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Abstract— Statistical approaches to modeling dynamics
and clustering data are well studied research areas. This
paper considers a special class of such problems in which
one is presented with multiple data streams and wishes to
infer their interaction as it evolves over time. This problem
is viewed as one of inference on a class of models in which
interaction is described by changing dependency structures,
i.e. the presence or absence of edges in a graphical model,
but for which the full set of parameters are not available.
The application domain of dynamic link analysis as applied
to tracked object behavior is explored. An approximate
inference method is presented along with empirical results
demonstrating its performance.
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to this class of models as dynamic dependence models and
introduce a specific implementation via a hidden factoriza-
tion Markov model (HFactMM). This model allows us to
take advantage of both structural and parametric changes
associated with changes in the state of interaction of a set
of objects. We further show how inference and learning
on an HFactMM can be used in an approximate inference
procedure on a more expressive switching linear dynamic
systems (SLDS) model.

The approach presented in this paper fits into the general
category of data clustering and dynamic modeling. Two
classic examples in this category are fitting mixture models
and training hidden Markov models (HMMs) using the

Consider a scene in which multiple objects such as EM algorithm [2]. Typically these models assume fixed

people or vehicles are moving around in an environment. dependency structure for the observed data. The study of
Given noisy measurements of their position over time, a models whose graphical structure is contingent upon the
question one may ask is, which, if any, of these objects values/context of the nodes in the graph can be traced
are interacting at each point in time. The answer to this back to Heckerman and Geiger’s similarity networks and
type of question is useful for social interaction analysis, multinets [3]. This class of models has been further ex-
anomalous event detection and automatic scene summaplored and formalized by Boutilier et al.'s Context-Specific
rization. For example, Heider and Simmel [1] showed that Independence [4] and more recently Milch et. al's Contin-
when describing a cartoon of simple shapes moving on agent Bayesian Networks [5]. An HFactMM fits into this
screen, one will tend to described their behavior with terms class of models and is closely related to Bilmes’s Dynamic
like “chasing”, “following” or being independent of one Bayesian Multinets [6]. The focus of [6] was to show how
another. These semantic labels describe the dependenchearning state-indexed structure using labeled training data
between objects and allow humans to provide a compactcan yield better models for classification tasks. In contrast,
description of what they are observing. here the dependency structures are defined by the problem
We view this problem as a specific example of a and no labeled data is required.
general class of problems which we refer to as dynamic HFactHMMs are also closely related to SLDS mod-
dependency tests. A dynamic dependency test answers thels used by the tracking community [7]. SLDS models
following question: given multiple data streams, how does are combinations of discrete Markov models and linear
their interaction evolve over time? Here, interaction is state-space dynamical systems. The hidden discrete state
defined in terms of changing graphical structuiess, the chooses between a predefined number of state-space mod-
presence or absence of edges in a graphical model. Foels to describe the data at each point in time. SLDSs
example, in the object interaction case, “X is following are primarily used to help improve tracking and track
Y” implies a casual dependency between Y and X. interpretation by allowing changes to the state-space model
We cast a dynamic dependency test as a problem ofparameters. Exact inference and learning for such models
inference on a special class of probabilistic models in is difficult. However, in this paper we are only interested
which a latent state variable indexes a discrete set ofin changes to the dependency structure of the observations
possible dependency structures on measurements. We refeand consider the latent dynamic state in the state-space



model a nuisance variable. An HFactMM explicitly models
varying dependence structure over time and allows for
efficient learning and inference. This paper explores the
tradeoff between using this simple model and incorporat-
ing a latent dynamic state using an SLDS model when
performing a dynamic dependency test. We begin by
describing HFactMMs and later show how inference on an

HFactMM can be used as a subroutine in an approximate

inference algorithm for SLDS models.

