not ergodic. These

2For example, distributions with heavy left tails.

7



contracts are also maximin optimal, in the respect that, under an adversarial choice of the
distribution of returns, the contract maximizes the worst case revenue for the principal.

5 Digital Parametric Auctions with c-informative Dis-

tributions

We now construct a digital auction A which is competitive with the optimal auction. The
competitive ratio will depend on the ratio µi

σi
. Thus, when the marginals F1, ..., Fn are c-

informative, our auction will have a constant competitive ratio.

Our parametric digital auction A

A(v,µ,σ)

1 Find ki = argmaxt[(µi − σit) · t2

1+t2
].

2 For each player i, set the reserve price ri = µi − σiki.
3 Sell a copy of the good to player i if and only if vi > ri.

Theorem 1. For any distribution F with mean vector µ and standard deviation vector σ,
we have

Revi(A, F )

Revi(OPT, F )
≥ (1− 3

2

σi
µi
ki) = (

1

2

σ

µ
k3
i ).

Proof.
We prove this via a series of lemmas. First, we characterize ki in terms of µi

σi
.

Lemma 1. Let ri = µi − σiki be player i’s reserve price in auction A. We have that ki is
the unique real solution to the cubic equation µi

σi
= 1

2
(3k + k3)

Proof of Lemma 1. The value ki is obtained by maximizing the differentiable function
(µi − σik) · k2

1+k2
over k ≥ 0. Note that finding ki is equivalent to finding the value k

maximizing ln(µi − σik) + 2 ln k − ln(1 + k2). Taking derivatives of this function, we obtain
that ki satisfies the equation

− σi
µi − σiki

+
2

ki
− 2ki

1 + k2
i

= 0.

Multiplying the denominators out, we get

−σiki(1 + k2
i ) + 2(1 + k2

i )(µi − σiki)− 2k2
i (µi − σik) = 0.

Canceling out some terms and rearranging gives

−σiki(1 + k2
i ) + 2(µi − σiki) = 0
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2µi = 3σiki + σik
3
i

µi
σi

=
1

2
(3ki + k3

i ),

which is what we wanted to show.
Note that this cubic equation has exactly one real root because the function 1

2
(3ki+k

3
i )−

µi
σi

is strictly increasing. Indeed, it’s derivative is 3
2

+ 3
2
k2
i > 0. This completes the proof of

Lemma 1. �
With this characterization of ki in hand, we can give a lower bound on the expected

payment from player i.

Lemma 2. Let F be a distribution with mean µ and standard deviation σ. The expected
revenue that auction A obtains from player i is at least µi − 3

2
σiki = 1

2
σik

3
i .

Proof of Lemma 2. The expected revenue obtained from player i is (µi − σiki) · (1− Fi(µi −
σiki)). However, we do not know the value 1−Fi(µi−σiki). We need to give a lower bound.
To do this, we use the following one-sided version of Chebyshev’s inequality.

(Cantelli’s Inequality) For every real-valued distribution with mean µ and variance σ2,
we have

1− F (µ− σk) ≥ k2

1 + k2

From Cantelli’s inequality, we obtain a bound of (µi−σiki) · k2i
1+k2i

on the revenue collected

from player i. From Lemma 1, we know that ki satisfies µi
σi

= 1
2
(3ki + k3

i ). Multiply both

sides of the equation by σi to obtain µi = 1
2
σi(3ki + k3

i ). Now we can write µi − σiki =
1
2
σi(ki + k3

i ) = 1
2
σiki(1 + k2

i ). The lower bound on the expected auction revenue becomes

(µi − σiki)
k2
i

1 + k2
i

=
1

2
σiki(1 + k2

i )
k2
i

1 + k2
i

=
1

2
σik

3
i .

We remark that if σi = 0, then the player’s valuation is µi with probability 1. Thus, the
expected revenue from player i is µi.

Using again the fact that µi − σiki = 1
2
σi(ki + k3

i ), we can write this revenue bound as
µi − 3

2
σiki. This completes the proof of Lemma 2. �

We now finish the proof of Theorem 1. We have given a lower bound on the revenue that
A obtains from each player i. We can also give an upper bound on the revenue that the
optimal auction obtains from player i by noting that a truthful, individually rational auction
will always charge a price pi lower than the player’s valuation vi. Thus, the expected revenue
from player i satisfies E[pi] ≤ E[vi] = µi. This upper bound holds even when valuations are
correlated. Using this together with the above lemma, we can bound the player-i competitive
ratio of auction A as follows

Revi(A,F )

Revi(OPT,F )
≥
µi − 3

2
σiki

µi
= 1− 3

2

σi
µi
ki.

