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Abstract— This paper explores modeling the dependency
structure among multiple vector time-series. We focus on a
large classes of structures which yield efficient and tractable
exact inference. Specifically, we use directed trees and forests
to model causal interactions among time-series. These models
are incorporated in a dynamic setting in which a latent
variable indexes evolving structures. We demonstrate the
utility of the method by analyzing the interaction of multip le
moving objects.

I. I NTRODUCTION

Consider a scene in which multiple objects are moving
around in an environment. Given measurements of their
position over time we wish to identify any interactions
among them and describe how this interaction changes
over time. We treat this task of labeling interaction as a
problem of inference of dependency structures in a model
for multiple time-series. Here the statistical dependence
is of primary interest and the underlying parameters of
the model are treated as nuisances. We show how to
perform exact Bayesian inference on directed tree and
forest structured vector autoregressive models. While the
number of directed trees and forests is super-exponential
in the number of time-series, the Matrix-Tree theorem
allows one to calculate sums of multiplicative and additive
functions on directed edges in polynomial time. This,
combined with a conjugate prior allows for efficient and
exact calculation of posterior event probabilities.

We examine the utility of our model within a dynamic
setting. An evolving latent variable is introduced to index
changing structure over time. We present empirical results
on two data sets evaluating the interaction of multiple
moving objects.

Spectral methods for point estimation of graphical mod-
els over stationary time-series is considered in [2]. The
related work of [3], [4], [5], [6] consider alternative models
in which structure is changing over time. The methodology
here differs in that while we restrict ourselves to directed
models, we marginalize over parameters generating a
tractable posterior over structures. These models as well
as the model proposed here fall into the general class of
multinets [7] or Contingent Bayesian Networks [8].

II. STRUCTURED VECTORAUTOREGRESSIVEMODEL

Here, we present a structured vector autoregressive
model for multivariate time-series. This model is anrth
order Markov model with additional structural constraints.
We begin by introducing some notation for the purpose of
explicitly denoting individual time-series, past values of
individual time-series as well as sets thereof.

ConsiderN time-series / data streams and letx
v
t be a

random vector representing the value of thevth time-series
at time t. The r past values of time-seriesv is defined as
x̃

v
t . That is,x̃v

t is a stacked vector ofxv
t−1 throughx

v
t−r.

As we will be explicit on the model order,r is suppressed
in the notation,̃xv

t , for brevity. Furthermore, the vector̃xS
t

indexed by setS is x̃
S(1)
t ,...,̃xS(m)

t stacked in a vector
where |S| = m (e.g. x̃v,u

t is x̃
v
t and x̃

u
t stacked). The

random variables denoting the present and past of all time-
series at timet are defined asXt andX̃t respectively.

Multiple time points can be indexed by a vectort =
[t1, t2, ..., tT ] such thatXt =

[
Xt1 , ...,XtT

]
. Note that

the collection of past values,̃Xt, can be formed from
Xt and a setC containing values not available inXt

(initial conditions). Given a directed structurēE, a set of
parametersΘ andC, the model isrth order Markov:

p
(
Xt|Ē, Θ, C

)
=

T∏

i=1

p
(
Xt(i)|X̃t(i), Ē, Θ

)
. (1)

In order to simplify notation we will drop theC when it
is clear from the context.̄E is a directed structure onN
nodes/vertices defining the factorization of the model:

p
(
Xt|Ē, Θ

)
=

T∏

i=1

N∏

v=1

p

(
x

v
t(i)|x̃

v,pa(v,Ē)
t(i) , Θ

v|pa(v,Ē)

)

(2)

where pa
(
v, Ē

)
returns the parents of vertexv given the

structureĒ. We will drop theĒ and use pa(v) when it
is clear from the context. Each time-seriesv at time t

is dependent on its own past̃xv
t as well as the past of

its parent setS = pa(v), x̃
S
t . Note that we useΘv|S

rather than the more explicit notationΘv|v,S to represent
the parameters of this relationship for brevity.
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Fig. 1. Example directed tree SVARM(1) model (a) and corresponding
interaction graph (b)

In general we refer to this class of models asrth order
temporal interaction models, TIM(r). In this paper we
focus on the special case in which̄E describes a directed
tree or forest andΘ parameterizes a linear Gaussian
relationships. We refer to such models as directed tree or
forest structured vector autoregressive models, SVARM(r).

