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Abstract

Proper scoring rules are crucial tools to elicit truthful information from experts. A
scoring rule maps X, an expert-provided distribution over the set of all possible states
of the world, and w, a realized state of the world, to a real number representing the
expert’s reward for his provided information. To compute this reward, a scoring rule
queries the distribution X at various states. The number of these queries is thus a
natural measure of the complexity of the scoring rule.

We prove that any bounded and strictly proper scoring rule that is deterministic
must make a number of queries to its input distribution that is a quarter of the number
of states of the world. When the state space is very large, this makes the computation
of such scoring rules impractical. We also show a new stochastic scoring rule that is
bounded, strictly proper, and which only makes two queries to its input distribution.
Thus, using randomness allows us to have significant savings when computing scoring
rules.

1 Introduction

Motivating examples Very often we have uncertainty about the world. This uncertainty
is typically modeled via a distribution D, over a set {2 of possible states. A canonical
example is predicting the weather, where 2 = {Sunny, Rainy} and D can be specified via
two numbers: the probability D(Rainy) and its complementary probability D(Sunny). A
more complex example is an election with an electoral college, such as the US system. In
such an election, two parties compete to win majorities in each of n provinces.! In this
example, a state of the world is a string in {0, 1}, with the i* bit representing which party
wins the " province. A probability distribution is now a much larger object, having to
encode 2" — 1 real numbers. Another example with a potentially larger outcome space is

'We use the term province and not state so as to not cause confusion with the term “state of the world”.



when we want a prediction about the outcome of a race with n contestants. In this setting,
a state of the world is an ordering of the n contestants, and thus the cardinality of €2 is n!.

Buying a Distribution from an Expert In many settings of interest, a decision maker
must acquire information about a distribution D from a knowledgable expert. However,
the expert is not trusted, and could report an arbitrary distribution X instead of the true
distribution D. To incentivize the expert to be truthful, the decision maker needs to give
her some type of reward that depends not only on the expert’s prediction X, but also on
his eventual observation of the real state of the world w. More formally, after agreeing on
a payment rule—technically a scoring rule—S, the expert and decision maker participate in
the following interaction:

1. the expert specifies a distribution X’; then
2. the decision maker observes a sample w drawn according to D; and finally
3. the decision maker pays to the expert the reward S(X,w).

To make the above process concrete, we need to specify how to communicate a distribu-
tion X and how to choose a scoring rule S.

1.1 Specifying a Distribution

We identify two possible ways for an expert to pin down a distribution X.

Exhaustive List Fixing an order of the possible states of the world, one way to specify
X consists of the list X'(wy), X'(w2), ..., X (wq)).
Such a way, however is feasible only when |{2|, the cardinality of 2, is sufficiently small.

Compact Description A potentially compact way of specifying X’ consists of an algo-
rithm Ay that, when given a state of the world w as input, outputs the probability X (w).

A standard way of compactly representing a distribution X is via a Bayesian Network
[12]. That is, the expert would provide a directed acyclic graph G = (V| E), a collection
of random variables {X,}, indexed by the vertices of G, and conditional probability tables
Pr[X,| X)) that give the conditional probability of X, taking different values given the
values of its parents in the network. The expert only needs to provide the structure of the
graph and entries in the conditional probability tables, which in some cases requires much
less communication than giving the distribution as an exhaustive list. Furthermore, from
the graph and conditional probability tables, the decision maker can easily compute X (w)
for any state w he cares about.

1.2 Crucial Properties of Scoring Rules

We identify three properties of a good scoring rule.



Truthfulness Since our goal is to incentivize the expert to reveal correctly the true dis-
tribution D over the states of the world, a good scoring rule must guarantee that the expert
maximizes her reward when she is truthful. More formally, a scoring rule S'is strictly proper
if for all distinct distributions D and X’

> DW)S(D.w) > Y D(w)S(X,w).

weN wef

Two popular strictly proper scoring rules are the logarithmic scoring rule [6], S(X,w) =
log(X(w)), and the quadratic scoring rule [2], S(X,w) = 2X (w)—>_ .o X (w)*+1. Examples
of other scoring rules, together with a comprehensive survey and characterization, can be
found in a paper by Gneiting and Raftery [5]. For brevity and when the context is clear,
we will often refer to strictly proper scoring rules simply as proper scoring rules or scoring
rules.

