
Hypothesis Testing

1 Introduction

This document is a simple tutorial on hypothesis testing. It presents the basic concepts and definitions as well
as some frequently asked questions associated with hypothesis testing. Most of the material presented has
been taken directly from either Chapter 4 of Scharf [3] or Chapter 10 of Wasserman [4].

2 Hypotheses

Let X be a random vector with the rangeχ and distributionFθ(x). The parameterθ is belongs to the
parameter spaceΘ. Let Θ = Θ0

⋃
Θ1

⋃
...

⋃
ΘM−1 be a disjoint covering of the parameter space. We

defineHi as the hypothesis is thatθ ∈ Θi.
An M-ary hypothesis testchooses which of theM disjoint subsets contain the unknown parameterθ.

WhenM = 2 we have abinary hypothesis test. For the remainder of this document we will only discuss
binary hypothesis tests (H0 : θ ∈ Θ0 versusH1 : θ ∈ Θ1).

2.1 Null and Alternative Hypotheses

In many binary hypothesis testsH0 is referred to as thenull hypothesisandH1 thealternative hypothesis.
This is due to the fact that in most binary tests the hypothesisH0 is set up to be refuted in order to support
an alternative hypothesisH1. That is,H0 usually represents the absence of some effect/factor/condtion. For
example when testing if a new drug is better than a placebo for relieving a set of symptoms the null hypothesis
H0 says the new drug has the same effect as the placebo. With tests of this form it is common to talk about a
hypothesis test in terms accepting or rejecting the null hypothesis.

2.2 Simple vs. Composite

WhenΘi contains a single elementθi hypothesisHi is said to besimple. Otherwise it iscomposite. A
binary hypothesis test can be simple vs simple, simple vs composite, composite vs simple, or composite vs
composite. Here are some simple examples:

H0 : θ = θ0 versusH1 : θ = θ1 (simple vs simple)

H0 : θ = 0 versusH1 : θ 6= 0 (simple vs composite)

H0 : θ < 0 versusH1 : θ > 0 (composite vs composite)

2.3 One-Sided and Two-Sided Tests

A hypothesis test is considered to betwo-sided if the is of the form:

H0 : θ = θ0 versusH1 : θ 6= θ0

where the alternative hypothesisH1 “lies on both sides ofH0”. A test of the form

H0 : θ ≤ θ0 versusH1 : θ > θ0
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or
H0 : θ ≥ θ0 versusH1 : θ < θ0

is called aone-sidedtest. Note that one-sided and two-sided tests are only defined for scalar parameter spaces
and at least one hypothesis must be composite.

2.4 Frequentist vs. Bayesian View of Hypotheses

Thus far we discussed hypothesis testing in terms of determining which subset of a parameter space an
unknownθ lies. The classic/frequentist approach to hypothesis testing treatsθ as deterministic but unknown.
A Bayesian approach treatsθ as a random variable and assumes there is a distribution on the possibleθ in the
parameter space. That is, one can define a prior on each hypothesis being true. Discussion of advantageous
and disadvantageous of each of these will be spread throughout the following sections.

3 Binary Hypothesis Testing

Give a samplex of a random vectorX whose range isχ and has the distributionFθ(x) a binary hypothesis
test (H0 : θ ∈ Θ0 versusH1 : θ ∈ Θ1) takes the form

φ(x) =

{
0 ∼ H0, x ∈ A

1 ∼ H1, x ∈ Ac,
(1)

This equation is read as, “the test functionφ(x) equals 0, and the hypothesisH0 is accepted, if the measure-
mentx lies in the acceptance region A (whereA ⊂ χ). If the measurement lies outside this region then test
function equals 1 and hypothesisH0 is rejected andH1 is accepted.” Usually the regionA is of the form:

A = {x : T (x) < c} (2)

where T is atest statistic and c is a critical value. The trick is to find the appropriate test statistic T and
an appropriate critical value c. We will be more explicit about what “appropriate” means in the following
sections.