Figure 1(a) illustrates a SVARM(1) for three time-series
with Ē describing a directed tree with the second time-
series as the root. Here pa(1) = pa(3) = 2 and pa(2) =
∅. Figure 1(b) shows an alternative and more compact
view for this model in which a single node represents a
time-series/data stream over all time. We refer to this as
the interaction graphand use diamond shaped nodes to
emphasize it is not meant to be interpreted as a directed
Bayesian network, though there is a one to one mapping
between these graphs. A directed edge fromu to v in the
interaction graph implies a directed edge fromx̃u

t andx
v
t

in the SVARM.

III. C ONJUGATEPRIOR

In this section we introduce a conjugate prior on the
parameters,θ, and structure,Ē of the SVARM(r). The
conjugacy of the prior yields a simple form for poste-
rior updates. Tractable calculation of the exact posterior
depends on the ability to efficiently evaluate a partition
function which sums over a super-exponential number
of structures. We show that directed trees and forests
are classes of structures for which this can be done in
polynomial time. This allows one to efficiently calculate
the posterior on structure given data, while integrating out
parameters.

The prior we use is related to those presented in [9] and
[10]. It factors as

p0

(
Ē, Θ

)
= p0

(
Ē

)
p0

(
Θ|Ē

)
. (3)

The parameters are assumed to be independent andmod-
ular given a structurēE and hyper-parametersΓ. That is,
they factorize according to the edges in̄E:

p0

(
Θ|Ē

)
=

N∏

v=1

p0

(
Θv|pa(v)|Γ

)
(4)

andp0

(
Θv|S|Γ

)
is the same for all structures̄E for which

S is the parent set ofv. Thus, for each time-seriesv one
needs to specify a parameter prior for all potential parent
sets. Given this finite set of priors for eachv one is able to
supply a full prior on parameters for any given structure.

We place a prior on directed structures which has the
form:

p0

(
Ē

)
=

1

Z(β)

N∏

v=1

βpa(v),v (5)

where the partition functionZ(β) ensures proper normal-
ization. Each scalar hyper-parameterβS,v can be inter-
preted as a weight on the parent setS for v and the prior
is simply a proportional to the product of these weights.

Let D = {X1, ...,XT } be a set ofT complete ob-
servations. We use the notationDS = {xS

1 , ...,xS

T } to
denote observations of a set of time-series.Dt = Xt and
Du

t = x
u
t . D̃ = {X̃1, ..., X̃T } can be formed usingD

and past information inC. Given dataD, the posterior on
parameters given structure has the form:

p
(
Θ|Ē,D

)
=

N∏

v=1

p
(
Θv|pa(v)|D

v,Dpa(v), Γ
)

(6)

That is, the prior on parameters given a structure is fully
conjugate. If one choses a conjugate prior for eachΘv|S

in Equation 4 the posterior has the same form and can be
updated by sufficient statistic calculations from the data.
In addition, the posterior on structure is:

p
(
Ē|D

)
=

1

Z(β ◦ W )

N∏

v=1

βpa(v),vWpa(v),v (7)

where◦ is an element wise / Hadamard product and

WS,v =

∫
p

(
Dv|D̃v,S, Θv|S

)
p0

(
Θv|S|Γ

)
dΘv|S (8)

is the evidence,p
(
Dv|D̃v,S

)
, for time-seriesv given the

time-series of its parent set defined byS. That is, the
prior is updated by modifyingβ with a set of evidence
weightsW . The proof follows from the fact that the prior
on structure factorizes in the same manner as Equation 2.

In this paper, we assume continuous observations and a
linear gaussian model with parametersΘv|S. We model
p0

(
Θv|S|Γ

)
to be a matrix-normal-inverse-Wishart dis-

tribution with hyper-paramtersΓ. This yields efficient
updates for Equation 6 andWv|S will be the evaluation of
a Matrix-T distribution [11]. However, tractable calculate
ion of Equation 7 requires one to evaluateZ(β) efficiently.
We show this can be done for directed trees and forests in
the following section.



A. Directed Trees and Forests

In general there are2N−1 possible parent sets for each
v. This yields a super-exponential number of possible
structures,2N2−N , implying Z(β) requires summing over
a super-exponential number of terms. In this paper we fo-
cus on two particular subclasses of these structures, while
still super-exponential in number, that can be reasoned over
in polynomial time.

The first class, directed trees (spanning arborescences),
yield structures in which all the time-series are dependent
on each other with no temporal feedback. That is, directed
trees restrict the interaction graph to be spanning and
acyclic with no more than a single parent for each time-
series. Thus, in the directed tree case,β is simply anN×N

matrix and each hyper-parameterβu,v 6=u can be interpreted
as a weight on the edgeu → v, and β∅,v = βv,v is a
weight on a node being a root (having no parents). The
edge set corresponding to the nonzero entries ofβ form a
support graph. We assume this support graph is connected
and contains at least one directed tree.

