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1. THE PROBLEM
Privacy and trust affect our everyday thinking and, in

particular, the way we approach a concrete game. Accord-
ingly, we hope that a rigorous treatment of privacy and trust
will become integral part of mechanism design. As of now,
the field has been very successful in finding many ingenious
mechanisms as solutions to a variety of problems. But these
mechanisms are theoretical constructions and not enough at-
tention has been devoted to their concrete implementation.
Indeed, It should be appreciated that the outcome function
of a simple normal-form mechanism does not spontaneously
evaluate itself on the “messages” that the players have se-
lected in “their own minds.” To be practically useful in a real
strategic setting, any mechanism M, whether of normal or
extensive form, must be concretely implemented. But then,
in such concrete implementations, issues of privacy and trust
may arise so as to undermine the valuable theoretical prop-
erties of M.

For instance, consider concretely implementing a second-
price auction using a mediator M , who privately receives the
players’ bids, and then announces the winner of the good
and the price he has to pay. Since the players have no way
of verifying that such announcement indeed consists of the
second-highest bid, M needs to be trusted. After all, nothing
prevents M from boosting the auction’s revenue by manu-
facturing out of thin air a second-highest bid artificially close
to the highest one. A player worrying about this possibility
would thus be tempted to “underbid,” putting at risk the
valuable dominant-strategy truthfulness of the second-price
mechanism.

Since universally and completely trusted mediators are
hard to come by, one may consider concretely implement-
ing a second-price auction by asking the players to submit
their bids sealed into opaque envelopes. After all envelopes
have been collected in public view, they are publicly opened
so that everyone present can verify that winner and price
have been derived correctly. This concrete implementation,
however, violates the privacy of all bids and thus may al-
ter the way in which privacy-valuing players behave. On
one hand, a privacy-valuing player receives a negative util-
ity when his valuation is publicly revealed; on the other,
the second-price mechanism gives him incentives to reveal
his valuation truthfully. What the result of these oppos-
ing forces will be is far from clear. Again, therefore, the
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dominant-strategy truthfulness of the abstract second-price
may not hold in practice.

On the basis of these examples, we wish to pose and tackle
the following problem:

Is there a way to implement concretely an abstract
mechanism so as to preserve its strategic properties
without relying on a trusted mediator or violating the
players’ privacy?

More precisely, our goals are (1) defining what a “perfect”
solution to the above problem should be, and (2) finding
one such solution for any possible mechanism. Note that
both goals are model-sensitive. Indeed, the above problem
is provably unsolvable in most models —in particular, in the
model of Brandt and Sandholm (2004). But this should not
affect our resolve. Indeed, we are not interested in solving
the above problem in all models, but in finding reasonable
models in which a solution always exists.

We insist on perfect solutions because we believe that this
is the right way to start a rigorous investigation of privacy
and trust in mechanism design. Only after gaining a clearer
understanding of what is in principle available to us can we
meaningfully discuss what“compromises”are worth making.

2. AN OLD AND IMPERFECT SOLUTION
A non-perfect solution to our problem could be derived

from an older general result of Goldreich, Micali, and Wigder-
son (1987). This result, referred to in the cryptographic lit-
erature as general and secure multi-party computation can
be informally stated as follows, assuming for simplicity that
n, the number of players, is greater than 2. For each finite
function f : X1 × · · · × Xn → Y , there exists a communi-
cation protocol P that, if honestly followed by the majority
of players, enables the computation of y = f(x1, . . . , xn)
with the same correctness and privacy as when each player
i privately gave his own secret input xi ∈ Xi to a trusted
mediator, who then evaluates f on the received inputs and
then announces the result. A bit more precisely, P is such
that no subset s comprising < n/2 of the players, even if
capable of perfectly coordinating a joint and arbitrary de-
viation from P , can alter the correctness of the result or
learn any information about the input subprofile x−s that is
additional to that implicitly revealed by y itself.