3.1 Type I and Type II Errors

There are two types of errors a binary hypothesis test can make. Atype I error or false alarm is whenH0

is true, butx ∈ Ac. That is, the test choosesH1 whenH0 is true. A type II error or miss is whenH1 is
true, butx ∈ A. That is, the test choosesH0 whenH1 is true.

3.2 Size and Power

If H0 is simple (Θ0 = {θ0}), thesize or probability of false alarm is

α = Pθ0(φ(x) = 1) = Eθ0 [φ(x)] = PFA. (3)

whereEθ0 [φ(x)] indicates thatφ(x) is averaged under the density functionfθ0(x).

If H0 is composite, the size is defined to be

α = sup
θ∈Θ0

Eθ[φ(x)]. (4)

The size is the worst-case probability of choosingH1 whenH0 is true. A test is said to havelevel α if its
size is less than or equal toα.

A hit or detection is whenH1 is true, andx ∈ Ac. If H1 is simple, thepower or probability of detec-
tion is

β = Pθ1(φ(x) = 1) = Eθ1 [φ(x)] = PD. (5)
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If H1 is composite, the power is defined for eachθ ∈ Θ1 asβ(θ). In fact everything can be defined in
terms of this power function:

β(θ) = Pθ(φ(x) = 1) = Pθ(x ∈ Ac) (6)

That is the power of a composite test is defined for eachθ ∈ Θ1 and the size can be written as:

α = sup
θ∈Θ0

β(θ) (7)

A receiver operating characteristic (ROC) curve is a plot ofβ versusα (for a simple vs simple hypothesis
test). Usually multipleβ, α pairs are obtained by adjusting the threshold / critical valuec in Equation 2.

3.3 Bias

A testφ(x) is said to be unbiased if its power is never smaller than its size. That is,

β(θ) ≥ α ∀ θ ∈ Θ1 (8)

3.4 Best and Uniformly Most Powerful Test

For a simple versus simple binary hypothesis test,φ(x) is the best test of sizeα if it has the most power
among all tests of sizeα. That is, ifφ(x) andφ′(x) are two competing tests each of which has sizeα, then
β ≥ β′. Thebest test maximizes the probability of detection (power) for a fixed probability of false alarm
(size). Neyman-Pearson will show us the form of the best test for a fixedα in the next section.

A test φ(x) is said to beuniformly most powerful (UMP) of sizeα if it has sizeα and its power is
uniformly (for all θ) greater than the power of any other testφ′(x) whose size is less than or equal toα. That
is:

sup
θ∈Θ0

Eθ[φ(x)] = α

sup
θ∈Θ0

Eθ[φ′(x)] ≤ α

Eθ[φ(x)] ≥ Eθ[φ′(x)] ∀ θ ∈ Θ1

In general a UMP test may be difficult to find or may not exist. One strategy to proving a test is UMP is to
find the best test for a particularθ and then show the test does not depend onθ. The Karlin-Rubin theorem
shows how to obtain the UMP test for certain one-sided hypothesis tests (See [3]).

4 Neyman-Pearson Lemma

The Neyman-Pearson Lemma shows how to find the most powerful or best test of sizeα whenH0 andH1

are both simple. The lemma tells us the “appropriate” test statistic T to maximize the power given a fixedα.
The test is a slight generalization of the test defined in 1. The lemma states that:

φ(x) =


1, fθ1(x) > kfθ0(x)
γ, fθ1(x) = kfθ0(x)
0, fθ1(x) < kfθ0(x),

(9)

or alternatively

φ(x) =


1, T (x) > k

γ, T (x) = k

0, T (x) < k

(10)

for somek ≥ 0, 0 ≤ γ ≤ 1, is the most powerful test of sizeα > 0 for testingH0 versusH1. T (x) =
fθ1(x)/fθ0(x) = L(x) and is called thelikelihood ratio . Whenφ(x) is 1 or 0 it is the same as in Equation
1. However, whenφ(x) = γ we “flip a γ coin” to selectH1 with probabilityγ (when the coin comes up
heads).
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Proof. Consider any testφ′(x) such thatα′ ≤ α. We have∫
[φ(x)− φ′(x)][fθ1(x)− kfθ0(x)] ≥ 0 (11)