Ex-Post Individual Rationality Even when the chosen scoring rule S is strictly proper,
it may be the case that the expert may be reluctant to sell her knowledge of the true
distribution D in the above envisaged process, because S gives her negative rewards in some
states of the world. This is very clear with the logarithmic scoring rule, where the expert
may have to make arbitrarily large payments to the decision maker instead of being paid
herself. One may think that this problem can be avoided by shifting the scoring rule by some
positive amount, but this is not the case.? To really avoid this problem, we need scoring
rules that are ez-post individually rational. That is, S(X,w) > 0 for every possible input
distribution X and every possible realized state of the world w. The quadratic scoring rule
is a good example of an individually rational scoring rule, because its reward is bounded
between [0, 2] regardless of X and w.

Query Efficiency Both the quadratic and logarithmic scoring rules are evaluated by
querying the distribution X at different states of the world wy,...,wr € €2, and then re-
turning as a reward some function of X' (wy), ..., X (wy). If the cardinality of Q is small, then
querying X is not a problem. In this case in fact the expert may send the decision maker the
distribution A encoded as an exhaustive list, and querying X on all states of the world would
only increase complexity by a constant factor. However, if, as in our election and ranking
examples, () is very large, communicating the distribution may be easy, but computing a
scoring rule making many queries to X becomes prohibitively expensive. Thus, a third and
crucial property of scoring rules is that they query X only at very few inputs. The ideal
case would be to have a local scoring rule, that is, a scoring rule that only queries X on the

2That is, because the linear transformation a - In(X,w) + b is also truthful and local, one may attempt
to ensure the individual rationality of the logarithmic scoring rule by choosing b very large, so as to offset
the negative reward that the expert would obtain in most states of the world. However, when X can assign
probability zero to some states of the world, this approach cannot yield an individually rational scoring rule.
Even restricting ourselves to full-support distributions, for any linear transformation a - In(X,w) + b of the
logarithmic scoring rule, there exists a distribution X such that this transformed scoring rule still gives a
negative reward.



realized state of the world w. The logarithmic scoring rule is an example of a local scoring
rule. In contrast, the quadratic scoring rule depends on the norm »_ X (w)?, and thus
needs to make |[Q2] queries to the distribution. That is, it must query X on each possible
state of the world. We remark that query complexity is a lower bound on computational
complexity. That is, an algorithm for computing a scoring rule that makes at least k queries
to its input distribution, must also take at least k computational steps.

1.3 Our Results

Note that the logarithmic scoring rules is truthful and makes only one query, but is not
ex-post individually rational. The quadratic scoring rule is truthful and ex-post individually
rational, but is not query efficient. The ideal situation would be having a scoring rule that
is truthful, individually rational and local. Unfortunately, the following well known lemma
implies that this ideal situation is impossible.3

Lemma 1 (McCarthy - Savage [9] [13]). If || > 3 then the only local strictly proper scoring
rules are of the form S(X,w) = a+ bln X(w) where b > 0.

A negative result Since local scoring rules only make a single query, the McCarthy-
Savage lemma does not exclude the existence of truthful and individually rational scoring
rules that make a constant number of queries. However, we prove that is far from being
the case for any deterministic scoring rule. More precisely, our first theorem shows that any
truthful and individually rational scoring rule must make at least ‘%' queries to its input
distribution. Our result also implies a lower bound on the computational complexity of the
scoring rule when each query requires at least one computational step.

A positive result Our negative result shows that there is no deterministic strictly proper
scoring rule that is individually rational and makes few queries to its distribution. In section
5 we show that, if we allow stochastic scoring rules, then we can construct new scoring
rules that are truthful, ex-post individually rational, and query efficient. Furthermore—and
in contrast with existing approaches (discussed in section 4)—our new scoring rule is still
query efficient when given arbitrary distributions as input, including distributions that assign
probability zero to some events.

2 Prior Work

2.1 Generalizations of Locality

Parry, Dawid and Lauritzen [11] study proper scoring rules for the real line. Thus, they
focus on continuous distributions given by probability mass functions f : R — [0, 1]. They
study a generalization of locality which they call k-locality. In their definition, a scoring rule

3For completeness, we give a proof sketch of the lemma in Appendix A.



