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Summary We demonstrate how to perform direct simulation from the posterior distri-

bution of a class of multiple changepoint models where the number of changepoints is

unknown. The class of models assumes independence between the posterior distribution

of the parameters associated with segments of data between successive changepoints.

This approach is based on the use of recursions, and is related to work on product

partition models. The computational complexity of the approach is quadratic in the

number of observations, but an approximate version, which introduces negligible error,

and whose computational cost is roughly linear in the number of observations, is also

possible. Our approach can be useful, for example within an MCMC algorithm, even

when the independence assumptions do not hold. We demonstrate our approach on

coal-mining disaster data and on well-log data. Our method can cope with a range of

models, and exact simulation from the posterior distribution is possible in a matter of

minutes.

Keywords Bayes factor, Forward-backward algorithm, Model choice, Perfect simula-

tion, Reversible jump MCMC, Well-log data

1 Introduction

Many time-series models incorporate one, or multiple, changepoints. Some examples

include Poisson processes with a piece-wise constant rate parameter (Raftery and Ak-

man, 1986; Yang and Kuo, 2001; Ritov et al., 2002), changing linear regression models

(Carlin et al., 1992; Lund and Reeves, 2002), Gaussian observations with varying mean

(Worsley, 1979) or variance (Chen and Gupta, 1997; Johnson et al., 2003), and Markov

models with time-varying transition matrices (Braun and Muller, 1998). Such models

have been used for modelling stock prices, muscle activation, climatic time-series, DNA

sequences and neuronal activity in the brain, amongst many other applications

In this paper we consider Bayesian analysis for a class of multiple changepoint problems.
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We call a period of time between two consecutive changepoints a segment. This class of

models assumes that the parameter values associated with each segment are independent

from each other. Yang and Kuo (2001) comment that calculating the Bayes factors

for models with different numbers of changepoints is “essentially infeasible for a large

model with many changepoints”. Our aim is to show that calculation of Bayes factors,

and perfect sampling from the posterior distribution of changepoint locations, is both

possible, and computationally inexpensive for the class of models we consider. While

this class of models may seem restrictive, recent examples of work on such models can

found in Johnson et al. (2003), Punskaya et al. (2002), and Braun et al. (2000).

Although we use the phrase “perfect simulation”, we do not use coupling-from-the past

(Propp and Wilson, 1996), or related ideas, which have become synonymous with this

phrase. Instead, the work we present is closely related to work by Yao (1984), Barry

and Hartigan (1992) and Barry and Hartigan (1993). These papers present efficient

recursions that allow the posterior probabilities of different numbers of changepoints,

and the posterior mean of the parameters to be calculated. Despite the desirability of

exact solutions, and the simplicity and computational efficiency of the recursions, these

methods are currently underused. We extend these methods to allow for direct simu-

lation from the posterior distribution of the number and position of the changepoints,

and to also perform inference conditional on the number of changepoints. Our approach

is a generalisation of that suggested by Liu and Lawrence (1999).

Much recent research for changepoint models is based on the use of MCMC. For inference

in the presence of a known number of changepoints, Stephens (1994) and Chib (1996)

both propose MCMC methods. For models with an unknown number of changepoints,

a common approach is that of Green (1995): a set of models, each incorporating a

different number of changepoints, are introduced, and reversible jump MCMC is used

to explore the joint space of model and parameters. An alternative approach, based

on analysing the different models separately is given by Chib (1998); with the different

models being compared based on their evidence (also known as marginal likelihood),

which can be estimated using ideas from Chib (1995). Potential difficulties of these

approaches include designing moves, particular ones between different models, which

enable the MCMC algorithm to mix well (for guidelines on designing reversible jump

MCMC algorithms see Brooks et al., 2003), and being able to detect convergence of

the algorithm. For example, in the analysis of the coal-mining disaster data in Green

(1995), the reversible jump MCMC algorithm had not converged. The reanalysis of
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the data in Green (2003), using a reversible jump MCMC algorithm run for 25 times

as long, does fully explore the posterior distribution. The exact simulation method we

describe here avoids any problems of needing to diagnose convergence of an MCMC

algorithm.

