
Supplementary Materials

A Proof of Theorem 1: Upper Bound for Sign-Consistent JL Ma-
trices

A.1 Proof of Lemma 4.1

Racall that we want to upper bound
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, (A.1)

We first show that

Lemma 4.1.

st · E[Zt] ≤ et
t∑

v=2

∑
G∈G′′v,t

 1

tt

v∏
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√
dp
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 · ∑
r1,...,rt∈[m]

w∏
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( s
m

)vi
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Here,

• G′′v,t is a set of directed multigraphs with v labeled vertices (1 to v) and t labeled edges (1 to t).

• dp is the total degree of vertex p ∈ [v] in a graph G ∈ G′′v,t.11

• w and v1, . . . , vw are defined by G and r1, . . . , rt as follows. Let an edge u ∈ [t] be colored with
ru ∈ [m], then we define w to be the number of distinct colors used in r1, . . . , rt, and vi to be
the number of vertices incident to an edge with color i ∈ [w].

Proof. We prove the desired inequality from (A.1) in three steps. The first step removes the random
variables of σ in (A.1). The second step removes x from (A.1) using the assumption of ‖x‖2 = 1.
The third step removes the random variables η in (A.1) by carefully exploiting the independence
or negative correlation among different η terms.

In the first step, we use a standard trick to map each summand(
t∏

u=1

xiuxju

)(
E
σ

t∏
u=1

σiuσju

)(
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η

t∏
u=1

m∑
r=1

ηr,iuηr,ju

)

in expression (A.1) to a directed multigraph. That is, for each pair of (iu, ju) where u ∈ [t], we
associate it with a directed edge iu → ju. It is easy to see that it suffices for us to consider only
graphs with all the vertices having even total degree, since otherwise the expectation Eσ

∏t
u=1 σiuσju

becomes zero (e.g., Eσ[σ31σ
2
2σ4] = 0).

To make this precise, let us define Gt to be the set of directed multigraphs G with the following
properties:

• G has between 2 and t (identical) vertices.

• G has exactly t distinct edges, labels by 1, 2, . . . , t.

• There are no self-loops.

11The total degree of a vertex is defined as the number of incident edges regardless of direction.
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• Each vertex has a non-zero and even total degree (sum of in- and out-degrees).

Note that we intentionally made the vertices identical (i.e., unlabeled) in the above definition, and
we will separately enumerate over the vertex labeling.

Let f be a map from (iu, ju)u∈[t] to its underlying graph G by adding a directed edge iu → ju
as the u-th edge of a graph. Our argument above shows that in order to enumerate (iu, ju)u∈[t] in
(A.1), it suffices to enumerate G ∈ Gt and the vertex labeling as follows

st · E[Zt] =
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt∈[d]
f((iu,ju)tu=1)=G

(
t∏

u=1

xiuxju

)(
E
η

t∏
u=1

m∑
r=1

ηr,iuηr,ju

)

In the above expression, the Eσ
∏t
u=1 σiuσju factors have disappeared because they equal to one

if G has even total degrees for all of its vertices. Also, the second summation —the one over all
choices of (iu, ju)u such that f((iu, ju)) = G— is in fact an enumeration over the missing vertex
labeling of the graph G.

In the second step, we observe that η?,i and η?,j for i 6= j are independent because they are
for different columns, and generated by the same random process. Thus, for a given graph G ∈ Gt,
the Eη

∏t
u=1

∑m
r=1 ηr,iuηr,ju factor has the same value for all mappings with f((iu, ju)tu=1) = G (i.e.,

for all the vertex labeling).12 Let us call this function η̂(G) and write:

st · E[Zt] =
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt∈[d]
f((iu,ju)tu=1)=G

(
t∏

u=1

xiuxju

)
η̂(G) =

∑
G∈Gt

η̂(G) ·
∑

i1 6=j1,...,it 6=jt∈[d]
f((iu,ju)tu=1)=G

(
t∏

u=1

xiuxju

)
.

(A.2)
Next, for a fixed graph G ∈ Gt, let v be the number of vertices in G and dp the total degree of
vertex p ∈ [v]. We observe a simple fact that(

t

d1/2, . . . , dv/2

)
·

∑
i1 6=j1,...,it 6=jt∈[d]
f((iu,ju)tu=1)=G

(
t∏

u=1

xiuxju

)
≤

(
d∑
l=1

x2l

)t
· v! = v! . (A.3)

The above inequality holds as each (distinct) monomial in
∑

i1 6=j1,...,it 6=jt∈[d],f((iu,ju)tu=1)=G

(∏t
u=1 xiuxju

)
,

for instance appears at most v! times in this summation due to vertex re-labeling, and thus(
t

d1/2,...,dv/2

)
· v! times in total on the left hand side; each of these monomials also appear on

the right hand side exactly
(

t
d1/2,...,dv/2

)
· v! times; and finally, each monomial is non-negative and

‖x‖2 = 1.
Now we are ready to plug (A.3) to (A.2) and get

st · E[Zt] =
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt∈[d]
f((iu,ju)tu=1)=G

(
t∏

u=1

xiuxju

)
η̂(G) ≤

∑
G∈Gt

v!(
t

d1/2,...,dv/2

) η̂(G)

=
∑
G∈G′t

1(
t

d1/2,...,dv/2

) η̂(G) (A.4)

≤ et
∑
G∈G′t

1

tt

v∏
p=1

√
dp
dp
η̂(G) (A.5)

12In fact, the value does not depend on the edge labeling of G as well, but we are not going to use this fact.
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Here in (A.4), we have defined G′t to be the same as Gt except that we require the v vertices to
have distinct labels in [v], and (A.4) follows because each there are v! distinct ways to label each

G ∈ Gt.13 For (A.5), we use that t! ≥ tt/et and
∏v
p=1(dp/2)! ≤

∏v
p=1

√
dp
dp

. We have been
ambiguous when writing η̂(G) because G may either be vertex-labelled or not vertex-labelled; its
value is independent of such a labeling.