S(f,x) is k-local if and only if we can write S(f,z) = g(z, f'(z), f"(x), ..., f¥ (x)), where
f®)(x) is the k*" derivative of f evaluated at x. They present k-local scoring rules for all
even k, and show that one does not need the distribution to be normalized ( [ f(z)dx =1)
in order for these scoring rules to be effective. Ehm and Gneiting [4] characterize the 2-local
scoring rules which depend only on the density function at x and its first two derivatives.

Our work differs from the above papers in two ways. First, our notion of k-query scoring
rules is a different generalization of locality than Parry, Dawid and Lauritzen’s. Instead of
studying scoring rules which depend on X (w) and its derivatives, we study scoring rules that
depend on X when evaluated at w and at k£ — 1 other points in the state space. Second, we
focus on discrete distributions, whereas they focus on continuous ones.

A more closely related paper, by Dawid, Lauritzen and Parry [3], studies scoring rules for
discrete spaces and interprets the sample space {2 as a graph G. They define a scoring rule
to be G-local if S(X,w) is a function only of the neighbors of w in the graph G. Our proof of
our theorem is motivated by their interpretation of ) as a graph. These results are useful for
developing good heuristics for special cases of the distribution D. For instance, example 4.4
in their paper gives a deterministic scoring rule over {0, 1}" which is individually rational
and makes only 2n queries to its input distribution. However, this rule is only strictly proper
when D gives positive weight to every state of the world. One interesting question is whether
there exists a comparable rule that only makes 2n queries to the input distribution but is
strictly proper for all inputs.

Our first theorem shows that a search for such a scoring rule would be fruitless. For
arbitrary distributions over Q = {0, 1}", a deterministic, individually rational and strictly
proper scoring rule always needs to make % = % queries to its input distribution. Even for
moderately sized n, this is a very large number of queries required to evaluate the scoring
rule.

2.2 Cumulative Scoring Rules

Our impossibility theorem only applies to deterministic scoring rules and raises the question
of whether using randomization can help us obtain new rules satisfying our three desired
properties. By changing the definition of a scoring rule to accept a cumulative distribution
function (CDF) instead of a probability mass function (PMF), Matheson and Winkler [§]
provided a positive answer. However, the CDF may not be easily accessible. For example,
for Bayesian models, the expert may easily learn and communicate the PMF of the true
distribution, but not necessarily its CDF. Furthermore, the decision maker and expert need
to agree on which order of the state space to use to compute the CDF. This could be a
problem. Consider the case when the expert (before being hired) already determined the
cumulative distribution function of the true distribution for some arbitrary order of states
of the world. Then, either communicating this order to the decision maker, or recomputing
the cumulative distribution function for a new agreed upon order, may be very expensive.
In contrast, our second theorem gives a new, truthful, individually rational, and stochastic
scoring rule with low query complexity that, as usual, takes the PMF of the distribution as
input. This illustrates that what helps us reduce the query complexity of scoring rules is not



necessarily the encoding of the distribution but whether we use deterministic or stochastic
scoring rules.

3 An Impossibility Theorem

Before stating our theorems, we first give a formal definition of what it means for a scoring
rule to have query complexity k.

Definition 1. A scoring rule S has query complexity k if

1. there exists a function g : [0,1]* — R and

2. for all states w € €, there exist q1(w), ..., qx(w) € Q such that,

for all probability mass functions X (-),

S(X,w) = g(X(q1(w)), ., X(ge(w)))-
If the function g s deterministic we say that the scoring rule is deterministic, and if g
1s randomized, we say that the scoring rule is stochastic.

With the above definition of query complexity, we can state the main result of this
paper. Generalizing what was previously known for local scoring rules, we prove that, when
Q = {0,1}", the number of queries required for a deterministic scoring rule to be individual
rational is exponential in n, that is, exponential in the number of bits needed to describe a
state in ).

Theorem 1. For all k < %, no k-query deterministic scoring rule is individually rational.

Before proving this theorem, we need to give some definitions and results from extremal
graph theory, which will be useful in the proof.