We consider two classes of prior for the changepoint process. One, that of Green (1995),

involves a prior on the number of changepoints, and then a conditional prior on their

position. The other is based on modelling the changepoint process by a point process

(Pievatolo and Green, 1998), and is a special case of a product-partion model (Hartigan,

1990). This indirectly specifies a joint prior on the number and position of the change-

points. In both cases we assume that, conditional on the realisation of the changepoint

process, the joint posterior distribution of the parameters is independent across the

segments of the time series. We also assume a conjugate prior for the parameters asso-

ciated with each segment. Under these two assumptions we derive a set of recursions

to perform exact inference.

The recursions are similar to those of the Forward-Backward algorithm (see Scott,

2002, for a review). Recent work has shown how such recursions can be used to perform

exact inference for a range of problems (Fearnhead and Meligkotsidou, 2004; Fearn-

head, 2005a). The assumption of independence between segments ensures the necessary

Markov property that is required for Forward-Backward type recursions. For a data set

consisting of observations at discrete times, 1, . . . , n, the recursions are based on calcu-

lating the probability of the data from time t to time n, given a changepoint at time t, in

terms of the equivalent probabilities at times t+1, . . . , n. Once these probabilities have

been calculated for all time-points, it is possible to directly simulate from the posterior

distribution of the time of the first changepoint, and then the conditional distribution

of the time of the second changepoint, given the first, and so on. The recursions can

also be used to perform exact inference conditional on the number of changepoints, and

in some cases to calculate the posterior distribution of the parameters that govern the

point process model for the changepoints.

The computational cost of the recursions increases quadratically with n. However an

approximate version, which introduces negligible error, is possible. In limiting situations

where the length of time series increases, and the number of changepoints is increasing

linearly with the number of observations, the computational cost increases roughly

linearly with n. (In the alternative limiting regime of more frequent observations, the
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computational cost remains quadratic in n.) The assumption of conjugate priors can

potentially be relaxed, but with an increase in the computational cost. Essentially,

low-dimensional integrals that can be calculated analytically under conjugate priors

would need to be calculated numerically (for example see Section 4.2). Relaxation of

the independence assumption is more difficult, but our algorithm can still be used as a

useful tool for analysing such data. For example, the algorithm can be embedded in an

MCMC algorithm, and we demonstrate such an approach on some real data.

The outline of the paper is as follows. In Section 2 we introduce the two classes of

changepoint model that we consider. The recursions are derived and detailed in Section

3. The resulting algorithm is demonstrated on two data sets in Section 4. For the

second, we show how our method can be applied within an MCMC scheme to analyse

the data under a model where there is dependence between the parameters for each

segment. The paper concludes with a discussion.

2 Models and Notation

We consider the following class of multiple changepoint models. Consider a sample

of size n, y1, . . . , yn. Observation yi is obtained at time i, and we let yi:j denote the

observations from time i to time j inclusive.

Firstly condition on m integer-valued changepoints, at points 0 < τ1 < τ2 < · · · < τm <

n. We let τ0 = 0 and τm+1 = n. Then the jth segment consists of the observations from

time τj−1 + 1 to time τj . We associate a (possibly vector-valued) parameter θj with

the jth segment for j = 1, . . . , m + 1. Conditional on the change-points and parameter

values, the observations are independent; observation yi being drawn from a density

f(yi|θj) if time i is in the jth segment.

We assume independent priors for the parameters associated with each segment. The

prior for θj is denoted by π(θj). Here, and throughout, we use π(·) solely to denote a

prior density; the argument making it clear as to which parameter the prior is for.

We assume that the changepoints occur at discrete time points, and consider two priors

for the changepoints. The first prior is based on a prior for the number of changepoints,

and then a conditional prior on their positions. We will define this conditional prior

on the positions in terms of πm(τm) the prior for the last change point, and, for j =

1, . . . , m − 1, πm(τj |τj+1), the prior for the position of the jth changepoint, given the
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position of the (j + 1)st.

The second prior is obtained from a point process on the positive and negative integers.

The point process is specified by the probability mass function g(t) for the time between

two succesive points. We assume that this time must be a strictly positive integer. We

observe the point process on the interval [1, n− 1], and assume that changepoints occur

at the positions of points in the point process. This prior is an example of a product-

partition model.

