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Abstract— Statistical approaches to modeling dynamics
and clustering data are well studied research areas. This
paper considers a special class of such problems in which
one is presented with multiple data streams and wishes to
infer their interaction as it evolves over time. This problem
is viewed as one of inference on a class of models in which
interaction is described by changing dependency structures,
i.e. the presence or absence of edges in a graphical model,
but for which the full set of parameters are not available.
The application domain of dynamic link analysis as applied
to tracked object behavior is explored. An approximate
inference method is presented along with empirical results
demonstrating its performance.

I. I NTRODUCTION

Consider a scene in which multiple objects such as
people or vehicles are moving around in an environment.
Given noisy measurements of their position over time, a
question one may ask is, which, if any, of these objects
are interacting at each point in time. The answer to this
type of question is useful for social interaction analysis,
anomalous event detection and automatic scene summa-
rization. For example, Heider and Simmel [1] showed that
when describing a cartoon of simple shapes moving on a
screen, one will tend to described their behavior with terms
like “chasing”, “following” or being independent of one
another. These semantic labels describe the dependency
between objects and allow humans to provide a compact
description of what they are observing.

We view this problem as a specific example of a
general class of problems which we refer to as dynamic
dependency tests. A dynamic dependency test answers the
following question: given multiple data streams, how does
their interaction evolve over time? Here, interaction is
defined in terms of changing graphical structures,i.e., the
presence or absence of edges in a graphical model. For
example, in the object interaction case, “X is following
Y” implies a casual dependency between Y and X.

We cast a dynamic dependency test as a problem of
inference on a special class of probabilistic models in
which a latent state variable indexes a discrete set of
possible dependency structures on measurements. We refer

to this class of models as dynamic dependence models and
introduce a specific implementation via a hidden factoriza-
tion Markov model (HFactMM). This model allows us to
take advantage of both structural and parametric changes
associated with changes in the state of interaction of a set
of objects. We further show how inference and learning
on an HFactMM can be used in an approximate inference
procedure on a more expressive switching linear dynamic
systems (SLDS) model.

The approach presented in this paper fits into the general
category of data clustering and dynamic modeling. Two
classic examples in this category are fitting mixture models
and training hidden Markov models (HMMs) using the
EM algorithm [2]. Typically these models assume fixed
dependency structure for the observed data. The study of
models whose graphical structure is contingent upon the
values/context of the nodes in the graph can be traced
back to Heckerman and Geiger’s similarity networks and
multinets [3]. This class of models has been further ex-
plored and formalized by Boutilier et al.’s Context-Specific
Independence [4] and more recently Milch et. al’s Contin-
gent Bayesian Networks [5]. An HFactMM fits into this
class of models and is closely related to Bilmes’s Dynamic
Bayesian Multinets [6]. The focus of [6] was to show how
learning state-indexed structure using labeled training data
can yield better models for classification tasks. In contrast,
here the dependency structures are defined by the problem
and no labeled data is required.

HFactHMMs are also closely related to SLDS mod-
els used by the tracking community [7]. SLDS models
are combinations of discrete Markov models and linear
state-space dynamical systems. The hidden discrete state
chooses between a predefined number of state-space mod-
els to describe the data at each point in time. SLDSs
are primarily used to help improve tracking and track
interpretation by allowing changes to the state-space model
parameters. Exact inference and learning for such models
is difficult. However, in this paper we are only interested
in changes to the dependency structure of the observations
and consider the latent dynamic state in the state-space



model a nuisance variable. An HFactMM explicitly models
varying dependence structure over time and allows for
efficient learning and inference. This paper explores the
tradeoff between using this simple model and incorporat-
ing a latent dynamic state using an SLDS model when
performing a dynamic dependency test. We begin by
describing HFactMMs and later show how inference on an
HFactMM can be used as a subroutine in an approximate
inference algorithm for SLDS models.