β − β′ ≥ k(α− α′) (12)

≥ 0. (13)

4.1 Setting the size toα

The question remains of how to setk to produce a test of sizeα. The size for this test is:

α = Eθ0 [φ(x)] = Pθ0 [L(x) > k] + γPθ0 [L(x) = k] (14)

If there exists ak0 such that
Pθ0 [L(x) > k0] = α (15)

then we setγ = 0 and pickk = k0. Otherwise there exists ak′0 such that

Pθ0 [L(x) > k′0] ≤ α < Pθ0 [L(x) ≥ k′0] (16)

We can then usek = k′0 and choose theγ that solves:

γPθ0 [L(x) = k′0] = α− Pθ0 [L(x) > k′0] (17)

4.2 Interpretation

So the Neyman-Pearson tells us that the best / most powerful test for a fixed size alpha is one that uses that
makes decisions by thesholding the likelihood ratioL(x). We refer to such tests aslikelihood ration tests
(LRT) . Note that the test statistic is the likelihood ratioL(x) and is a random variable. IfL(x) = k with
probability zero (which is most likely the case for continuousx) then the thresholdk is found as:

α = Pθ0 [L(x)] > k] =
∫ ∞

k

fθ0(L)dL (18)

wherefθ0(L) is the density function forL(x) underH0.

5 Bayesian Hypothesis Testing

In the previous sections we discussed simple binary hypothesis testing in the following framework. Given a
measurementx drawn from the distributionFθ(x), how do we choose whetherθ = θ0 or θ = θ1. We defined
hypothesisH0 : θ = θ0 andH1 : θ = θ1 and look for a test ofH1 versusH0 that is “optimal”. We talked
about optimality in terms of maximizing the power (β) of such a test for a fixed sizeα. The parameterθ (and
the hypothesi) are treated at deterministic but unknown quantities. That is eitherH1 or H0 is true and we
don’t know which one. We don’t have any prior knowledge of how likelyH1 or H0 is to occur or how likely
any parameter choice is. Note that the power and size are both defined in terms of one of the hypothesis being
true.

The Bayesian approach to hypothesis testing treatsθ and the hypothesisH as unknown random variables.
Here we are introducing the random variableH to represent the hypothesis. IfH = i it means hypothesisHi

is true. We can think of the test functionφ as an estimator forH. The conceptual framework is as follows.
Mother Nature selectsH and the parameterθ from a joint distributionf(θ, H) = p(H)f(θ|H). She does this
by first choosingH according top(H) and then picks aθ according tof(θ|H). Note thatf(θ|H = i) = 0 for
all θ /∈ Θi. Her selection determines from which distributionFθ(x) Father Nature draws his measurement.
This measurement is given to the experimenter and he or she must decide between estimate the value ofH
via a decision functionφ. Each time the experiment is run a parameterθ is chosen by Mother nature, and the
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experimenter outputs a decision̂H = φ(x). The goal in Bayesian hypothesis testing to design a testφ that
is “optimal” / gives the best performance. Here “optimality” is described in terms of the Bayes risk which is
described below.

To be more concrete let us consider the simple versus simple binary hypothesis test we have been dis-
cussing so far. Letp(H = H0) = p0 and p(H = H1) = 1 − p0. Since the hypothesis is simple
f(θ|H = Hi) = δ(θ − θi). Mother nature selectsH according top(H). In the simple binary case we are
considering this is equivalent to pickingθ = θ0 with probabilityp0 andθ = θ1 with probabilityp1 = 1− p0.
Depending on her choice Father Nature then draws a a measurementx from eitherFθ0(x) or Fθ1(x). Our
goal will be to obtainĤ = φ(x) that minimizes the Bayes risk.

5.1 Cost of Decisions

A cost or loss function is defined for each possible pairing of the true hypothesisH and decisionĤ = φ(x).
That is for the pair (H,φ(x)) = (i, j) we assign a nonnegative costC[H = i, φ(x) = j] = cij . We saycij the
loss incurred when Mother Nature selects the hypothesisHi and the experimenter decides to chooseHj . That
is for a simple binary hypothesis test we give values forc00, c11, c01 andc10. Normal we do not associate a
loss/cost for making a correct decision,i.e. c00 = c11 = 0.

