Hypothesis Testing

1 Introduction

This document is a simple tutorial on hypothesis testing. It presents the basic concepts and definitions as well
as some frequently asked questions associated with hypothesis testing. Most of the material presented has
been taken directly from either Chapter 4 of Scharf [3] or Chapter 10 of Wasserman [4].

2 Hypotheses

Let X be a random vector with the rangeand distributionFy(x). The parameteé is belongs to the
parameter spac®. Let® = ©¢|JO:...|UOnm-1 be a disjoint covering of the parameter space. We
defineH; as the hypothesis is thate ©,.

An M-ary hypothesis testchooses which of thé/ disjoint subsets contain the unknown paraméter
WhenM = 2 we have ainary hypothesis test For the remainder of this document we will only discuss
binary hypothesis testgf, : 6 € ©¢ versusH; : 6 € 0,).

2.1 Null and Alternative Hypotheses

In many binary hypothesis test, is referred to as theull hypothesisand H; thealternative hypothesis

This is due to the fact that in most binary tests the hypoth&giss set up to be refuted in order to support

an alternative hypothesid;. That is,H, usually represents the absence of some effect/factor/condtion. For
example when testing if a new drug is better than a placebo for relieving a set of symptoms the null hypothesis
Hy says the new drug has the same effect as the placebo. With tests of this form it is common to talk about a
hypothesis test in terms accepting or rejecting the null hypothesis.

2.2 Simple vs. Composite

When ©; contains a single elemefit hypothesisH; is said to besimple. Otherwise it iscomposite A
binary hypothesis test can be simple vs simple, simple vs composite, composite vs simple, or composite vs
composite. Here are some simple examples:

Hy: 60 =0y versusH, : 6 = 0, (simple vs simple)
Hy:0 =0 versusHy : 8§ £ 0 (simple vs composite)
Hy: 60 <0 versusH; : § >0 (composite vs composite)

2.3 One-Sided and Two-Sided Tests
A hypothesis test is considered to two-sidedif the is of the form:
Hy:0 =0y versusH; : 0 # 6y
where the alternative hypothedif “lies on both sides ofi,". A test of the form

Hy:0 <0y versusH; : 6 > 6y



or
Hy:0 >0y versusHy : 0 < 0y

is called aone-sidedtest. Note that one-sided and two-sided tests are only defined for scalar parameter spaces
and at least one hypothesis must be composite.

2.4 Frequentist vs. Bayesian View of Hypotheses

Thus far we discussed hypothesis testing in terms of determining which subset of a parameter space an
unknownd lies. The classic/frequentist approach to hypothesis testing tr@astsleterministic but unknown.

A Bayesian approach treatsas a random variable and assumes there is a distribution on the p@ssilhe
parameter space. That is, one can define a prior on each hypothesis being true. Discussion of advantageous
and disadvantageous of each of these will be spread throughout the following sections.

3 Binary Hypothesis Testing

Give a samplex of a random vectoX whose range ig and has the distributiohy(x) a binary hypothesis
test Hy : 6 € ©¢ versusH; : 6 € ©1) takes the form

0~ Hy, x€A
= 1
6(x) {1~H1, e )

This equation is read as, “the test functiofx) equals 0, and the hypothedi& is accepted, if the measure-
mentx lies in the acceptance region A (whefeC x). If the measurement lies outside this region then test
function equals 1 and hypothedi, is rejected and{; is accepted.” Usually the regiof is of the form:

A={x:T(x) <c} (2)

where T is atest statisticand c is a critical value. The trick is to find the appropriate test statistic T and
an appropriate critical value c. We will be more explicit about what “appropriate” means in the following
sections.

3.1 Typeland Type Il Errors

There are two types of errors a binary hypothesis test can makgeA error or false alarm is whenH,
is true, butx € A°c. That is, the test choosd$, when H|, is true. Atype Il error or miss is whenH; is
true, butx € A. That s, the test choosdf, whenH; is true.

3.2 Size and Power
If Hy is simple @y = {6o}), thesize or probability of false alarm is
a = Py, (¢(x) = 1) = Ep,[(x)] = Pra. ©)

whereEy, [¢(x)] indicates that)(x) is averaged under the density functifif (x).

