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Abstract. In this paper the generality and wide applicability of Zero-knowledge proofs, a notion

introduced by Goldwasser, Micali, and Rackoff is demonstrated. These are probabilistic and interactive
proofs that, for the members of a language, efficiently demonstrate membership in the language without

conveying any additional knowledge. All previously known zero-knowledge proofs were only for

number-theoretic languages in NP fl CONP.

Under the assumption that secure encryption functions exist or by using “physical means for hiding
information, ‘‘ it is shown that all languages in NP have zero-knowledge proofs. Loosely speaking, it is

possible to demonstrate that a CNF formula is satisfiable without revealing any other property of the
formula, in particular, without yielding neither a satis@ing assignment nor properties such as whether

there is a satisfying assignment in which xl = X3 etc.
It is also demonstrated that zero-knowledge proofs exist “outside the domain of cryptography and

number theory. ” Using no assumptions. it is shown that both graph isomorphism and graph nonisomor-
phism have zero-knowledge interactive proofs. The mere existence of an interactive proof for graph

nonisomorphism is interesting, since graph nonisomorphism is not known to be in NP and hence no

efficient proofs were known before for demonstrating that two graphs are not isomorphic.

Categories and Subject Descriptors: C .2.0 [Computer-Commtmication Networks]: General—data

This work was done while O. Goldreich was at the Laboratory for Computer Science of MIT. and
A. Wigderson was at the Mathematical SciencesResearchInstitute of UC-Berkeley.

This work was partially supported by an IBM Postdoctoral Fellowship, National Science Foundation
grants DCR 85-09905 and DCR 84-13577, and an IBM Faculty Development Award.

A preliminary version of this paper appeared in Proceedings of the 2 7th Annual IEEE Symposium

on Foundations of Computer Science. IEEE, New York, 1986, pp. 174-187 [42].

Authors’ addresses: O. Goldreich, Department of Computer Science, Techmon, Haifa, Israel: S.

MicaIi, Laboratory for Computer Science, MIT, Cambridge, MA 02139; A. Wigderson, Institute of

Mathematics and Computer Science, Hebrew University, Jerusalem, Israel.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1991 ACM 0004-5411 /91 /0700-0691 $01.50

JournaloftheAssoelatlanforComputingMach,nery.Vol 38,No 1,July1991,pp 691-729



692 0. GOLDREICHET AL

communication, security and protection; C.2.2 [Computer-Communication Networks]. Network
Protocols; C.2.4 [Computer-Commrmication Networks]: Distributed Systems; D.4.6 [Operating

Systems]: Security and Protectlon—authendcaticm, cryptographic controls, veri~madon; E.3 [Data
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Issues—privacy; K.6.m [Management of Computing and Information Systems]—security
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graph isomorphlsm, interactive proofs, methodological design of protocols, NP. one-way functions,
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1. Introduction

It is traditional to view NP as the class of languages whose elements possess
short proofs of membership. A “proof that x e L‘’ is a witness WX such that
PL( x, WX) = 1 where PL is a polynomial-time computable Boolean predicate
associated to the language L(i. e., ~~(x,y) = O for all y if xfL). The
witness must have length polynomial in the length of the input x, but need not
be computable from x in polynomial-time. A slightly different point of view is
to consider NP as the class of languages L for which a powerfid prover may
prove membership in L to a deterministic polynomial-time verifier. The
interaction between the prover and the verifier, in this case, is trivial: the
prover sends a witness (proof) and the verifier computes for polynomial-time to
verify that it is indeed a proof.

This formalism was recently generalized by allowing more complex interac-
tion between the prover and the verifier and by allowing the verifier to toss
coins and to be convinced by overwhelming statistical evidence [6, 47]. The
prover has some advantage over the verifier and, for the definition to be
interesting, one should assume that this advantage is crucial for proving
membership in the language (otherwise, the verifier can do this by itself). This
advantage may take either the form of much stronger computing power or extra
information concerning the input. In other words, we implicitly assume that
there exist interesting languages (say in PSPACE) that are not in BPP, and be
interested in proof systems for such languages.

A fundamental measure proposed by Goldwasser et al. [47] is that of the
amount of knowledge released during an interactive proof. Informally, a proof
system is called zero-knowledge if whatever the verifier could generate in
probabilistic polynomial-time after “seeing” a proof of membership, he could
also generate in probabilistic polynomial-time when just told by a trusted oracle
that the input is indeed in the language. Zero-knowledge proofs have the
remarkable property of being both convincing and yielding nothing except that
the assertion is indeed valid.

Besides being a very intriguing notion, zero-knowledge proofs promise to be
a very powerful tool for the design of secure cryptographic protocol. Typically
these protocols must cope with the problem of distrustful parties convincing
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each other that the messages they are sending areindeed computed according to
their predetermined local program. Such proofs should be carried out without

yielding any secret knowledge. In particular cases, zero-knowledge proofs were
used to design secure protocols [23, 30, 47]. However, in order to demonstrate
the generality of this tool (and to utilize its full potential) one must present
general results concerning the existence of zero-knowledge proof systems. Until
now, no such general results were known.

In this paper, we present general results concerning zero-knowledge proof
systems. In particular, we show how to construct zero-knowledge proofs for
every NP-statement. This result has a dramatic effect on the design of crypto-
graphic protocols: it constitutes the keystone in a methodology for crypto-
graphic protocol design. The methodology, presented in another paper of the
authors [43], consists of a “privacy and correctness preserving” compiler,
which translates protocols for a weak adversarial model to a fully fault-tolerant
protocol (withstanding the most adversarial behavior).

1.1 WHAT Is AN INTERACTIVE PROOF? Intuitively, an interactive proof system

for a language L is a two-party protocol for a “powerful” prover and a
probabilistic polynomial-time verifier satisfying the following two conditions
with respect to the common input, denoted x. If x e L, then, with very high
probability, the verifier is “convinced” of this fact, after interacting with the
prover. If x #L, then no matter what the prover does, with very high
probability, he fails to fool the verifier (into believing that “x is in L”). The
first condition is referred to as the completeness condition, while the second
condition is referred to as soundness.

Before defining the notion of an interactive proof system, we define what we
mean by “expected polynomial-time, ” and recall the notion of an interactive
pair of Turing machines, which captures the intuitive notion of a two-party
protocol.

Definition and Discussion of Expected Polynomial-Time. Let JW be a

probabilistic Turing machine, and t~( x, r) denote the number of steps taken
by machine A4 on input x when the outcome of its internal coin tosses is a
prefix of the infinite bit sequence r. Clearly, if t~( x, r) is finite it depends
only on a finite prefix of r. Traditionally, machine A4 is called “expected
polynomial-time ‘‘ if there exists a polynomial Q such that, for all x e {O, 1}*,
the expectation, taken over the infinite bit sequences r, of tM(x, r) is bounded
above by Q( I x I ) (i. e., E,(t~(x, r)) < Q( I x I), for all x). One can use this
definition in our paper, however we would like to call the reader’s attention to
weaknesses of this definition that were pointed out by Levin (see also [38] and
[50]). 1 We prefer to follow Levin’s definition [57], saying that a machine &f is
expectedpolynomiai-time if there exists an ~ >0 such that, for all x e {O, 1}*,
the expectation, taken over the infinite bit sequences r, of ( tM(x, r))’ is
bounded above by I x I (i.e., E,((t~(x, r))’) < I x I). We say that &l is
(strictly) probabilistic polynomial-time if t~( x, r) < Q( I x I ) for some
polynomial Q and all x, r pairs.

1For example, E7,(t(x, r)) < Q( I x I) does not imply Er(t2(x, r)) < Q( I x I)2, and problems as
machine dependency and nonclosure under reduction, of expected polynomial-time machines, follow.
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Definition 1. (Interactive Turing machines (M. BIum), private communica-
tion):

(1) An interactive Turing machine ( ITM) is a six-tape deterministic Tur-
ing machine with a read-only input tape, a read-only random tape, a
read/write work tape, a read-only communication tape, a write-only com-
munication tape, and a write-only output tape. The string that appears on the
input tape is called the input. The (infinite) contents of the random tape can be
thought of as the outcomes of an infinite sequence of unbiased coin tosses. The
string that appears on the output tape when the machine halts is called the
output. The contents of the write-only communication tape can be thought of as
messages sent by the machine; while the contents of the read-only communica-
tion tape can be thought of as messages received by the machine.

(2) The complexity of an interactive Turing machine is measured in terms
of its input (i. e., contents of input tape). Saying, for example, that the
interactive Turing machine &f is polynomial-time means that there exists a
polynomial Q such that the number of steps M performs on input x is at most
Q( I x I), no matter what are the contents of its random tape and read-only
communication tape. When discussing the expected number of steps of an ITM,
the expectation is taken over the contents of the random tape only. ~We do not
count, of course, the steps made by the interactive machine with which Al
interacts as defined below. )

(3) An interactive pair of Turing machines is a pair of ITMs that share
their communication tapes so that the read-only communication tape of the first
machine coincides with the write-only communication tape of the second
machine, and vice versa. The computation of such a pair consists of alternating
sequences of computing steps taken by each machine. The alternation occurs
when the active machine enters a special idle state. At this time, the other
machine passes from idle to the active state. The string written on the
communication tape during a single nonalternating sequence of steps is called
the message sent by the active ITM to the idle one.

Notations

(1) Let A be an ITM. Then A(x, r; al, CYz,. . . . a,) denotes the message
sent by A on input x, random tape contents r, after receiving the messages
a ~ through a ~.

(2) Let A and B be an interacting pair of ITMs. Then, [ B( y), A( x)] denotes
the output distribution of A on input x, when B has input y. The
probability space is induced by the unbiased coin tosses of both machines.

De~inition 2 (Interactive Proof System [47]). An interactive proof sys-
tem for a language L is a pair of ITMs, (P, V), such that V is expected
polynomial-time and the following two conditions hold:

(1) Completeness Condition. For every constant c >0, and all sufficiently
long x e L

l%([P(x), V(x)] = 1) >1 – Ixl -c.

(2) Soundness Condition. For every constant c >0, every interactive Turing
machine P*, and all sufficiently long x ~ L,

Pr([P*(x), V(x)] =0) z 1 – lX1-C.
Denote by 1P the class of languages having interactive proof systems.
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Remark 1. Clearly, NP G 1P. An example of an interactive proof system,
for a language not known to be in NP, is presented in Section 2.1.

Remark 2. As is the case with NP, the conditions imposed on acceptance
and rejection are not symmetric. Thus, the existence of an interactive proof
system for the language L does not imply the existence of an interactive proof
system for the complement of L.

Remark 3. Definition 2 originates from Goldwasser et al. [47]. In [6],
Babai introduced a different type of interactive proof systems, called
Artlmr-Merlin games, in which the verifier’s behavior is more restricted than
in the Goldwasser et al. model [47]. Arthur, the verifier in Babai’s model, is
allowed only to generate random strings, send them to the prover, and evaluate
a deterministic polynomial-time predicate at the end of the interaction. Demon-
strating the existence of proof systems is easier when allowing the verifier to
flip private coins (i.e., Goldwasser et al. model [47]), while relating interactive

proof systems to traditional complexity classes seems easier if one restricts
oneself to Arthur– Merlin games. Interestingly, as Goldwasser and Sipser
showed, these two models are equivalent, as far as language recognition is
concerned [49]. Namely, let L be a language having an interactive proof
system in which up to Q( I x I) messages are exchanged on input x c L. Then,
L has an Arthur-Merlin interactive proof system in which up to Q( I x I ) + 2
messages are exchanged on input x e L.

Remark 4. The ability to toss coins is crucial to the nontriviality of the
notion of an interactive proof system. If the verifier is deterministic, then
interactive proof systems coincide with NP.

Remark 5. The fact that the verifier is expected polynomial-time instead of
being strictly probabilistic polynomial-time has no effect on the notion of
interactive proofs. However, as seen in Remarks 11 and 13, allowing the
simulator (see next subsection) to be expected polynomial-time plays an impor-
tant role in the results concerning perfect zero-knowledge proof systems.

Babai and Moran [8] showed that, for every polynomial Q, AM(2 Q) =
AM(Q), where AM(Q) denotes the class of languages recognized by an
Arthur-Merlin game of Q( I . I ) message exchanges (last message sent by A@.
This means that the finite level Arthur-Merlin hierarchy (as well as the finite
level 1P hierarchy) collapses (i.e., for every fixed k >2, AM(k) = AM(2);
hereafter abbreviated AM). Note that this does not imply the collapse of the
unbounded level hierarchy ! (For more details, see [2]. ) The bounded level
interactive proofs hierarchy is related to the polynomial-time hierarchy by
Babai’s proof that AM G II: (the second level of the polynomial-time hierar-
chy) and that AM G NP B for almost all oracles B. Recently, Nissan and
Wigderson showed that AM = NPB for almost all oracles B [59].