If G(t) =
∑t

s=1 g(s), is the distribution function of the distance between two succesive

points, and g0(t) is the mass function of the first point after 0, then the probability of

m changepoints occuring at τ1, . . . , τm is

g0(τ1)





m
∏

j=2

g(τj − τj−1)



 (1 − G(τm+1 − τm)).

Natural choices for the distribution of the time between successive points are from the

negative binomial family. For a negative binomial distribution with parameters k, a

positive integer, and p we have

g(t) =





t − k

k − 1



 pk(1 − p)t−k g0(t) =
k

∑

i=1





t − i

i − 1



 pi(1 − p)t−i/k.

The negative binomial distribution can be thought of as a discrete version of the gamma

distribution (especially if p is small). If k = 1 then the negative binomial distribution

is the geometric distribution, and the point process is Markov. Larger values of k can

reduce the number of very short segments.

3 Filtering Recursions

We first derive the recursions for analysing data under the point process prior for the

changepoints. We later derive recursions to perform inference conditional on the number

of changepoints, and show how these can be used to perform inference under the other

prior, and to perform inference about the parameters of the point process prior.
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3.1 Basic Recursions

For times s ≥ t, define

P (t, s) = Pr(yt:s|t, s in the same segment)

=

∫ s
∏

i=t

f(yi|θ)π(θ)dθ. (1)

We will assume that the probabilities P (t, s) can be calculated for all t and s. In

practice this will require conjugate priors on θ, or, if θ is low-dimensional, that the

required integration can be calculated numerically.

We next define for t = 2, . . . , n

Q(t) = Pr(yt:n|changepoint at t − 1),

with Q(1) = Pr(y1:n). A set of recursions for calculating these probabilities are given

by the following theorem.

Theorem 1 Define the probabilities Q(t) and P (t, s) as above. Then for t = 2, . . . , n

Q(t) =
n−1
∑

s=t

P (t, s)Q(s + 1)g(s + 1 − t) + P (t, n)(1 − G(n − t)), (2)

and

Q(1) =
n−1
∑

s=1

P (1, s)Q(s + 1)g0(s) + P (1, n)(1 − G0(n − 1)), (3)

where G0(t) =
∑t

s=1 g0(s).

Proof: We only prove Equation 2. Equation 3 can be derived similarly.

For notational convenience we drop the explicit conditioning on a changepoint at t − 1

in the following. Thus,

Q(t) = Pr(yt:n)

=

n−1
∑

s=t

Pr(yt:n, next changepoint at s) + Pr(yt:n, no further changepoints).

Now these probabilities can be calculated by the product of the prior probability on the

changepoints, and the probabilities of the observations from a single segment, P (t, s).

Thus

Pr(yt:n, next changepoint at s)

= Pr(next changepoint at s) Pr(yt:s, ys+1:n|next changepoint at s)

= g(s + 1 − t) Pr(yt:s|t, s in same segment)Pr(ys+1:n|changepoint at s)

= g(s + 1 − t)P (t, s)Q(s + 1)
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Similarly

Pr(yt:n, no further changepoints) = P (t, n)(1 − G0(n − t)),

as required. 2

Equations 2 and 3 give recursions that can be used to calculate Q(t) in turn for t =

n, . . . , 1. The evidence of the model is just Q(1). These equations are equivalent to

those of Barry and Hartigan (1992), and are based on the same idea as recursions of

Yao (1984).

The computational complexity of the resulting algorithm is quadratic in n. However

often only a small proportion of the terms on the right-hand side of (2) make an ap-

preciable contribution to Q(t). This can happen when the data makes it almost certain

that a changepoint occurs before a given time-point. Thus the summation can often be

truncated with negligible error. We propose truncating the sum at term k when

P (t, k)Q(s + 1)g(k + 1 − t)
∑k

s=t P (t, s)Q(s + 1)g(s + 1 − t)
(4)

is less than some predetermined value, for example 10−10.