The relevance of this result to the concrete implemen-
tation of any finite normal-form mechanism M should be
quite clear. In M, let Xi be the set of possible strategies
(i.e., “messages”) of player i, Y the set of possible outcomes,
f the outcome function, and x an equilibrium. Then, to
implement concretely this equilibrium, rather than having



each player i confide xi to a mediator, the players may in-
stead execute a protocol P for securely evaluating f . In such
an implementation the set of possible strategies of a player
i greatly increases. Indeed, they include not only all possi-
ble strings in Xi, but also all possible ways for i to behave
in the communication protocol P —that is, his prescribed
communication strategy as well as all his possible ways to
deviate from it. Nonetheless the new, concrete, and unmedi-
ated game continues to have an equilibrium corresponding
and indeed payoff-equivalent to the original equilibrium x:
namely, the equilibrium in which each player i chooses string
xi and honestly follows σi, his prescribed communication
strategy for securely evaluating f . Very roughly, one can ar-
gue that the “strategy profile” (x, σ) is an equilibrium of this
new game goes as follows. Assume that a player i deviates
from by choosing a string x′i and a communication strat-
egy σ′i, while any other player j sticks to xj and σj . The,
because n > 2 and thus 1 < n/2, in this execution of the
secure computation protocol only a minority of the players
has deviated. Accordingly the communication protocol by
definition correctly and privately computes y′ = f(x−i, x

′
i),

that is, an outcome providing i a utility no greater greater
than that which he would get by choosing xi and honestly
communicating according to σi. In the latter case in fact,
the outcome would be y = f(x), and x is an equilibrium.

Of course, implementing a trusted mediator by a secure
evaluation of the outcome function f requires some addi-
tional effort, both in computation and communication. But
such additional effort is not unfeasible.1 The real limitation
of this approach is that it does not go much beyond preserv-
ing all equilibria of the original mechanism M. While this
is a non-trivial achievement, we should demand much more
from a perfect concrete implementation ofM. In particular,
we should demand that the power of coalitions of players,
whatever it may be, is preserved too. The problem of pro-
viding excessive power to coalitions has not received much
attention in mechanism design (with some notable excep-
tions, see Eliaz (2002) and Laffont and Martimort (2000)),
but is crucial for concrete implementation. Let us explain.

The only guarantee offered by an equilibrium σ is that
no individual player i has any incentive to deviate from σi.
But all bets are off if two or more players jointly deviate
from their strategies in σ. In the original mechanism M,
this may not be a problem. For instance, because the play-
ers do not have sufficient means or sufficient incentives to
collude. But the situation changes dramatically when M
is implemented by a secure evaluation of the outcome func-
tion f as discussed. This is so because while any minority
s of the players is powerless, any majority S of the players
is omnipowerful. This means that, by coordinating their
strategies in the secure computation protocol, the members
of S can (1) learn everything about x−S , the other players’
inputs, and (2) force f ’s output to be any y ∈ Y they choose,
even one “incompatible” with the other players’ inputs.

Let us consider the following example, where n = 5, the

1That, is, the time it takes to securely compute any func-
tion f is upperbounded by a fixed polynomial of the time
required to compute f itself, without any privacy or robust-
ness constraints. This said, to concretely implement a spe-
cific mechanism, and thus a specific outcome function f , one
is computationally better off by designing an ad hoc secure
protocol for evaluating the specific f at hand rather than
invoking a general secure computation protocol.

strategies available in M to each of the 5 players are 0 and
1, the outcomes are A, B, and C, the players know each
other’s utilities, and the outcome function f and the utility
profiles for the various outcomes are as follows:

• f(0, 0, 0, 0, 0) = A, and u(A) = (10, 10, 10, 10, 10);

• f(1, 1, 1, 1, 1) = B and u(B) = (1010, 1010, 1010,−∞,−∞);
and

• for any other strategy profile x, f(x) = C and u(C) =
(−∞,−∞,−∞,−∞,−∞).