While there areNN−1 possible directed trees onN
nodes, the Matrix Tree Theorem allows one to calculate
Z(β) in polynomial time. This theorem was used by Meila
and Jaakkola [9] for reasoning over undirected trees. The
undirected version of theorem is a special case of the
often rediscovered real valued directed version developed
by Kirchhoff [12]. The theorem allows one to calculate the
weighted sum over all directed trees rooted atr, Zr(β) via:

Zr(β) =
∑

Ē rooted atr

∏

u→v

βu,v = Cofr,r
(
Q̄(β)

)
(9)

where Q̄(β) is the Kirchhoff matrix with itsu, v entry
defined as:

Q̄uv(β) =

{
−βu,v 1 ≤ u 6= v ≤ N∑N

u
′=1 βu

′
,v 1 ≤ u = v ≤ N

(10)

and Cofi,j (M) is the i, j cofactor of matrix M .
Cofi,j

(
Q̄(β)

)
is invariant toi and gives the sum over all

weighted trees rooted atj. A proof can be found in [13].
By summing over allN possible roots one obtains

Z(β) =

N∑

v=1

βv,vZv(β). (11)

Thus, a straight forward implementation yieldsO(N4)
time for calculating the partition function. However, as
pointed out in [14], using the invariance ofCofi,j

(
Q̄(β)

)

allows forO(N3) time computation ofZ(β). That is,Z(β)
can be calculated by replacing any row of the matrixQ̄(β)
with

[
β1,1, ..., βN,N

]
and taking its determinant.

Directed forests, remove the fully connected assumption
and can have multiple roots. There are(N + 1)(N−1) di-
rected forest forN nodes, butZ(β) can still be calculated

in O(N3) time [14]. Some intuition as to why this is true
is that any directed forest can be turned into a directed tree
by the addition of one virtual super root node which has
no parents and connects to all the roots in the forest.

B. Event Probabilities and Expectations

The ability to compute the partition function and con-
jugacy of the prior allows one to calculate a wide variety
of useful prior and/or posterior event probabilities. For
example, the probability of a particular edge being present
is:

p (Iu→v = 1) = E [Iu→v] = 1 −
Z(β−(u→v))

Z(β)
(12)

where Iu→v is an indicator variable that has value 1
when the edgeu → v is present.β−(u→v) is β with all
elements involving edge fromu to v set to zero. Using the
same approach one can calculate the joint edge appearance
probability of one set of edges conditioned on another
set. Similarly one can calculate the probability a time-
series/node has no parents (is a root):

p (Iv is a root) =
Z(β−edgesin(v))

Z(β)
, (13)

where edgesin(v) and return the set of all edges into
time-series/nodev. β−e indicates all elements ofβ which
involve any edge in the sete are zero. Similarly one can
useβ−edgesout(v) to calculate the probability of a time-series
having no children (is a leaf).

The indicator variables used in the examples above
can be expressed as general multiplicative functions of
the form g(Ē) =

∏N

v=1 gpa(v),v. The expected value of
a general multiplicative function can be calculated by:

E
[
g(Ē)

]
=

Z(β ◦ g)

Z(β)
. (14)

Note that variance or other higher order moments of
multiplicative functions can also calculated in this manner.
Additionally, one can calculate the expectation of additive
functions of the formf(Ē) =

∑N

v=1 fpa(v),v. For directed
treesE

[
f(Ē)

]
=

N∑

r=1

Zr(β)

Z(β)
tr

(
Mr,r

(
Q̄(β ◦ f)

)
Mr,r

(
Q̄(β)

)−1
)

(15)

whereMi,j (M) is the matrixM with its ith row andjth
column removed. A proof follows that of [9] substituting
in the directed tree partition function in place of the
undirected version. A similar form is obtained for directed
forests. Additive functions allow calculation of quantities
such as the expected number of children of a particular
time-series/node.
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Fig. 2. The structure of a SSVARM(1,K)

C. Sampling directed trees and forests

Given data, we have shown how to calculate the pos-
terior p

(
Ē|D

)
and various event probabilities. Another

important task is sampling from this posterior. Random
sampling of directed spanning trees (and forests with some
modification) is a well studied problem. This paper uses
Wilson’s random walk based algorithm [15]. If a point
estimate of structure is desired, the maximum a posteriori
structure can also be found. The Chu-Liu/Edmonds/Bock
[16] algorithm can be used for both directed trees and
forests