In the limiting regime of analysing a process over a longer time period, so that the

number of changepoints will increase roughly linearly with the number of observations,

n, the computational complexity of the resulting approximate set of recursions will be

linear in n. Essentially the average number of terms required in the right-hand side

of (2) will be constant with t. Thus the average computational cost of one of the n

recursions will be independent of n.

3.2 Perfect Simulation of Changepoints

Given the values of Q(t) for t = 1, . . . , n it is straightforward to simulate from the

posterior distribution of the changepoints as follows.

The posterior distribution of the first changepoint is given by

Pr(τ1|y1:n) = Pr(y1:n, τ1)/ Pr(y1:n)

= Pr(τ1) Pr(y1:τ1 |τ1) Pr(yτ1+1:n|τ1)/Q(1)

= P (1, τ1)Q(τ1 + 1)g0(τ1)/Q(1),

for τ1 = 1, . . . , n−1. The probability of no further changepoint being P (1, n)(1−G0(n−

1))/Q(1).
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Similarly the posterior distribution of the τj given τj−1 is

Pr(τj |τj−1, y1:n) = P (τj−1 + 1, τj)Q(τj + 1)g(τj − τj−1)/Q(τj−1 + 1),

for τj = τj−1 + 1, . . . , n − 1, and the probability of no further breakpoint is P (τj−1 +

1, n)(1 − G0(n − τj−1 − 1))/Q(τj−1 + 1).

Efficient simulation of large samples of changepoints from the posterior distribution can

be done by simulating the samples concurrently, using the following algorithm. We

denote the generic posterior distribution of the next changepoint, given a changepoint

at t by Pr(τ |y1:n, t), which can be calculated as above.

(1) For a sample of size M , initiate each of the M samples with a changepoint at

t = 0.

(2) For t = 0, . . . , n − 2:

(i) Calculate nt the number of whose last changepoint was at time t.

(ii) If nt > 0 calculate the probability distribution Pr(τ |y1:n, t).

(iii) Sample nt times from Pr(τ |y1:n, t) using Algorithm 1 of Carpenter et al.

(1999) (see the Appendix). Use these values to update the nt samples of

changepoints which have a changepoint at t.

There are two advantages of this algorithm. The first is that the probability mass

function Pr(τ |y1:n, t) need only be calculated once regardless of the number of samples

required from it. If changepoints are sampled one at a time, then either these densities

will, potentially, need to be calculated for each sample, or they will need to be stored.

Storing these mass functions can place large burdens on computational memory. The

storage requirements will be quadratic in n; by comparison the above algorithm has

storage requirements that are linear in n.

The second is that simulating a sample of size M from a general discrete mass function

can be achieved more efficiently than sampling M samples of size 1. Algorithm 1 of

Carpenter et al. (1999) allows a sample of size M to be simulated with order n + M

effort, rather than the nM effort of sampling M samples of size 1.
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3.3 Conditioning on the Number of Changepoints

Now consider inference conditional on m changepoints. As in Section 2 we define the

prior for the changepoints via πm(τm) and conditional probabilities of the form πm(τ +

j|τj+1). We define P (s, t) as before, and for j = 1, . . . , m, and t = j+1, . . . , n−m−1+j,

Q
(m)
j (t) = Pr(yt:n|τj = t − 1, m changepoints).

We can derive the following set of recursions. For t = m + 1, . . . , n − 1,

Q(m)
m (t) = P (t, n)πm(τm = t − 1).

For j = 1, . . . , m − 1, and t = j + 1, . . . , n − m − 1 + j

Q
(m)
j (t) =

n−m+j
∑

s=t

P (t, s)Q
(m)
j+1(s + 1)πm(τj = t − 1|τj+1 = s).

Finally

Pr(y1:n|m changepoints) =

n−m
∑

s=1

P (1, s)Q
(m)
1 (s + 1). (5)

These can be proved in a similar way to Theorem 1.

If the number of changepoints is unknown, with prior π(m), then the posterior distri-

bution of m can be calculated as

Pr(m|y1:n) ∝ π(m) Pr(y1:n|m changepoints),

with the last term, the evidence for m changepoints, being calculated, for each m, using

the recursions.