In the third step, we give an upper bound on η̂(G) by carefully exploiting the independence
or negative correlation among the random variables in it. We first rewrite

η̂(G) = E
η

t∏
u=1

m∑
r=1

ηr,iuηr,ju =
∑

r1,...,rt∈[m]

E
η

t∏
u=1

ηru,iuηru,ju

From this point, whenever we fix a graph G and a sequence r = (r1, . . . , rt) ∈ [m]t, we would
like to view them together as a directed and edge-colored multigraph (G, r) —i.e., graph G appended
with edge colors such that its u-th edge iu → ju is given the color ru ∈ [m].

The big advantage of such edge coloring is to allow us to exploit the negative correlation between
graphs of different colors. Indeed, for any fixed G ∈ Gt and r ∈ [m]t, let us define

η̃c(G, r)
def
=

∏
u∈[t],ru=c

ηru,iuηru,ju

to be the factors of η associated with color c ∈ [m]. Then we have

η̂(G) =
∑

r1,...,rt∈[m]

E
η

m∏
c=1

η̃c(G, r) ≤
∑

r1,...,rt∈[m]

m∏
c=1

E
η
[η̃c(G, r)]

Here the inequality is owing to the fact that different rows of η are negatively correlated.14

Next, let us denote by w ∈ [t] the number of distinct colors in (G, r). For notational simplicity,
we can assume that the used colors in G are 1, 2, . . . , w (so w + 1, . . . ,m are unused). Let Gi be
the subgraph of G containing all the edges of color i ∈ [w], and suppose that Gi has vi ≥ 2 vertices
and ci ≥ 1 edges.

It is straightforward to see that for a fixed color i ∈ [w], there are precisely vi distinct η factors
in the definition of η̃i(G, r) (by the definition that Gi has vi “vertices”). Since these η factors are
across different columns, they are independent and each has a probability of s

m to be 1 (due to our
probabilistic construction of A). We therefore can simply write Eη[η̃i(G, r)] =

(
s
m

)vi and conclude
that

η̂(G) ≤
∑

r1,...,rt∈[m]

w∏
i=1

( s
m

)vi
(A.6)

13All these labelings are distinct in G′t because there is a canonical way to label the vertices of each G ∈ Gt: since G
does not have isolated vertices, to get a canonical labeling, we can order the directed edges in G in increasing order
and label the vertices in this order as well.

14As a simple example, we have E[η2,4 · η2,5 · η3,4 · η3,7] ≤ E[η2,4 · η2,5] · E[η3,4 · η3,7] because: (a) η2,4 is negatively
correlated with η3,4, and independent with η3,7, and (b) η2,5 is independent with both η3,4 and η3,7. In general, if
an indicator variable is set to 1, the probability of other indicator variables being set to 1 in the same column and
different row, decreases. Therefore, the product of expectations is always no less than the expectation of product of
corresponding negatively correlated terms.
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At last, we incorporate (A.6) in (A.5) and get

st · E[Zt] ≤ et
∑
G∈G′t

 1

tt

v∏
p=1

√
dp
dp

 · ∑
r1,...,rt∈[m]

w∏
i=1

( s
m

)vi

≤ et
t∑

v=2

∑
G∈G′′v,t

 1

tt

v∏
p=1

√
dp
dp

 · ∑
r1,...,rt∈[m]

w∏
i=1

( s
m

)vi
. (A.7)

Here G′′v,t contains graphs with v labeled vertices and t labeled edges, without the restriction (like
we did in Gt and G′t) that a vertex has a positive or even degree. We can have v ≤ t because
in G′t each vertex must degree no less than 2, while the total degree over all vertices equal to 2t.
Therefore, going from G′ to G′′ we only add non-negative terms and the inequality goes through.
This concludes the proof of Lemma 4.1.

A.2 Proof of Lemma 4.2

Recall that in Section 4 we proceed from Lemma 4.1 as follows. Instead of enumerating G ∈ G′′v,t as
a whole, we now enumerate subgraphs of different colors separately, and then combine the results.
Below is one way (and perhaps the only way the authors believe without incurring a log(1/δ) factor
loss in m) to enumerate G that can lead to tight upper bounds

st·E[Zt] ≤ et
t∑

v=2︸︷︷︸
i

t∑
w=1

(
m

w

)
︸ ︷︷ ︸

ii

∑
c1,...,cw

c1+...+cw=t
ci≥1

(
t

c1, . . . , cw

)
︸ ︷︷ ︸

iii

∑
v1,...,vw
2≤vi≤2ci︸ ︷︷ ︸

iv

( s
m

)v1+···+vw ∑
f1,...,fw︸ ︷︷ ︸

v

∑
∀i,Gi∈G′′vi,ci︸ ︷︷ ︸

vi

1

tt

v∏
p=1

√
dp
dp

(4.1)

This gigantic expression enumerates all graphs G ∈ G′′v,t and its coloring r1, . . . , rt ∈ [m] in six
steps:

(i). Number of graph vertices, v ∈ {2, . . . , t}; the vetices are labelled by 1, 2, . . . , v.

(ii). Number of used edge colors, w ∈ {1, . . . , t}, and all
(
m
w

)
possibilities of choosing w colors.

(iii). Edge colorings of the graph using selected w colors: how many (denoted by ci ≥ 1) edges are
colored in color i and which of the t edges are colored in color i.

(iv). Number of vertices vi ∈ {2, . . . , 2ci} in each Gi, the subgraph containing edges of color i.

(v). All possible increasing functions fi : [vi] → [v], such that fi(j) maps vertex j in Gi to the
fi(j)-th global vertex. (And we ensure fi(j) < fi(k) for j < k to reduce double counting.)