This completes the proof of the theorem.
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5.1 A constant competitive Ratio

Theorem 1 tells us that Revi(A,F ) ≥ (1− 3
2
σi
µi
ki)Revi(OPT,F ) for every player i. Note that

the revenue of the auction A is

E[Rev(A,F )] = E[
n∑
i=1

Revi(A,F )] =
n∑
i=1

E[Revi(A,F )].

Thus, we can bound the revenue over all players as

n∑
i=1

E[Revi(A,F )] ≥
n∑
i=1

(1−3

2

σi
µi
ki)E[Revi(OPT,F )] ≥ min

i
(1−3

2

σi
µi
ki)

n∑
i=1

E[Revi(OPT,F )].

This gives us the competitive ratio

Rev(A,F )

Rev(OPT,F )
≥ min

i
(1− 3

2

σi
µi
ki).

One key informal observation is that the competitive ratio mini(1− 3
2
σi
µi
ki) is constant when-

ever µi
σi

is bounded below by a constant for all players. Thus, for distributions with c-
informative marginals, our parametric auction obtains a constant fraction of the revenue.

More formally, make the following definitions:

1. The function k(a) maps a to the unique real root of the cubic equation 1
2
(k3 + 3k) = a.

2. The function ρ(a)
def
= 1 − 3

2
1
a
k(a). We can also write ρ(a) = 1

2
1
a
k3(a) by our definition

of k(a). (See lemma 1).

We can now show the following theorem.

Theorem 2. For any constant c > 0, let F be a distribution where each Fi is in the class
Fc. Then

Rev(A,F )

Rev(OPT,F )
≥ ρ(c).

Proof. Theorem 1 tells us that Rev(A,F )
Rev(OPT,F )

≥ mini ρ(µi
σi

). The fact that Fi ∈ Fc implies that
µi
σi
> c. If we show that the function ρ(·) is increasing, we can conclude that ρ(µi

σi
) > ρ(c) for

all i, which gives us

min
i
ρ(
µi
σi

) > ρ(c).

Now we show that ρ(a) is an increasing function of a when a ≥ 0. Since ρ(a)
def
= 1− 3

2
1
a
k(a),

it’s derivative is ρ′(a) = 3
2

1
a2
k(a)− 3

2
1
a
k′(a).

The function k(a) was defined implicitly as 2a = k3 + 3k. Implicit differentiation gives
us 2 = 3k2 · k′(a) + 3k′(a), which we can rewrite as k′(a) = 2

3
1

1+k2(a)
. Plugging this into our

expression for ρ′(a) we obtain

ρ′(a) =
3

2

1

a2
k(a)− 1

a
· 1

1 + k2(a)
.
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We can multiply the above equality by a2 · (1 + k2(a)) without changing the sign of ρ′(a).
To prove ρ′(a) ≥ 0, it suffices to show

a2 · (1 + k2(a))ρ′(a) ≥ 0

3

2
k(a)(k2(a) + 1)− a ≥ 0

k3(a) +
1

2
k3(a) +

3

2
k(a)− a ≥ 0

k3(a) + 0 ≥ 0.

Since k(0) = 0 and k is an increasing function, we have k3(a) ≥ 0 when a ≥ 0. This
shows that ρ(·) is an increasing function when a > 0, and thus that ρ(µi

σi
) > ρ(c) when

Fi ∈ Fc. We can conclude that when all F1, ..., Fn ∈ Fc, the competitive ratio of A satisfies
the bound

Rev(A,F )

Rev(OPT,F )
≥ min

i
ρ(
µi
σi

) > ρ(c).

This completes the proof of the theorem.

We remark that, unlike previous auctions, we do not need the distributions F1, ..., Fn
to be identical, independent, or regular. As a corollary of our theorem, we can obtain a
constant competitive ratio for all distributions with a monotone hazard rate.

Corollary 1. When each Fi has a monotone hazard rate, the competitive ratio of A is
bounded below by

Rev(A,F )

Rev(OPT,F )
≥ ρ(1) > 10.5%.

Proof. The fact that Rev(A,F )
Rev(OPT,F )

≥ ρ(1) is immediate from Theorem 2 and the fact that a

distribution with monotone hazard rate satisfies µ
σ
> 1. We need to show via a computation

that ρ(1) > 10.5%. Recall that ρ(1) = 1− 3
2

1
1
· k(1). Solving the cubic equation k3 + 3k = 2

gives us k(1) =
3
√

1 +
√

2 − 1
3
√

1+
√

2

∼= 0.596. Plugging this into the formula for ρ(1), we

obtain ρ(1) > 10.5%. �

6 An upper bound on the competitive ratio of para-

metric posted price mechanisms

We now show an upper bound on the competitive ratio of parametric posted price mecha-
nisms. Our upper bound depends on the ratios µi

σi
, and will be a constant less than 1 when

these ratios are constant.
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Theorem 3. Let n be an arbitrary number of players, and let A be a parametric posted price
mechanism for n players. Let µ,σ be given parameter vectors. There exists a distribution
F over (R+)n with the given parameters and a function ψ(·) < 1 (which does not depend on
A, n or F ) such that

Revi(A,F ) ≤ max
i
ψ(
µi
σi

) ·Revi(OPT,F ).