If Hy is composite, the size is defined to be

a = sup Eglp(x)]. (4)
ISSH
The size is the worst-case probability of chooskigwhen Hj is true. A test is said to havevel « if its
size is less than or equal to

A hit or detection is wher; is true, andx € A°c. If H, is simple, thepower or probability of detec-
tion is

B =Py, (o(x) = 1) = Ep, [¢(x)] = Pp. (5)



If H, is composite, the power is defined for eatke ©; as3(9). In fact everything can be defined in
terms of this power function:

B(0) = Pop(p(x) = 1) = Py(x € A%) (6)
That is the power of a composite test is defined for gaeh©, and the size can be written as:
a = sup B(6) )
[AISH)

A receiver operating characteristic (ROC) curve is a plofafersusa (for a simple vs simple hypothesis
test). Usually multiple3, « pairs are obtained by adjusting the threshold / critical valureEquation 2.

3.3 Bias
Atest¢(x) is said to be unbiased if its power is never smaller than its size. That is,
BO) =z avbe o (8)

3.4 Best and Uniformly Most Powerful Test

For a simple versus simple binary hypothesis tegk) is the best test of size if it has the most power
among all tests of size. That is, if¢(x) and¢’(x) are two competing tests each of which has sizéhen
B > ['. Thebest test maximizes the probability of detection (power) for a fixed probability of false alarm
(size). Neyman-Pearson will show us the form of the best test for a dixadhe next section.

A test ¢(x) is said to beuniformly most powerful (UMP) of size « if it has sizea and its power is
uniformly (for all §) greater than the power of any other te§tx) whose size is less than or equaktoThat
is:

sup Ep[¢(x)] = a
0€0

sup Ey[¢'(x)] < o
[ASSH)

Ey[¢(x)] > Eg[¢'(x)] V0 € O,
In general a UMP test may be difficult to find or may not exist. One strategy to proving a test is UMP is to

find the best test for a particul@rand then show the test does not depend .oiihe Karlin-Rubin theorem
shows how to obtain the UMP test for certain one-sided hypothesis tests (See [3]).

4 Neyman-Pearson Lemma

The Neyman-Pearson Lemma shows how to find the most powerful or best test afwleen Hy and H,
are both simple. The lemma tells us the “appropriate” test statistic T to maximize the power givena fixed
The test is a slight generalization of the test defined in 1. The lemma states that:

L, fo,(x) > k fo,(x)
P(x) = 7 fo, (x) = Kk fo, (%) 9)
Ou f91 (X) < kf90 (X)7
or alternatively
1,T(x) >k
o(x)={7.T(x) =k (10)
0,T(x) <k
for somek > 0, 0 < v < 1, is the most powerful test of size > 0 for testing Hy versusH;. T'(x) =
fo.(x)/ fo,(x) = L(x) and is called thdikelihood ratio . When¢(x) is 1 or O it is the same as in Equation

1. However, wher(x) = ~ we “flip a v coin” to selectH; with probabilityy (when the coin comes up
heads).



Proof. Consider any test’(x) such thaty’ < «. We have

/ [6() — & ()]s (%) — Ky ()] > 0 1)
B—03 >kla—a) (12)

> 0. (13)

O

4.1 Setting the size tax

The question remains of how to deto produce a test of size. The size for this test is:

a = By, [¢(x)] = Po,[L(x) > k| + 7Py, [L(x) = k] (14)

If there exists &g such that
Py, [L(x) > ko] = « (15)

then we sety = 0 and pickk = k. Otherwise there existskg such that
Pyo[L(x) > ko] < a < Py [L(x) = kp (16)
We can then usk = k{, and choose the that solves:

VP, [L(x) = ko] = o = Py, [L(x) > kp] (17)

4.2 Interpretation

So the Neyman-Pearson tells us that the best / most powerful test for a fixed size alpha is one that uses that
makes decisions by thesholding the likelihood rdtiex). We refer to such tests di&elihood ration tests

(LRT) . Note that the test statistic is the likelihood rafigx) and is a random variable. F(x) = & with
probability zero (which is most likely the case for continusi)ghen the thresholé is found as:

a = Py [L(x)] > k| = /k b foo(L)dL (18)

where fy, (L) is the density function foL(x) underHj.

5 Bayesian Hypothesis Testing

In the previous sections we discussed simple binary hypothesis testing in the following framework. Given a
measurement drawn from the distributiotfy (x), how do we choose whethér= 6, or § = ;. We defined
hypothesisH,, : § = 6y andH; : § = 6, and look for a test oH; versusH, that is “optimal”. We talked
about optimality in terms of maximizing the powef)(of such a test for a fixed size The parametet (and
the hypothesi) are treated at deterministic but unknown quantities. That is Either H, is true and we
don’t know which one. We don’t have any prior knowledge of how lik&ly or H is to occur or how likely
any parameter choice is. Note that the power and size are both defined in terms of one of the hypothesis being
true.