II. HIDDEN FACTORIZATION MARKOV MODEL
Let O, = {o},07,...,0{'} be an observation ofV
random variables at time¢ with o! € R%. Let Oy.r
representO, from time 1 to7. Given Oy.1, the goal is

to label the sequence according to the dependency among

the N random variables at each tinte To this end, we
propose apth order hidden factorization Markov Model,
HFactMM(p), in which we assume that the observation
depend on the pagt observations and a hidden stefg
The statesS;.r are Markov yielding
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where© are the parameters. This model is an HMM when
p = 0 and a Markov switching auto-regressive model
(MSAR) for p > 0. However, it has the special property
that the valuek € [1...K] of the hidden state variable
S, indicates one ofK possible factorizationg’™* and
parametrization®* such that
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whereF* specifies a partitioning of a full set &f random
variables intoC}, subsets such that

L...0V} and FF(\FF=0 (3
Vi,j € [1..Ck] when i # j. For example, given
three objects,p 1 and the factorization for state
k, F* {{o',0%},{0®}}, vields pgr (FF)
p(o,02|o}_1,0%_1;0%)p(o}|o}_;;OF) as the state con-
ditional distribution of the observation at time Figure

1 shows an example order 0 HFactMM with two possible
interactions i = 2) in which F! = {{o!, 0%}, {0®}} and

F? = {{0?%,0%},{0'}}. Note that the value of the staf
determines the probabilistic structure of the observations

at timet.

We consider situations in which the model parameters
are not knowna priori. This necessitates both a learning
and inference step. The Baum-Welch/EM algorithm can be
used with a slight modification for learning the parameters
of an HFactMM, subsequently Viterbi decoding can be
used for exact inference [2]. We construct and utilize an
HFactMM model in the following way:

Fig. 1. Example HFactMM(0). Conditionally labeled edges are
only present when the condition is true, following the notation
in This graph notation follows that of CBNs [5].

1) Define theK possible dependency structures and parame-
terization of the HFactMM for your task.
2) Learning: Estimate® = arg maxg p (O1.7; O) (via EM)

3) Inference: Finds;.r = argmax, _ p sl;T|01:T;@)

$1:T
This approach does not use any training data and
performs both learning and inference on the data being
analyzed. We make the usual assumption thaka#itates
are visited at least once (and typically multiple times)
during the observed sequence.

A. Learning

Let © = {m,Z,0',...,05} be the parameter set
for the model wherer, = p(S; =k) are the prior
state probabilitiesZ is a K x K matrix with Z;; =
p(Siy1 =1|S; = j), and ©F are the parameters for fac-
torization F* (i.e, parameters fopg: ,(F*)). As with
typical HMMs and MSAR models, the EM algorithm
can be applied to models with this structure in order
to find the parametersd, that maximize the likelihood
function [2]. While the E-step is unchanged, the HFactMM
requires a minor change to the M-step of EM. Since the
state conditional modetgr ,,(F*) breaks up into the),
factors of F*, the structure of the M-step updates simplify
accordingly yielding a more structured learning procedure
with savings in storage and computation.

B. Inference

Having learned the parametef, the data sequence is
labeled by finding the most likely state sequence

{817} = arg Igla;(p(SI:T|01:T; o). 4)

This can be done efficiently with the Viterbi algorithm [2].
Viterbi decoding implicitly performs ai/-ary hypothesis
test comparing all/ = K possible state sequences. This
alternative view exposes how state sequences distinguish
themselves via both structural and general statistical model
differences between the learned state conditional distri-
butions. Consider a binary hypothesis test between two
different state sequencej’.. and S|’z given the learned

parameter®. The test has the form
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Taking the expected value of the log likelihood ratio when ,@ > »(.) >
H; is true yields |
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where F? is the common dependency structure (set of ﬁ) gz
edges) shared by ali* (e.qg, if {o', 02} is common to all N N i ,
K structures then it will also appear ). Note that any \[/ v \[/ v \[/ v
parameter seé®* can be applied to th&? factorization by »(%) >() »(2) >
marginalizing ovempgx (F*) appropriately. An equivalent ‘ ‘ z ‘
break down occurs undef, (with a negation). Notice @ @ e e @ @
that the expected log likelihood ratio decomposes into two (b)

terms. The first term concerns pu.rely structural dlfferences.Fig_ 2. High level SLDS structure (a) and detailed structure of
It compares the true structure with the common structure, model used in experiments (b)