Then (0, 0, 0, 0, 0) is the only equilibrium composed of weakly
undominated strategies, and thus it is reasonable to expect
the outcome resulting from a play of M to be A. Assume
now that the players decide to implement M by running a
protocol P securely evaluating f . Then, players 1, 2, and 3
form a majority, and therefore can control the outcome at
will and with total impunity. In such a concrete implemen-
tation, therefore, we might expect B to be the outcome.

We thus believe that, for any set of players S, preserving
the strategic and privacy power available to S is a good way
to prevent that the players in S, while unwilling or unable to
collude in an abstract mechanism, might do so in its concrete
implementations.

3. A PERFECT SOLUTION FOR NORMAL-
FORM MECHANISMS

The notion of a perfect concrete implementation of a normal-
form mechanism, was provided in Izmalkov, Lepinski and
Micali (2005). Informally, for a normal-form (and thus “ab-
stract”) mechanism M to be perfectly implemented by an-
other (“concrete”) mechanism M′ the following three prop-
erties must hold:

• Strategy Equivalence: For each player i there exists a
bijection ψi between i’s strategies inM and his strate-
gies in M′ such that for each profile of strategies σ in
M we have

M(σ) = M(σ1, . . . , σn) =M′(ψ1(σ1), . . . , ψn(σn))

= M′(ψ(σ))

where the above equalities are among distributions if
M and M′ are probabilistic.

• Privacy Equivalence: For any strategy profile σ ofM,
and any subset S of the players, the information learn-
able by the players in S in mechanismM under σ co-
incides with that learnable by the same players inM′
under ψ(σ).

• Complexity Equivalence: The number of elementary
operations needed to executeM′ under ψ(σ) is essen-
tially equal to those required to execute M under σ.2

It is worth to point out that while M is normal-form, M′
needs not to be. Yet, the above properties guarantee that
the players are perfectly indifferent between playing M or
M′, not only from a strategic view point, but also from
privacy or computational perspective.

Notice that, in particular, perfect implementation implies
that a strategy profile σ is an equilibrium of the game G
corresponding to M if and only if ψ(σ) is an equilibrium of
the game G′ corresponding to M′. It also implies that σ

2One can actually prove any M has a perfect implementa-
tionM′ for which the said number of elementary operations
differ by at most a multiplicative factor of 128.



and σ′ are payoff-equivalent. More importantly, it implies
that the members of any subset S of players, no matter
what the cardinality of S may be, always have the same
strategic opportunities as well as the same knowledge about
the strategies adopted by the players in −S in G as in G′.
In particular, therefore, the members of S have the same
capabilities and incentives to collude in G′ as they have in
G. If they have no such capabilities in G, they do not have
in G′. Else, they have as much to gain from colluding in G
as they have from colluding in G′.

Beyond putting forward the notion of a perfect implemen-
tation, the contribution of Izmalkov, Lepinski and Micali
(2005) consists of proving that every normal-form mecha-
nismM has such an implementationM′ using ballots and a
ballot randomizer —that is, the same traditional machinery
used from time immemorial to implement a private election,
or a fair lottery.

4. A PERFECT SOLUTION FOR ARBITRARY
MECHANISMS

In a more recent paper, Izmalkov, Lepinki, and Micali
(2008), the notion of a perfect implementation is extended
from normal-form to quite general mechanisms of extensive
forms. Such mechanisms can be conceptualized as repeated
interactions between the players and a trusted mediator T ,
in which each party can keep a local state. The interac-
tion proceeds in stages. Essentially, in a stage each player
secretly sends a message to T , who then secretly computes
a pre-specified probabilistic function of the received mes-
sages so as to determine (1) a separate secret response for
each player, that he then privately sends to that player, and
possibly (2) a common string that he publicly announces.
The players now may select new messages for T , and so on.
The mechanism can generate a single final outcome, or a
sequence of individual outcomes, one for each stage.