II. H IDDEN FACTORIZATION MARKOV MODEL

Let Ot = {o1
t ,o

2
t , . . . ,o

N
t } be an observation ofN

random variables at timet with oi
t ∈ Rdi . Let O1:T

representOt from time 1 toT . Given O1:T , the goal is
to label the sequence according to the dependency among
the N random variables at each timet. To this end, we
propose apth order hidden factorization Markov Model,
HFactMM(p), in which we assume that the observationOt
depend on the pastp observations and a hidden stateSt.
The statesS1:T are Markov yielding

p(O1:T , S1:T ; Θ) = p(S1:T ; Θ)

TY
t=1

p(Ot|O(t−p):(t−1), St; Θ),

(1)
whereΘ are the parameters. This model is an HMM when
p = 0 and a Markov switching auto-regressive model
(MSAR) for p > 0. However, it has the special property
that the valuek ∈ [1...K] of the hidden state variable
St indicates one ofK possible factorizationsF k and
parametrizationsΘk such that

p(Ot|(O(t−p):(t−1), St = k; Θ) =

CkY
i=1

p(F k
i,t|F k

i,(t−p):(t−1); Θ
k)

, pΘk,p(F k
t ),

(2)

whereF k specifies a partitioning of a full set ofN random
variables intoCk subsets such that

Ck[
i=1

F k
i = {o1, . . . ,oN} and F k

i

\
F k

j = ∅ (3)

∀i, j ∈ [1...Ck] when i 6= j. For example, given
three objects,p = 1 and the factorization for state
k, F k = {{o1,o2}, {o3}}, yields pΘk,1(F k

t ) =
p(o1

t ,o
2
t |o1

t−1,o
2
t−1; Θ

k)p(o3
t |o3

t−1; Θ
k) as the state con-

ditional distribution of the observation at timet. Figure
1 shows an example order 0 HFactMM with two possible
interactions (K = 2) in which F 1 = {{o1,o2}, {o3}} and
F 2 = {{o2,o3}, {o1}}. Note that the value of the stateSt

determines the probabilistic structure of the observations
at time t.

We consider situations in which the model parameters
are not knowna priori. This necessitates both a learning
and inference step. The Baum-Welch/EM algorithm can be
used with a slight modification for learning the parameters
of an HFactMM, subsequently Viterbi decoding can be
used for exact inference [2]. We construct and utilize an
HFactMM model in the following way:
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Fig. 1. Example HFactMM(0). Conditionally labeled edges are
only present when the condition is true, following the notation
in This graph notation follows that of CBNs [5].

1) Define theK possible dependency structures and parame-
terization of the HFactMM for your task.

2) Learning: EstimatêΘ = arg maxΘ p (O1:T ; Θ) (via EM)

3) Inference: Find̂s1:T = arg maxs1:T
p
�
s1:T |O1:T ; Θ̂

�
This approach does not use any training data and

performs both learning and inference on the data being
analyzed. We make the usual assumption that allK states
are visited at least once (and typically multiple times)
during the observed sequence.

A. Learning

Let Θ = {π,Z,Θ1, . . . ,ΘK} be the parameter set
for the model whereπk = p (S1 = k) are the prior
state probabilities,Z is a K × K matrix with Zij =
p (St+1 = i|St = j), and Θk are the parameters for fac-
torization F k (i.e., parameters forpΘk,p(F k)). As with
typical HMMs and MSAR models, the EM algorithm
can be applied to models with this structure in order
to find the parameters,̂Θ, that maximize the likelihood
function [2]. While the E-step is unchanged, the HFactMM
requires a minor change to the M-step of EM. Since the
state conditional modelpΘk,p(F k) breaks up into theCk

factors ofF k, the structure of the M-step updates simplify
accordingly yielding a more structured learning procedure
with savings in storage and computation.