The Bayesian approach to hypothesis testing treated the hypothesifl as unknown random variables.
Here we are introducing the random variableo represent the hypothesis.Hf = i it means hypothesi&/;
is true. We can think of the test functi@has an estimator fol/. The conceptual framework is as follows.
Mother Nature selectd and the paramet@rfrom a joint distributionf (6, H) = p(H) f (6| H). She does this
by first choosing? according ta( H) and then picks & according tof (6| H). Note thatf (6| H = i) = 0 for
all & ¢ ©,. Her selection determines from which distributibp(x) Father Nature draws his measurement.
This measurement is given to the experimenter and he or she must decide between estimate thddvalue of
via a decision functiorp. Each time the experiment is run a paramétir chosen by Mother nature, and the



experimenter outputs a decisiéh = ¢(x). The goal in Bayesian hypothesis testing to design ajtélsat
is “optimal” / gives the best performance. Here “optimality” is described in terms of the Bayes risk which is
described below.

To be more concrete let us consider the simple versus simple binary hypothesis test we have been dis-
cussing so far. Lep(H = Hy) = po andp(H = H;) = 1 — pg. Since the hypothesis is simple
f(O|H = H;) = (0 — 0,;). Mother nature selectd according top(H). In the simple binary case we are
considering this is equivalent to pickirig= 6, with probabilityp, andf = 6, with probabilityp; = 1 — py.
Depending on her choice Father Nature then draws a a measurerfrem either Fy, (x) or Fy, (x). Our
goal will be to obtainf/ = ¢(x) that minimizes the Bayes risk.

5.1 Cost of Decisions

A cost or loss function is defined for each possible pairing of the true hypotHeai®l decisionf{ = d(x).
That is for the pair f, ¢(x)) = (i, j) we assign a nonnegative ca@stH = i, ¢(x) = j| = ¢;;. We sayc;; the
loss incurred when Mother Nature selects the hypothésesnd the experimenter decides to choée That

is for a simple binary hypothesis test we give valuescfgr c11, co1 ande;o. Normal we do not associate a
loss/cost for making a correct decisio®,. coo = c¢11 = 0.

5.2 Risk
We define the risiR( H;, ¢(x)) for eachH, as the expected loss givéh = H; for particular test functior:

cooPoo + co1Po1, 0 =0

(19)
cioPio + c11Pi1, 0 =61

R(H,¢) = Bx[CIH, 6(x)]] = {

whereP;; = p(¢(x) = 1|H = H;). This is equivalent tgy, (¢(x) = j) in the simple binary hypothesis
case.

5.3 Bayes Risk

The Bayes risk is the average risk over the distributioifothat Mother Nature used (for the binary case,
only P(H = 0) = pg is needed).

R(po, ) = En[R(H,¢)] = poR(H = 0,¢) + (1 — po) R(H = 1,¢) (20)

Given that we known the prigr,, the optimal test is defined to be the one that minimizes the Bayes Risk:

¢ = argmin R(po, ¢') (21)
It turns out that the solution to this equation/optimization has the form (see 6.432 notes or Scharf [3] Chapter
5):
1,L(x) >n
= 22
6(x) {07 Lo = n (22)
where 8\ (8 )
FxIH=0) " [, f(x[H=0,0)f(6]H = 0)df
is the likelihood ratio and for the simple versus simple case is
f(x[61) _ fo,(x)
L(x) = = 24
)= F o) = fou ) &4
and the threshold ( )
PolC10 — Coo
= 25
T T = po)(cor — i) (29)



So once again we see that the “optimal” test is a likelihood ratio test. Here “optimal” is in terms of minimizing
Bayes risk. The test statistic is the likelihood ratio and the acceptance region depends on the threktobid
is based on the priors and decision costs.

Minimizing risk sounds like the right way to think about these problems. However this approach requires
us to have some knowledge about the prio¥and be able to assign a cost to each possible outcome. This
may be difficult in some applications. For example, what is the prior probability of a missile coming toward
your home? We will quickly discuss what can be done when we can assign costs to decision but don't know
the a priori probabilities of each hypothesis in the Minmax section below. When we don’t know the prior
AND cannot think of a meaningful costs we go back to Neyman-Pearson testing.