IV. DYNAMIC SWITCHING STRUCTURES

The SVARM(r) model is stationary and assumes a
single Ē and parametersΘ over all time. Here, we
introduce a switching SVARM, SSVARM(r,K), which
allows structure to change over time. Letzt be a hidden
state at timet which indexes a specific structure,Ezt,
and parameters,Θzt . Figure 2 shows a first order model.
Given a set ofK structuresE = {Ē1, ..., ĒK}, parameters
Θ = {π0, π1, ..πk, Θ1, ..., ΘK} and an observations over
the time periodt = [1, ..., T ]:

p(Xt, zt|E,Θ) = p(zt)p(Xt|zt,E,Θ)

=

T∏

t=1

p(zt|π
zt−1)p(Xt|X̃t, E

zt , Θzt)

(16)

where z0 = 0, the transition distribution is multinomial
p (zt|πzt−1) = Mult (zt; π

zt−1) and is given a Dirichlet
prior p0 (π) =

∏K

k=1 Dir
(
πk; αk

1 , ..., αk
K

)
.

Exact inference on this model is complex due to the
fact there areKT possible state sequences. Thus, we turn
to a Monte Carlo Markov chain (MCMC) approach in
which samples are drawn from this model using a Gibbs
sampler. The sampler has three main steps. Step 1 samples
the state sequence give previous estimate of structures and
parameters. This is done efficiently with backward message
passing followed by forward sampling. This step can be
modified when initializing to sample the state sequence
from its transition prior. During step 2 the sampled counts
of state transitions are noted and transition probabilities

are then sampled given these counts. In Step 3 a vector
tk is formed with all the time points withzt = k. The
structure and parameters are then sampled givenXtk

for
eachk. It is important to note that given a state sequence,
one can efficiently calculate exact event probabilities and
posterior over structures.

V. EXPERIMENTS

In this section we present two illustrative experiments
focusing on the calculation of posterior event probabilities.
Each experiment analyzes the interaction of tracked mov-
ing objects. Specifically, we are interested in quantifying
uncertainty in the dependence structure among time-series
rather than obtaining point estimates. When analyzing
data we do not assume there is a “true/correct structure”
one would like to discover. Our goal is to obtain a full
characterization of the posterior uncertainty.

A. Interacting People

We begin by analyzing the motion of two individuals
in an enclosed environment. Individuals are instructed to
switch between moving independently and following each
other. A simple tracker outputs the(x, y) position of each
individual over all time and ground-truth indicating when
interaction occurred was created.

In [6] a dependence test was performed on this data
using a hidden factorization Markov model (HFactMM).
An HFactMM allows switching between latent states each
of which having a known/specified fixed structure. For this
data two states were used and the structures were set to
be independent in state 1 and fully connected/dependent
in state 2. The dependence test was performed by finding
the parameters that maximized the likelihood of the data
assuming these fixed structures and then Viterbi decoding
was performed to segment the sequence. A probability of
error of .035 was obtained when comparing to the ground-
truth.

Here, we will not assume known structures. We place
a uniform prior on all directed forests and weak matrix-
normal-inverse-Wishart prior on parameters (small degrees
of freedom, and larger variance). Using a two state, first
order model, SSVARM(1,2), we generate 100 Gibbs sam-
ples. Burn in was quick and required approximately 15
iterations of the sampler.

Figure 3(a) summarizes the results. The ground truth
state sequence is shown on top. The individuals start
out being independent and then randomly switch between
that and the following behavior. The 100 sampled state
sequences are shown below the ground truth ranked by the
log probability of the data given the sampled parameters
and structures, with the top being the most likely. The
state sequence labels were permuted to give a consistent
coloring with the ground truth segmentation. The side of
the plot shows the normalized Hamming distance of the
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Fig. 3. Results for 2 person interaction experiment.

best mapping to the ground truth. Note that these samples
indicated a very sharp posterior. Almost all of the samples
give a very consistent segmentation of the data and have
an average Hamming distance of .05. This distance can
be interpreted as the probability of error if we were only
concerned with segmenting the data.