1.2 WHAT Is A ZERO-KNOWLEDGE PROOF? Intuitively, a zero-knowledge

proof is a proof that yields nothing but its validity. This means that for all

practical purposes, ‘‘ whatever” can be efficiently computed after interacting

with a zero-knowledge prover and can be efficiently computed when just

believing that the assertion it claims is indeed valid. (In ‘‘ whatever” we mean

not only the computation of functions but also the generation of probability

distributions.) Zero-knowledge is a property of the predetermined prover: Its
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robustness against attempts of the verifier to extract knowledge via interaction.
Note that the verifier may deviate arbitrarily (but in polynomial-time) from the
predetermined program. This is captured by the following formulation:

lle~irzition 3 (Zero-Knowledge [47]). Let (P, V) be an interactive proof
system for a language L. We say that the proof system (P, V) is zero-
knowledge (for L) if for every expected polynomial-time interactive Turing
machine V*, there exists an (ordinary) expected polynomial-time machine ikfv~
such that the probability ensembles { iWv,( x)}x=~ and { [P( x), V*( x)]}X, ~
are polynomially indistinguishable (see Definition 4 below).

The machine i’blv, is called the simulator of V*. The simulator of V* has
essentially the same output distribution as V*; however, &fv, produces this
distribution without interacting with the prover (while V* produces it with the
help of interaction with the prover). The universal quantifier states that this can
be done with respect to every efficient way (not necessarily the proper one) of
interacting with the prover. It is not required that the simulator can be
effectively constructed given a verifier, but rather that it exists. Nevertheless,
all known demonstrations (including ours) of the zero-knowledge property of
protocols are constructive.

The simulator, &fv*, needs not generate exactly the ensemble that V*
outputs when interacting with the prover. It suffices to produce something that
is indistinguishable to polynomial-time computations. (This is the reason that
zero-knowledge, as defined above, is sometimes called computational zero-
knowledge, especially in order to distinguish it from stronger forms of zero-
knowledge-see Remark 7.) For the sake of self-containment, we recall the
definition of polynomial indistinguishable ensembles.

Definition 4 (Polynomial Indistinguishability [46, 68]). Let S G { O, 1}” be
an infinite set of strings, and let 111 = {IIl(x)}X=~ and Hz = {Hz(x)}XE~ be
two probability ensembles (i.e., for every i ~ {1,2} and x e S, H,(x) is a
random variable assuming values in {O, 1}*). For every algorithm (test) A, let
PI-4(x) denote the probability that A outputs 1 on input x and an element
chosen according to the probability distribution II i( x). Namely,

p?(x) = ~ Pr(A(x, a) = 1) “Pr(II1(x) = a).
a

The ensembles HI = {lll(x)}xc~ and Ilz = {Hz(x)}Xe~ are Pof’YnomiallY
indistinguishable if for every expected polynomial-time algorithm A, for
every constant c >0 and for all sufficiently long x G S

lpf(~) -Pf(x)l = 1X1-’.

Polynomially indistinguishable probability ensembles should be considered
equal for all practical purposes, since any application running in polynomial-time
and using either ensemble demonstrates essentially the same behavior. It
follows that the polynomial indistinguishability of [ P( x), V*( x)] and &fv.( x)
formalizes the intuition that nothing substantial is gained by interacting with
the prover, except of course conviction in the validity of the assertion x ~ L.

An alternative definition of zero-knowledge considers the probability distribu-
tion on all the tapes of V* during the interaction with P. In fact, it suffices to
consider the contents of all the read-only tapes of V* (i. e., the input tape, the
random tape, and the read-only communication tape of V*).
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Definition 5 (Zero-Knowledge- alternative definition). Let ( P, V) be an
interactive proof system for a language L, and V* be an arbitrary ITM. Denote
by (P, V*)(x) the probability distribution on all the read-only tapes of V*,
when interacting with P (the prover) on common input x e L. We say that the

proof system (P, V) is zero-knowledge (for L) if for all expected
polynomial-time ITM V*, there exists an expected polynomial-time machine
&lv. such that the probability ensembles { Mv*( x)} .=~ and { (P, V*)( X)}X=~
are polynomially indistinguishable.

Remark 6. It is easy to see that Definitions 3 and 5 are in fact equivalent.
The output of V* is easily computed from the contents of its read-only tapes
(i.e., V V* 3T* such that [P(x), V*(x)] = T*((P, V*)(x))). On the other
hand, every V* can be modified easily to output the contents of its read-only
tapes (i.e., vV* 3 V** such that (P, V*)(x) = [P(x), V**(X)]). Hence,
ability to simulate the output of every V* implies ability to simulate the
contents of the tapes of every V*. However, it is not always the case that
ability to simulate the output of a specific V* implies ability to simulate the
contents of V *‘s tapes. This difference is best demonstrated by considering the
prescribed verifier V. Consider for example a proof system, (P, V), for an
NP-complete language L, in which P sends to V a witness for membership
which V tests using the witness predicate P~. Then, it is trivial to simulate

{ [P( X), V( X)]}XG~ which is identically 1, while it is probably impossible to
simulate (P, V)(x) (unless NP s BPP).

Remark 7. In case one can exactly simulate the probability distributions of
the interaction with the prover, rather than produce distributions that are
polynomially indistinguishable from them, we say that the interactive proof
system is perfect zero-knowledge. Formally, an interactive proof system for L
is perfect zero-knowledge if, for every expected polynomial-time ITM V*,
there exists an expected polynomial-time machine iWv. such that for every
x~L

(P, v*)(x) = MV*(X).

It is worth noting that in the definition of “perfect zero-knowledge” the use
of expected polynomial-time seems to be more crucial than for the other types
of zero-knowledge (i. e., computational and almost-perfect): see Remarks 11,
13, and 16. An interactive proof system is almost-perfect zero-knowledge if
for every x e L the distributions (P, V*)(x) and AIv.( x) are “statistically
close”, that is, the statistical difference (defined below) between (P, V*)(x)
and iWv.( x) is smaller than I x I – c, for all c >0 and sufficiently large x. The
statistical difference (also called variation distance) between two probability
distributions is the sum of the absolute differences in the probability mass
assigned by these distributions to each of the possible elements. An equivalent
definition can be derived from the definition of polynomial-indistinguishable
distributions, when omitting the restriction on the running-time of the algorithm
A (required above to be expected polynomial-time).

Remark 8. Our model of interactive proof systems is implicitly asyn-
chronous (i.e., an interactive pair of Turing machines formalizes the standard
notion of an event-driven protocol for two parties). Thus, one machine cannot
infer the number of steps taken by its counterpart from the “delay” between the
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communications. In real applications, such inference may be possible, and an
easy modification of the definition of zero-knowledge will be adequate.

Remark 9. It is not difficult to see that if a language L has a zero-
knowledge proof system in which a single message is sent then L is in Random
polynomial-time [44, 60]. Thus, the generalization of NP to 1P is essential to
the nontriviality of the notion of zero-knowledge.

Clearly, every language that is BPP has a (perfect) zero-knowledge interac-
tive proof system (in which the prover does nothing). Several number-theoretic
languages, not known to be in BPP, have been shown to have zero-knowledge
proof systems. The first language for which such a proof system was demon-
strated is Quadratic Non-Residuosity [47]. Other zero-knowledge proof systems
were presented in [23], [32], [36], and [47]. All these languages are known to
lie in NP n CONP.

1.3 OUR RESULTS. Using any scheme for “committing to a secret bit”, we
present zero-knowledge proof systems for all languages in NP. A scheme for
‘ bcommitting to a secret bit” can be implemented either by using any one-way
function (assumed to exist) or by using “physical means for hiding
information. ” This result demonstrates the generality of zero-knowledge proofs,
and is the key for their wide applicability to cryptography and related fields.

We also demonstrate that zero-knowledge proof systems exist “independently
of cryptography and number theory. ” Using no assumptions, we show that both
graph isomorphism and graph nonisomorphism have perfect zero-knowledge
interactive proof systems.

1.4 RELATED RESULTS. Using the intractability assumption of quadratic
residuosity, Brassard and Cr6peau have subsequently discovered zero-knowl-
edge proof systems for all languages in NP [16]. These proof systems heavily
rely on particular properties of quadratic residues and do not seem to extend
to arbitrary bit commitment schemes.

Independently of our work, Brassard et al. showed that, if factoring is
intractable, then every NP language has a perfect zero-knowledge argument 2
[15, 17, 19]. The difference between an argument and interactive proof
systems is that in an argument the soundness condition is restricted to proba-
bilistic polynomial-time machines (with auxiliary input which is fixed before the
protocol starts). 3 Hence it is infeasible (not impossible) to fool the verifier into
accepting (with nonnegligible probability) an input not in the language.
Brassard et al. also proposed an interesting application of perfect zero-
knowledge arguments to settings in which the verifier may have infinite
computing power while the prover is restricted to polynomial-time computa-
tions. In such a setting, it makes no sense to have the prover demonstrate

z The term “argument” first appeared in [18]. In the original papers of Brassard et al. [15, 17, 19], the
authors referred to arguments by the term interactive proofs, thus creating an enormous amount of
confusion. These two notions are probably distinct (otherwise, some drastic consequences to complex-
ity theory occur). For example, the results of Fortnow [31] and Aiello and Hastad [3], cited below, do
not hold for arguments. In some works arguments are called ‘‘ computationally -sound proofs”.

3 The reader should not confuse arguments (in which soundness depends on a computational restriction
imposed on “cheating provers” ) and interactive proof systems with the additional property that the
prescribed prover may be a probabihstic polynomial-time machine with an appropriate auxiliary input
(e.g., Protocols 2 and 4).
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properties (as membership in a language) to the verifier. However, the prover
may wish to demonstrate to the verifier that he “knows” something without
revealing what he “knows. ” More specifically, given a CNF formula, the
prover may wish to convince the verifier that he “knows” a satisfying
assignment in a manner that would yield no information as to which of the
satisfying assignments he knows. A definition of the notion of “a program
knowing a satisfying assignment” was first sketched in [47], and recently
formalized in [27] and [67].

1.5 SOME SUBSEQUENTRESULTSCONCERNINGINTERACTIVEPROOF SYSTEMSAND
ZERO-KNOWLEDGE. Subsequent results place languages with perfect zero-
knowledge proof systems quite low in the polynomial-time hierarchy. More
specifically, if a language L has a perfect (or even almost-perfect) zero-
knowledge proof system then L ~ AM (7 COAM (the L e COAM implication
was shown by Fortnow [31] and subsequently Aiello and Hastad showed the
L e AM part [3]). It follows that, unless all CONP languages have interactive
proof systems, NP-Complete languages cannot have perfect (or almost-perfect)
zero-knowledge proof systems. It is interesting to note that Fortnow gives a
transformation of a perfect zero-knowledge proof system for L into an interac-
tive proof system for ~, that when applied to our perfect zero-knowledge
protocol for graph isomorphism yields exactly our interactive proof system for
Graph Nonisomorphism.

Recently, it was shown that the error probability allowed in the completeness
condition of interactive proofs is not essential for the power of interactive proof
systems [41]. On the other hand, the error probability allowed in the soundness
condition is essential to the nontriviality of both interactive proof systems and
zero-knowledge. Interactive proof systems with no error on NO-instances equal
NP [41], while zero-knowledge proof systems with no error on NO-instances
equal R [44, 60]. It follows that the error probability on the NO-instances of the

protocols presented in this paper (e.g., the zero-knowledge protocols for NP
and the interactive proof of Graph nonisomorphism) cannot be avoided, unless
something dramatic happens (e. g., R = NP or graph nonisomorphism is in NP,
respectively).

Our result that all languages in NP have zero-knowledge proof systems, has
been extended to 1P, assuming the same assumptions. (The result was first
proved by Impagliazzo and Yung, but since their paper [53] contains only a
claim of the result, the interested reader is directed to [11] where a (different)
proof appears.) In other words, whatever can be efficiently proven can be
efficiently proven in a zero-knowledge manner. This may be viewed as the best
result possible, since only languages having interactive proof systems can have
zero-knowledge interactive proof systems.

1.6 CONVENTIONS. Let ~ be a finite set. Then ~ynz( ~ ) denotes the sym-

metric group of ~ (i.e., the group of permutations over the set ~). Let

T, @ G ~Y@ ~ ), then T o @ denotes the composition of the permutations T and
~ (i.e., m “ ~(x) = 7r(~( x))).

When writing a ~~ A, we mean an element chosen at random with uniform
probability distribution from the set A. If I A I is a power of 2, then such a
random selection is easily implemented in the standard probabilistic model (by
tossing log * \ A I unbiased coins). Otherwise, a random choice can be imple-
mented in the standard model using an expected number of O(log I A I )
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(unbiased) coin tosses. If one wants to avoid infinite (or long) runs, such a
random choice can only be approximated (very well) and all the constructions
we use have to be slightly modified. When writing Pra= ~ ( P( a)), we mean the

probability that P(a) holds when the probability is taken over all choices of
a e A with uniform probability distribution.

The notation I “ I is used in three different ways. As denoting the cardinality
of a set, the length of a string, and the absolute value of a real. We trust that the
reader will figure out the meaning by the context.

We consider simple (i.e., no parallel edges) undirected graphs. By V, we
denote the vertex set, and by E the edge set of the graph G. Let n denote the
cardinality of the vertex set, and m the cardinality of the edge set (i. e.,

n = I V 1, m = I E I). The graph G( V, E) will be represented by the set E,
in an arbitrary fixed order (e. g., lexicographic).