5.2 Risk

We define the riskR(Hi, φ(x)) for eachHi as the expected loss givenH = Hi for particular test functionφ:

R(H,φ) = Ex[C[H,φ(x)]] =

{
c00P00 + c01P01, θ = θ0

c10P10 + c11P11, θ = θ1

(19)

wherePij = p(φ(x) = 1|H = Hi). This is equivalent topθi
(φ(x) = j) in the simple binary hypothesis

case.

5.3 Bayes Risk

The Bayes risk is the average risk over the distribution ofH that Mother Nature used (for the binary case,
only P (H = 0) = p0 is needed).

R(p0, φ) = EH [R(H,φ)] = p0R(H = 0, φ) + (1− p0)R(H = 1, φ) (20)

Given that we known the priorp0, the optimal testφ is defined to be the one that minimizes the Bayes Risk:

φ = arg min
φ′

R(p0, φ
′) (21)

It turns out that the solution to this equation/optimization has the form (see 6.432 notes or Scharf [3] Chapter
5):

φ(x) =

{
1, L(x) > η

0, L(x) < η
(22)

where

L(x) =
f(x|H = 1)
f(x|H = 0)

=

∫
θ
f(x|H = 1, θ)f(θ|H = 1)dθ∫

θ
f(x|H = 0, θ)f(θ|H = 0)dθ

(23)

is the likelihood ratio and for the simple versus simple case is

L(x) =
f(x|θ1)
f(x|θ0)

=
fθ1(x)
fθ0(x)

(24)

and the threshold

η =
p0(c10 − c00)

(1− p0)(c01 − c11)
(25)
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So once again we see that the “optimal” test is a likelihood ratio test. Here “optimal” is in terms of minimizing
Bayes risk. The test statistic is the likelihood ratio and the acceptance region depends on the thresholdη which
is based on the priors and decision costs.

Minimizing risk sounds like the right way to think about these problems. However this approach requires
us to have some knowledge about the prior onθ and be able to assign a cost to each possible outcome. This
may be difficult in some applications. For example, what is the prior probability of a missile coming toward
your home? We will quickly discuss what can be done when we can assign costs to decision but don’t know
the a priori probabilities of each hypothesis in the Minmax section below. When we don’t know the prior
AND cannot think of a meaningful costs we go back to Neyman-Pearson testing.

6 Test Statistics and Sufficiency

When we talk about the hypothesisH being a random variable we can consider the following Markov chain
H → X → T (X) whereT (X) is some test statistic. Any test statistic is said to be sufficient forH if
p(H|X) = p(H|T (X)) That is, if T (X) is sufficient it tells us everything we need to know about the
observationx in order to estimateH and the Markov chain can be written asH → T (X) → X.

Note that the likelihood ratioL(X) was to optimal test statistic for our hypothesis test. It takes ourK
dimension observationx and maps it to a scalar value. It can be shown thatL(X) is a sufficient statistic for
H.

This was just a quick note. More details can be found in the 6.432 notes.

7 Minimax Tests

As we eluded to before we may be able to associated a cost with each of the possible outcomes of a hypothesis
test but have no idea what the prior onH is (or even worse the fullf(θ, H)). In such cases we can play a
game in which we assume Mother Nature is really mean and will choose a prior that makes whatever test we
choose to look bad. That is for a simple versus simple binary hypothesis test:

maxpo
minφR(p0, φ) (26)

To combat this, we will try to find aφ that minimizes the worst she can do:

minφmaxpo
R(p0, φ) (27)

Seciont 5.3 of Scharf [3] shows how to find such a minmax detector / test functionφ. It is also shown that

maxpominφR(p0, φ) = minφmaxpoR(p0, φ) (28)

This topic is also discussed in the 6.432 notes.