At a high level, a perfect implementation of such a mech-
anismM again consists of a concrete mechanismM′ equiv-
alent to M from the perspective of strategy, privacy, and
complexity. The main problem consists of showing that such
an implementation indeed exists for each possible M. The
solution, also provided in the same paper, is somewhat more
complex than in the case of normal-form mechanisms, due
to several new demands imposed by the interactive nature
of mechanismM: namely,M′ should not introduce any “en-
tropy not present in the original M.” Let us explain.

Notice that any stage ofM can, in particular, consist of a
mechanism of some normal-form game G. Indeed, the play-
ers may privately send the trusted mediator T their selected
strategies in G, and then T may announce G’s outcome.
Therefore, assume that playing such a profile of strategies is
indeed what happens in a stage s > 1 of M. As it is well
known, if a common random signal were publicly available,
then some additional strategic options would be available
to the players of G. In this case, in fact, the players might
also be able to “convexify” the original Nash equilibria of G.
Thus if the first s− 1 stages ofM do not cause any random
string to become common knowledge to the players, then
neither should a perfect implementation M′ of M, else the
strategic analysis and play of the game generated by M in
stage s would be different from the one generated by M′.
Assume now that the first stage ofM consists of conducting
a secret referendum between option 0 and option 1: that is,

each player i privately sends the trusted mediator T a bit
bi, and then T announces the tally t =

∑
i bi. It would

seem that this elementary stage could be trivially simulated
in M′ via ballots and a ballot randomizer as follows: each
player i seals his vote bi into a ballot, all ballots are inserted
in the randomizer, randomized, and then publicly opened so
as to enable anyone to compute the tally t without betraying
any information about the original votes that is not implicit
in t itself. However, while securely computing t, this way
of proceeding also causes some randomness to become com-
mon knowledge. Indeed, the players do not just learn t, but
also a random element in the set, of cardinality n-choose-t,
consisting of all n-bit sequences with t 1’s. This “common”
randomness therefore may affect the strategic way of the
players to subsequently play G. Thus, in order to satisfy
strategy equivalence, M′ must use the ballots and the bal-
lot randomizer in a way that guarantees that, once all ballots
are publicly opened, not one of the possible n-choose-t bit
sequences with t 1’s will be revealed, but a fixed one: for in-
stance, the one consisting consisting of t 1’s followed by n−t
0’s. This may sound somewhat counter-intuitive, and indeed
some effort is required to achieve it in a way “verifiable” by
all players.

5. A SIMPLER BUT NON-TRIVIAL SPECIAL
APPLICATION: CORRELATED EQUILIB-
RIUM

As put forward by Aumann (1974), the notion of corre-
lated equilibrium extends the notion of NASH equilibrium
and enables rational players to reach payoffs higher than
those in any Nash equilibrium for some games. However,
to achieve these payoffs rational players have to rely on
a trusted mediator T to implement the specific correlated
equilibrium: to sample separate signals according to a spe-
cial joint distribution, and then privately give each signal
to the proper player. Perfectly implementing such a me-
diator T poses various strategic, computational, trust, and
privacy problems. Yet, such a T is just a specific exam-
ple of a general mechanism of extensive form, and thus it
is concretely implementable by the general construction in
Izmalkov, Lepinski and Micali (2008).