(vi). All graphs Gi ∈ G′′vi,ci with vi labeled vertices (1 to vi) and ci labeled edges (1 to ci).

(Using all the information above, dp, the degree of vertex p ∈ [v] is well defined.)

We emphasize here that any pair of graph G ∈ G′′v,t and coloring r1, . . . , rt ∈ [m] will be generated
at least once in the above procedure.15 Thus, (4.1) follows from Lemma 4.1, since the summation

terms also have the same value
(
s
m

)v1+···+vw 1
tt
∏v
p=1

√
dp
dp

.
It is now possible to consider Gi’s separately in (4.1) and prove the following lemma:

15This follows from the fact that G and r1, . . . , rt together determine (a) w, the number of used colors, (b) Gi for
each i ∈ [w] (with vi vertices and ci edges), the subgraph of G of the i-th used color, and (c) fi, the vertex mapping
from Gi back to G. Any such triple will be generated at least once in (4.1). Note also, we may have double counts
but it will not affect our asymptotic upper bound.
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Lemma 4.2. From (4.1) we can get

st · E[Zt] ≤ 2O(t)
t∑

v=2

t∑
w=1

(
m

w

) ∑
c1,...,cw

c1+...+cw=t
ci≥1

(
t

c1, . . . , cw

) ∑
v1,...,vw
2≤vi≤2ci

w∏
j=1

( s
m

)vj
v
cj
j

(
v − 1

vj − 1

)

Proof. From (4.1) it suffices to show that∑
f1,...,fw

∑
∀i,Gi∈G′′vi,ci

1

tt

v∏
p=1

√
dp
dp ≤ 2O(t) ·

w∏
j=1

v
cj
j

(
v − 1

vj − 1

)
(A.8)

Recall that here dp remains to be the total degree of vertex p ∈ [v] in the combined graph G, which
is essentially G1 ∪ · · · ∪Gw but glued together using the vertex mappings f1, . . . , fw.

To show (A.8), let us define:

for any ~γ ∈ Zw≥0 and ~a ∈ Rv>0: S(~γ,~a)
def
=

∑
∀i,Gi∈G′′vi,γi

v∏
p=1

√
ap
dp ,

where as before dp is the degree of the p-th vertex in the combined graph G = G1 ∪ · · · ∪Gw, but

ap is a constant. Ideally, we want an upper bound on S(~γ,~a) for the choice of ~γ = ~c and ~a = ~d, so
that S(~γ,~a) becomes identical to the left hand side of (A.8).16 Thus, let us now shoot for an upper
bound of S(~γ,~a) using induction on ~γ.

When ~γ = ~0, observe that S(~0,~a) = 1 since each Gi has no edge in it and dp = 0 for all p ∈ [v].
Now, consider adding an edge to G of some color l. for any ~γ, define ~γ′ so that γ′l = γl + 1 and

∀j 6= l : γ′j = γj . Then,

S(~γ′,~a)

S(~γ,~a)
≤

∑
α 6=β∈[vl]

√
afl(α)

√
afl(β) ≤

vl∑
α=1

(√
afl(α)

)2
≤

vl∑
α=1

(
afl(α)

)
· vl

where the first inequality is because this new edge may be added anywhere between two vertices
fl(α) and fl(β) for α, β ∈ [vl], the second inequality is by the simple expansion of square of sum,
the last inequality is by Cauchy-Schwartz. Therefore, by induction we conclude that∑

∀i,Gi∈G′′vi,ci

v∏
p=1

√
ap
dp = S(~c,~a) ≤

w∏
j=1

( ∑
α∈[vj ]

afj(α)

)cj
· vcjj . (A.9)

It is worth noting that (A.9) would be sufficient for us to show (A.8), if one could replace ~a by
~d. However, since the degree vector ~d is determined after the choices of Gj for j ∈ [w], this simple
substitution is impossible and we need a different approach.

Indeed, we fix this by enumerating Gi ∈ G′′vi,ci in two steps: first enumerating the degrees
d′1, . . . , d

′
v and then enumerating the possible Gi’s satisfying such degree spectrum (i.e., dp = d′p for

all p ∈ [v])

∑
∀i,Gi∈G′′vi,ci

v∏
p=1

√
dp
dp

=
∑

d′1,...,d
′
v≥0

d′1+···+d′v=2t


∑

∀i,Gi∈G′′vi,ci
s.t.∀p,dp=d′p

v∏
p=1

√
d′p
dp


16However, this mission is non-trivial because the values of ~d are decided after Gi ∈ G′′vi,ci are chosen. Let us

anyways ignore this issue for a moment and resolve it later.
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This seemingly redundant separation in fact enables us to prove (A.8). Indeed, we proceed the
above equation as follows

∑
∀i,Gi∈G′′vi,ci

v∏
p=1

√
dp
dp ≤

∑
d′1,...,d

′
v≥0

d′1+···+d′v=2t

 ∑
∀i,Gi∈G′′vi,ci

v∏
p=1

√
d′p
dp



=
∑

d′1,...,d
′
v≥0

d′1+···+d′v=2t

S(~c, ~d′) ≤
∑

d′1,...,d
′
v≥0

d′1+···+d′v=2t

w∏
j=1

( ∑
α∈[vj ]

d′fj(α)

)cj
· vcjj . (A.10)

Here the first inequality gets rid of the dp = d′p constraint, and the second one is from (A.9).
To proceed from here, we make use of the summation over f1, . . . , fw that we intentionally

ignored when defining S(~γ,~a), and get

∑
f1,...,fw

w∏
j=1

( ∑
α∈[vj ]

d′fj(α)

)cj
· vcjj =

w∏
j=1

v
cj
j

∑
fj

( ∑
α∈[vj ]

d′fj(α)