8 Generalized Likelihood Ratio Test

A discussed before when dealing with composite hypotheses in Neyman-Pearson framework we wish to find
the UMP test for a fixed sizeα (put your Bayes hat away for a bit). However, it is typically the case that such
a test does not exist. Ageneralized likelihood ratio testis a way to deal with general composite hypothesis
test. Again we will focus on the binary case withH0 : θ ∈ Θ0 versusH1 : θ ∈ Θ1. The generalized
likelihood ratio is a test statistic with the following form:

LG(x) =
supθ∈Θ1

f(x|θ)
supθ∈Θ0

f(x|θ)
(29)

We see that for a simple versus simple hypothesis testLG(x) = L(x). This test statistic is rather intuitive.
If top part of the fraction in Equation 29 is greater than the bottom part then the data is best explained when
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θ ∈ Θ1. If the opposite is true then the data is best explained byθ ∈ Θ0. Instead of using Equation 29 as the
test statistic one generally uses:

λ(x) =
supθ∈Θ f(x|θ)
supθ∈Θ0

f(x|θ)
(30)

instead, whereΘ = Θ0

⋃
Θ1. It can be shown in general thatλ(x) = max(LG(x), 1). This may seem a little

strange in thatΘ andΘ0 are nested (they are not disjoint). Much more can be said about this, but for now I
will simply paraphrase Wasserman’s tutorial on this subject [4] and say that in practice usingλ(x) instead of
LG(X) has little effect in practice and theoretically properties ofλ(x) are usually much easier to obtain.

So the generalized likelihood ratio test gives us a test statistic that makes some intuitive sense. We can
threshold this statistic and calculate it’s size and power if we can derive it’s distribution under each hypothesis.

Now let’s put our Bayes hat back on. We showed before that the likelihood ratio test minimizes the Bayes
risk and that for a composite test the likelihood ratio is:

L(x) =

∫
θ
f(x|H = 1, θ)f(θ|H = 1)dθ∫

θ
f(x|H = 0, θ)f(θ|H = 0)dθ

(31)

That is we should integrate over all possible values of theta for each hypothesis in each hypothesis. However,
typically our parameter space is extremely large. If we assume thatf(x|H = 1, θ)f(θ|H = 1) contains
a large peak (looks like a delta function) atθ̂1 = arg maxθ∈Θ1 f(x|H = 1, θ)f(θ|H = 1) andf(x|H =
1, θ)f(θ|H = 0) peaks at̂θ0 we can approximate the likelihood ratio as:

L̂(x) =
f(x|θ̂1)f(θ̂1|H = 1)

f(x|θ̂0)f(θ̂1|H = 0)
=

maxθ∈Θ1 f(x|H = 1, θ)f(θ|H = 1)
maxθ∈Θ0 f(x|H = 0, θ)f(θ|H = 0)

(32)

which is one possible interpretation of the generalized likelihood ratioL̂G(x) (ignore the details involved
with max andsup).

9 Test of Significance

In the Neyman-Pearson testing framework one fixes the size of theα of the test. However, different people
may have different criteria for choosing an appropriate size. One experimenter may be happy with setting the
size toα = 0.05 while another demandsα is set to 0.01. In such cases it is possible that one experimenter
acceptsH0 while the other rejects it when given the same datax. Only reporting ifH0 was accepted or
rejected may not be very informative in such cases. If the experimenters both use the same test statistic (i.e.
both do a likelihood ratio test) it may be more useful for them to report the outcome of their experiment in
terms of thesignificanceprobability orp-value of the test (also referred to as theobserved size). We give a
formal definition for the p-value below.

9.1 P-value

If a test rejectsH0 at a levelα it will also reject at a levelα′ > α. Remember that when a test rejectsH0 at
levelα that means it’s size is less than or equal toα. (i.e. if we say test rejects at level .05 that means it’s size
α ≤ .05). Thep-value is the smallestα at which a test rejectsH0.