B. Inference

Having learned the parameters,Θ̂, the data sequence is
labeled by finding the most likely state sequence

{ŝ1:T } = arg max
s1:T

p(s1:T |O1:T ; Θ̂). (4)

This can be done efficiently with the Viterbi algorithm [2].
Viterbi decoding implicitly performs anM -ary hypothesis
test comparing allM = KT possible state sequences. This
alternative view exposes how state sequences distinguish
themselves via both structural and general statistical model
differences between the learned state conditional distri-
butions. Consider a binary hypothesis test between two
different state sequencesSH1

1:T andSH2
1:T given the learned

parameterŝΘ. The test has the form

L̂H1,H2 , log
p
�
O1:T |SH1

1:T ; Θ̂
�

p
�
O1:T |SH2

1:T ; Θ̂
� H1

R
H2

log

0
@p

�
SH2

1:T ; Θ̂
�

p
�
SH1

1:T ; Θ̂
�
1
A .

(5)



Taking the expected value of the log likelihood ratio when
H1 is true yields

EH1
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(6)

where F ∅ is the common dependency structure (set of
edges) shared by allF k (e.g., if {o1,o2} is common to all
K structures then it will also appear inF ∅). Note that any
parameter setΘk can be applied to theF ∅ factorization by
marginalizing overpΘk(F k) appropriately. An equivalent
break down occurs underH2 (with a negation). Notice
that the expected log likelihood ratio decomposes into two
terms. The first term concerns purely structural differences.
It compares the true structure with the common structure,
under the true parameters. The second term contains both
structural and parameter differences. It compares the com-
mon structure with the true parameters to the incorrect
hypothesis. Typically HMMs and MSAR models assume a
fixed dependency structure and thus only the second term
is non-zero and depends only on parametric differences.
The other extreme occurs when performing windowed
dependency tests which only take advantage of the first
term [8].

III. I NCORPORATING ASTATE-SPACE MODEL

A HFactMM with order p > 0 explicitly models the
dynamics of the observation sequence. If we assume apth
order Gaussian auto-regressive model the state conditional
distribution will have the form

p(Ot|O(t−p):(t−1), St) = N(Ot −ASt
�
O(t−p):(t−1)

�
; 0,Σ).

(7)
i.e., the observation at timet will be a linear combination

of the previousp with the addition of Gaussian noise.
ASt determines the linear combination when the state is
St. This is a simple model in which the dynamic state of
system is being directly observed. However, it is common
to assume there is a latent dynamic state that is only
partially observed through a noisy measurement process.
Such systems are often assumed to be linear with Gaussian
noise following a state-space model of the form

Xt = AXt−1 + Vt

Ot = Yt = CXt + Wt,
(8)

whereXt is a hidden dynamic state variable at timet
andVt andWt are independent Gaussian noise sources.
An SLDS assumes there is an additional hidden discrete
stateSt that determinesA, C, and the covariance of the
noise sources. The high level structure of such models is
shown in Figure 2(a). For the problem of object interaction
analysisSt indexes how the distribution of the dynamic
stateXt factorizes via the structure ofA and the noise
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Fig. 2. High level SLDS structure (a) and detailed structure of
model used in experiments (b)

sourceVt. Note that the dynamics on the observations are
induced via the dynamics on the latent dynamic stateXt.

Learning and exact inference on an SLDS model is
difficult. For example, ifSt can takeK discrete values
which indexesK different Gaussian models forXt, the
distribution p(Xt|O1:t) is a mixture of Kt Gaussians,
each one associated with a possible state sequenceS1:t.
This exponential growth can be dealt with in many ways
from collapsing theKt mixture into a smaller mixture at
each t [9], [10], to using a variational approach which
fits a simpler model to maximizing a lower bound on the
likelihood of the data [7].

As an alternative we take an iterative coordinate ascent
approach. If one were given the state sequenceS1:T EM
can be used to learn the parameters of the model and
inference on the dynamic stateX1:T can be performed
using Rauch-Tung-Strieber smoothing with the appropriate
model parameters (which are specified at each timet by
St). Similarly if one were given the dynamic stateX1:T

learning and inference for theS1:T is simple. That is,
conditioned onX1:T , Ot can be ignored and one is left
with an HFactMM of order 1 which treatsX1:T as its
observation.