)cj
≤

w∏
j=1

v
cj
j

(
v − 1

vj − 1

)
· (2t)cj = (2t)t

w∏
j=1

v
cj
j

(
v − 1

vj − 1

)
(A.11)

Above, the first equality is a simple swap between adacant
∑

and
∏

. The inequality in (A.11)
needs some justifications:

Recall that the mapping fj chooses vj vertex labels out of [v]. If we represent 2t as the
summation d′1 + · · ·+ d′v, we have that

∑
α∈[vj ] d

′
fj(α)

is the partial sum over only the selected

vj vertices under fj . Hence, for a fixed fj , each monomial in the expansion of
(∑

α∈[vj ] d
′
fj(α)

)cj
also appears in (2t)cj = (d′1+· · ·+d′v)cj with the same coefficient. However, any such monomial
can appear in at most

(
v−1
vj−1

)
different fj mappings: each such monimal contains at least one

vertex (so may look like (d′p)
cj for some p ∈ [v]), and fj could have the freedom to pick at

most the vj − 1 more vertices out of v − 1 to complete as an increasing mapping [vj ]→ [v].

Finally, we plug (A.11) into (A.10) and get

∑
f1,...,fw

∑
∀i,Gi∈G′′vi,ci

1

tt

v∏
p=1

√
dp
dp ≤

∑
d′1,...,d

′
v≥0

d′1+···+d′v=2t

(2t)t

tt

w∏
j=1

v
cj
j

(
v − 1

vj − 1

)
≤ 2O(t) ·

w∏
j=1

v
cj
j

(
v − 1

vj − 1

)

where the last inequality is because the number of ways to partition 2t into d′1 + · · ·+ d′v less than
2O(t+v) = 2O(t). This concludes (A.8) and thus the proof of Lemma 4.2.

A.3 Proof of Lemma 4.3

The last lemma of our proof is essentially to handle algebra manipulations in a careful way.

Lemma 4.3. We can rearrange the inequality in (4.2) and get

st · E[Zt] ≤ 2O(t) · tt
(
s2

m

)t
.
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Proof. Simplifying the result of Lemma 4.2, we get:

st · E[Zt] ≤ 2O(t)
t∑

v=2

t∑
w=1

(
m

w

) ∑
c1,...,cw

c1+...+cw=t
ci≥1

(
t

c1, . . . , cw

) ∑
v1,...,vw
2≤vi≤2ci

w∏
j=1

( s
m

)vj
v
cj
j v

vj−1 (A.12)

= 2O(t)
t∑

v=2

t∑
w=1

(
m

w

) ∑
c1,...,cw

c1+...+cw=t
ci≥1

(
t

c1, . . . , cw

) w∏
j=1

1

v

2cj∑
vj=2

(sv
m

)vj
v
cj
j

≤ 2O(t)
t∑

v=2

t∑
w=1

(
m

w

) ∑
c1,...,cw

c1+...+cw=t
ci≥1

(
t

c1, . . . , cw

) w∏
j=1

1

v

(sv
m

)2
(2cj)

cj+1 (A.13)

≤ 2O(t)
t∑

v=2

t∑
w=1

(
m

w

) ∑
c1,...,cw

c1+...+cw=t
ci≥1

tt

cc11 · · · · · c
cw
w

w∏
j=1

(
s2v

m2

)
c
cj+1
j (A.14)

= 2O(t)
t∑

v=2

t∑
w=1

(
m

w

) ∑
c1,...,cw

c1+...+cw=t
ci≥1

tt
(
s2v

m2

)w w∏
j=1

cj (A.15)

Here, (A.12) uses the upper bound on binomial coefficients. To get (A.13), we require st < m.17

Then, since v ≤ t, it satisfies that sv
m < 1 and we can replace the power on

(
sv
m

)vj by 2, to get an

upper bound
(
sv
m

)2
. To obtain (A.14), we use Stirling’s formula to bound the factorials in

(
t

c1,...,cw

)
,

and 2c1+···+cw+w = 2O(t).
The multiplicant

∏w
j=1 cj in (A.15) can be upper bounded by

(
t
w

)w
, since c1 + · · · + cw = t.

Also, the number of choices of positive integers c1, . . . , cw summing up to t is
(
t−1
w−1
)
, upper bounded

by 2O(w)
(
t
w

)w ≤ 2O(t)
(
t
w

)w
. Incorporating these in (A.15) gives:

st · E[Zt] ≤ 2O(t)
t∑

v=2

t∑
w=1

(
m

w

)
tt
(
s2v

m2

)w (
t

w

)2w

≤ 2O(t)
t∑

v=2

t∑
w=1

tt
(
s2

m

)w (
t

w

)3w

(A.16)

≤ 2O(t) · tt
(
s2

m

)t
(A.17)

Here to get (A.16), we again use the upper bound on binomial coefficients for
(
m
w

)
. For (A.17), note

that
(
t
w

)3w
is maximized when w = t/e (which can be seen by taking the derivative), so is upper

bounded by e3t/e = 2O(t). Therefore, we can replace
(
s2

m

)w
by
(
s2

m

)t
since this is at this moment

the only term that depends on w. This concludes the proof of Lemma 4.3.

17For our setting of parameters to be chosen later, this will correspond to ε−1 · 2C > 1 for a large constant C > 1.
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B Proof of Theorem 2

B.1 Strengthening the Sparsity Lower Bound of [32]

We begin with a simple fact connecting JL matrices to ε-incoherence matrices. Given a matrix
A ∈ Rm×n, let us denote its columns by v1, . . . , vn ∈ Rm. A is said to be ε-incoherent if for all
i 6= j, |〈vi, vj〉| ≤ ε, and for all i, ‖vi‖2 = 1. Then,

Fact B.1 ([26]). Let {e1, . . . , en} be the first n unit basis vectors of Rd where n ∈ [d]. Given any
matrix A ∈ Rm×d satisfying for any x, y ∈ {0, e1, . . . , en}, ‖A(x− y)‖2 = (1± ε)‖x− y‖2, we have
that the first n columns of A (after normalization) form an O(ε)-incoherent submatrix.