However, Figure 3(a) only shows the sampled state
sequence. Figure 3(b) shows a more detailed breakdown of
the sampled model with the highest log probability. The
top row shows the sampled state sequence. The second
row represents the posterior probability of the structure
for each state depicted as weighted interaction graphs. In
these graphs edge color represents the posterior probability
of that edge. Node color represents the probability a time-
series has no parents/is a root (white = 0.0, black = 1.0).
Recall that while the state sequence is MCMC sampled,
we obtain an exact posterior conditioned on this sequence.
We see that for this data the posterior is very sharp. The
posterior for the first state is sharp around independent
structure. The second state has a strong posterior on the
second time-series/individual influencing the first. This is
consistent with the fact that first person follows the second
when they are interacting. The Hamming distance for
this particular state sequence is .03. That is, we obtain
comparable results to those obtained in [6] without fixing
the two possible structures a priori.

B. Follow The Leader

Next we explore a dataset comprised of recordings of
three individuals playing a simple interactive computer
game. Each player’s computer mouse controls a specific
dot/marker on their screen. All players can see three dots
on their screen representing the other players in game and
themselves. The individuals are instructed to play a game

of follow the leader. One player is designated the leader.
The leader moves his or her dot randomly around the
screen while the other players are instructed to follow. The
designated leader changes throughout the game. That is, a
fourth person observing the game tells the players when
to switch leaders. Thus, the latent variable indicating the
change of leader is observable, and consequently, nominal
ground-truth is available by which to evaluate performance.

We begin by using SSVARM(1,3) with directed trees to
analyze this sequence. That is, we will use the fact there
are only three players and knowledge that directed trees
may sufficiently describe the interaction among players. A
uniform prior on structures and equivalently weak prior on
parameters is used. A weak self biased prior on the state
transition distribution is imposed with a bias towards self
transition.

Given the data and the prior model, 100 samples of the
structure, parameters and the hidden state sequence are
obtained with a Gibbs sampler. Burn in required approxi-
mately 60 iterations. A detailed view of the results can be
found in Figure 4(a) in the same format as shown in Figure
3(a). The ground-truth state sequence is shown on top with
players taking turns being the leader in order. The sampled
state sequences show some posterior uncertainty. Each
sample falls within two general categories. The top third
of the samples match the ground truth closely, the bottom
two thirds suggests a consistent alternative explanation.

Again, the state labels alone simply provide a segmen-
tation. Given this segmentation we look at the posterior
on structure to analyze the interaction among the players.
Figures 4(b) and 4(c) show a more detailed breakdown
of two sampled models. Figure 4(b) is a sample with
low Hamming distance and high log probability. Notice
that the posterior on structure for each state is basically a
delta function on three distinct structures. These structures
agree with our intuition in that each root is consistent with
who was designated as the leader and the followers are
conditionally independent given the root. Figure 4(c) is a
sample with a mid-range Hamming distance (ranked 34 out
the 100 samples). It has errors consistent with the majority
of sequences shown in 4(a). The confusion between the
first and third state is most noticeably reflected in posterior
uncertainty in the structure for state 3.

While the above analysis assumed three states, consis-
tent with our knowledge of the ground truth, Figure 4(c)
gives evidence for additional modes/states. That is, for
each phase of the game a better model may be a mix-
ture of processes each with similar structure but different
parameters. We repeat the experiment usingK = 6 states.
Figure 4(d) is a sample from this model.

The second row shows the occurrence of the learned
states. Interestingly, state 4 indicates uncertainty in the
structure. However, this state is never used and thus its
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Fig. 4. Results for follow the leader experiment.

posterior remains uniform. The remaining structures are
consistent with the ground truth indicating who is the
leader with little uncertainty.

VI. CONCLUSION

We have presented a framework for Bayesian inference
of the dependency structure among multiple vector time-
series. Assuming linear Gaussian dynamics we presented a
structure autoregressive model in which directed trees and
forests were used to describe causal interactions among
time-series. We showed how a super-exponential number
of structures can be reasoned over in polynomial time and
how exact posterior event probabilities can be obtained.
By introducing an evolving latent variable to index these
models we allowed for dynamically switching structures.
We demonstrated the utility of our method by analyzing
the interaction of moving objects.

Here we have focused on acyclic structures in which
each time-series has at most one parent. However, the
framework presented is general and can be used for
any class of directed structures. Tractable calculation of
exact posterior probabilities is dependent on the ability
to efficiently evaluate the partition functionZ(β). Other
structures for whichZ(β) can be tractably calculated are
discussed in [17].

The SSVARM(r,K) model used in this paper assumes
a known number of states,K, and that structures can be
revisited over time. Such assumptions were reasonable in
our applications of interest. However, the SVARM(r) can
easily be embedded into alternative dynamic models in
which the number of states are unknown such as those
presented in [5] and [18].
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