In all our protocols the error probability (in the soundness condition) is
exponentially decreasing with m and thus negligible in the input size. In fact, it
would have sufficed to make the error probability decrease faster than 1/ rnc for
C>o.

1.7 ORGANIZATIONOF THE PAPER. In Section 2, we present zero-knowledge
interactive proof systems for graph isomorphism and graph nonisomorphism.
These protocols serve as good examples of the notions of interactive proof
systems and zero-knowledge proof systems, and of the techniques used to prove
that a protocol indeed satisfies these properties. We also discuss complexity
theoretic implications of the existence of an interactive proof system for graph
nonisomorphism.

In Section 3, we show how to use any bit commitment scheme in order to
construct a zero-knowledge interactive proof system for any language in NP.

2. Proofs Systems for Graph Isomorphism and Graph Nonisomorphism

We start by presenting a (probably nonzero-knowledge) interactive proof sys-
tem for graph nonisomorphism. Next we present a zero-knowledge interactive
proof system for graph isomorphism, and for graph nonisomorphism.

Two graphs G( V, E) and H( V, F) are isomorphic if and only if there
exists a permutation m e Sym( V) such that (u, v) e E iff (T(u), r(v)) =F. We
then write H = T G. We say that the graph H( V, F) is a random isomorphic
copy of the graph G( V, E) if H is obtained from G by picking m CR Sym( V)
and letting H = x G.

The language G1 (graph isomorphism) consists of all the pairs of isomor-
phic graphs (i.e., GI = {(G, H): ~ T such that H = zG} ). Its complement,
graph nonisomorphism ( GNI), is the set of all nonisomorphic pairs.

The language G1 is in NP, is not known to be in CONP, and is believed not
to be NP-complete. The fastest algorithm known for the corresponding (search

and decision) problems runs in time exponential in ~= [7].

2.1 AN INTERACTIVEPROOFSYSTEMOF GRAPH NONISOMORPHISM. In this sec-
tion, we exempli~ the notion of an interactive proof system by presenting an
interactive proof system for graph nonisomorphism. The fact that graph noniso-
morphism has an interactive proof system is interesting as it is not known to be
in NP, and hence is not known to have efficient ‘‘ noninteractive” proof
systems. Moreover, the existence of an interactive proof system for graph
nonisomorphism has interesting complexity – theoretic consequences.
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In the following protocol, the prover may be a probabilistic polynomial-time
machine with access to an oracle for graph isomorphism.

Protocol 1.

common input. Two graphs Gl( V, El) and GO( V, EO).

(1) The verifier chooses at random m bits, Ui e~ {O, 1}, 1< i < m. The
verifier computes m graphs Hi such that Hi is a random isomorphic copy
of G.,. The verifier sends the Hi’s to the prover.

(2) The prover answers with a string of P,’s (each in {O, 1}), such that Hi is
isomorphic to G6,.

(3) The verifier tests whether Ui = ~,, for all 1 s i s m. If the condition is
violated then the verifier rejects; otherwise it accepts.

THEOREM 1. Protocol 1 constitutes a (two-move) interactive proof sys-
tem for Graph Nonisomorphism.

PROOF. If the graphs G ~ and Go are not isomorphic, and both prover and

verifier follow the protocol, then the verifier always accepts. If on the other

hand, G1 and GO are isomorphic then, for each i, we have u, # ~i with

probability at least ~, even if the prover does not follow the protocol.4 This is

because, if GI and GO are isomorphic, then

Pr(al = 1 \verifier sent H,) = ~ .

The probability that the verifier does not reject two isomorphic graphs is thus at
most 2–m. ❑

The above theorem has interesting consequences on the computational com-
plexity of the graph isomorphism problem. Namely,

COROLLARY 1. Graph Isomorphism is in ( NP (1 CONP) A, for a random
oracle A. A [so, Graph Nonisomorphism can be recognized by a (non-
uniform) family of nondeterministic polynomial-size circuits ( i. e., GNI ~
NP/poly) .

PROOF. By Theorem 1, GNI e 1P(2). Using Goldwasser and Sipser’s trans-
formation of 1P(k) protocols to AM( k + 2) protocols, GNI c AM(4). By
Babai’s proof of the finite AM(”) collapse, GN1 c AM G NP A for a
random oracle A. Finally, it has been pointed out by Mike Sipser that AM is

contained in nonuniform NP (the proof5 is analogous to the proof that
BPP G p/poly) . ❑

COROLLARY2. If Graph Isomorphism is NP-Complete, then the polyno-
mial-time hierarchy collapses to its second level.

4 The probability is exactly ~ if the prover answers with (3,c {O, 1}, and O if (the prover is foolish

enough to answer with) (3,@{O, 1}.
5 To prove that AM c Np/POIY, ~c ~Onsider ~ t~o-step Arthur– Merlin proof sYstem for a language

L E AM. Without loss of generality, the error probability on (both “yes” and <‘no”) instances of
length n is bounded above by 2 -n (this can be achieved by running 0(n) copies of the game in

parallel and ruling by majority). It follows that there exists a sequence r of coin tosses (for Arthur)
such that, for all x e {O, 1}n, x e L if and only if there exists (an answer of Merlin) y e {O, 1}* such
that Arthur accepts x in the conversation (r, y).
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PROOF. Boppana et al. showed that if CONP ~ AM, then the entire polyno-

mial-time hierarchy collapses to AM G ~~ [14]. Since Theorem 1 states that

GN1 c 1P(2), assuming that GNI is CoNP-Complete yields CONP G 1P(2), and
the Corollary follows. ❑

An alternative proof to Corollary 2 was obtained independently by
Schoening, using totally different techniques [64]. Corollary 2 may be viewed
as providing support for the belief that Graph Isomorphism is not NP-Com-
plete.

2.2 A ZERO-KNOWLEDGE PROOF FOR GRAPH ISOMORPHISM. In this section, We

exemplify the notion of zero-knowledge proof systems by presenting a zero-

knowledge proof system for graph isomorphism. The mere fact that graph

isomorphism has efficient proof systems is clear, as h is in NP. However, the

fact that graph isomorphism can be proved in zero-knowledge, and in particular

without revealing the isomorphism, is interesting.

In the following protocol, the prover needs only be a probabilistic polyno-

mial-time machine that gets, as an auxiliary input, an isomorphism between the

input graphs.

Protocol 2

common input. Two graphs Gl( V, El) and GO( V, EO).

Let ~ denote the isomorphism between G, and GO (i.e., GI = ~GO). The
following four steps are executed m times, each time using independent random
coin tosses.

(PI) The prover generates a graph H, which is a random isomorphic copy of
GI. This is done by selecting a permutation m CRSym( V), and computing
H = mGI. The prover sends the graph H to the verifier.

(Vi) The verifier chooses at random CYe~ {O, 1}, and sends a to the prover.
(Intuitively, the verifier asks the prover to show him that H and Ga are
indeed isomorphic.)

(P2) If CY= 1, then the prover sends x to the verifier, else (i.e., a # 1) the
prover sends m “ O. (Note that the case a ~ {O, 1} is handled as CY= 0.6)

(V2) If the permutation (~) received from the prover is not an isomorphism
between G. and H (i.e., H # ~ G.), then the verifier stops and rejects;
otherwise, he continues.

If the verifier has completed m iterations of the above steps, then he accepts.

The reader can easily verify that the above constitutes an interactive proof
system for graph isomorphism. Intuitively, this proof system is zero-knowledge
since whatever the verifier receives is “useless, ” because he can generate
random isomorphic copies of the input graphs by himself. This is easy to see in
case the verifier follows the protocol. In case the verifier deviates from the
protocol, the situation is much more complex. The verifier may set the CY’s
depending on the graphs presented to him. In such a case, it cannot be argued
that the verifier only receives random isomorphic copies of the input graph. The

6 It may be considered more natural to have the prover halt in case a ~ {O, 1} (as done in an earlier
version [42] ). However, demonstrating that the above version is zero-knowledge is easier since it
avoids dealing separately with the case a ~ {O, 1} (in the simulation).



Proofs that Yield Nothing But Their Validity 703

issue is fairly involved, as we have to defeat a universal quantifier that is not
well understood (i. e., all possible polynomial-time deviations from the protocol).
We cannot really trust our intuition in such matters, so a formal proof is indeed
required.

THEOREM 2. Protocol 2 constitutes a (perfect) zero-knowledge interac-
tive proof system for Graph Isomorphism.

PROOF. We start by proving that Protocol 2 is an interactive proof system

for graph isomorphism. First, note that if the input graphs are isomorphic, then

the prover can easily supply the permutations required by the verifier. In case

the graphs are not isomorphic, then, no matter what the prover does, the graphs

H sent by him (in step Pl) cannot be isomorphic to both GI and GO. It follows
that when asked (in step P2) to present an isomorphism between H and G.,
where CYER {O, 1}, the prover fails with probability 2 ~.

We now come to the difficult part of this proof demonstrating that Protocol 2
is indeed zero-knowledge. It is easy to see that the prover conveys no
knowledge to the specified verifier. We need, however, show that our prover
conveys no knowledge to all possible verifiers, including cheating ones that
deviate arbitrarily from the protocol. In our proof we use Definition 5.

Let V* be an arbitrary, fixed, expected polynomial-time interactive machine.
We will present an expected polynomial-time machine iWv* that generates a
probability distribution which is identical to the probability distribution induced
on V *‘s tapes during its interaction with the prover. In fact it is more
convenient to include in both distributions also the contents of the write-only
communication tape of V*.

Our demonstration of the existence of such an Nfv* is constructive: given an
interactive machine V*, we use it in order to construct the machine &fv..
Machine Alvx uses V* as a subroutine (many times) while placing strings of its
choice on all the read-only tapes of V*, and reading the intermediate and final
contents of V*’S write-only tapes. In particular, Alv. chooses the input to V*,
the contents of the random tape of V*, and the messages for the read-only
communication tape of V*; and reads the write-only communication tape of
V*. Intuitively speaking, ikfv~ tries to guess which isomorphism the machine
V* will ask to check. It (i.e., &fv*) constructs the graph H such that it can
answer V* in case it were lucky. This is done by constructing a random
isomorphic copy of G ~ starting with either GI or with GO. Such a lucky case
becomes part of the output of &lv*. The cases in which Alv. fails are ignored
(i.e., do not appear in its output). It is crucial that, from the point of view of
V*, the case which leads to &fv. success and the case which leads to a failure
look identical. By throwing away the instances where we failed, we only slow
down our construction, but we do not change the probability distribution that
V* “sees. ”

Following is a detailed description of the simulating machine Alv.. In all

invocations of V*, machine &lv. will place x = ( GI, GO) on the input tape of
V* and a fixed sequence of randomly chosen bits on its random tape. So, the
first thing &fv. does is choose at random the contents of the random tape of the
interactive machine V*, and fix it for the rest of the simulation. Fixing the
contents of the random tape of V* makes its actions depend only on the
contents of its read-only communication tape that will be written by MV*.
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There is a subtle problem in implementing this plan, to be discussed in the
following paragraph.

The easy case is when V* is strictly polynomial-time. Namely, all the runs of
V* on input x take at most Q( I x I) steps (independent of the contents of the
random tape !), where Q is a fixed polynomial. In this case choosing a random
input amounts to choosing r CR {O, 1} Q(IXI). However, in the general case V*
is (only) expected polynomial-time, and there may be no bound on the number
of coin tosses it may use on a particular input x. In this case, we need to choose
at random an infinite bit sequence. Fortunately, this needs not be done a priori.
We select the random input of V* adaptively. Intuitively, each time V*
requires a new random bit, we select one and store it for all future executions of
V* on x. Formally, Al ~~ selects ri CR {O, 1} the first time that V* tries to
scan the ith cell in the random tape in some execution on input x. In all future
runs on V* on x, the contents of the ith cell of the random tape of V* is
initialized to rl (and never changed!). We denote by r the imaginary infinite
sequence of bits chosen (and fixed) for P’* by ilfv, in a halting computation on
input x. Note that in any finite execution of V*, only a finite prefix of r is

scanned, and only this prefix will be output by A4v. as part of its output.
Jumping ahead we stress that ikl ~. will conduct additional coin tosses, which it
will never present to 1’*.

The output of machine &?v* will be compiled on special record tapes: the
random-record tape and the communication-record tape. The random-record
tape will contain the prefix of r scanned by V* (on input x, random tape
contents r, and the conversation appearing on the communication-record tape).
The contents of the communication-record tape is constructed in the following
,rn rounds (initially the communication-record is empty and i = 1).

Round i:

(S1) &fv. chooses at random D CR {O, 1} and a permutation i e~ Sym( V). It
computes I? = $ GO.

(S2) Machine &fv* sets a = V*(x, r; Hl, ~1, . . .. Hl_l. +i_l, H). (cY is
the message V* sends on input x and internal coins r after receiving
messages Hl, 41, . . . , H,_l, ii- ~, H.) Without 10SSof generality, a e
{O, 1} (since otherwise it is treated as u = O). There are two cases.