Owing to this fact above, lower bounds on ε-incoherent matrices directly translate to that of JL
matrices, after choosing appropriate values of n (and we will eventually choose n = min{d, 1

δ1/4
}).

In particular, Nelson and Nguy˜̂en [32] show that in an ε-incoherent matrix, there exists at least
some column whose `0-sparsity —i.e., number of non-zero entries— is Ω(ε−1 log n/ log (m/ log n)).

We prove a strengthened version of this `0-sparsity lower bound. Namely, we show a lower
bound on the `1 norm (which implies the same lower bound on the `0-sparsity), on at least half
of the columns of A rather than a single column. More precisely, we show that (whose proof is
deferred to Appendix C):
Theorem 3. There is some fixed 0 < ε0 < 1/2 so that the following holds. For any 1/

√
n < ε < ε0

and m < O(n/ log (1/ε)), let A ∈ Rm×n be an ε-incoherent matrix. Then, at least half of the
columns A must have `1 norm being Ω(

√
ε−1 log n/ log (m/ log n)).

It is worth noting that our strengthened lower bound implies: (1) the average `1 norm of the
columns of A is Ω(

√
ε−1 log n/ log (m/ log n)), (2) at least half of the columns of A must have

`0-sparsity Ω(ε−1 log n/ log (m/ log n)).

B.2 Dimension Lower Bound for Sign-Consistent JL Matrices

The lower bound in Appendix B.1 works as follows. There is a fixed hard instance of vectors, i.e.,
{0, e1, . . . , en}, so that even if the adversary knows this hard instance, he cannot produce a good
ε-incoherent matrix (and thus a JL matrix), unless the sparsity reaches the desired lower bound.

In this section, we lower bound m in a conceptually different way. We will choose the hard
instance after the JL construction A (i.e., the distribution of the matrices) is determined, and then
show that A must perform bad on this hard instance, unless m is large. This is a major difference
between our proof and the related lower bounds for JL matrices, see instance [26, 32].

High Level Proof Sketch. Let us assume for simplicity that δ = 1/poly(d) and n = d; the
general case needs to be done more carefully. Take an arbitrary distribution A of m× n matrices
satisfying the JL property with ε and δ. We divide our proof into three steps.

• In the first step, we use our Theorem 3 to conclude that almost all A drawn from A (be-
ing ε-incoherent) must have an average `1-sparsity (over the columns) ≥

√
s, where s =

Ω̃(ε−1 log n). For simplicity, assume that all matrices A ∼ A have such property.

• In the second step, we use this `1-sparsity lower bound on A ∼ A to deduce that A must
have a large pairwise column correlation. Namely,

∑
i,j |〈vi, vj〉| ≥ sn2/m where vi represents

the i-th column of A. By an averaging argument, we can pick some subset S ⊂ [d] of the

columns where |S| = N
def
= 1/ log n, such that the correlations between columns in S are also

large: namely,
∑

i,j∈S |〈vi, vj〉| ≥ Ω(sN2/m). This is formally proved as Lemma B.2 below.
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• In the third step, we begin with a wishful thinking. By the property of JL, A must satisfy
‖
∑

i vi‖22 = (1 ± ε)2N because A must preserve the `2-norm on vector x =
∑

i∈S ei. If all
columns vi for i ∈ S had positive signs, then ‖

∑
i vi‖22 = N +

∑
i,j∈S〈vi, vj〉 ≤ N + εN . This

formula, when combined with the previous step of
∑

i,j∈S |〈vi, vj〉| ≥ Ω(sN2/m), would give

sN2/m ≤ εN so we have m ≥ ε−1 log n · s = Ω̃(ε−2 log2 n) and we would be done.

To fix this, we need to construct the hard instance more carefully. Instead of letting a single
vector x be the hard instance, we want all the 2N possible combinations X =

{∑
i∈S siei :

si ∈ {−1, 1}
}

to present in the hard instance. We can afford this since 2N = n. Therefore,
although the the signs of the columns in S in a matrix A may vary as A ∼ A, there is always
some x ∈ X that makes all the correlation to go positive, and the above sign issue goes away.

In sum, our hard instance so constructed depends on S, a set chosen after we see the distribution
A; and it contains poly(n) vectors. We now begin with our averaging lemma for the second step.

Lemma B.2. For any distribution of m × n matrices A such that (1) m < n/2, (2) each column
of A ∈ A is normalized and (3) EA∼A

[
1
n

∑
i,j |Ai,j |

]
=
√
s, there exist a subset S ⊆ [n] of columns

with cardinality |S| = N (for any N ∈ [n]) such that

E
A∼A

[∑
i,j∈S,i6=j |〈vi, vj〉|

]
≥ Ω(sN2/m) .

Here, as usual, we denote by vi the i-th column of A.

Proof. We compute this quantity via an averaging argument. On one hand, for a matrix A:

∑
i,j∈[n],i 6=j

|〈vi, vj〉| =
m∑
r=1

((∑
i∈[n]

|Ar,i|
)2
−
∑
i∈[n]

A2
r,i

)
=

m∑
r=1

(∑
i∈[n]

|Ar,i|
)2
− n ≥ 1

m

(∑
r,i

|Ar,i|
)2
− n

and therefore when taking over the distribution of A ∼ A we have

E
A∼A

[ ∑
i,j∈[n],i 6=j

|〈vi, vj〉|
]
≥ E

A∼A

(
1

m

(∑
r,i

|Ar,i|
)2
−n
)
≥ 1

m

(
E

A∼A

∑
r,i

|Ar,i|
)2
−n = sn2/m−n = Ω(sn2/m) .