3.1 Facts from Graph Theory

Definition 2. A graph G = (V| E) consists of a set V' of vertices and a set E C V XV
of edges. Unless declared otherwise, all edges of G are directed, and an edge from u to v is
denoted by (u,v).

If (u,v) € E <= (v,u) € E for all vertices u,v, then we say that the graph is
undirected, and denote the edge between u,v by the set {u,v}.

Definition 3. An independent set in a graph G is a subset of vertices S C V' such that, for
all u,v € S, there is no edge between u and v.

Definition 4. A triangle in an undirected graph G is a set of vertices «, 3,7~ such that
{a, B},{8,7}, {7, a} are all edges of G.

Lemma 2 (Mantel [7], Turan [14]). Let G = (V, E) be an undirected graph on n vertices
with at least %2 edges. Then G has a triangle.



3.2 Proof of Theorem 1

Let S be a k-query scoring rule. Let g(X(q1(w)), ..., X(qgx(w))) be a function that computes
S(X,w) as in definition 1. Recall that that the set of points (g, ..., gx) on which g queries X
is completely determined by w. We call this set the neighborhood of w and denote it N(w).
We show that, when |N(w)| < %', the scoring rule S' cannot be individually rational.

This neighborhood relation defines a directed graph G over the elements of . There is
an edge (o, ) if B € N(«). That is, there is an edge from « to f if the computation of
S(X, ) depends on the value of X' ().

Suppose that {«, 5,7} C  is an independent set in G. That is, there are no edges
between any of «, ,~. This means that the value of S(&X, «) does not depend on the values
of X(B), X (). Similarly, the values of S(X, ), S(X,v) do not depend on X evaluated on
the two other points.

Now we have three points «, 3,7 such that computing S(X,-) for any one event does
not require consulting the distribution on the other two events. Consider now only inputs
X supported on {«, 3,7}. On such distributions, the scoring rule S(X,w) makes at most
one query to its input distribution, and when it does this query is to X(w). Thus, it is a
local scoring rule: there is a function h(-) such that S(X,z) = h(X(x)). Since this holds
true for all x € {a, 8,7} and all distributions X supported on this set, the McCarthy-Savage
lemma implies that h(X(z)) = a+bIn(X(x)) at least on such inputs. Since the probabilities
assigned by X on «, 5,7 can be arbitrarily low, this function is not individually rational.
So, if we can find an independent set {a, 8,7} in G, we will have proved the theorem. This
is where Turan’s result comes in.

Consider the undirected graph G induced by G. The vertices are the same as those of G
and there’s an edge {a, B} if either (o, 5) or (3, ) are present in G. Clearly, if a, 8,7 is an
independent set of GG, it is also an independent set of G. T hus, it suffices to show that G
has an independent set with three elements.

Each vertex @ € G has as many edges coming out of it as there are elements in N(«).

By assumption |N(«)| < %'. Thus, there are at most % edges in G. The number of edges
in GG is less than the number of edges in G , So there are at most % edges in G.

Now let H be the complement graph of G. That is, the vertices of H are the same as
those of G, and {u, v} is an edge of H if and only if {u,v} is not an edge of G. Since G has

at most % edges, and the complete graph has g edges, we have that the number of edges
in H is greater or equal to

L2 N (]
2 4 4
By Turan’s Theorem, H has so many edges that it must contain a triangle. Let «, 8,7 be
the vertices of this triangle. This means that H contains all the edges {a, 5},{5,7}, {7, a}.
But since H is the complement graph of GG, it means that none of these edges are in G. This
means that a, 3,7 is an independent set of G.
Thus, since G has an independent set of size 3, the scoring rule that induces G cannot
be individually rational. W



A remark on tightness Since any scoring rule can make at most || queries to its input
distribution, our bound is tight up to a constant factor. However, it would be interesting to
see if our lower bound of % queries for an individually rational scoring rule can be improved,

or whether there exists a truthful and individually rational scoring rule that makes % +1
queries to its input distribution. If such a scoring rule existed, its induced graph would
not have any independent sets of size 3, and it would be highly regular. We do not see an
immediate way in which a scoring rule inducing such a structured graph would guarantee
good incentives. It is thus plausible that our lower bound can be improved.