To be sure, this concrete implementation is the last one
in a long series, but also the first one to be “perfect” in the
sketched technical sense. Indeed, much effort has been de-
voted to achieve correlated-equilibrium payoffs by adding a
pre-play communication stage to the main game: see in par-
ticular, Bárány (1992), Forges (1990), Ben-Porath (1998),
Dodis, Halevi and Rabin (2000), Urbano and Vila (2002),
Aumann and Hart (2003), Ben-Porath (2003), Gerardi (2004),
Krishna (2006), Gerardi and Myerson (2007). These spe-
cific solutions, however, trade conceptual simplicity for com-
putational efficiency and are exponentially far from being
complexity-equivalent to achieving correlated equilibrium with
a trusted mediator T .3 In addition, neither of them satisfies
strategy equivalence. To achieve a correlated equilibrium
E in a normal-form game G, they construct an “extended

3That is, there exists 2-player, 2-strategy, normal-form
games G with k-bit utilities for which a trusted mediator
can put the players in correlated equilibrium in a number
of elementary operations linear in k, while the above meth-
ods require time, communication, and other resources (e.g.,
number of envelopes) exponential in k.



game”G′ having an equilibrium that is payoff-equivalent to
E. But such a G′ also has additional equilibria that do
not have any counter-part in G. Accordingly, a play of G
may be vastly different from a play of G′. The implemen-
tations closer to achieving strategy equivalence are those of
Ben-Porath (1998) and Krishna (2006). But they too miss
strategy equivalence in its purest form. That is, while in a
game G with two correlated equilibria E and E′ a trusted
mediator T might be able to enable the players to reach E
but not E′, the latter two implementations cannot separate
reaching E from reaching E′. That is, whenever they en-
able the players to reach E, they automatically enable them
to reach E′ as well. While this may not be bad from the
players’ perspective, it is unacceptable from a mechanism
design perspective. If, somehow, society needed to obtain
an outcome distributed according to E, then enabling the
players to obtain instead an outcome distributed according
to E′, as they indeed prefer, would be a bad idea.

In any case, if one wanted to use a concrete implementa-
tion of correlated equilibrium E as a component of the con-
crete implementation of a larger and more general extensive-
form mechanism, he would need to be able to provide a per-
fect solution to the simpler problem of reaching equilibrium
E and E alone. Let us now explain why this may be non
trivial.

Let G be the following two-player game,

A B C D
A 9, 6 −100,−100 −100,−100 −100,−100
B −100,−100 6, 9 −100,−100 −100,−100
C −100,−100 −100,−100 4, 4 1, 5
D −100,−100 −100,−100 5, 1 0, 0

let E be the correlated equilibrium of G which assigns
probability 1/5 to each of outcomes (A,A), (B,B), (C,C),
(C,D) and (D,C), and consider the problem of concretely
implementing E perfectly. That is, as when a trusted medi-
ator T selects one of these 5 outcomes uniformly, privately
tells each player his strategy component in the selected out-
come, and promises not to reveal to either player any addi-
tional information about the strategy of his opponent.

To illustrate the difficulty of doing so, consider the fol-
lowing simpler variant of pre-play implementations of Ben-
Porath (1998) and Krishna (2006). The player have access
to envelopes indistinguishable from each other, and to larger
super-envelopes, also indistinguishable from each other. They
publicly construct 5 super-envelopes, each containing two
distinct envelopes, one marked “player 1” and the other
marked “player 2”. The envelopes inside the first super-
envelope respectively contain “A” and “A”, those inside the
second super-envelope contain “B” and “B”, those inside the
third “C” and “C”, those inside the forth “C” and “D”, and
those inside the fifth “D” and “C”. Then the players place
all 5 super-envelopes in an opaque bag, verified by both of
them to be initially empty, and play the following proto-
col for picking a super-envelope e at random. First, player
1 privately and randomly permutes the 5 super-envelopes
and hands the bag to player 2. Then, player 2 privately
takes out a random super-envelope from the bag. The bag
is now destroyed with its remaining inner ballots, while the
super-envelope taken out by player 2 is publicly opened, so
that the former inner envelope labeled “player 1” is taken
by player 1 and that labeled “player 2” by player 2. Each
of two players now privately opens his own envelope, learns

his own recommendation, and proceeds to play the normal-
form game G. As it is clear, the game G′ consisting of this
overall procedure has E as one of its equilibria. However,
G′ fails to match the set of equilibrium outcomes reachable
in G with the assistance of the angel generating a profile of
private recommendations distributed according to E (and E
only).