Suppose that for everyα ∈ (0, 1) we have a sizeα test with a rejectionAc
α, then

p-value= inf{α : T (x) ∈ Ac
α} (33)

That is the p-value is the smallest levelα at which an experimenter using the test statisticT would rejectH0

on the basis of the observationx.
Ok, that definition requires a lot of thought to work through. It may be easier to understand what a p-value

is if we explain how to calculate one:

p-value= sup
θ∈Θ0

Pθ(T (X) ≥ T (x)) (34)
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wherex is the observed value ofX. If H0 is a simple hypothesis andΘ0 = {θ0} then

p-value= Pθ(T (X) ≥ T (x)) = P (T (X) ≥ T (x)|H0) (35)

It is important remember thatT (X) is a random variable with a particular distribution underH0 and that
T (x) is a number, the value of the test statistic for the observedx. In the case of a simpleH0 the p-value is
the probability of obtaining a test statistic value greater than the one you observed whenH0 is true. Another
way to look at it is that the p-value is the size of a test using your observedT (x) as the threshold for rejecting
H0.

If the test statisticT (X) has a continuous distributen then under a simpleH0 : θ = θ0, the p-value has a
uniform distribution between 0 and 1. If we rejectH0 when the p-value is less thanα then the probability of
false alarm (or size of the test) isα. That is we can set up a test to have sizeα by making the test function be:

φ(x) =

{
1, p-value≥ α

0, p-value< α,
(36)

So a small p-value is strong evidence againstH0. However, note thata large p-value is NOT strong evidence
in favor of H0. A large p-value can meanH0 is true ORH0 is false but the test has low powerβ. It also
important to note that thep-value is not the probability that the null hypothesis is true. That is, in almost
every case the p-value6= p(H0|x). We will shown one exception in the next section.

9.2 P-values for One-Sided Tests

Let’s look at a one-sided tests whereΘ ⊂ R andθ0 is entirely to one side ofθ1. In this case, p-values
will sometimes have a Bayesian justification. For example ifX ∼ N(θ, σ2) andp(θ) = 1, thenp(θ|x) is
N(x, σ2). We testH0 : θ ≤ θ0 againstH1 : θ > θ0,

p(H0|x) = p(θ ≤ θ0|x) = Φ
(

θ0 − x
σ

)
. (37)

The p-value is

p-value= p(X ≥ x) = 1− Φ
(

x− θ0

σ

)
= p(H0|x) (38)

becauseΦ is symmetric.

10 Permutation Tests

We showed how to calculate a p-value or significance in the previous section. This calculation requires
knowing the distribution (the cdf) of the test statisticT (X) underH0. However, in many cases it may be
difficult to obtain this distribution (i.e. distribution ofX may be unknown). Apermutation tests are tests
based on non-parametric estimates of significance. It does not rely on the distribution of the test statistic. The
basic procedure is as follows:

1. Compute the observed value of the test statistictobs = T (x)

2. Obtain a new samplexs thatobeysthe null hypothesisH0 via a resampling functionπ.
That isxs = π(x).

3. Computets = T (xs)

4. Repeat Steps 2 and 3 B times and lett1, ..., tB denote the resulting values.

5. Calculate an approximatêp-value= 1
B

∑B
j=1 I(tj > tobs) whereI(true) = 1 andI(false) = 0.

6. RejectH0 (chooseH1) if p̂-value> α
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where step 5 uses the empirical cumulative distribution obtained from samples in step 2 to estimate the p-
value. The question remains on what we mean byobeysthe null hypothesis in step 2. The resampling function
π obeysH0 if each new samplexs is equality likely whenH0 is true.

Take for example an observationx = (y1, y2, ..., yN , z1, ..., zM ) which is N observations of some random
variableY and M observations of the random variableZ. If H0 was that bothZ andY have the same mean
one possible test statistic would beT (x) = | 1

N

∑N
i=1 xi − 1

M

∑N+M
j=N+1 xj |. We letπ(x) produces a new

N+M sample that is a random permutation on the order of the elements inxs. There are (N+M)! possible
permutations each of which is equally likely underH0.

A simple introduction to permutation tests can be found in [1]. In [2] Joeseph P. Romano shows that for
any finite set of transformationsπ ∈ Π that are a mapping ofX onto itself and for whichπ(X) andX have
the same distribution underH0 the testing procedure described above produces a test of sizeα.
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