Simulation from the joint posterior distribution is possible by first simulating M samples

from Pr(m|y1:n). If the value m is sampled Nm times, then Nm samples from the

posterior distribution of the changepoint positions, conditional on m changepoints, can

be obtained as described in Section 3.2. The only difference is that the conditional

distribution of τj given τj−1 is now

Pr(τj |τj−1, y1:n, m) = P (τj−1 + 1, τj)Q
(m)
j (τj + 1)πm(τj−1|τj)/Q

(m)
j−1(τj−1).

Finally, in the case of the Markov point process prior (that is, a geometric distribution

for the distance between changepoints), exact inference is possible even if the proba-

bility of a changepoint at any timepoint, p, is unknown. This is because, conditional
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on the number of changepoints, the positions are distributed uniformly along the inter-

val, independent of p. We can thus perform inference conditional on m changepoints.

Furthermore, under the Markov point process prior for the changepoints, the condi-

tional prior for the number of changepoints, m, π(m|p) has a Binomial distribution

with paramters n − 1 and p. Thus the marginal prior for m is obtained by averaging

prior for π(m|p) with respect to the prior for p.

4 Examples

4.1 Coal Mining Disaster Data

As our first example, we consider fitting multiple changepoints to the coal mining disas-

ter data of Jarrett (1979). This is a standard data set for testing methods for inferring

changepoints. Raftery and Akman (1986) and Carlin et al. (1992) fit single changepoint

models. Green (1995) fits a multiple changepoint model using reversible jump MCMC,

and Yang and Kuo (2001) infer multiple changepoints using binary segmentation. Our

analysis is based on the model of Green (1995), except that we discretize time into

weekly time units, and allow changepoints to only occur at these discrete time points.

By comparison, Green (1995) uses a continuous time model.

The data consists of the dates of 191 coal mining disasters between 1851 and 1962, a

period of 5844 weeks. We assume the number of disasters in any week has a Poisson

distribution, and the underlying Poisson mean, µ, is piecewise constant through time.

For a given segment, µ has a Γ(α, β) prior density, βαµα−1e−βµ/Γ(α), for µ > 0. We

thus obtain from (1)

P (t, s) =
Γ (α +

∑s
i=t yi) βα

Γ(α) (β + s − t + 1)α+
P

s

i=t
yi

.

Our prior distribution for the number of changepoints is Poisson with mean 3. We

consider a prior distribution for the changepoint positions, conditional on m change-

points, which is specified by the even order statistics of 2m + 1 uniform draws from the

numbers {1, . . . , n − 1} without replacement. This is a discrete version of the prior of

Green (1995), and has the advantage of penalising very short segments. This prior is

specified by

πm(τ1, . . . , τm) = K−1
m

m
∏

i=0

(τi+1 − τi − 1),
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where Km is the normalising constant, the number of combinations of picking 2m + 1

from n − 1 numbers.

We calculate the Q
(m)
j s using πm(τj = t|τj+1 = s) = s − t − 1. The correct value of

Pr(y1:n|m changepoints) is obtained by dividing through by Km in (5). The advantage

of this approach is that the Q
(m)
j s, for different values of m, are related by

Q
(m)
j (t) = Q

(m+k)
j+k (t),

for any integer k.

Our first analysis uses an equivalent prior for the Poisson mean as Green (1995), with

α = 1 and β = 200/7. The difference in the scale parameter is due to the different time

units that we use: weeks rather than days. The results for the posterior distribution

of the number of changepoints, and their positions conditional on 2 changepoints, are

shown in Figure 1 (a)–(b).

The posterior distribution for the number of changepoints differs from that shown in

Green (1995); in the production of those previous results the Monte Carlo simulation was

not run for long enough. A reanalysis of the data in Green (2003), using the same model

and MCMC algorithm, but run for 25 times as many iterations, gives almost identical

results to those shown here. The only difference between these previous analyses and

ours is that we have discretised time. This comparison, together with a simple analysis

of the data under a continuous time model with m = 1 and m = 2 using importance

sampling (results not shown), suggest that the difference introduced by discretising time

is negligible. Our algorithm took an order of magnitude longer to analyse this data

than the analysis of Green (2003): 5 minutes on a 900MHz Pentium PC rather than

half a minute on an 800MHz PC. However analysis of the data under a point process

prior (with the distribution of the time between changepoints being negative binomial

with parameters 2 and 0.001) produces almost identical results and takes around half a

minute to run. Further computational savings may be possible using the approximation

described in Section 3.1.