On the other hand, we note that∑
S⊂[n],|S|=N

∑
i,j∈S,i6=j

|〈vi, vj〉| =
(
n− 2

N − 2

)
·

∑
i,j∈[n],i 6=j

|〈vi, vj〉|

and there are a total number of
(
n
N

)
subsets S of cardinality N . By an averaging argument, there

exist some subset S∗ ⊂ [n] satisfying

E
A∼A

[ ∑
i,j∈S∗,i 6=j

|〈vi, vj〉|
]
≥ 1(

n
N

)(n− 2

N − 2

)
· E
A∼A

[ ∑
i,j∈[n],i 6=j

|〈vi, vj〉|
]
≥ Ω(sN2/m) .

Proof of Theorem 2. We are now ready to implement the aforementioned high level proof sketch.
Given any such distribution A, we let n = min{d, 1

δ1/4
}. Using union bound, with probability at

least 1 − O(δn2) ≥ 1 − O( 1
n2 ), a matrix A drawn from A will preserve `2 norms with ε distortion

for all vector x = v1 − v2 where v1, v2 ∈ {0, e1, . . . , en}.
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In other words, owing to Fact B.1, with probability at least 1−O(δn2) ≥ 1−O( 1
n2 ), a matrix

A drawn from A satisfies that its first n columns form an O(ε)-incoherent m× n submatrix (after
column normalizations). Let A′ be this subdistribution of m× n O(ε)-incoherent matrices.

Thanks to our strengthened Theorem 3 on the `1-sparsity,18 letting
√
s

def
= EA′∼A′

[
1
n

∑
i,j |A′i,j |

]
,

we must have s = Ω(ε−1 log n/ log (m/ log n)). We plug this distribution A′ into Lemma B.2 along

with the choice of N
def
= log(1/δ1/2), and deduce that

E
A′∼A′

[∑
i,j∈S,i6=j |〈vi, vj〉|

]
≥ Ω(sN2/m) . (B.1)

Now comes the important construction. Let us study define the following set of 2N vectors,

X =
{∑

i∈S siei : ∀i si ∈ {−1, 1}
}
⊂ Rn ⊂ Rd .

Because 1 − O(δ2N ) ≥ 1 − O( 1
n2 ), with probability at least 1 − O( 1

n2 ), all vectors in x ∈ X must
have their `2 norm preserved within ε-distortion over the choice of A ∼ A. This is also true with
probability at least 1−O( 1

n2 ) over the choice of A′ ∼ A′ by union bound. Let us denote by A′′ this
subdistribution of matrices A′ ∼ A′ such that

∀x ∈ X, ‖A′x‖2 = (1±O(ε))‖x‖2 .

By the above argument, A′′ contributes to at least 1−O( 1
n2 ) probability mass in both A′ and A.

Next, for each matrix A′′ ∈ A′′, we claim that
∑

i,j∈S,i6=j |〈vi, vj〉| = O(εN). This is because,
letting x =

∑
i∈S siei ∈ X be a vector where si coincides with the column sign of vi, then

O(εN) ≥ ‖A′′x‖22 − ‖x‖22 = ‖
∑
i∈S

sivi‖22 − ‖
∑
i∈S

ei‖22 =
∑

i,j∈S,i6=j
|〈vi, vj〉| .

Therefore, we must have

E
A′∼A′

[ ∑
i,j∈S,i6=j

|〈vi, vj〉|
]
≤ E

A′′∼A′′

[ ∑
i,j∈S,i6=j

|〈vi, vj〉|
]

+O
( 1

n2

)
N2 ≤ O

(
εN +

N2

n2

)
when comparing the above lower bound and (B.1), we get m = Ω(ε−1N · s) = Ω(ε−1 log(1/δ)s).
Substituting the `1-sparsity lower bound for s we have

m ≥ Ω(ε−2 log(1/δ) log n/ log (m/ log n)) =⇒
m ≥ Ω(ε−2 log(1/δ) log n/ log (ε−2 log(1/δ)))

= Ω
( ε−2 log(1/δ)

log (ε−2 log(1/δ))
min

{
log d, log(1/δ)

})
�

18To be precise, we need to verify that 1/
√
n < ε. This is easy given our assumption of 1/

√
d < ε and δ < ε12. In

addition, we need to verify that m < O(n/ log(1/ε)) = O
(

min{d, 1/δ1/4}/ log(1/ε)
)
. The first term in min is true

by assumption: m ≤ O(d/ log(1/ε)). For the second term, suppose it is false, then we get m ≥ Ω( 1

δ1/4
/ log(1/ε)) ≥

Ω( ε−2.5

log(1/ε)
· 1

δ1/24
) ≥ Ω(ε−2 log2(1/δ)), using δ ≤ ε12 and δ and ε smaller than some sufficiently small constant.
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C Proof of Theorem 3: `1-Sparsity Lower Bound for JL Matrices

Our proof to Theorem 3 follows from the same proof framework as [32]; however, since the `1-
sparsity guarantee is a stronger one, this strengthening needs a lot of careful care.

Given a matrix A ∈ Rm×n, let us denote its columns by v1, . . . , vn ∈ Rm. Throughout this
section, we assume that A is ε-incoherent : for all i 6= j, |〈vi, vj〉| ≤ ε, and for all i, ‖vi‖2 = 1.

Like in the sparsity case from [32], we first need a weaker lower bound on the `1 norm:

Lemma C.1. Suppose m < n/(40 log(1/2ε)), and A ∈ Rm×n is ε-incoherent. If A has n/2 columns
with `1 norm at most

√
s/2 each, then s ≥ 1/(4ε).