Thus we begin by first initializing to a random state
sequenceŜ1:T , then perform learning and inference on
X1:T to produce an estimatêX1:T . We next condition on
this estimate to updatêS1:T and repeat. It is important to
remember that for the application of interestSt indexes
a particular structure via factorizationFSt . For this state-
space model this factorization describes how the dynamic
stateX1:T evolves. We will give a specific example in the
next section.



IV. EXPERIMENTS

Here we consider theN = 2 case in which we have
noisy observations of position for two objects. We assume
there are two states of interaction specified by the hidden
discrete stateSt. If St = 0 we assume they are moving
independently and ifSt = 1 they are interacting. We begin
with a constant velocity model where a latent dynamic
state evolves via�

x1
t

x2
t

�
=

�
A1 0
0 A2

� �
x1

t−1

x2
t−1

�
+

�
v1

t

v2
t

�
, (9)

where the dynamic state is position and velocity in 2D,
xi

t =
[
xi

t yi
t ẋi

t ẏi
t

]T
, and

A1 = A2 =

�
I ∆I
0 I

�
, (10)

whereI and0 are 2x2 identity and zero matrices. Noisy
observations of position are obtained via�

o1
t

o2
t

�
=

�
C1 0
0 C2

� �
x1

t

x2
t

�
+

�
w1

t

w2
t

�
, (11)

whereC1 = C2 =
[
I2 0

]
and the observation noise is

independent of the stateSt, i.e.,

p(w1
t ,w2

t |St) = p(w1
t ,w2

t ) = N
�
w1

t ; 0, σwI
�
N
�
w2

t ; 0, σwI
�

(12)
Furthermore, in this simple model we assume that all

information about the interactive state is captured via the
driving noise. That is, whenSt = 0 the driving noise is
independent and factorizes as

p(v1
t ,v2

t |St = 0) = N
�
v1

t ; 0,Σv

�
N
�
v2

t ; 0,Σv

�
(13)

and whenSt = 1 the noise is fully dependent

p(v1
t ,v2

t |St = 1) = N

��
v1

t

v2
t ;

�
; 0, D

�
Σv ρΣv

ρΣv Σv

��
(14)

with correlationρ and a factorD more variance. Here
ρ describes the amount of dependency when they are
interacting. It is the only parameter that affects the first
term in Equation 6. The parameterD changes only the
second term in Equation 6. The structure of this model is
shown in Figure 2(b). This give us a simple model with
parameters that are easy to interpret. It is important to note
that the HFactMM and SLDS models used in this paper
are not limited to this form and can capture other types of
interaction (e.g., via changing aA matrix).

A. Illustrative Example

For the purpose of testing the approach under known
conditions, we draw multiple sample paths from the model
described above with various settings ofρ, D and observa-
tion noise varianceσw. We do this with a fixed dynamic
on the stateSt with π0 = π1 = .5, Z00 = Z11 = .95
and Z12 = Z21 = .05. For each setting ofρ, D, andσw

we drawT = 400 samples (of bothXt andOt) from the
model. This is performed 50 times for each setting and the
average performance of a dynamic dependency test using
3 different approaches is recorded.

As a baseline, the first approach is given the true
dynamic stateX1:T as its observations and uses an
HFactMM(1) model to do learning and inference. The
full set of parameters used for this baseline model are
Θ = {π,Z,Θ0,Θ1} where the independent (St = 0)
parameters areΘ0 = {A1,A2,Σ1

v,Σ2
v}, and the interact-

ing/dependent (St = 0) parameters areΘ1 = {A12,Σ12
v }.

The independent model parameters match Equation 9,
while a more generic model is used for the dependent case
with Xt = A12Xt−1 + Vt and Vt drawn from a zero
mean Gaussian with full covarianceΣ12

v . GivenX1:T the
baseline model learns the most likely set of parametersΘ̂
and then outputs the most likely state sequence.

The second approach is given only the observation
sequenceO1:T and performs coordinate ascent on the full
SLDS model. It has the same parameter set as the baseline
approach with the addition of the observation matrixC and
observation noise varianceσw. For simplicity we assume
these observation process parameters are known. We set a
maximum number of iterations of coordinate ascent to 10
but found that it usually converges in less than 5 iterations
for our experiments.