Figure 1 (c)–(d) shows results for analysing the data with the diffuse prior of Yang

and Kuo (2001) for the Poisson means (α = 0.5 and β = 10−7). The choice of prior

distribution greatly affects the posterior distribution for the number of changepoints,

but has negligible effect on the distribution of the changepoint positions (this is still true

if we condition on the presence of a different number of changepoints). The priors which
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Figure 1: Analysis of the Coal-mining data for two different priors for the Poisson

means for each segment. Left-hand plots are the posterior distribution of the number

of changepoints, and right-hand plots are the conditional posterior distributions of the

position of the changepoints, conditional on there being 2, and are obtained from perfect

samples of size 10,000 from the corresponding posterior distributions. The prior for the

Poisson means were Γ(α, β), with (a)-(b) α = 1 and β = 200/7; and (c)-(d) α = 0.5

and β = 10−7.
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have more mass on the range of the parameter values that are consistent with the data

allow for more changepoints. The choice of prior effectively controls how much penalty

is incurred for introducing additional changepoints, and thereby additional parameters.

The more diffuse the prior, the larger this penalty is, and the approach of Yang and

Kuo (2001) of introducing a prior to mimic an improper prior on the parameters is

inappropriate.

4.2 Well-log Data

We now consider the problem of detecting changepoints in well-log data. An example

of well-log data, which comes from Ó Ruanaidh and Fitzgerald (1996), is given in Fig-

ure 2(a). The data consist of 4050 measurements of the nuclear-magnetic response of

underground rocks. The data were obtained by lowering a probe into a bore-hole. Mea-

surements were taken at discrete timepoints by the probe as it was lowered through the

hole. The underlying signal is roughly piecewise constant, with each constant segment

relates to a single rock type (that has constant physical properties). The changepoints

in the signal occur each time a new rock type is encountered. Detecting the change-

points is important in oil-drilling; see the introduction of Fearnhead and Clifford (2003)

for more details.

These data have been previously analysed by Ó Ruanaidh and Fitzgerald (1996), who

used MCMC to fit a change-point model with a fixed number of changepoints; and

by Fearnhead and Clifford (2003) who considered online analysis of the data using

particle filters. We performed a batch analysis of the data, but allowed for multiple

changepoints.

Piecewise constant model

Initially we consider an analysis based on a model taken Fearnhead and Clifford (2003).

We assume a Markov point process prior for the changepoints. There are a number of

outliers in the data which were removed before the data was analysed. For a time t

which belongs to segment i, we model a non-outlying observation, yt, by

yt ∼ N(µi, σ
2),

where µi is the mean associated with the ith segment, and we assume a common known

variance, σ2 = 25002. We assume that the segment means have independent normal

priors with mean η = 115, 000 and variance τ2σ2 = 10, 0002 (so τ = 4). Conditional on
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Figure 2: Well-log data, and analysis under piecewise constant model (left-hand column)

and random walk model (right-hand column). Plots (a) and (b) show the well-log data

together with a realisation from the posterior distribution of the signal mean (in red).

Plots (c) and (d) give marginal probabilities of changepoints at each time-point; and

plots (e) and (f) give histograms for the posterior distribution of the number of change

points.

the segment means, the observations are independent. For this model, we have from

(1)

P (t, s) = (kτ2 + 1)−1/2 exp

{

−
1

2σ2

(

k

kτ2 + 1
(η − s1/k) +

(

s2 − s2
1/k

)2
)}

,

where k is the number of (non-outlier) observations between times t and s (inclusive),

and s1 and s2 are respectively the sum of these observations and the sum of the square

of these observations. Using the methods of Section 3.3 we performed inference for p,

assuming a uniform prior for p. This gave a posterior mode of p = 0.013, and the results

we present are for p fixed to this value.

In the left-hand column of Figure 2 we present the results of our analysis. The plots

are for the posterior distribution of the number of changepoints and their positions

(based on 10,000 independent draws from the posterior), and one realisation of the the
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underlying signal. It took 26 seconds on a 3.4GHz PC to perform this analysis.