Proof. For the sake of contradiction, assume s < 1/(4ε).
Let W ⊂ [n] be a set of the n/2 columns each with `1 norm at most

√
s/2. Define L(W ) =

{(i, j) : A2
i,j ≥ 2ε, j ∈ W} to be the set of large entries, and S(W ) = {(i, j) : A2

i,j < 2ε, j ∈ W} to
be that of small entries. Clearly, S(W ) and L(W ) are disjoint and span all the entries in W . Let
us bound the sum of squares of matrix entries in S(W ) and L(W ) respectively.

• Small entries in W are less than
√

2ε in absolute magnitude, so their squares sum up to at
most

√
2ε times the `1 norm of such entries:∑

(i,j)∈S(W )

A2
i,j ≤

√
2ε ·

( ∑
(i,j)∈S(W )

|Ai,j |
)

=
√

2ε ·
( ∑
i∈[m],j∈W

|Ai,j | −
∑

(i,j)∈L(W )

|Ai,j |
)

≤
√

2ε ·
(∑
j∈W
‖vj‖1 −

√
2ε|L(W )|

)
≤ n

2

√
εs− 2ε|L(W )| < n

4
− 2ε|L(W )| (C.1)

• For large entries, we reuse the same analysis as [32]. Let X denote the square of a random
entry from L(W ). Then,

∑
(i,j)∈L(W )

A2
i,j = |L(W )| · E[X] = |L(W )| ·

∫ 1

x=0
Pr[X > x]dx ≤ 2ε|L(W )|+m ·

∫ 1

x=2ε

10

x
dx

= 2ε|L(W )|+ 10m log(1/2ε) ≤ 2ε|L(W )|+ n

4
. (C.2)

Here the first inequality is due to a simple fact about ε-incoherent matrices: there cannot be
more than 10

x entries in each row of absolute value more than
√
x, for any x ≥ 2ε. See for

instance [32, Lemma 3]. The second inequality is owing to the choice of m < n/(40 log(1/2ε)).

Now we can combine equations (C.1) and (C.2) to get
∑

(i,j)∈S(W )∪L(W )A
2
i,j <

n
2 . On the other

hand,
∑

(i,j)∈S(W )∪L(W )A
2
i,j =

∑
j∈W ‖vj‖22 = n

2 and we get a contradiction.

The above lower bound is weak since it is obtained merely from a counting argument. Let
us now strengthen it into a stronger form, by using the pigeon-hole principle to find N columns
that pairwisely and positively correlate to each other. This cannot happen if the original matrix is
ε-incoherent. Let us explain:

Lemma C.2. Let 0 < ε < 1/2, A ∈ Rm×n be an ε-incoherent matrix, and s be any value such that
half of A’s columns have `1 norm at most

√
s/2. Define C = 2/(1−1/

√
2). Then, for any t ∈ [s/2]

with t/s > Cε, we must have s ≥ t(N − 1)/C with N =
⌈

n

2t+1(mt )(
2(s+t)
t )

⌉
.

11



Proof. The proof structure is similar to that of [32, Lemma 9]: for any vector vi, consider its t
largest coordinates in absolute magnitude, and define its t-type to be a triple containing:

• the locations of the top t coordinates (there are at most
(
m
t

)
choices);

• the signs of the top t coordinates (there are at most 2t different choices); and

• the rounding of the top t values so that their squares round to the nearest integer multiple
of 1/(2s). Values halfway between two multiples can be rounded arbitrarily. (There are at
most

(
2s+2t
t

)
number of different roundings.19)

All in all, there are 2t
(
m
t

)(
2s+2t
t

)
possible t-types. By the pigeon-hole principle, out of n/2

column vectors that have `1 norm at most
√
s/2, we can select N vectors ṽ1, . . . , ṽN , such that they

all have the same t-type.
Let S ⊂ [n] be the set of the largest coordinates for these vectors, and we have |S| = t. Now

define ui = (ṽi)[m]−S ∈ Rm−t, with the coordinates in S zeroed out. Then, for j 6= k ∈ [N ], since
ṽj and ṽk have the same type, we must have

〈uj , uk〉 = 〈ṽj , ṽk〉 −
∑
r∈S

(ṽj)r(ṽk)r ≤ ε−
∑
r∈S

(ṽj)r((ṽj)r ± 1/
√

2s)

≤ ε−
∑
r∈S

(
(ṽj)

2
r − |(ṽj)r|/

√
2s
)

= ε− ‖(ṽj)S‖22 + ‖(ṽj)S‖1/
√

2s

≤ ε− (1−
√
t/2s)‖(ṽj)S‖22 .

(C.3)

Here, the last inequality follows from the Cauchy-Schwarz inequality ‖(ṽj)S‖1 ≤
√
t · ‖(ṽj)S‖2.

Now we use a simple proposition on the relationship between `1 and `2 norms: given t ≤ s/2,
`1 norm ‖ṽj‖1 ≤

√
s/2, and `2 norm ‖ṽj‖2 = 1, we must have ‖(ṽj)S‖2 ≥

√
t/s, i.e., much of the

`2 mass must lie on it t largest coordinates (see Proposition C.3 below for its proof).
Combining this with (C.3) and t/s > Cε gives:

〈uj , uk〉 ≤ ε−
(

1− 1√
2

)
t/s < t/s · (1/C − 2/C) = − t

sC

Now we can write

0 ≤
∥∥∥ N∑
j=1

uj

∥∥∥2
2

=

N∑
j=1

‖uj‖22 +
∑
j 6=k
〈uj , uk〉 ≤ N −

tN(N − 1)

sC
,

which gives s ≥ t(N−1)
C and completes the proof.

Proposition C.3. Let x ∈ Rm with ‖x‖1 ≤
√
s/2 and ‖x‖2 = 1. Also, assume that |x1| ≥ . . . ≥

|xm|. Then, for any t ∈ [s/2],
∑t

i=1 x
2
i ≥ t

s holds.