under the true parameters. The second term contains both

structural and parameter differences. It compares the com-

mon structure with the true parameters to the incorrect sourceV,. Note that the dynamics on the observations are

hypothesis. Typically HMMs and MSAR models assume a induced via the dynamics on the latent dynamic sh&te

fixed dependency structure and thus only the second term Learning and exact inference on an SLDS model is
is non-zero and depends only on parametric differences.gjfficult. For example, ifS; can takeK discrete values
The other extreme occurs when performing windowed \yhich indexesk different Gaussian models faX,, the
dependency tests which only take advantage of the firstyistribution p(X;|01) is a mixture of K! Gaussians,
term [8]. each one associated with a possible state sequénge
1. | NCORPORATING ASTATE-SPACE M ODEL This exponential growth can be dealt with in many ways

. PR ) .
A HFactMM with orderp > 0 explicitly models the from collapsing theK* mixture into a smaller mixture at

dynamics of the observation sequence. If we assuptaa  €acht [9], [10], to using a variational approach which
order Gaussian auto-regressive model the state conditionafits a simpler model to maximizing a lower bound on the
distribution will have the form likelihood of the data [7].

P(O¢|O—p).(t—1), St) = N(Og — A [O¢—p):t—1)] 50, 2). As an alternative we take an iterative coordinate ascent
(7 approach. If one were given the state sequefice EM

of the previousp with the addition of Gaussian noise. . ;
A®¢+ determines the linear combination when the state ismference on the dyn_amlc Staﬁl:T. can be performed_
S,. This is a simple model in which the dynamic state of USINg Rauch-Tung-Strieber smoothing with the appropriate

system is being directly observed. However, it is common model parameters (which are specified at each tirbg
to assume there is a latent dynamic state that is onlyS;). Similarly if one were given the dynamic sta;.r
gar“r?”y ?bserved t?trough a no('ﬁ/ rEeell_sureme_pht goces_slearning and inference for thé;.; is simple. That is,
uch systems are ofién assumed 1o be finear with &aussian,gitioned onX .7, O, can be ignored and one is left
noise following a state-space model of the form X LT 9 .
9 P with an HFactMM of order 1 which treatX;.r as its
Xi=AX; 1 +V; observation.

8

0: =Y, =CX: + Wy, © Thus we begin by first initializing to a random state
where X; is a hidden dynamic state variable at tirhe sequence?lzT, then perform learning and inference on
andV,; and W, are independent Gaussian noise sources.X ;.7 to produce an estimatX ;... We next condition on
An SLDS assumes there is an additional hidden discretethis estimate to updatél:T and repeat. It is important to
state S; that determinesA, C, and the covariance of the remember that for the application of interest indexes
noise sources. The high level structure of such models isa particular structure via factorizatiafi®:. For this state-
shown in Figure 2(a). For the problem of object interaction space model this factorization describes how the dynamic
analysisS; indexes how the distribution of the dynamic stateX;.r evolves. We will give a specific example in the
state X, factorizes via the structure oA and the noise  next section.



IV. EXPERIMENTS As a baseline, the first approach is given the true

Here we consider th&V = 2 case in which we have dynamic stateX;.r as its observations and uses an
noisy observations of position for two objects. We assume HFactMM(1) model to do learning and inference. The
fjri]secrzfe?eresgavt(gtaﬁez of In(;[evr\/aeCté%gusrﬁgcmgg g¥ethrﬁog'i%‘;e”full set of parameters used for this baseline model are

t- t = — 0 1 i —
independently and if; = 1 they are interacting. We begin © = {r26 ’U@ ) WTereQ thel mtziependemS’,(_ =0
with a constant velocity model where a latent dynamic Parameters ar®” = {A", A% X, , 3.}, and the interact-

state evolves via ing/dependent{; = 0) parameters ar®' = {A2 312},
X! A 0] [x, v The independent model parameters match Equation 9,
[Xg] - [ 0 A?} [Xg_l] + [Vg] ’ ©) while a more generic model is used for the dependent case

with X; = A'2X; ; + V; and V, drawn from a zero
) St At mean Gaussian with full covarian®!2. Given X;.r the
xt = [xZ roa Z] and ; Gl A

t t Yo T Y] oo baseline model learns the most likely set of paramesers

where the dynamic state is position and velocity in 2D,

1 5 I AI and then outputs the most likely state sequence.
Al =A% = , (10) o .