6 Test Statistics and Sufficiency

When we talk about the hypothedik being a random variable we can consider the following Markov chain
H — X — T(X) whereT'(X) is some test statistic. Any test statistic is said to be sufficientfaf
p(H|X) = p(H|T(X)) That is, if T(X) is sufficient it tells us everything we need to know about the
observatiorx in order to estimatéf and the Markov chain can be written Bs— T'(X) — X.

Note that the likelihood ratid.(X) was to optimal test statistic for our hypothesis test. It takesrour
dimension observatior and maps it to a scalar value. It can be shown IH&) is a sufficient statistic for
H.

This was just a quick note. More details can be found in the 6.432 notes.

7 Minimax Tests

As we eluded to before we may be able to associated a cost with each of the possible outcomes of a hypothesis
test but have no idea what the prior &his (or even worse the fulf (9, H)). In such cases we can play a

game in which we assume Mother Nature is really mean and will choose a prior that makes whatever test we
choose to look bad. That is for a simple versus simple binary hypothesis test:

max,, mingR(po, ) (26)
To combat this, we will try to find & that minimizes the worst she can do:
mingmazy, R(po, @) (27)
Seciont 5.3 of Scharf [3] shows how to find such a minmax detector / test fungtibms also shown that
mazx,, mingR(po, ) = mingmaz,, R(po, P) (28)

This topic is also discussed in the 6.432 notes.

8 Generalized Likelihood Ratio Test

A discussed before when dealing with composite hypotheses in Neyman-Pearson framework we wish to find
the UMP test for a fixed size (put your Bayes hat away for a bit). However, it is typically the case that such

a test does not exist. §eneralized likelihood ratio testis a way to deal with general composite hypothesis
test. Again we will focus on the binary case with, : 0 € ©, versusH; : § € ©,. The generalized
likelihood ratio is a test statistic with the following form:

__ SUDPgeo, f(x]0)
Lalx) = SUpeieo f(x|0) (29)

We see that for a simple versus simple hypothesisiiegk) = L(x). This test statistic is rather intuitive.
If top part of the fraction in Equation 29 is greater than the bottom part then the data is best explained when



f € ©,. If the opposite is true then the data is best explained 8y0,. Instead of using Equation 29 as the
test statistic one generally uses:
supgee f(x/0)
AMx) = —————~ 30
%)= Sapoce, 7x00) (30

instead, wher® = Oq | ©. It can be shown in general thatx) = max(Lg(x), 1). This may seem a little
strange in tha® and©, are nested (they are not disjoint). Much more can be said about this, but for now |
will simply paraphrase Wasserman'’s tutorial on this subject [4] and say that in practice\(singstead of
L (X) has little effect in practice and theoretically properties\of) are usually much easier to obtain.
So the generalized likelihood ratio test gives us a test statistic that makes some intuitive sense. We can
threshold this statistic and calculate it's size and power if we can derive it’s distribution under each hypothesis.
Now let’s put our Bayes hat back on. We showed before that the likelihood ratio test minimizes the Bayes
risk and that for a composite test the likelihood ratio is:

Jy F(xIH =1,0)£(0|H = 1)do

~ [ f(x[H =0,0)f(6]H = 0)do (31)

L(x)

That is we should integrate over all possible values of theta for each hypothesis in each hypothesis. However,
typically our parameter space is extremely large. If we assumefibafl = 1,0)f(0|H = 1) contains
a large peak (looks like a delta function)tat = arg maxpco, f(x|H = 1,0)f(0|H = 1) and f(x|H =
1,0)f(6|H = 0) peaks at, we can approximate the likelihood ratio as:

i) = LIS OH =1) _ masseo, S(x|H =1,0)f(6]H = 1)

F(x|fo)f(61]H = 0)  maxgeo, f(x|H = 0,0) f(0|H = 0) (32)

which is one possible interpretation of the generalized likelihood tagiox) (ignore the details involved
with max andsup).

9 Test of Significance

In the Neyman-Pearson testing framework one fixes the size of tfahe test. However, different people

may have different criteria for choosing an appropriate size. One experimenter may be happy with setting the
size toa = 0.05 while another demands is set to 0.01. In such cases it is possible that one experimenter
acceptsH, while the other rejects it when given the same dataOnly reporting if H, was accepted or
rejected may not be very informative in such cases. If the experimenters both use the same testigatistic (
both do a likelihood ratio test) it may be more useful for them to report the outcome of their experiment in
terms of thesignificanceprobability orp-value of the test (also referred to as thbserved sizg We give a

formal definition for the p-value below.