Case 1. a = ~ (lucky for AZv.). Machine &fv* appends (H, a, J) to
its communication-record tape, sets H, ~ H, a, ~ a, ii -4, and pro-
ceeds to the next round (i. e., i - i + 1).
Case 2. a # ~ (unlucky for A4v.). Machine &fv* is going to repeat the
current round. Nothing is appended to the record tape, i is not increased,
and steps (S 1) and (S2) are repeated.

If all rounds are completed then AZvx halts outputting (x, r’, ~), where r’ is
the prefix of r scanned by V* on input X, internal coin tosses r and
communication record -y. We stress that Al ~. outputs the prefix of r deter-
mined by V* actions in the conversation that is being output, and not the
possibly longer prefix that Alv. has used in previous attempts!

We now have to prove the validity of the construction. First, we prove that
the simulator A4v. indeed terminates in expected polynomial-time. Next, we
prove that the output distribution produced by A4 ~. equals the distribution over
V*’S tapes when interacting with P. Once these two claims are proven, the
theorem follows.
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CLAIM 2.1. Machine Mv+ terminates in expected polynomial-time.

PROOF. Let ~j = ( Hj, ~~); and T(’) denote ~1, . . . . ~i. For each repetition

of the i + 1st round, ~ and H are statistically independent (since H is a
random isomorphic copy of G, given either values of ~). Given that (3 ~~
{O, 1}, we get

Pr(V*(x, r; ~ (“H)=6 )=;.

Thus, the expected number of times that A4 “. repeats each round is exactly 2.
The claim follows from the fact that V* itself is expected polynomial-time. ❑

CLAIM 2.2. The probability distribution Mve( GIGO) is identical to the
distribution (P, V*)(GIGO).

PROOF. Let x = (Gl, GO). A typical element in the support of ~v.( x)

(and (P, V*)( x)) consists of the input X, a random tape prefix r’, and a
sequence of m triples (HI, al, *1), . . . , ( Hn, an, ~~). Both distributions
depend in fact on r, the infinite sequence of coin tosses for the verifier, which
in both cases is chosen uniformly. It suffices thus to show that for every fixed
value of r the residual (conditional) distributions are equal. These residual
distributions, depending on r, consist of a prefix r’ and a sequence of m
triples. Note that r’, the finite prefix of r scanned by V* is determined by r
and the messages that V* has received.

For any fixed infinite sequence r, and O < i < m, let II~~;i) denote the
probability distribution defined by the i first rounds of message exchange
between P and V* on common input x when V* uses r as its source of
internal coin tosses. Similarly, II:”’) denotes the probability distribution
defined by the i first triples output by ikfv. on input x when fixing r as the
verifier’s source of internal coin tosses. The claim follows by proving that
IIfi’” ~) = Hfi~’; ~), and this equality is proven by induction on i.

Induction Base (i = O). Hold vacuously.

Induction Step (i ~ i + 1). Let -y(i) be an element in the support of IIfl.
By induction hypothesis

Conditioning on the event

we consider the i + 1st triple in ll~r>i+ 1) (resp., H~~rJi+ 1)), denoted II: 1)
(resp., 11~~~)). We show that both distributions are uniform over the set

S= {( H,a, ~): H= ~GaACY = V*(x, r,-y(z)H)}.

The set S is in 1– 1 correspondence with the set Sym( V). The correspondence

is given by the mapping (H, u, ~) ~ ~ o ~“ – 1. This mapping is 1– 1 since
collision implies equal H’s (as H = ~ G. = ~ o ~“ -1 Gl), equal H’s imply
equal a‘s (as u is determined by H), and equal ct’s imply equal ~ ‘s. The
inverse mapping is n- ~ (m-Gl, u(z)> T, “ ~l-a(m)), where U(Z) =

V*( x, r, -y(i)( mGl)). The inverse mapping coincides with the way an element
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k chosen in the distribution H$~~), and thus this distribution is uniform on S.
Another way of sampling uniformly the set S is exhibited by n~~,l ): choosing

uniformly ~ ~ {0, 1} and ~ in Sym( V) and outputting (tGP, 6, +) if B =
V*( x, r, -y(i)(IJ Gfi)). In case there is output, it is uniformly distributed in S.
Thus,

Combining (1) and (2), the claim follows. El

Combining the two claims, the theorem follows. ❑

Remark 10. Serial execution vs. parallel execution: the case where
intuition fails? Although one’s intuition may insist that the above zero-
knowledge protocol remains zero-knowledge even when the m rounds are
executed in parallel instead of serially, we do not know how to prove this
statement. In fact, recent work of Krawczyk and Goldreich [40] shows that
the parallel version is unlikely to be zero-knowledge, since its alleged zero-
knowledge property cannot be proven using a “black-box” simulation, unless
G1 = BPP. Interestingly, a modification of the parallel version (in which the
verifier uses “secret coins”) yields a constant-round perfect zero-knowledge
proof for G1 [9]. Getting back to the proof of Theorem 2, the reader should
note that the argument used in the proof is based on the fact that the verifier’s
request for the ith graph only depends on the first i graphs. Thus, changing the
i + 1st graph does not affect the requests for the previous i graphs. This may
not be the case in a parallel execution of the protocol, where the prover first
sends m isomorphic copies and only then receives the verifier’s requests. In
this case, the verifier’s request for the ith graph may depend on all the other
graphs. If we try to satisfy all the requests by choosing the iYI’s beforehand, we
have only a negligible probability of succeeding (i.e., 2-*). If we try to
construct a good sequence of HI’s, by choosing the H,’s at random and
replacing the bad H,’s hoping that the new a i’s will match these graphs better,
we are likely to fail as the u i’s corresponding to the good Hz’s may change too.

Remark 11. It seems that allowing the simulator to be expected polyno-
mial-time (rather than strictly probabilistic polynomial-time) is essential to the
perfect zero-knowledge property of Protocol 2, even when restricting the
verifier to be strictly probabilistic polynomial-time. In particular, the simulator
presented in the proof of Theorem 2 has (rare) super-polynomial runs. An
easy modification sacrifices the perfectness of the simulation to get strictly
polynomial-time simulators for strictly polynomial-time verifiers. This modifi-
cation consists of repeating each round in the simulation at most m times and
stopping in the highly unlikely case that all m tries were unsuccessful. The
resulting simulator has running time bounded by m times the running time of
the verifier and produces a probability distribution with a statistical difference
m2–m from the distribution of the interactions with the real prover. Thus, using
“strictly polynomial-time” instead of ‘ ‘expected polynomial-time” in the
definition of zero-knowledge, we get that Protocol 2 is almost-perfect zero-
knowledge.



Proofs that Yield Nothing But Their Validity 707

2.3 ZERO-KNOWLEDGE PROOF SYSTEM FOR GRAPH NONISOMORPHISM. The inter-

active proof system for graph nonisomorphism presented in Section 2.1 is

probably not zero-knowledge: a user interacting with the prover may use the

prover in order to discover which of the given grapl-is ( G1 and GO) is

isomorphic to a third graph G~ (for more details, see [44] and [60]). The way to
fix this flaw is to let the verifier first “prove” to the prover that he “knows”
an isomorphism between his query graph H and one of the input graphs. This
is done by using a parallel version of Protocol 2 in order to prove that H is
isomorphic to either GI or Go. We do not require this subprotocol to be
zero-knowledge but rather to “hide” the isomorphism used in the proof.
Formulating the appropriate definition of what it means for a machine to
“prove knowledge of something” is quite complex and beyond the scope of this
paper. We only note that the definitions proposed in [27], [47], and [67] do not
suffice. We prefer to present our zero-knowledge proof system for GNI, and
demonstrate its validity “directly”, without using a notion of a “proof of
knowledge”.

The modification to Protocol 1 follows the underlying ideas of the zero-
knowledge proof system of quadratic nonresiduosity that appeared in [47]. A
unified and generalized presentation appears in [67]. The presentation of the
protocol is further simplified using the “pairing trick” of Benaloh [10].7

Protocol 3

common input. Two graphs Gl( V, El) and GO( V, Eo).

The following five steps are executed m times, each time using independent
random coin tosses.

(Vi) The verifier chooses at random u e~{ O, 1}, and a permutation m =~
Syrn( V). The verifier constructs H = T G.. (The graph H is a random
isomorphic copy of either G1 or Go. ) The graph H Will be called the
question. In addition to the graph H, the verifier constructs n2 pairs8 of
graphs such that each pair consists of one random isomorphic COPYof GI
and one random isomorphic copy of GO. The graphs in each pair are
placed at random order. These pairs will be called the test pairs, as they
will be used by the prover to test whether the verifier is not cheating.
Specifically, for each 1 s i s n2, the verifier chooses at random a bit

‘Yi ‘R. {o> 1} and two Permutations ~i,l > ~i,o CR ~~rn( V > and comPutes>
for J e {O, 1}, ~j = 7ijGj+,, ~Od2. The verlfler sends H and the

sequence of pairs ( T1,1, T1,O), . . . ; ( Tn2,1, T.z ~) to the prover.
(Pi) The prover chooses at random, a subset 1 G {1,2,. . . . n2}. (1 is chosen

with uniform probability distribution among all 2 “’ subsets.) The prover
sends 1 to the verifier.

(V2) If lisnota subset of {1,2, ..., n2 } then the verifier halts and rejects.
Otherwise, the verifier replies w~th { (Ti, ri, 1,_7,,o): i c ~) and { ( CY+

‘Yj mod 2, ‘z,(ci+~zmod2)T “): i~I}, where 1={1,2, . . ..n2} -1.

Namely, for i e 1 the verifier shows an isomorphism between the input

7 The underlying idea of this simplification appears also in [26].
8 nz is an arbitrary choice of a function which is bounded above by a polynomial in n and bounded

below by the logarithm of the complexity of testing isomorphism @etween two graphs on n nodes).
This choice is of course not optimal (especially in light of [7]).
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graphs and the ith pair, while for i ~ j the verifier shows an isomorphism
between H and one of the graphs in the ith pair. Intuitively, for i e I thg
verifier shows that the ith pair is properly constructed, while for i e I
the verifier shows that if the ith pair was properly constructed then so
was H.

(P2) The prover checks whether ~I,J is indeed the isomorphism between Ti ~
and G(J+Y,~Odz), for every i e 1 and j ~ {O, 1}, and whethir

~1, (a+7, mod2)~ – 1 is_ indeed an isomorphism between T, (a+ ~z~ ~~~, and

H, for every i e 1. If either condition is violated, the prover stops.
Otherwise, the prover answers with ~ ~ {1, 0}, such that H is isomor-
phic to GO. (If no such D exists, the prover answers with ~ = O.)

(V3) The verifier tests whether a = ~. If the condition is violated, the verifier
stops and rejects; otherwise, he continues.

If the verifier has completed m iterations of the above steps, then he accepts.

When verifying that the modified protocol still constitutes an interactive proof
system for graph nonisomorphism, we have to show that the information
revealed by the verifier in Step (V2) does not yield information about a (in case
the graphs are isomorphic!). When proving that Protocol 3 is zero-knowledge,
we use the information revealed in Step (V2) to help the simulator.

THEOREM3. Protocol 3 constitutes a (perfect) zero-knowledge interac-
tive proof system for graph nonisomorphism.

PROOF. First, we prove that Protocol 3 (which is a modification of Protocol

1) is still an interactive proof system for graph nonisomorphism. Clearly, the

completeness condition still holds (i. e., if the graphs G, and Go are not

isomorphic, and both prover and verifier follow the protocol, then the verifier

always accepts). If, on the other hand, G ~ and Go are isomorphic then the

graphs and permutations sent by the verifier in Steps (V 1) and (V2) are random

isomorphic copies of both graphs and yield no information about a. It follows

that if G ~ and Go are isomorphic then a # B with probability at least ~, even

if the prover does not follow the protocol. Repeating the five steps m times we
conclude that the probability that the verifier does not reject two isomorphic
graphs is at most 2-‘.

We now turn to show that Protocol 3 is indeed zero-knowledge. Again, we
use Definition 5. As in the proof of Theorem 2, we present a machine AZv. for
every interactive machine V*, such that &fv*( x) = (P, V*)( x). The machine
Afvy uses V* as a subroutine. The structure of the simulators we construct here
is different from the simulators constructed in the proof of Theorem 2. In the
proof of Theorem 2, the simulator produced conversations by guessing in
advance what his subroutine V* will ask. In this proof, the simulator will
produce conversations by extracting from V* the knowledge it has about its
questions. In doing so, we implicitly use the notion of a “machine knowing
something”. (Since there is no explicit use of this notion, there is no need to
present a definition here.)

Following is a detailed description of &fv*. In this description, we assume
that the interactive machine V* is strictly polynomial-time. The modification to
expected polynomial-time is along the lines discussed in the proof of Theorem
2. Machine &lv, starts by choosing a random tape r e ~ {O, 1} g for V*, where
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q is a bound on the running time of V* on input G ,GO. &fv. places r on its
record tape and proceeds in m rounds as follows. (Initially t = 1.)

Round t:

(S1) AZv* initiates V* on input GIGO and random tape r, and reads the graphs

H, and (Tl,l, Tl,o), . . . . ( ~.~,l, T.z o) from the communication tape of
V* (i.e., H, (Tl,l, TI ~), . . . . (T~,,’l, T., o) - V*(GIGO, r)).9 Machine
iWv. chooses a random’ subset 1 and places it on the communication tape
of V*. Mvt also appends 1 to its record tape.