The third approach is given only the observation se-
quence and fits a higher order HFactMM(3). While this
model yields efficient inference and learning it does not
model the latent dynamic stateXt. It models the effects
of any latent dynamics through a higher order auto-
regressive model on the observations. Again, note that for
the problems of interest in this paper,Xt is a nuisance
variable. Our primary focus is on accurately estimating the
interactive stateSt and not on producing accurate estimates
of the dynamic stateXt. A question we wish to explore is
whether not this simple model is useful even when there
is a true underlying latent dynamic state.

Figure 3(a) shows for fixedD and σw the average
probability of error for these three techniques as a function
ρ. As expected all three approaches improve dramatically
as ρ increases. A similar trend occurs for a fixedρ
and σw and an increasingD in Figure 3(b). Figure 3(c)
shows how observation noise degrades the performance
of the approaches that do not have the benefit of directly
observing the dynamic state. In all of the figures it is clear
even though the coordinate ascent technique comes with
more computational complexity and approximate inference
it outperforms the simple HFactMM(3) by incorporating
a latent dynamic state. However this performance gap
disappears when the state conditional models are easily
distinguishable (i.e., high ρ or D).

B. Interacting People

Next we analyzed the interaction of two objects moving
in a real environment. These two objects are individuals
wearing hats designed to be easy to visually track. The
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Fig. 3. Avg. probability of error for synthetic data as a function of (a)ρ (b) D (c) σw. (d) Sample frame from interacting people data.

TABLE I

RESULTS FOR INTERACTING PEOPLE DATA. CV=CONSTANT

VELOCITY. B=BROWNIAN MOTION

Probability of Error
Sequence Coord. Asc. CV Coord. Asc. B HFactMM(1)

1 16.8 1.9 2.0
2 26.6 3.3 3.5

two individuals move around an enclosed environment and
are randomly instructed to “interact” for a limit period of
time. When interacting they are either following or trying
to mirror each other’s actions. Each sequence was over 2.5
minutes long and contained between 8 to 12 transitions
between interacting and moving independently. In the first
sequence the individuals move faster when interacting.
This is not the case for the second sequence in which
individuals maintain the same speed when interacting and
moving independently. Both sequences were recorded us-
ing a camcorder at 12 fps. Simple background subtraction
and color filtering with smoothing provided a simple blob
tracker that was further labeled/tracked by hand to provide
(x, y) positions for each individual for each frame. Ground
truth of interaction state sequence was also established by
hand labeling. Figure 3(d) shows a sample frame from one
of the sequences.

We ran dynamic dependency tests on both of these
sequences using the coordinate ascent approach assuming
a constant velocity model (4 dimensional dynamic state
initialized with anA matrix with constant velocity struc-
ture). The results are shown in the second column of Table
I. After analyzing the learned parameters for each sequence
we found that the dynamic state transition matrixA was
close to diagonal indicating that a Brownian motion model
may be more appropriate. Rerunning the dependency test
assuming a simple Brownian motion model (the state is
position only) we obtained the improved results in column
three of Table I. This indicates that a constant velocity
model may not be correct for this data in which individuals
make many turns in a confined space. Lastly if we apply
a simple first order HFactMM to the data we do just as
well. This indicates that this data has strong dependency
information when the individuals are interacting (i.e., like
the highρ case above).

V. CONCLUSION

In this paper we looked at the problem of inferring latent
dynamic dependency structure to determine the interaction
among multiple moving objects. We have shown that by
modeling dependency as a dynamic process one can exploit
both structural and parameter differences to distinguish
between hypothesized states of dependency/interaction.
We discussed the use of an HFactMM for such tasks
and showed how it can be used to perform approxi-
mate inference on an SLDS model which incorporates a
state-space description of object dynamics. Experiments
were performed on both controlled synthetic and recorded
data of people/objects interacting. Empirical performance
demonstrated the utility of approximate inference based on
coordinate ascent for determining interaction states.
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