Proof. Assume contrary: ∃t ≤ s/2 :
∑t

i=1 x
2
i <

t
s . Then, since the absolute values of components

are sorted, x2t <
1
s ⇒ ∀j ≥ t : x2j <

1
s and we have√

1

s
‖x‖1 > x2t+1 + . . .+ x2m = 1−

t∑
i=1

x2i > 1− t

s
≥ 1

2

However, this implies ‖x‖1 >
√
s
2 , leading to a contradiction.

19The amount of `2 mass contained in the top t coordinates is at most 1 + t/(2s), so the sum of integer multiples
of 1/(2s) that correspond to the rounded t coordinates can be at most 2s+ t. Consider the representations of 2s+ t
as the sum of t+ 1 non-negative integers. Then, each possible rounding has an unique representation, where the first
t summands correspond to the integer multiples of 1/(2s) and the last summand is the residual.
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At last, we put in the right parameter of t and conclude the proof. The following theorem
resembles [32, Theorem 10].

Theorem 3. There is some fixed 0 < ε0 < 1/2 so that the following holds. For any 1/
√
n < ε < ε0

and m < O(n/ log (1/ε)), let A ∈ Rm×n be an ε-incoherent matrix. Then, at least half of the
columns A must have `1 norm being Ω(

√
ε−1 log n/ log (m/ log n)).

Proof. Let s be a value such that half of A’s columns have `1 norm at most
√
s/2, then we want

to show that s ≥ Ω(ε−1 log n/ log (m/ log n)).
By Lemma C.1, we have a weak lower bound 4εs ≥ 1, allowing us to chose t = 7εs ≥ 1. We are

now ready to prove that:

s ≥ log (7εn/(4C))

7ε log
(

8e2m
49ε2s

) , (C.4)

where C is as in Lemma C.2. Assume contrary, then we get:(
8e2m

49ε2s

)7εs

<
7εn

4C
.

Furthermore, for small enough ε,

2t+1

(
m

t

)(
2(s+ t)

t

)
≤ 2t+1 (em)t

tt
(2e)t(s+ t)t

tt
≤ 2 ·

(
8e2m

49ε2s

)7εs

<
7εn

2C
≤ n

2
,

so we can now apply Lemma C.2 and get:

sC

t
≥ N − 1 ≥ n

2 · 2t+1
(
m
t

)(
2(s+t)
t

) .
By rearranging terms, it directly follows that

7εn =
tn

s
≤ 2C · 2t+1

(
m

t

)(
2(s+ t)

t

)
≤ 4C ·

(
8e2m

49ε2s

)7εs

< 7εn ,

giving a contradiction. This completes the proof of (C.4).
Let us now define r = log (7εn/(4C))/(7ε) and q = 8e2m/(49ε2). Then we have s log (q/s) ≥ r

and for ε < 1/2, q/e ≥ m ≥ s. By [26], m = Ω(log n) and hence for small enough ε, q/r > 2 also
holds. Using Proposition C.4 below, we get s ≥ Ω(r/ log (q/r)) = Ω(ε−1 log n/ log (ε−1m/ log n)),
since log (εn) = Θ(log n) as ε > 1/

√
n. This is be equivalent to our theorem statement, since

m = Ω(1ε ) (using for instance the general lower bound on m from [26], or our weak sparsity lower
bound Lemma C.1 as m ≥ Ω(s)).

Proposition C.4. Let s, q, r be positive reals with q ≥ max (2r, es). Then, if s log (q/s) ≥ r it must
be the case that s = Ω(r/ log (q/r)).

Proof. The function f(s) = s log (q/s) is non-decreasing for s ≤ q/e since f ′(s) = log (q/(es)) ≥ 0.
Since we are proving a lower bound on s, we can without the loss of generality consider s log (q/s) =
r. From here with q/s ≥ e immediately follows that s ≤ r. , r/s = log (q/s) = log (q/r) + log (r/s).

Finally, we can write:

s

r/ log (q/r)
=
s((r/s)− log (r/s))

r
= 1− s

r
log (

r

s
) ≥ 1− 1

e
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D Simple Lower Bound for Non-Negative JL Matrices

In this section we show a simple fact: at least in the interesting parameter regime of δ = 1/poly(d),
we must have m ≥ Ω(d) in order to construct a non-negative JL matrix. Since we cannot find the
proof of this simple fact anywhere else, we provide it below.

Fact D.1. Let A be a distribution over m × d non-negative matrices such that, for any x ∈ Rd,
with probability at least 1− δ, the `2 embedding ‖Ax‖2 = (1± ε)‖x‖2 has ε-distortion. Then,

m ≥ (1− 4ε) min
{
d,

1

δ
− 2
}
.

Proof. Given any such distribution A, we choose n = min{d, 1δ − 2}. Using union bound, with
probability at least 1 − δ(n + 1) > 0, a matrix A drawn from A will preserve `2 norms with ε
distortion for all vector x ∈ {e1, . . . , en} ∪ {e1 + e2 + · · ·+ en}.

This implies that, the `2-norm of each of the first n columns of A is at least 1−ε: this is because

for every j ∈ [n],
√∑

i∈[m]A
2
i,j = ‖Aej‖2 ≥ (1− ε)‖ej‖2 = 1− ε.

Next, we check the norm preservation on x = e1 + e2 + · · ·+ en ∈ Rd. Its `2 norm is ‖x‖2 =
√
n,

so we must have ‖Ax‖22 ≤ n(1 + ε)2. On the other hand,

‖Ax‖22 =
m∑
i=1

 n∑
j=1

Ai,j

2

≥ 1

m

 m∑
i=1

n∑
j=1

Ai,j

2

≥ 1

m

 n∑
j=1

‖Aej‖1

2

≥ 1

m

 n∑
j=1

‖Aej‖2

2

≥ 1

m
((1− ε)n)2 .

Together, they imply m ≥ (1− 4ε)n.
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