(S2) &fv, reads {(~i, ~iJ, ~j,o): i e 1} and {(a + 71 mod 2,

‘i, (a+y, mod2)T -1,: i e 1}, from the communication tape of V* (i.e.,

{(7i, 7i,l, 7,,0): ie l}, {(a + -yi .mod2, ~i,(a+T, mOd2)m-1): i cJ} -

V*(GIGO, r; 1)). Machine ikfvx checks that ~i,j is an isomorphism
between ~,j and G(j+y, mOd2), for every iel and je{O, 1}. It also

checks that 71~u+~zmOd2jm– 1 is an isomorphism between Ti ~a+Yr,~Od~,

and H, for every i e ~. If either conditions is violated then &fv. outputs
its record tape and stops. Otherwise, &fv, continues to Step (S3).

(S3) The purpose of this step is to find an isomorphism between H and G..
This is done by repeating the following procedure (until such an isomor-
phism is found).

(S3. 1) Machine A4 V* chooses at random a subset K q { 1, 2, . . . . n2}.
Machine Mva initiates V* on input G, Go, (the same!) random
tape r, and places K as the first message on the read-only
communication tape of V*. Consequently, machine Mv, reads

{(ai~oi,l, al,~): ieK} and {(a + bi mod2, ui,(a+8,,~Odz)m– 1):

i e K}, from the communication tape of V*. (That is,
{(t?i, Oi,l, ai,O): ieK}, {(a + ~i mod2, oi,(u+6, mO~2)r- 1): ie

~} ~ V*(GIGO, ~ K).)

(S3.2) For every i ~ 1 fl K, if O,,(a+a ~Od2)T-’ is indeed an isomorphism
between T,,(a+~,,UOd21 and ~ then T~<~+8,modz)o, ~a+a ~Od21r- 1

is an isomorphism between G. and H. Analogously,’ for ~e ~ (7 K.
If an isomorphism was not found, go to Step (S3. 1).

(S3 .3) In parallel, try to find an isomorphism between H and either input
graphs by exhaustive search. One trial is done per each invocation
of V*. (In case Mv. finds that H is not isomorphic to either
input graphs, Mv. acts as if it has found an isomorphism between
H and Go.)

(S4) Once an isomorphism between H and G6 (D={ O, 1}) is found, machine
MV* appends ~ to its record tape, thus completing round t.

If all rounds are completed then Mv. outputs its record and halts.
The intuition behind the construction of the simulator M V* is that if V* has

~ probability of passing Step (P2) in the protocol then the same holds with

QThe notation V*(G, Go, r) is accurate only for the first round (t = 1). In subsequent rounds, V*

actions depend also on the transcript of the previous rounds; hence, V *( G, Go, r) should be substituted
by V*(G, Go, r, II(t– 1)),where H (t– 1) is the transcript (conversation) generated for the previous

t– 1 rounds. The notation V*(G, Go, r) is suitable also for the parallel version of the protocol
(discussed in Remark 12).
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respect to JWV* entering Step (S3). In this case, the simulator has to come up
with the right answer concerning the isomorphism between H and one of the
input graphs. To do so, the simulator will invoke V* again with the same
random tape (causing the verifier to produce the same question and the same
test pairs) and ask him about a different subset K. The proper conclusion of
Step (S2) has provided the simulator with isomorphisms between the test
graph-pairs and the input graphs (for the tests with index in 1). If V* supplies
an isomorphism between H and one of the test graphs (for a test with index
i e ~) and i 6 I then an isomorphism between H~nd one of the input graphs is
constructed (by transitivity). Analogously for i e 1 (1 K. It all boils down to the
question what is the probability of getting from V* a good answer on a
rando~ly chosen K # 1. This probability is almost e (the difference may be
= 2”” ). Thus the expected number of times &fv* repeats Step (S3) on the
condition that it passes Step (S2) is 0(1/c), provided that e > 2- ‘2. This
guarantees expected polynomial-time simulation for every value of c ~ 2 “ 2- ‘2.
But what happens if ~ = 2 -‘2 (this may happen if V* constructs his test pairs
so that he can answer on a single subset (he can do so without knowing the
isomorphism between H and either input graphs)). This extreme case is
handled by Step (S3. 3): the simulator finds an isomorphism by running an
ordinary algorithm (e. g. exhaustive search). Note that this is done only in the
unlikely event (occurring with probability 2- “2) that A4v+ passed Step (S2).
Without Step (S3. 3) the simulator would have produced almost the same
distribution as in the prover-verifier conversations and hence Protocol 3 would
have been “only” proven to be almost-perfect zero-knowledge.

We now prove the validity of the construction. First, we prove that the
simulator ikfv. indeed terminates in expected polynomial-time. Next, we prove
that the output distribution produced by Alv, does equal the distribution over
V*’S tapes (when interacting with P). Once these two claims are proven, the
theorem follows.

CLAIM 3.1. Machine iWvh terminates in expected polynomial-time.

PROOF. We consider the expected running time on a single round, for any

fixed random tape r. The reader can easily extend the proof to all rounds. We
call asubset1G{l,2, ..., n2 } good if V* answers properly on message 1
(i.e., 1 is good iff V*(GIGO, r; 1) consists of isomorphisms between the ~,,
~.,. and GI, GO for Vie I and an isomorphism between one of the Ti,~’s

and H for V i ~ ~). Denote by g, the number of good subsets (g, depends of
course also on V*, the input graphs and previous rounds which are all fixed
here). Clearly, O < g, s 2“2. We compute the expected number of times V* is
invoked at round t as a function of gr. We need to consider three cases.

Case 1 (g, z 2). In case the subset 1 chosen in Step (S 1) is good, we have
to consider the probability that a randomly selected subset K is good and # 1.
In case the set chosen in Step (S 1) is bad, the round is completed immediately.
Thus, the expected number of invocations of V* is

()
gr–l -1

l+*. — g,
=1+ ———— s 3.

2 ‘2 gr–l

Case 2 (g, = 1). With exponentially small probability (i.e., 2 ‘“2) the
subset 1 chosen in Step (S 1) is good. In this case, we find the isomorphism by
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exhaustive search (i. e., n! steps). Otherwise, the round is completed immedi-
ately. Thus, the expected complexity of Afv* in Case 2 is bounded by one
invocation of V* and an additional n!” 2 -‘2 < 1 step.

Case 3 (g, = O). The subset 1 chosen in Step (S1) is always bad, and thus
kfv. invokes V* exactly once.

The claim follows by the fact that V* is polynomial-time. D

CLAIM 3.2. The probability distribution Mv~(GIGO) is identical to the
distribution (P, V*)(GIGO).

PROOF. Both distributions consist of a random r, and sequence of elements,

each of which is either (1, ~) (with good 1 and /3 so that H is isomorphic to
Gp) or a bad 1, where 1 is a random subset of {1,2, . . . . n2}. ❑

The theorem follows. ❑

Remark 12. Protocol 3 was presented as a sequential application of m
copies of a five-step protocol. However, the validity of Theorem 3 does not rely
on the fact that these copies are executed sequentially, rather than in parallel.
The five-step protocol in which copies of the five-step subprotocol (of Protocol
3) are performed in parallel is also a zero-knowledge interactive proof system
for graph nonisomorphism. The simulator can handle all copies concurrently,
by first by choosing a subset 1, for each copy t,and next choosing subsets K,
for each copy t.The fact that Protocol 3 can be parallelized follows from the
fact that its proof technique only needs “something good” (choosing a good ~~)
to happen once per each copy (and not necessarily concurrently!). In the proof
of Theorem 2, we need “something good” (choosing a lucky ~t) to happen
concurrently in all copies.

Remark 13. As in Theorem 2, it seems that allowing the simulator to be
expected polynomial-time (rather than strictly probabilistic polynomial-time) is
essential to the perfect zero-knowledge property of Protocol 3, even when
restricting the verifier to be strictly probabilistic polynomial-time. However, the
situation here is more acute. Bounding the number of iterations (of Step (S3)) of
our simulator by a particular polynomial may result in an output with nonnegli-
gible statistical difference from the distribution of the interactions with the real
prover. (The statistical difference achieved by this strictly polynomial-time
simulator can be guaranteed to be less than one over a related polynomial, but
not less than any polynomial. ) Thus, we do not know whether Protocol 3 is
almost-perfect zero-knowledge, when using “strictly polynomial-time” instead
of “expected polynomial-time” in the definition of zero-knowledge.

3. All Languages in NP Have Zero-Knowledge Proof Systems

In this section, we present zero-knowledge interactive proof systems for every
language in NP, assuming the existence of secure encryption functions (see
definition below). We begin by presenting a zero-knowledge interactive proof
system for graph 3-colorability. Using this interactive proof system and the
NP-Completeness of graph 3-colorability, we present zero-knowledge proof
systems for every language in NP.

In this section, we assume the existence of secure encryption schemes.
Security is defined (see below) analogously to the definitions of Goldwasser and
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Micali [46]. However, the encryption schemes need not be “public-key.” In
fact, it suffices to have “bit commitment schemes” (which using recent results
of Naor [58], Impagliazzo et al. [52], and Hastad [51] exist. assuming the
existence of one-way functions). 10A concrete and more efficient implementa-
tion (of secure encryption), assuming the intractability of factoring, appears in
[4]. Here we only use encryptions for four messages; namely, O, 1, 2, and 3.
This allows a more specific presentation of the notions of an encryption scheme
and its security.

Definition 6 (Secure Encryption [46]). An encryption function is a
polynomial-time computable two-argument function f: {O, 1.2,3} x {O, 1}*
~ {0,1}* satisfying VX# Y={O, 1,2,3} and Vr, s~{O,l}* f(x, r) #

f(Y, s).
A probabilistic encryption of a message x with security parameter n is a

random variable fn( X) = f ( x, r), where f is an encryption function and r ●R
{o, l}n.

An encryption function f is secure if, for v x # y ● {O, 1,2, 3}, the ensem-

bles { fn( x)}. and { fn( y)}. are polynomially indistinguishable.
An encryption function f is nonuniforndy secure if the above ensembles

are indistinguishable by polynomial-size circuits. Namely, for Qx # y e
{O, 1,2, 3}, every polynomial Q and every family of Boolean circuits { C.}.,
where C’. is a circuit of size Q(n), every constant c >0 and sufficiently
large n

lPr(C~(f~(x)) = 1) - Pr(C,(f.(y))

3.1 A ZERO-KNOWLEDGE PROOF SYSTEM FOR GRAPH

G( ~, E) is said to be 3-colorable if there exists a ~

=l)l<;.

3-COLORABILITY. A graph
mapping ~: V+ { 1,-2, 3}

(called a proper coloring) such that every two adjacen~ vertices are assigned
different colors (i.e., each (u, v) e E satisfies o(u) # +(v)). Such 3-coloring
induces a partition of the vertex set of the graph to three independent sets. The
language graph 3-colorability, denoted G3 C, consists of the set of undirected
graphs that are 3-colorable. Graph 3-colorability is known to be NP-
complete [35].

The common input to the following protocol is a graph G( V, E), which we
assume without loss of generality to be simple and connected. In the following
protocol, the prover needs only to be a probabilistic polynomial-time machine
which gets a proper 3-coloring of G as an auxiliary input. Let us denote this
coloring by @ (r$: V-+ {1,2,3}). Let n= \V\, m= IEI, and Sq=
Sym({ 1, 2, 3}). Since the graph is (simple and) connected, n and m are
polynomially related (i.e., n – 1 < m < n2 /2). For simplicity, let V =
{1,2,..., n}.

To clarify the presentation of our protocol, we first present an implementa-
tion of it which uses “physical means of hiding information. ” To be more
specific, we assume that the prover has at its disposal a large supply of boxes
each having a lock with a corresponding key. All keys are different.

10The notion of one-way function originates from [25]. A seemingly weaker, yet equivalent,
formulationappearsin [68]. Notableconcretesuggestionsare dueto [61] and [63].
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Protocol 4 (Physical Implementation)

common input. A graph G( V, E).

713

The following four steps are executed m2 times, each time using independent
coin tosses.

(Pi) The prover chooses at random an assignment of three colors to the three
independent sets induced by ~, colors the graph using this 3-coloring, and
places these colors in n locked boxes each bearing the number of the
corresponding vertex. More specifically, the prover chooses a permutation

T CR S3, places T( 0( i)) in a box marked i (Vi= V), locks all boxes and
sends them (without the keys) to the verifier.

(Vi) The verifier chooses at random an edge e ●RE and sends it to the prover.
(Intuitively, the verifier asks to examine the colors of the endpoints of
eeE.)

(P2) If e = (u, v) e E, then the prover reveals the colors of u and v, by
sending him the keys to boxes u and v. Otherwise, the prover does
nothing.

(V2) The verifier opens boxes u and v using the keys received and checks
whether they contain two different elements of { 1, 2, 3}. If the keys do
not match the boxes, or the contents violates the condition then the verifier
rejects and stops. Otherwise, the verifier continues to the next iteration.

If the verifier has completed all m2 iterations then it accepts.