0 I The second approach is given only the observation
whereI and 0 are 2x2 identity and zero matrices. Noisy S€dquenc@®,.r and performs coordinate ascent on the full
observations of position are obtained via SLDS model. It has the same parameter set as the baseline

1 1 1 1 approach with the addition of the observation ma@ixand
(oh C 0| |x; Wy . . . . ..
|:02:| = {0 Cz] Lz] + |:w2] ) (11) observation noise varianee,. For simplicity we assume
t t t

_ ~ these observation process parameters are known. We set a
whereC! = C? = [I, 0] and the observation noise is maximum number of iterations of coordinate ascent to 10

independent of the stat§, i.e., but found that it usually converges in less than 5 iterations
p(we, wi|S:) = p(wi, wi) =N (th;oyo'w]:) N (W§;07 ) for our experiments.
(12) The third approach is given only the observation se-

. Ffurthetr.moret,) i”t tt?]is .sitmplet_modtelt we ass;;medth_at tﬁ“ quence and fits a higher order HFactMM(3). While this
information about the nteractive state 1s captured via e ., yq yields efficient inference and learning it does not

driving noise. That is, wher$; = 0 the driving noise is .
indep%ndent and factorizes ats g model the latent dynamic stal,. It models the effects

Lo L ) of any latent dynamics through a higher order auto-
p(ve,vilSe = 0) = N (vi;0,8.) N (vi:0,3.)  (13) regressive model on the observations. Again, note that for
and whenS; = 1 the noise is fully dependent the problems of interest in this papéX; is a nuisance
L vl 3, ¥ variable. Our primary focus is on accurately estimating the
p(ve,vilSi =1) =N ([v?t} ;0,D [pzvv 2:]) (14) interactive stateS; and not on producing accurate estimates
of the dynamic stat&;. A question we wish to explore is

W('jth C()_Lrelatlﬁnp and a fa?t(()er mgre varlarr:ce. I:ere whether not this simple model is useful even when there
p describes the amount of dependency when they areg , y,q underlying latent dynamic state.

interacting. It is the only parameter that affects the first Figure 3(a) shows for fixed and o,, the average

term in Equation 6. The paramet@ changes only the probability of error for these three techniques as a function

Sﬁcond_te::m In Egust'o_lf‘hﬁ' T_he structu_re Olf this ;n?de.ltr'ls p. As expected all three approaches improve dramatically
shown in Figure 2(b). This give us a simple model wi as p increases. A similar trend occurs for a fixed

parameters that are easy to interpret. It is important to note,_ _ | o, and an increasing) in Figure 3(b). Figure 3(c)

that theI.Hl_:acétMthn;j SLDSdmodeIs used |r;]th|s pape]r( shows how observation noise degrades the performance
are not. Imite to't IS form and can cgpture other types o of the approaches that do not have the benefit of directly
interaction ¢.g, via changing aA. matrix). observing the dynamic state. In all of the figures it is clear
A. lllustrative Example even though the coordinate ascent technique comes with
For the purpose of testing the approach under knownMore computational pomplexity and approximate infergnce
conditions, we draw multiple sample paths from the model 't outperforms the simple HFactMM(3) by incorporating
described above with various settingspofD and observa- & latent dynamic state. However this performance gap
tion noise variancer,,. We do this with a fixed dynamic  disappears when the state conditional models are easily
on the stateS, with 7o = 7, = .5, Zoo = Z11 —= .95 distinguishablei(e., high p or D).
and Z,15, = Z»; = .05. For each setting op, D, ando,,
we drawT = 400 samples (of botX; and O;) from the
model. This is performed 50 times for each setting and the  Next we analyzed the interaction of two objects moving
average performance of a dynamic dependency test usingn a real environment. These two objects are individuals
3 different approaches is recorded. wearing hats designed to be easy to visually track. The

B. Interacting People
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Fig. 3. Avg. probability of error for synthetic data as a function of falb) D (c) o.,. (d) Sample frame from interacting people data.