9.1 P-value

If a test rejectsH at a levela it will also reject at a levet’ > . Remember that when a test rejeéfs at
level « that means it's size is less than or equaktdi.e. if we say test rejects at level .05 that means it's size
«a < .05). Thep-valueis the smallest at which a test reject®,.

Suppose that for every € (0, 1) we have a size test with a rejectiom¢,, then

p-value= inf{a : T'(x) € AL} (33)

That is the p-value is the smallest leveht which an experimenter using the test statigtiwould rejectH|
on the basis of the observatian

Ok, that definition requires a lot of thought to work through. It may be easier to understand what a p-value
is if we explain how to calculate one:

p-value= sup Py(T(X) > T'(x)) (34)
0€0



wherex is the observed value &. If Hj is a simple hypothesis art@l, = {6, } then
p-value= P4 (T(X) > T(x)) = P(T(X) > T(x)|Ho) (35)

It is important remember that(X) is a random variable with a particular distribution undéy and that
T(x) is a number, the value of the test statistic for the obsexrveld the case of a simpl&, the p-value is
the probability of obtaining a test statistic value greater than the one you observeddylietrue. Another
way to look at it is that the p-value is the size of a test using your obsér¢eiias the threshold for rejecting
Ho.

If the test statistid’(X) has a continuous distributen then under a sinffle: 6 = 6,, the p-value has a
uniform distribution between 0 and 1. If we rejdéy when the p-value is less thanthen the probability of
false alarm (or size of the test)ds That is we can set up a test to have gizgy making the test function be:

1, p-value> o
= 36
¢(x) {07 p-value< a, (36)

So a small p-value is strong evidence agalfigt However, note that large p-value is NOT strong evidence
in favor of H,. A large p-value can meaH, is true ORH, is false but the test has low powgr It also
important to note that thp-value is not the probability that the null hypothesis is true. That is, in almost
every case the p-valug p(Hy|x). We will shown one exception in the next section.

9.2 P-values for One-Sided Tests

Let’s look at a one-sided tests whee C R and#, is entirely to one side of;. In this case, p-values
will sometimes have a Bayesian justification. For exampX it- N (0, 02) andp(f) = 1, thenp(d|x) is
N(x,0?). We testH, : 0 < 6 againstH; : 6 > 0,

g

P(Holx) = p(6 < fy]x) = @ (90 ‘X) . @37)

The p-value is
X — 90

p-value=pX>x)=1-o ( ) = p(Hy|x) (38)

becauseb is symmetric.

10 Permutation Tests

We showed how to calculate a p-value or significance in the previous section. This calculation requires
knowing the distribution (the cdf) of the test statisfi¢X) under Hy. However, in many cases it may be
difficult to obtain this distributioni(e. distribution of X may be unknown). Apermutation tests are tests

based on non-parametric estimates of significance. It does not rely on the distribution of the test statistic. The
basic procedure is as follows:

1. Compute the observed value of the test statistic= 7T'(x)

2. Obtain a new sampbe, thatobeysthe null hypothesigi,, via a resampling function.
Thatisx, = 7(x).

. Computet, = T'(x,)
. Repeat Steps 2 and 3 B times and|et.., t g denote the resulting values.

. Calculate an approximafevalue= + Zle I(t; > tops) Wherel(true) =1 andI(false) = 0.

o o~ W

. RejectH (chooseH,) if p-value> «



where step 5 uses the empirical cumulative distribution obtained from samples in step 2 to estimate the p-
value. The question remains on what we meanligyshe null hypothesis in step 2. The resampling function
m obeysH, if each new sample, is equality likely whenH| is true.

Take for example an observatian= (y1,y2, ..., yn, 21, ---, za ) Which is N observations of some random
variableY and M observations of the random variallelf H, was that bothZ andY have the same mean
one possible test statistic would Béx) = |+ 21, #; — & S0 vy, 7;]. We letw(x) produces a new
N+M sample that is a random permutation on the order of the elements ifthere are (N+M)! possible
permutations each of which is equally likely undés.

A simple introduction to permutation tests can be found in [1]. In [2] Joeseph P. Romano shows that for
any finite set of transformations € II that are a mapping dX onto itself and for whichr(X) andX have
the same distribution undéf, the testing procedure described above produces a test af.size
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