It is easy to see that Protocol 4 constitutes an “interactive proof system” for
Graph 3-Colorability. If the graph is 3-colorable and both prover and verifier
follow the protocol, then the verifier accepts with probability 1. If the graph is
not 3-colorable and the verifier follows the protocol then, no matter how the
prover plays, at each round the verifier will reject with probability at least
1/m. It follows that the probability that the verifier will accept (i.e., complete
all the m2 rounds wi~hout detecting that “something is wrong”) is bounded
above by (1 – m-l)~- = exp(–m).

Loosely speaking, Protocol 4 is “zero-knowledge” since the only informa-
tion received by the verifier at each round is a pair of different randomly
selected elements of { 1, 2, 3}. It is crucial that the prover uses at each round an
independently selected random permutation of the colors. Thus, the names of
the three classes (of the partition ~) at one round are uncorrelated to the names
at another round. It follows that the values of every random permutation at the
end-points of one edge reveal no information about the coloring d.

In the above paragraphs, the terms interactive proof and zero-knowledge
were used in quotes since these were not defined for a physical setting. The
adaptation is straightforward and is left to the reader.

We now present the digital implementation of Protocol 4. In this protocol, a
standard (polynomial-time) algorithm for evaluating f is part of the programs
of both prover and verifier.

Protocol 4

common input. A graph G( V, E).

The following four steps are executed m2 times, each time using independent
coin tosses.
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(PI)

(Vi)
(P2)

(V2)
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The prover chooses a random renaming of the 3-coloring, encrypts it, and
sends the encryption to the verifier. More specifically, the prover chooses
a permutation x CR Sq, and random n-bit r,’s (V v ~ V, let r, •~ {O, 1}”).
The prover computes FV = ~( T( @(v)), ry) (for every v c V), and sends
the sequence FI, Fz, . . . , F. to the verifier.
The verifier chooses at random an edge e e~ E and sends it to the prover.
If e = (u, v) e E, then the prover reveals the coloring of u and v, and
“proves” that they correspond to their encryptions. More specifically, the
prover sends ( T(4( u)), rU) and ( T(+( v)), r,) to the verifier. If e ~ E,
then the prover acts as if e = e., where eO is an arbitrary fixed edge in
El]

The verifier checks the “proof” provided in Step (P2). Namely, the
verifier checks whether “FU = Y( m(~( u)), rU), F,, = f(m(~( v)), r,),
m(+(u)) # ~(~(v)), and T(rj(u)), m(rj(v)) c { 1, 2, 3}. If either condition
is violated the verifier rejects and stops. Otherwise, the verifier continues
to the next iteration.

If the verifier has completed all rnz iterations, then it accepts.

PROPOSITION4. If f is a nonuniformly secure encryption function, then
Protocol 4 constitutes a zero-kno wledge interactive proof system for Graph
3-Colorability.

PROOF. First, we show that Protocol 4 constitutes an interactive proof
system for G 3c. The argument is as in the paragraph following the physical
implementation of Protocol 4, except that k is important to stress that also in the
digital implementation the prover cannot change the information hidden in his
messages. This is due to the fact that each encrypted message has a unique
decryption.

Our demonstration that Protocol 4 is indeed zero-knowledge follows the lines
of the proof of Theorem 2. Namely, the construction of A4v. uses the same
underlying ideas used in the proof of Theorem 2. However, additional technical
difficulties arise in proving the validity of the construction. The source of these
difficulties k the fact that a cheating verifier may select his question based on
the encryption of the coloring presented to him. The security of the encryption
is carefully used to show that even doing so does not provide him any
noticeable advantage.

As in the proof of Theorem 2, we present a machine &lv. for every
interactive machine ~*. This time, Tvfv.( x) and (P, V*)(x) will not be equal,
but instead h will be shown that they are polynomially indistinguishable.
Typically, we try to guess which edge the machine V* will ask to check. We
encrypt an illegal coloring of G such that we can answer P’* in case we are
lucky (i. e., V* asks for the edge we chose). The cases in which we failed
will be ignored. It is crucial that from the point of view of V* the case that
leads to our success and the case that leads to our failure are polynomially
indistinguishable.

Again, we use Definition 5, including in the distributions (for sake of
convenience) also the contents of the verifier’s write-only communication tape.

‘‘ Here, as in Protocol 3, we have againpreferredthis <‘unnatnral” conventionthat simplifies the
zero-knowledgeargument.
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As in the proof of Theorem 3, we consider only probabilistic interactive
machines that are strictly polynomial-time. The argument is easily extended
to interactive machines that are expected polynomial-time (see proof of
Theorem 2).

Following is a detailed description of ~v~. The machine kfv. uses V* as a
subroutine. Machine A4v. starts by choosing a random tape r ~~ {O, 1} q for
V*, where q is a bound on the running time of V* on input G. Machine Afv.
places r on its record tape and proceeds in rnz rounds as follows.

Round i:

(S1) Afv* picks an edge (u, v) e~ E and a pair of integers (a, b) e~ {(i, j):
i#j~{l,2,3]} at random. WI V* chooses random r,’s (r, e~ {O, 1}”)
and computes Fi = ~( Ci, ri) for each i c V, where c1 = O for i e V –

{u, v}, cU=aandcv
(S2) Machine A4V*

= b. Machine itlv~ sets R ~ (Fl, Fz, . . . . F.).
sets e = V*(G, r; Rl, R~, . . . . Ri_l, R~_l, R). (e is

the message that V* sends on input G and random tape r after receiving
messages Rl, R~, . ... Ri_l, R~_l, R, where Rj is the jth sequence of
encrypted colors, R is the current sequence of encrypted colors, and R;
is the jth revealed encryption). Without loss of generality, e e E (other-
wise, e is treated as eO—the fixed edge used in the protocol). We
consider two cases.

Case 1. e = (u, v) (lucky for &fv.). Machine &fv. sets R, + R,
ei G e, R; e ((cU, r~), (c,, r,)), appends (R,, ei) R;) to its record tap%

and proceeds to the next round (i. e., i +- i + 1).
Case 2. e # (u, v) (unlucky for &fv.). Machine iWv* is going to
repeat the current round. Nothing is appended to the record tape, i is not
increased, and Steps (S 1) and (S2) are repeated.

When all rn2 rounds are completed, machine &fv, outputs its record and
halts.

We now have to prove the validity of the construction. First, we prove that
the simulator ikfv. terminates in expected polynomial-time. This amounts to
showing that, each time a round is repeated, the verifier’s request (i. e., e)
equals the chosen (u, v) with probability essentially 1/ m (otherwise, V* can
be transformed into a circuit family that “breaks” the encryption function ~).

Next, we prove that the output distribution produced by ~v. is polynornially

indistinguishable from the distribution over V *‘s tapes when interacting with
P. (There is clearly a difference between these probability distributions, but this
difference cannot be “detected” in probabilistic polynomial-time.) Once these

two claims are proven, the proposition follows. We start with the following

technical lemma that asserts, as a special case, that the encryption of the

coloring sent by the prover and the encryption of the “garbage” sent by the

simulator are indistinguishable by polynomial-size circuits. The lemma is a

special case of a theorem by Goldwasser and Micali [46]. and its proof is
sketched here for the sake of self-containment.

Notatio_n. Letci= (al,..., Uk), where CXiC{O, 1,2,3} for all 1 s i s
k. Then ~n(a) denotes j.(al) “ “ “ ~.(cxk).
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LEMMA 4.0. Let P be a polynomial, and CY(l), U(2), a(3), . . . and P(l),
&), /3(3), . . . be two infinite sequences such that a(n) = (a!”), . . . . Uy))
and (j(”) = (~~~) ,. ... ~~!), where a~”), d~”)e {0, 1,2,3} and k. < P(l).
Then for every polynomial Q, every family of (bounded size) Boolean
circuits { C.: size(C~) s Q(n) ).,
large n

lPr(cn(jn(a’”J)) = 1) -

every constant c >0 and sufficiently

Pr(cn(;n(B(’’))) = 1)1 < +.

PROOF SKETCH. The statement is proven by considering encryptions of
hybrids of prefixes of a(”) and suffixes of ~(”). A polynomial-size circuit
family that distinguishes the encryptions of the extreme hybrids (i.e., CY(”)and

~(”)) also distinguishes encryptions of two adjacent hybrids. Incorporating the
hybrid messages into the circuits one can construct a family of (polynomial-size)
circuits that distinguishes the encryptions of x # y c {O, 1, 2, 3}. This contra-
dicts our assumption that f is a nonuniformly secure encryption function. ❑

Notations. For~:{l,2, ..., n} ~ { 1, 2, 3} and r e~q, denote by msg~’~
the sequence (m(@(l)), 7r(q5(2)), . . . . ~(~(n))). For u, VE {1,2, . . . . n} and
a, b ~ { 1, 2, 3}, denote by msgfi’”)’(”~) the sequence (c,, Cz, . . ., c.), where
cU=a, cV=b, andcI=Oforic {1,2, . . ..n{u. v} v}.

CLAIM 4.1. Machine Mv, terminates in expected polynomial time.

PROOF. Let l?(’-l) denote l?l, R’
1~...~ Ri_l, R:._l, where Rj and R; are

as in Step (S2) above. In each repetition of the ith round, machine &lv, places
a probabilistic encryption of msgfi’ “).(”’ ~) on the communication tape of ~*,
where (u, v) ~~ E and a # b e~ { 1, 2, 3}. Using Lemma 4.0, we show that
the probability that V* asks to reveal the colors of u and v when seeing the

(“,v),(”, b) on its communication tape approximately equals theencryption of msg~
probability V* asks so when seeing the encryption of msg~’)(”~) on its
communication tape, V( r, s) = E. It follows that a repetition of round i is
completed successfully with probability = 1/m. A detailed proof follows.

We use V*(enc) as a shorthand for V*(G, r; R(Z- 1), enc). First, we bound
the probability that round ~ is completed successfully. This probability equals
the probability that V*( fn( msgfi’”)(”’~))) = (u, v), where (u, v) e~E and
a#be~ {1,2,3}.

= X A “ pra~b=R{1,2,3} (V*(~.(msg&v)(”’))) = (u, v)).
(U, wz m

Let (r, s) e E. Then by Lemma 4. O,_V* has on input ~~( msgfi’’)(”~)) aPProxi-

““) ’(a’~)). Otherwise, V* and R(’ - 1)mately the same output as on input fn( msgM
can be incorporated into a circuit that distinguishes the encryptions of

(ti, v), (a, b)msg~ (r ‘)’t~’~) (for some u, v, r, s, a, b). It follows that theand msg~’
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above probability is bounded above by

1
>X

(
—“ ?r a#~c,{l z sl-(v*(ln(mSgtiS) ’(a’’))) = (u, ~)) - ~

(u, v)cE m
>, n- )

1
>—”

m

1
— —.—

m

1
——

2m “

(In the second inequality we use the fact that m < n’ /2.) We conclude that the
expected number of times that each round is repeated is bounded below by 2 m.
The claim follows by the hypothesis that V* is polynomial-time. ❑

CLAIM 4.2. The probability ensembles { Mv,(G)}~GG~c and

{(p, V*)(G)}~e~,c are polynomially indistinguishable.

PROOF. The proof is by contradiction, and is first sketched in this para-

graph. We assume that the two probability ensembles can be told apart by a

family of polynomial-size circuits and derive a contradiction to Lemma 4.0 in

one of essentially two ways. First, we restrict our attention to a single round of

the (P, V*) conversation and its simulation. Next, we consider two cases. If
the distribution of the ‘‘ verifier’s query” (i.e., the edge e) is substantially
different in the conversation and in the simulation, then the program V* can be
directly used to contradict Lemma 4.0. If these two distributions are close
enough, we modify the circuits guaranteed by the above hypothesis to derive a
contradiction to Lemma 4.0. The reader should note thqt the circuits in the
hypothesis receive as input a text that is not of the form fn( U), for a sequence
a, but rather a text consisting of such a sequence and two elements used for the
randomization of the encryption. The location of these elements in the sequence
may be determined by the entire sequence. This creates difficulties that need to
be resolved with some care.

Let { Cn}. be a circuit family of polynomial size that distinguishes
{ kfv*(G)}~=~,C from {(P, V*)(G) }~=~,c. Namely, there exist a polynomial
Q and a constant c >0 such that the size of C. is less than Q(n) and an
infinite sequence of graphs Gj( Vi, Ei) such that for every i

pr(clKl(Jf~.(Gi)) = 1)- Pr(clvl((p)v*)(Gi)) = 1) > ~

Let us consider this circuit family. Without loss of generality, we assume that
each circuit in the family has a single output bit. For sake of simplicity, we
carry out our argument while referring to an arbitrary graph, denoted G( V, E),
in the above sequence of graphs and to the corresponding circuit C I v 1. It is
important to note that all polynomials mentioned in the rest of the argument are
fixed for the entire sequence and are independent of the generic graph G. Let 4
denote the fixed coloring of G( V, 1?) used by the prover, n = I V I and
m=l E\.
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The next two paragraphs are devoted to show that it suffices to consider a
simulation of a single round. The argument follows the “hybrid” technique
first used in [46].