TABLE |
V. CONCLUSION
RESULTS FOR INTERACTING PEOPLE DATACV=CONSTANT . . .
VELOCITY. B=BROWNIAN MOTION In this paper we looked at the problem of inferring latent
Probability of Error dynamic dependency structure to determine the interaction
Sequence|| Coord. Asc. CV | Coord. Asc. B| HFactMM(1) among multiple moving objects. We have shown that by
; ;g'g ég gg modeling dependency as a dynamic process one can exploit

both structural and parameter differences to distinguish
between hypothesized states of dependency/interaction.
We discussed the use of an HFactMM for such tasks
and showed how it can be used to perform approxi-
i ) ) ) . i mate inference on an SLDS model which incorporates a
tlme: When mteract!ng they are either following or trying state-space description of object dynamics. Experiments
to_m|rror each other's act_lons. Each sequence was over . ere performed on both controlled synthetic and recorded
minutes long and contained between 8 to 12 ransitions yaia of people/objects interacting. Empirical performance

between interacting and moving independently. In the first 4o 1 ngtrated the utility of approximate inference based on
sequence the individuals move faster when interacting. ., ginate ascent for determining interaction states.
This is not the case for the second sequence in which
individuals maintain the same speed when interacting and REFERENCES
moving independently. Both sequences were recorded Us-[1] F. Heider and M. Simmel, “An experimental study of apparent
ing a camcorder at 12 fps. Simple background subtraction behavior,” inAmerican Journal of Psychologyt944, vol. 57, pp.
and color filtering with smoothing provided a simple blob 243-256.
. [2] L.R. Rabiner, “A tutorial on hidden markov models and selected
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truth of interaction state sequence was also established by[3! D: Geiger and D. Heckerman, *Knowledge representation and in-

. . ference in similarity networks and bayesian multinets,Atificial
hand labeling. Figure 3(d) shows a sample frame from one Integlligence 1996, vol. 82, pp. 45-74.

of the sequences. [4] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne
Koller, “Context-specific independence in Bayesian networks,” in
We ran dynamic dependency tests on both of these ] gAlMllgﬁG,gp-'\iliaiZ% onag. S. Russell. DL © g
: . . . len, . artni, . ontag, . ussell, .L. ng, an
sequences usmg_the Coordmatet ascent approach _assummés A. Kolobov, “Approximate inference for infinite contingent bayesian
a constant velocity model (4 dimensional dynamic state networks,” in 10th Intl. Workshop on Artificial Intelligence and
initialized with an A matrix with constant velocity struc- - ?ti‘tS'BZ'IOOS. 5 - bavesi ’ Proc. of 16 con
. . A. Bilmes, “Dynamic bayesian multinets,” Proc. of 16th conf.
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we found that the dynamic state transition matAxwas glggsgaéz-space models,” Meural Computation1998, vol. 12, pp.
close to diagonal |nd|c§1t|ng that a Brownlan motion model 8] AT. Ihler, J.W. Fisher, and A.S. Willsky, “Nonparameteric hypoth-
may be more appropriate. Rerunning the dependency test esis tests for statistical dependency, Tirans. on signal processing,
assuming a simple Brownian motion model (the state is o ipeglalsliﬂfe on n:jac;llnf IEa{_nm@t_OM- d Tracking: Princiol
e f . . . bar-shalom an . LI, EStimation an racking. Principles,
position only) we obt_aln.ed _the improved results in colurr_m Techniques and Softwardrtech House, 1993.
three of Table I. This indicates that a constant velocity [10] c-J. Kim, “Dynamic linear models with markov-switching,” in
model may not be correct for this data in which individuals Journal of Econometrics1994, vol. 60, pp. 1-22.
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two individuals move around an enclosed environment and
are randomly instructed to “interact” for a limit period of