A remark on computational complexity The proof of our theorem shows that any
deterministic algorithm computing a strictly proper and individually rational scoring rule
must make at least % queries to its input distribution. Thus, in any standard computational
model, where each query requires at least one computational step, any algorithm computing
such a scoring rule must also take at least l%' computational steps. This means that our
query complexity bound is also a computational complexity bound.

4 Trying to Bypass Our Impossibility Theorem

In this section, we discuss two deterministic attempts at bypassing our lower bound.

Reduction to distributions with full support As already mentioned, Dawid, Lauritzen
and Parry [3] give a deterministic scoring rule over 2 = {0, 1}" that is individually rational,
truthful, and only queries O(log |Q2|) states of the world. However, their scoring rule is
truthful only when restricted to distributions which have full support, that is, which do
not assign zero probability to any state of the world. Note that the notion of a scoring
rule should apply to arbitrary distributions. Indeed, the true distribution may assign zero
probability to many states (especially when ( is very large) and if we do not allow the expert
to communicate non-full support distributions then the expert cannot possibly be truthful.

Can this problem be avoided by smoothing distributions that do not have full support?
That is, can the decision maker add a small probability € to every state of the world, and
then renormalize to obtain a valid probability distribution? We show that, even though this
is syntactically possible, this smoothing approach can severely distort the input distribution,
to the point where it no longer conveys useful information.

As a concrete example, let Q@ = {1,2,3,...,2"} and let X be the distribution assigning
all of its mass to the state of the world w = 1. The expectation of X is therefore 1. It is
important for the expert to be able to convey such a distribution, because it implies certainty
about a given state of the world.

If one smooths X by adding e probability to every state of the world, the expectation
of the smoothed distribution becomes significantly skewed. The new expectation will be
greater than —=< -1+ 2c_gn—1 Asn becomes very large, the expectation of the smoothed

1427 1+2m-¢
distribution is higher than 2”1, while the expectation of the original X is always one. Thus,




smoothing can severely distort the important properties of the distribution conveyed by the
expert.

Amortizing Computation in Market Scoring Rules Another way to bypass our im-
possibility result in practice would be through amortizing the computation of the scoring
rule reward over time. A possible application of this technique is in designing market scor-
ing rules, which allow the aggregation of multiple experts’ knowledge. In this setting, the
decision maker initializes the market by posting her initial beliefs X,. At time ¢, any expert
participating in the market can suggest an updated belief distribution X;. After all these
predictions are made, the state of the world w is revealed, and the experts are paid. The
expert who made the prediction &; at time ¢ receives a payment S(X;,w) — S(X;_1,w), re-
flecting how much she improved the prediction at time ¢ — 1. If the expert decreased the
quality of the prediction, then her reward can be negative and she needs to pay the decision
maker. In a setting where &} is not much different from X;_;, the number of queries made
to the predicted distributions may be amortized over time.

To illustrate why this is the case, imagine that &; and &;_; are almost the same, except
that they differ in the probabilities that they assign to two outcomes o and (. As usual,
let w be the revealed state of the world, and for the purposes of this example, assume that
w # «a, . Assume that the decision maker uses the quadratic scoring rule and has already
computed S(X;_1,w) = 2X,_1(w) =Y, cq Xi—1(x)*+1. Now she needs to compute S(X;,w) =
2X(w) =Y, cq Xi(x)? + 1. Since w # «, 3, we have that the difference S(X;, w) — S(X,_1,w)
is equal to the difference between the square norms

Z/Yf(x) - Z X2 () = X2 () + X2(8) — &2 () = X2, (8).

z€e) €N

Thus, given that the decision maker has already computed Y o X? (), they can com-
pute Y X?(x) using only 4 queries to these input distributions. This means that each
new computation of a reward S(X;,w) requires a constant number of queries to the input
distribution, allowing us to amortize the cost of computing the scoring rule over time. This
technique would apply when S(Xj,w) can be pre-computed, and when each new expert only
changes the existing predicted distribution at a few states of the world. In the general case
where each new expert is allowed to give an arbitrary new distribution, the computation of
the market scoring rule rewards cannot be amortized in this way.

5 A New Scoring Rule

Theorem 1 applies only to scoring rules that are deterministic. We now show how to construct
a stochastic scoring rule which is truthful, ex-post individually rational, and makes only two
queries to its input distribution.