A typical element in the support of Alv.( G) (resp. in the support of
(P, V*)(G)) consists of the input graph G, the random tape r e {O, 1}’, and a
sequence of m2 triples (Rl, el, l?;), . . . ,(l?~~, e~z, l?~-). For O s i s m2,
let H(Z) denote the ith hybrid distribution defined by taking G, r 6 {O, 1} g and
the first i triples (l?l, el, R~), . . . , (R,, e,, R~.) from the distribution
(P, V*)(G), and producing the remaining m2 - i triples by running AZv.
starting at the i + 1st round using the random tape r and the history
Rl, Rj, ..., Ri, R;. Note that II(o) equals iWvi(G), while II(rn ) equals
(P, V*)(G).

Clearly, the circuit C. that distinguishes the extreme hybrids (i. e., H(o) and
11(~’)) also distinguishes two neighboring hybrids (i.e., 11(’) and 11(’+ 1), for
some ie{O,l, ..~, m2– 1}). N~mely, ~her~ exists an i such that

Pr(C~(II(i)) = 1) – Pr(C,Z(II(i+l)) = 1) > 21 ~ .
m “n

Let
(since

Let

e = l/(nz2 “ nc). Note that e–l as well as m / c are polynomials in
man—l).

n

H(i’~) be the distribution obtained from H(’) by omitting the last m2 – j
triples. It is easy to see that this circuit family can be modified, maintaining the
“distinguishing gap” (i.e., e) and the polynomial upper bound on the size of its

members, so that it distinguishes 11(”+ 1) and II(i+ 1‘z+ 1). (This is done by
incorporating klv+ into the circuits and applying it to construct the last
m2 – (i + 1) pairs. We get a probabilistic circuit that can be converted into a
deterministic one while maintaining the “distinguishing gap”. )

Let us take a closer look at 11(’”+*) and II(i+l’i+l). Intuitively, 11(’+1’’+1) is a
distribution obtained by taking the first i + 1 triples of (P, V*) ( G), while
II(i” + 1) is a distribution obtained by taking the first i triples of (P, V*)(G) and
letting &fv, produce the i + 1st triple. Let 11~( H,) be a random variable such

that H(i’i+ 1) = 17tH~( Hi), where Hi is chosen according to H(’’i). Similarly,
let HPv(lYi) be a random variable such that H(Z+ l’i+ 1) = IYZIIP ~(111), where
again Hi is chosen according to II(iZ). Intuitively, HM( Hi) (resp., IIP V( HI))
denotes the i + 1st triple produced by A4v. (resp., (P, V*)) when V*’S input
and communication tapes currently consists of the “history” H,. Since the
circuit c~ distinguishes II (~>t+ 1) from ~ (Z+ 1‘’+ 1) it follows that there exists an
H, such that the circuit C. distinguishes (equally well) H,II~( H,) from
HZIIP V( HZ). (This was just an averaging argument.) Incorporating this H, into
the circuit C., we get a circuit that distinguishes HM( Hi) from IIP V( H,).
Namely,

(-m2:nc)pr(C(~M(H,)) = 1) – pr(cn(Hpv(H1)) = 1) > E –

Recall that ~: { 1,2, . . n} ~ { 1, 2, 3} is a fixed coloring of G. Note that

~Pv(Hi) equals (j (mSgkg), Lu, v), (x-(4(u)), r.), (T(O(U)), r,)), where
m e~s~, (u, v) = V4(G, r; Hi, ~.(msg~>;)) and rti (resp., r,) is the ran-
domization used to encrypt the uth (resp., vth) element in msg$;. on the
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other hand, HM(HI) equals (1.( rnsg~“’v)(a’~)), (u, v), (a, rU), (b, r-y)),
wherg u, v, a, b are chosen by some distribution, (u, v) = V*( G, r;

Hi, fn( msg~
(u.v),(u,b))) and rU (resp., rv) is the randomization used to encrypt

the uth (resp., (~,p).(u,~). A typical element in bothvth) element in msg~
distributions is an encryption of an n-element vector and two pairs correspond-
ing to the decryption of two of its entries (the uth and vth entry).

We derive a contradiction (to Lemma 4.0) by using the circuit C. to
construct a circuit C: of polynomial-size, that distinguishes the encryptions of
the following two messages msgl and msgz, each being a sequence of 3 n
elements of {O, 1, 2, 3}. The sequence msg ~ consists of 3 n Zeros, while the
sequence msgz consists of a sequence of n ones followed by a sequence of n
twos and a sequence of n threes (i. e., msgl = 03n and rnsgz = 1“2”3”).

The Construction of C;. The circuit C;, incorporating the circuit C., the
coloring @, the (verifier’s) program V* and the history lli, operates as
follows. On input a text tl t2 “-‘ t3n,where tl G {O, 1} *, the circuit C; selects
at random (u, v) ~~E, Ze~S3 and rti, rve~ {O, I}n. For jc{u, v}, the

circuit C: sets Cj G T( 4( j)) and ij + ( Cj – 1) o n + j and constructs

text+- tl, ti, o“ c t,u_, f(cU, rU)ti +, ..0 ti _, f(cV, rV)ti “ “ “ tin.. “ “+1

(For j~{l,2, ..., n} – { u, v}, the ~th element in text is the ~th element in
the T( @(~))th third of the input. The uth element in text is f ( Cu, r,,) and the
vth element in text is f ( c v, r,).) The circuit C; then runs V* on Hi and text.
If V*(H,, text) # (u, v), then C; stops outputting O. If V*( H,, text) =
(u, v), then C; uses the circuit C. and stops outputting Cn( text, (u, v),
(cU, rU), (cv, rv))e {O, 1}. ❑

We are interested in the behavior of the circuit_ c; on the input distributions

~n( msgl) and fn( msg2). Og input distribution fn( msgl), the circuit C: runs
V* on input distribution ~n( ms~~“’v)(a’~)), for (u, v) ~~ E and a # b CR

{1, 2, 3}. On_ input distribution fn(msg,), the circuit C; runs V* on input
distribution fn( msgj’$), for x ERS3, We consider two cases. The easy case is
the one where the distribution of V*’s question (i.e., the edge it asks to reveal)
is substantially different on the two input distributions. In this case V*
constitutes a contradiction to Lemma 4.0. The second case is when the

distribution on V*’s question is indistinguishable (on the two input distribu-
tions) so that the circuit C; runs the circuit Cn with probability = 1/m, on
both input distributions. In this case, the circuit C: will distinguish the inputs
relying on the distinguishing gap of C~. A detailed argument follows.

Let 111 (resp., ~z ) denote~he probability distribution of text, constructed by
C;, on input distribution ~n( msgl )(resp., fn( msgz )). The distribution 111

(resp., ~2~ depends on (u, v), m, rU, rv chosen by ~.. Fixing such a choice,
we get a distribution Q[U’V)T’’U”P (resp.2 ~~’V)’m>’U”V), which is determined by
the input distribution fn( msgl ) (resp., j~( msg2)). The distribution ll$”’v)’m’run)

consists of u – 1 encryptions of O followed by f ( T( @(u), rU)), another v – u
– 1 encryptions of O, followed by Y( 7( +( v), r,,)) and n – v additional
encryptions of O. The distribution 11~’ ‘)’” ‘I” ‘v consists of the concatenation of
the distribution fn(~(~(l))), . . . . f.(r(o(u - l))), the element
f(~(q5(u), rU)), the distribution fn(m(o(u + l))), . . . . f.(~(o(v – l))),
the element f(~(~( v), r,)), and the distribution fn(~(~( v + l))),
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. . . . ~~(~(o(n))). We first prove that V*, invoked by the circuit, has essen-
tially the same output distribution, regardless of whether the input distribution
is DI or Dz.

CLAIM 4.2.1

lPr(v*(Hi, Dy”’-’.) = (u, v))

–p@’*(Hi, Dp”)’-’j = (u, V))l < ; ,

where the probability is taken over all choices of (u, v) ~ E, z ~ SB, and r,,,
r,e {o, l}n, with uniform probability distribution.

PROOF. Assuming on the contrary that Claim 4.2.1 does not hold, using an

averaging argument, we infer that there exist (fixed) u, v, and m such that V*
(with auxiliary input H,) distinguishes D~”’’’m’u’’u’rv from ~~”)’~’’u””, for r.,
ru~~ {0, l}*. Noting that these distributions are probabilistic encryptions
of two n-element sequences, we derive a contradiction to Lemma 4.0 (by
constructing a circuit incorporating V* and Hi). ❑

We are now ready to show that C; distinguishes the encryption of msg ~ from
that of msg~.

CLAIM 4.2.2

lPr(C~(~(msgl)) = 1) - Pr(C~(~(rnsg,)) = 1)1> ~.

PROOF. Let ~ be a random variable uniformly distributed upon E X S~ x
{O, 1}” x {0, 1}”. We use D[ (resp., Di) as a shorthand of ll~”’v)>m’’u>’p
(resp., D~VJ~’u~p).

By the construction of C;, we have

Pr(C~(~(msgl)) = 1) = Pr(V*(~,, ~i) = (u> v))

“ Pr(C~(D~, $’) = 11 V*(H,, D~) = (U, v)), (1)

where & = ((u, v), m, rU, rV) CR Ex Sq x {O, 1}” x {O, 1}” and $’ =
(u, v), (7r(q5(u)), r,,), (7r(d(v)), rV). Similarly,

Pr(C;(~(msg, )) = 1) = Pr(V*(lli, ~~) = (u, v))

By Claim 2.1, we have

lPr(V*(H,, D~) =

By observing that D~’’’T’”u””’” is independent of the choice of (u, v) ~ E as
long as me~ S~ and rU, r,c~ {O, 1}”, we get

- Pr(C~(D~, $’) = II V*(~,,~~) = (~,~)). (2)

(u, v)) - Pr(V*(lY,, D~) = (u, v))l < &. (3)

(4)
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and using the structure of (P, V*) we get

Pr(C~(llj, ~’) = 1 I V*(Hi, D;) = (U, V)) = I’r(C~(~~~(H,)) = 1). (5)

By the construction of the simulator, &fv*, we have

Pr(C~(ll~, ~’) = 1 I V*(H,, D:) = (u, v)) = pr(c.(~~(~l)) = 1) (6)

Combining (1-6) we get

where A is the absolute value of ,he difference between Pr( C~(ll~( I-fi)) = 1)
and Pr(C~(IIpv(Hi)) = 1).

Recalling that A > e, Claim 2.2 follows. ❑

Once proved, Claim 2.2 contradicts Lemma 4.0, and thus our hypothesis that

{ ~~x(G)}~,~sC and {(P, V*)(G)}~=~qC are polynomially distinguishable is
contradicted. Claim 4.2 follows. ❑

Combining Claims 1 and 2, the Proposition follows. ❑

Remark 14. The above protocol needs mz rounds. There are two alterna-
tive ways of modifiing the above protocol so to get a constant-round zero-
knowledge protocol for graph 3-colorability. In both modifications, the idea is
to have the verifier commit himself to all his queries (i.e., which edge he wants
to check for each copy of the colored graph) before the prover sends to the
verifier the corresponding colored graphs. The two modifications differ by the
manner in which the verifier commits to his queries. One modification is based
on the intractability of factoring or more generally on the existence of clawfree
pairs of one-way permutations (see [48] for definition). The second modifica-
tion is based on a relaxation of the definition of a proof system so that the
prover is also restricted to polynomial-time (and his “computational advantage”
over the verifier consists of an auxiliary input). This relaxation, referred to as
an argument (see Section 1.4), is natural in the cryptographic applications. The
details of the first modification are currently being worked out by Oded
Goldreich and Ariel Kahn. Carrying out the sketch of the second modification is
much more involved and is a corollary of a recent work by Feige and Shamir
[28]. Assuming the existence of a bit commitment scheme (the same assumption
as the one made in this paper), they show that any language in NP has a
bounded-round (computational) zero-knowledge argument. Using a stronger
assumption, Brassard et al. independently showed that any language in NP has
a bounded-round perfect zero-knowledge argument [18]. The reader should
note that the three results mentioned above are incomparable: Goldreich and
Kahn use a specific intractability assumption and get a (computational) zero-
knowledge proof, Feige and Shamir use a general complexity assumption and
get a (computational) zero-knowledge argument, while Brassard et al. use a
specific intractability assumption (incomparable to the one of Goldreich and
Kahn) and get a perfect zero-knowledge argument.

Remark 15. Protocol 4 is zero-knowledge assuming that the encryption
function used is nonuniformly secure. We do not know whether Protocol 4
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remains zero-knowledge if the encryption function is “only” (uniformly)
secure (i. e., cannot be “broken” by polynomial-time algorithms). A difficulty
encountered when trying to prove the statement is that the existence of a
sequence of graphs for which the simulator fails does not yield a contradiction
to the security of the encryption function, since there may be no efficient way to
generate these “problematic” graphs. However, a weaker statement can be
proven. An interactive proof system will be called “zero-knowledge on sam-
pleable distributions” if it is infeasible to find an instance (i. e., a triple
(x, y, z), where x is the common input, y is a private input for the prover and
z is a private input for the verifier) on which the simulator fails. For details,
see Goldreich [39].