Proof. Since A is a posted price mechanism, player i obtains a copy of the good if she is
above some reserve price pi = pi(µi, σi). If she wins the good, she pays this reserve.

Now we separate into two cases. If pi ≥ µi, we can choose Fi to be distributed according
to a random variable C(t;µi, σi) which takes a high value H(t) = µi + σi

t
with probability

t2

1+t2
and a low value L(t) = µi − σit with probability 1

1+t2
. As argued in theorem 4, this

distribution has mean µi and variance σ2
i . Furthermore, t is a free parameter that we can

chose. Letting t→ 0, we have that vi > pi with vanishing probability t2

1+t2
. Furthermore, the

revenue obtained by the auction in this case is no larger than t2

1+t2
·(µi+ σi

t
) = 1

1+t2
·(µit2+σit),

which goes to zero as t goes to zero.
Meanwhile, any auction with knowledge of the distribution Fi can always sell to player i

at a price qi = µi − σit with probability 1. As t goes to zero, this revenue goes to µi. Thus,
the optimal auction obtains revenue arbitrarily close to µi. For this case, we conclude that,
for arbitrarily small ε > 0, we can construct Fi = C(t;µi, σi) with sufficiently small t such
that

Revi(A,F )

Revi(OPT,F )
< ε.

The second case is when pi < µi. Write pi = µi − σik for some k > 0. Now we need
to choose Fi to make the revenue of our parametric auction as small as possible. Choose
again Fi = C(t;µi, σi), but this time we will make t as large as possible. We are restricted
by the fact that player i’s valuation must always be a non-negative number, so µi− σit ≥ 0.
To make t as large as possible, we choose t = µi

σi
. Note that since pi = µi − σik must also

be larger than or equal to zero, we have k ≤ t and pi ≥ L(t) = µi − σit = 0. Thus, the
parametric auction A sells to player i only when vi = H(t). This happens with probability
t2

1+t2
, and the auctioneer receives a payment of pi.
Any auctioneer with knowledge of the distribution Fi will know that vi can only take two

values: L(t) = 0 or H(t) = µi +
σi
ti

= µi +
σ2
i

µi
. Thus, the optimal auction for this distribution

will always sell at price H(t), with probability t2

1+t2
. For this case, the competitive ratio is

Revi(A,F )

Revi(OPT,F )
=

pi
t2

1+t2

H(t) t2

1+t2

=
pi
H(t)

≤ µi

µi +
σ2
i

µi

=
µ2
i

µ2
i + σ2

i

=
(µi
σi

)2

1 + (µi
σi

)2
.

Our above analysis applies only to an individual player i. Adding up over all players, we
have Rev(A,F ) =

∑n
i=1Revi(A,F ). We can construct the distribution F = F1 × · · · × Fn,

where each marginal Fi is chosen to limit the revenue that A obtains. Thus, we have
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Rev(A,F ) =
n∑
i=1

Revi(A,F ) ≤
n∑
i=1

(µi
σi

)2

1 + (µi
σi

)2
Revi(OPT,F ) ≤ max

i

(µi
σi

)2

1 + (µi
σi

)2
·Rev(OPT,F ).

Thus, if we choose ψ(µi
σi

) =
(
µi
σi

)2

1+(
µi
σi

)2
, we obtain our theorem.

Q.E.D.

Note that the competitive ratio is a function of µi
σi

. An important consequence is that,
as µi

σi
→ 0, our upper bound on the competitive ratio also goes to zero. This implies that

when σi is much larger than µi, it is impossible for a parametric posted price mechanism to
guarantee a good fraction of the revenue that the optimal auction would obtain.

Another consequence is that there is a limit to the power of parametric posted price
mechanisms even when µi

σi
is far from zero. Our parametric posted price mechanism A

guarantees a 10.5% fraction of the optimal revenue when µi
σi
≤ 1. The upper bound on the

competitive ratio we just proved implies that no other mechanism can do much better. In

particular, when µi
σi

= 1 no parametric mechanism can guarantee more than
(
µi
σi

)2

1+(
µi
σi

)2
= 1

2
of

the optimal revenue for all distributions F with the given parameters.

7 The Maximin Optimality of Auction A
We now prove, that no posted price mechanism can obtain more revenue than A in the worst
case over choice of the product distribution F .