In contrast with cited prior work [8], we emphasize that we want the input distribution
to be given by its probability mass function rather than its cumulative distribution function.



Theorem 2. There exists a stochastic scoring rule that is truthful, individually rational and
makes only two queries to its input distribution.

Proof. We prove this theorem by constructing the required scoring rule.
Stochastic Scoring Rule R

On inputs a distribution X and a state w € €:

1. Sample a uniformly random state a from (2.

2. Query X(a) and compute X (a)?.

3. Output a reward S(X,w, o) = ﬁ){(w) — X(a)*+ 1.
Note that the above scoring rule only makes two queries to X’: at the realized state of the
world w, and at a uniformly random state of the world «. In addition, it is very easy to
compute once the queries have been made. We now show that this scoring rule is truthful
and ex-post individually rational.

Given X and w, let S(X,w) = E,[S(X,w, a)] be the expected reward where the expecta-
tion is taken over the scoring rule’s own coin tosses. Since « is a uniformly random state from
), we have that this expected reward is ﬁX(w) - ﬁ > wea X(@)? + 1. Note that this ex-
pected reward is ezactly a linear transformation of the reward given by the quadratic scoring
rule. Since the quadratic scoring rule remains truthful under positive linear transformations,
our new scoring rule is also truthful.

To argue ex-post individual rationality, we need to show that our new scoring rule always
gives a non-negative reward, for every possible value of X', w and a. When these inputs are
fixed, the new scoring rule gives a reward equal to ﬁX(w) —X(a)*+1 . Since X(a)? < 1 and
2 X (w) is always non-negative, we obtain that the scoring rule always gives a non-negative

9]
reward. |

6 Final Remarks

We showed that stochastic scoring rules provide significant advantages. Indeed, we proved
that there is a very significant tradeoff between individual rationality and query efficiency
in deterministic scoring rules. In contrast, we also proved that there are stochastic scoring
rules that are individually rational and make only two queries to their input distribution.
One caveat about using scoring rules to reward an expert is guaranteeing that the reported
X is indeed a distribution, that is, > X(w) = 1. For many practical ways of communicating
the probability mass function, such as giving a Bayesian network where each node has low
degree, the decision maker can quickly verify that the expert is really providing a distribution.
However, when this is not possible, the expert might be able to increase his expected reward
by, for example, announcing the function X'(-) = 2X(-). We note, however, that there
are separate and general ways to prevent this. For instance, one may require the expert to
provide a computationally sound proof [10], or a rational proof [1], that indeed ) X'(w) = 1.

10
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Appendix

A Proof of the McCarthy-Savage Lemma

For completeness, we sketch the proof of the McCarthy-Savage Lemma.

Lemma (McCarthy - Savage [9] [13]). If |2] > 3 then the only local strictly proper scoring
rules are of the form S(X,w) = a+ bln X (w) where b > 0.

Proof. Let S(X,w) be a strictly proper local scoring rule. This means that we can write
S(X,w) = g(X(w)) for some function g. For convenience of notation, we write f(w) for
X (w). In this proof sketch, we assume that g is differentiable.

Given two probability mass functions f, ¢, let G¢(¢) = > f(w)-g(é(w)) be the expected
reward when the expert announces ¢ and the true distribution follows the function f. Since
the scoring rule is strictly proper, this function is strictly maximized by setting ¢ = f. We
can think of ¢ as a vector of real numbers, under the constraints that ¢(w) > 0 for all w and

>, ¢(w) = 1. Thus, the Lagrange functionis Af(¢, A) = > f(w)-g(¢(w))—A-(>_, o(w)—1).
The derivative with respect to ¢(w) is 82& 7= (w) - ¢'(¢(w)) — A. Since the scoring rule is
strictly proper, this derivative equals zero only when ¢(w) is set to equal the true distribution

f(w). Thus, we have the first order condition

flw)-g'(fw)) = A
Renaming f(w) = = and dividing both sides by = we get

Solving this differential equation gives us g(x) = Aln(z) + C, where C is a constant.
In the above argument, we assumed that g was differentiable. Note that Savage [13]
shows that g(-) must be monotonic, and thus differentiable almost everywhere. W
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