Remark 16. Allowing the simulator to be expected polynomial-time (rather
than strictly probabilistic polynomial-time) is not essential to the zero-
knowledge property of Protocol 4, provided that the verifier is also restricted to
be strictly probabilistic polynomial-time. An easy modification of the simulation
makes it strictly polynomial-time without losing much in the quality of the
conversations produced. In the modified simulation, each round is repeated at
most m2 times and the simulator stops in the (highly unlikely) case that all m2
tries where unsuccessful. Thus, using “strictly polynomial time” instead of
“expected polynomial time ‘‘ in the definition of zero-knowledge, we also get
that Protocol 4 is zero-knowledge.

3.2 ZERO-KNOWLEDGEPROOFSYSTEMSFOR ALL NP. The following theorem
asserts that every language L 6 NP has a zero-knowledge proof system. We
know of three alternative ways of proving the theorem. The first two ways
consist of incorporating the standard reductions into a protocol for 3-colorabil-
ity (either an arbitrary protocol or Protocol 4). A subtle difficulty arises from
the fact that the cheating verifier has x c L and not only the graph into which x
is mapped. This might assist him when trying to extract “knowledge” from the
proof that the corresponding graph is 3-colorable. We show that this cannot be
the case by using additional facts. The first alternative is to use the fact that the
reduction is invertible; while the second alternative is to use the fact that
Protocol 4 has been proven zero-knowledge using a black-box simulation (and
thus is “auxiliary input zero-knowledge” [44, 60]). The third way to prove the
theorem consists of presenting a zero-knowledge proof system for L directly,
that is, using the nondeterministic circuit recognizing L (M. Blum, private
communication). Here, we use the first alternative.

THEOREM5. If there exists a nonuniformly secure encryption function,
then every language in NP has a zero-knowledge interactive proof system.

PROOF. (For NP-Completeness terminology and results consult [34].) Let
L e NP, and t be the polynomial-time computable and invertible reduction of L
to 3-Colorability ( G3 C). Namely, t is the composition of the standard reduc-
tion of L to 3SAT (obtained by Cook’s proof) and the standard reduction of
3SAT to G3C (presented in [34]). Recall that x e L iff f(x) is 3-colorable. A
zero-knowledge interactive proof system for L proceeds as follows:

On common input x, each party computes G ~ t(x). The prover uses an
(arbitrary) zero-knowledge interactive proof system to prove that G is 3-colora-
ble. The verifier acts according to the result of this subprotocol.
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Clearly, the above protocol constitutes an interactive proof system for L. To
see that the protocol is indeed zero-knowledge, one should note that t is
polynomial-time invertible (i.e., there exists a polynomial-time algorithm t-1

such that t-1(t(x)) = x). Details follow:
Let V* be an ITM that interacts with P, the prover specified for L. Note

that P applies algorithm t to the input x and initiates P~~c, the prover

specified for G3 C, on t ( x). We consider the ITM V** which interacts with
P~~c on common input t(x) and auxiliary input x (i.e., (P~~c, V**( x))(t( x))
= (P, V*)(x)). Note that V**, which has an auxiliary input, is not of the
form allowing the application of the fact that P~~c is a zero-knowledge prover.
Instead, we construct an ITM V*** that on input t(x), first computes x and
then applies V**. (Here, we use the fact that t is polynomial-time invertible.)
Now, by the fact that P G3C is a zero-knowledge prover, it follows that there
exists an ikfvx.+ such that { (PG3C, V***)(t( x))} X,-~ and { Ivfv*..(t( x))},=~
are polynomial indistinguishable. Let &fv.( X) = ~v,,~( t( x)). Since
(P, V*)(x) equal (PG,C, ~ ***)(t( x)), the theorem follows. ❑

Theorem 6 adapts Theorem 5 to a cryptographic scenario in which all players
are bounded to efficient computation. What is needed is to notice that the
standard reductions also provide (implicitly) efficient transformation between
the solutions to the instances.

THEOREM6. If there exists a nonuniformly secure encryption function,
then every language in NP has a zero-kno wledge interactive proof system in
which the prover is a probabilistic polynomial-time machine that gets an
NP proof as an auxiliary input. (An NPproof of” x ~ L” is a sequence of
nondeterministic choices leading a fixed NP machine to accept x. For-
mally, let P~: {0, 1}* x {O, 1}* ~ {O, 1} be a polynomial-time computable
predicate such that x ~ L iff ] y such that P~( x, y) = 1. Then, y is called
an NPproof of “x~L”. )

PROOF. Let t be as in the proof of Theorem 5. Let t‘be a polynomial-time
computable function transforming the sequence of nondeterministic choices
leading to acceptance of x into a proper 3-coloring of the graph t(x) (i.e., if
P~( x, y) = 1, then t’(y) is a 3-coloring of t(x)). Note that the fact that such a
function is polynomial-time computable is guaranteed by neither Karp’s nor
Cook’s definition of NP-completeness. 12 Nevertheless, the standard reduction
of L to G3 C, has this property. Recall that the prover in Protocol 4 may be a
probabilistic polynomial-time machine that gets a 3-coloring as an auxiliary
input. It follows that the prover in the protocol presented in the proof of
Theorem 5 may be a probabilistic polynomial-time machine that receives as
input x GL and y such that P~( x, y) = 1. (The prover computes G - t(x)
and ~ - t‘( y), and participates in Protocol 4 using the 3-coloring @ of G.)
The theorem follows. ❑

Remark 17. Another useful strengthening of the results of Theorems 5 and
6, is to prove that the interactive proof systems suggested above are in fact
“auxiliary input zero-knowledge. ” Intuitively, this means that whatever the
verifier can efficiently compute after interacting with the prover on input x c L
and having additional information z, can be efficiently computable from x

12Interestingly, polynomial-time computable transformation of witnesses is guaranteed by Levin’s

definition of NP-completeness [56].



724 0. GOLDREICHET AL

and z (without interacting with anybody). Here the auxiliary input is to the
verifier who, even with it in his possession, cannot extract “knowledge” from
the prover. It is easy to see that Protocol 4 as well as the protocol presented in
the proof of Theorem 5 are in fact auxiliary-input zero-knowledge. For further
details see [44] and [60]. The reason that this extension is important to
cryptographic applications is that in typical applications, zero-knowledge proof
systems are used as subprotocols inside another protocol. The party playing the
role of the verifier may have extra information, obtained in previous stages of
the protocol, which he might use in the (zero-knowledge) subprotocol in order
to try to extract “knowledge” from his counterpart (who plays the prover).

Remark 18. Another issue of importance for practical applications is the
efficiency of a zero-knowledge proofs ystem, and in particular the efficiency of
a zero-knowledge proof system for a language L as function of the nondeter-
ministic Turing machine complexity of L. There are two standard efficiency
measures that may be considered:

(1)

(2)

The computational complexity of the proof system (i. e., number of steps
taken by either or both parties).
The communication complexity of the proof system. Here one may
consider the number of interactions, and/or the total number of bits

‘3 For example, in Protocol 4 the number of interactions isexchanged. (
0( m2) and the number of bits exchanged is 0( nz . m2).)

A nonstandard measure for the efficiency of a zero-knowledge proof system
is its tightness. Intuitively, tightness is the ratio between the time it takes
the simulator to simulate an interaction with the prover and the time the inter-
action really takes. Formally, the knowledge-tightness (tightness) of a zero-
knowledge proof system is a function t: N ~ N (from integers to integers)
satisfying the following: For every polynomial-time ITMs P’*, there exists a
machine A4v. such that { A4v,( x) } ~=~ is polynomially indistinguishable from

{(~, v*)(x) }XGL, and

time(Mv*(x))

time( V*(x)) < ‘(1 ‘1)’

where time( A ( x)) is the expected number of steps taken by the machine
(resp., lTM) ~ on input x. The definition of zero-knowledge only guarantees
that the knowledge-tightness does not have to grow faster than a polynomial.
However, the definition does not guarantee that the knowledge-tightness can
be bounded above by a particular polynomial. It is easy to see that the
knowledge-tightness of Protocols 2 and 3 is a constant while the tightness of
Protocol 4 is m (i.e., the number of edges). We believe that the knowledge-
tightness of a protocol is the most important efficiency measure to be consid-
ered, and that it is very desirable to have it be a constant. Furthermore, using
the notion of knowledge-tightness one can introduce more refined notions of
zero-knowledge and in particular constant-tightness zero-knowledge. Such re-
fined notions may be applied in a nontrivial manner also to languages in P.

‘3A third measure.theimportanceof whichhasbeenrealized only recently (see [55]), is the number of
‘ ‘locked boxes” to be used in a physical Implementation of the system.
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The protocols obtained in Theorems 5 and 6 are not the most efficient
possible. Protocols with constant knowledge-tightness and a number of itera-
tions which is (merely) super-logarithmic exist for all languages in NP (assum-
ing, of course, the existence of secure encryption). Suggestions are due to
J. Benaloh, M. Blum, D. Chaum, R. Impagliazzo, M. Rabin, A. Shamir and
possibly others. The most efficient suggestion (concurrently in all measures) is
a protocol that uses the circuit value problem. For more details, see [37].

3.3. APPLICATIONS —AN EXAMPLE. Owing to its generality, Theorem 6 has a

dramatic effect on the design of cryptographic protocols. Let us demonstrate

this point by using Theorem 6 to present a simple solution to a problem that
until recently was considered very complex: verifiable secret sharing. The
more general implications of Theorem 6 are investigated in [42] and [43].

The notion of a verifiable secret sharing was presented by Chor et al. [21],
and constitutes a powerfid tool for multiparty protocol design. Loosely speak-
ing, a verifiable secret sharing is an n + 1-party protocol through which a
sender can distribute, to then receivers, pieces of a secret s recognizable
through an a priori known “encryption” f(s). The n pieces should satisfy the
following three conditions (with respect to 1<1< u s n):

(1) It is infeasible to obtain any knowledge about the secret from any 1 pieces;
(2) Given any u pieces, the entire secret can be easily computed;
(3) Given a piece, it is easy to verify that it belongs to a set satisfying condi-

tion (2).

The notion of a verifiable secret sharing differs from Shamir’s secret sharing
[65] (invented independently by Blakely [13]), in that the secret is recognizable
and that the pieces should be verifiable as authentic (i.e., condition (3)).

Following the first implementation presented in [21], improvements in effi-
ciency and “tolerance” appeared in [5] and (P. Feldman and S. Micali, private
communication). These solutions are conceptually complicated, and rely on
specific properties of particular encryption functions.

Assuming the existence of arbitrary one-way permutations, we present a
conceptually simple solution allowing u = 1 + 1 s n. Our scheme combines
Theorem 6 with Shamir’s (nonverifiable) secret sharing [65]. Let p be a prime
and p > n. To share a secret s e GF( p) recognizable through r = f(s), the
sender proceeds as follows: First, the sender chooses at random an l-degree
polynomial over GE’(p) with free term s, and evaluates it in n fixed nonzero
points (these are the pieces in Shamir’s scheme). Next, the sender encrypts the
ith piece using the public encryption algorithm of the ith receiver, and sends all
encrypted secrets to all receivers. Finally, the sender provides each receiver
with a zero-knowledge proof that the encrypted pieces correspond to the
evaluation of a single polynomial over GF’( p), and that applying f to the free
term of this polynomial yields s. This statement is an NP-statement and hence
can be proven in zero-knowledge.

Recently, Feldman found a more efficient implementation of verifiable secret
sharing based on the intractability of factoring [29].

4. Conclusions

The primary motivation for the concept of zero-knowledge proof systems has
been their potential use in the design of cryptographic protocols. Early exam-
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pies of such use can be found in [23], [30], and [47]. The general results in this
paper allowed the presentation of automatic generators of two-party and multi-
party cryptographic protocols (see [69] and [43], respectively). Further im-
provements are reported in [33], [45], and [53].

An elegant model for the investigation of multiparty cryptographic protocols
was suggested in [12]. This model consists of processors connected in pairs via
private channels. The bad processors have infinite computing resources (and so
using computationally hard problems is useless). Hence, computational com-
plexity restrictions and assumptions are substituted by assumptions about the
communication model. Work in this model is inspired by our results and the
results in [43] but does not use them explicitly. In particular, an automatic
generator of protocols for this model, tolerating up to a < ~ fraction of
malicious processors, has been presented in [12] and [20]. Augmenting the
model by a broadcast channel, tolerance can be improved to < ~ fraction [62].
(The augmentation is necessary, as there are tasks that cannot be performed if a
third of the processors are malicious (e.g., Byzantine Agreement).) Beyond the ~
bound, only functions of special type (e. g., in the Boolean case only, the
exclusive-OR of locally computed functions) can be privately computed [22].

4.1. A “POSITIVE” USE OF NP-COMPLETENESS. So far NP-completeness

results have mostly had a “negative” utility: It was (and is) the most practical

way to give evidence to the intractability of a problem. Here, we want to point

out a “positive” use of NP-completeness: Its primary role in deriving the

general results of Theorems 5 and 6 (i.e., zero-knowledge proof systems for

every NP-statement) from Proposition 4 (i. e., a zero-knowledge proof system

for a particular NP-complete problem).
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