Notice that the two players actually prefer to E the fol-
lowing alternative correlated equilibrium E′: (A,A) with
probability 1/2 and (B,B) with probability 1/2. Notice too
that, when T puts the two players in equilibrium E —that is,
when he provides them withE-correlated recommendations,—
the players cannot use these recommendations in order to
achieve E′. That is, they have no way to turn their E-
correlated recommendations into E′-correlated ones. How-
ever, in the above constructed extended game G′, they could
also easily achieve correlated equilibrium E′ without anyone
else noticing anything wrong. Namely, consider the follow-
ing profile σ′ of strategies in G′:

σ′1: protected by the privacy given him by the bag, rather
than randomly permuting all 5 super-envelopes, player
1 first randomizes just the first two super-envelopes
—that is those respectively containing the recommen-
dations (A,A) and (B,B)— keeping both envelopes
in positions 1 and 2, and then randomizes the other 3
super-envelopes, keeping them in positions 3, 4, and 5.

σ′2: When his turn comes, player 2 randomly selects one
of the first two super-envelopes.

Now notice that (1) σ′ implements E′ rather than E; (2)
σ′ is an equilibrium of G′; and (3) no external observer can
tell during the execution of σ′ which strategy the players are
running.4

Moreover, selecting equilibrium σ′ does not require any
special coordination or risk in the following sense. When
player 1 deviates from his strategy in equilibrium σ to σ′1
while player 2 sticks to strategy σ2, the payoff of player 1
remains the same (and the same holds reversing the roles of
players 1 and 2).5

Mutatis mutandis, the same “additional-equilibrium prob-
lem” described above, together with the already discussed
equilibrium-selection problems, arise when implementing E
via the protocol of Dodis et al. (2000). The latter imple-
mentation essentially consists of a custom-constructed se-
cure computation protocol for the specific probabilistic func-
tion of correlated equilibrium. Alternative solutions based

4Nor can he obtain ex post any proof that the players have
executed σ′ instead of the intended equilibrium σ. After all,
the permutations in the support of σ′ are all legitimate ones.
5Of course, one could consider straightforwardly using a bal-
lot randomizer in order to pick a random super-envelope e
in the above variant of the Ben-Porath/Krishna protocol.
But then the modified protocol would be not satisfy “com-
plexity equivalence.” Consider a correlated equilibrium in
which outcome (A,A) is selected with probability 1/10 and
outcome (B,B) with probability 9/10. Then this approach
would implement this equilibrium by preparing 10 super-
envelopes: one containing a pair of envelopes with respective
contents “A” and “A”, and 9 containing a pair of envelopes
having “B” and “B” as their respective contents. And if a
correlated equilibrium would require (A,A) to be selected
with probability 2−k, then this approach would require at
least 2k envelopes, despite the fact the a trusted mediator
can easily select (A,A) with the right odds by just flipping
k coins.



on secure computation may also suffer of a similar, if not
identical, problem. The point is that for the players to be
able to implement E′ instead all that is needed is a single,
common, random bit b. And in all traditional two-party pro-
tocols for secure computation the players use “coin flipping”
as a subroutine.

6. CONCLUSIONS
Designing a mechanism M without worrying about its

concrete implementation is designing an abstraction. Ab-
stractions simplify our lives by enabling us to focus on cru-
cial aspects without worrying about details. But should
there be no way to concretely approximate these abstrac-
tions, their usefulness would be greatly challenged. By prov-
ing that any mechanism can be concretely implemented in
a perfect way, we make it possible for a designer to ignore
issues of privacy and trust when implementing her work.
Done this, we can now explore less perfect ways, but also
more practical ways, to achieve at least in part what has
been achieved here.
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