Theorem 4. The parametric auction A is maximin optimal among all parametric posted
price mechanisms.

Proof. In Theorem 1, we used Cantelli’s inequality to show that

Rev(A,F ) ≥
n∑
i=1

(µi − σiki) ·
k2
i

1 + k2
i

.

To prove Theorem 4, it suffices to show that for any µ,σ and any parametric posted price
mechanism A(v,µ,σ), there exists a distribution F with mean µ and standard deviation σ
such that

Rev(A,F ) <
n∑
i=1

(µi − σiki) ·
k2
i

1 + k2
i

.

Let v1, . . . , vn be the actual valuations of the players. Since A is a parametric posted
price mechanism, it will sell to player i if and only if vi ≥ pi for some price pi that is a
function of µi, σi. Let pi = pi(µi, σi) be the reserve price that A charges to player i. Then,
player i’s expected payment is pi · (1− Fi(pi)).

13



We will prove the theorem by showing that, for each player i, there exists a distribution Fi
with mean µi and variance σi on which player i’s expected payment is less than (µ−σki)· k2i

1+k2i
.

We split into two cases: pi > µi and pi ≤ µi.
Assume pi > µi and write pi = µi + σi

ti
, for some positive ti. Consider the family of

distributions {C(t;µi, σi)}t>0 where C(t;µi, σi) takes the high value H(t) = µi + σi
t

with

probability t2

1+t2
, and the low value L(t) = µi − σit with probability 1

1+t2
. Let player i’s

valuation vi be drawn from distribution C(t;µi, σi). When t is smaller than ti, the auction
will sell the good if and only if vi = H(t), and it will charge player i the reserve price
pi = µi + σi

ti
. The expected revenue collected from player i in this case is (µi + σi

ti
) · t2

1+t2
.

Taking the limit as t→ 0, our expected revenue becomes arbitrarily small. In particular, it

becomes smaller than (µ− σki) · k2i
1+k2i

.

Now assume pi ≤ µi. Write pi = µi − σiti. Since A 6= A, at least one player i must have
ti 6= ki. We focus on this player to obtain a strict inequality. Any player with ti = ki will
give us a weak inequality. Choose Fi to be the distribution distribution C(ti;µi, σi). For this

distribution, the valuation vi will be a high value H(ti) = µi + σi
ti

with probability
t2i

1+t2i
, and

a low value L(ti) = µi − σiti with probability 1
1+t2i

.

The auction A only sells to player i when vi > µi−σiti.3 For this particular distribution,
the auction will sell at price µi − σiti, but only when the valuation is H(ti) = µi + σi

ti
. This

happens with probability
t2i

1+t2i
. Thus, the expected revenue collected from player i will be

(µi − σiti) ·
t2i

1 + t2i
< (µi − σiki) ·

k2
i

1 + k2
i

,

where the last inequality is because ki is the unique maximum of the function f(t) =
(µi − σit) · t2

1+t2
, and because we assumed ki 6= ti. We have shown that, when pi < µi, there

exists a distribution Fi for which the expected revenue collected from player i is less than

(µi − σiki) · k2i
1+k2i

.

The above analysis holds for each player individually. However, since A is a digital
auction, we can simply consider a product distribution F = (F1, ..., Fn), where each Fi is
chosen to limit the amount of revenue that A collects from player i. Adding up over all
players, we conclude that there exists a distribution F such that

Rev(A,F ) <
n∑
i=1

(µi − σiki) ·
k2
i

1 + k2
i

.

Recalling that our parametric auction A satisfies Rev(A, F ) ≥
∑n

i=1(µi − σiki) · k2i
1+k2i

for all product distributions F with mean µ and standard deviation σ, we obtain that A
maximizes worst-case revenue. This concludes the proof of Theorem 4.

3For this proof, the strictness of the inequality matters. If we sold when vi ≥ µi − σiti, then a similar
argument would apply, but we would need to use a distribution C(ti + ε;µi, σi) for arbitrarily small values
of ε.
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8 Conclusion and Future Work

In a Bayesian setting, it is important to construct auctions that are as detail-free as possible
while still guaranteeing good revenue. In this paper, we focused on a seller auctioning who
has knowledge of the means and variances of players’ valuations and who wants to auction a
digital good. These however, are not the only parameters that can be helpful in constructing
parametric auctions, or the only environments of interest. In particular, the authors, together
with Daskalakis and Weinberg [2] have extended this model to use the median and other
quantiles as parameters, and have constructed approximately optimal parametric auctions
for matroid environments where the players’ distributions are independent and regular. For
downward closed environments, an analogous result applies when the distributions have
a monotone hazard rate. In the future, we plan to construct auctions that use higher
order moments and covariances in order to guarantee more revenue in more general settings,
including auctions with multidimensional types.
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