We repeated our analysis using the approximate algorithm suggested in Section 3.1.

We truncated the sums in Equations (2) and (3), used to calculate the Q(t)s, when the

value of (4) was less than 10−10. The resulting algorithm on average required sums of

222 terms to be calculated for each Q(t); which compares with average sums of 2025

terms for the exact algorithm. This is a nine-fold reduction in the complexity of the

algorithm. The resulting approximation of the log evidence was correct to 4 decimal

places, which suggests that negligible errors were introduced.

Comparison with MCMC

For comparison we analysed the same data set under the same model with the MCMC

method of Lavielle and Lebarbier (2001), which has been specifically designed for the

Gaussian changepoint model used for the well-log data.

This method integrates out the segment parameters, and uses MCMC to mix over the

number and position of changepoints. Let r = (r1, r2, . . . , rn−1) be a binary vector with

rt = 1 if and only if there is a change-point at time t. At each iteration of the algorithm,

we successively use one of three possible moves to update r. These moves propose a new

vector r′, and the move accepted with a probability that ensures the MCMC algorithm

has the correct stationary distribution. The possible moves are

(A) Propose a new set of changepoint positions, r′ from the prior.

(B) Choose a time-point, t, uniformly at random from 1, 2, . . . , n−1; if rt = 0 propose

r′t = 1, else propose a r′t = 0, with r′s = rs for s 6= t.

(C) Choose uniformly at random two time-points, t and t′ such that rt = 1 and rt′ = 0.

Propose a move to r′t = 0, r′t′ = 1 and rs = r′s for s 6= t, t′.

We ran this MCMC algorithm for a total of 500,000 iterations (where one iteration

involves an application of each of moves (A)-(C)). Of the moves which change the num-

ber of changepoints, move (A) had negligible acceptance probability (such a move was

never accepted in our run), and move (B) had an acceptance probability of 0.4%. The

autocorrelation for the number of changepoints was 0.97 at lag 100, and the estimated

autocorrelation time was around 6,000. This suggests that 6×107 iterations would be

required to have the same amount of information as 10,000 independent draws from

the posterior. Such a run would take around two orders of magnitude longer than the
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direct simulation method.

Inclusion of Hyperpriors

We now consider an extension of the above model where all parameters in our model were

unknown, and we introduce hyperiors for them. This introduces dependence between

the segments, and our direct simulation algorithm has to be used within an MCMC

scheme.

We used a uniform prior for p, and an improper prior for σ, π(σ) ∝ 1/σ. We parame-

terised the prior for the segment means as

µi ∼ N(η, τ2σ2),

and used improper hyperpriors on η and τ : π(η) ∝ 1 and π(τ) ∝ 1/τ .

We analysed this model using MCMC. The MCMC algorithm used the following three

updates:

(1) Update the changepoints conditional on σ, p, η, and τ . We used an independent

proposal from the true posterior distribution conditional on σ = 2, 330, p = 0.013,

η = 115000, and τ = 4.3.

(2) Update σ, p and the µis from their full conditional distribution given the change-

points and η and τ .

(3) Update η and τ from their full-conditionals given the µis.

Each of these moves satisfies detailed balance. Steps (2) and (3) are Gibbs steps, and

thus the proposed values are always accepted. Step (1) is not a Gibbs step. Although

it would be possible to make it so, there is a substantial overhead to calculating the

posterior distribution of the changepoints at each iteration. Thus while this algorithm

may mix more slowly, a single iteration will be substantially quicker, and hence we hope

it will be more efficient. In updating the changepoints in step (1) we throw away the

segment means. This is an example of collapsing (Liu, 2001, pages 146–151 ), which

usually improves the mixing of the Markov Chain.

We ran this Markov chain for 10,000 iterations. The acceptance probability of step (1)

was 61.8%. The 1-lag autocorrelation for each of the parameters was less than 0.03,

which suggests that the chain is mixing extremely quickly. The advantage of using the

direct simulation method for updating the number and position of changepoints rather
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than proposing these from the prior (as in step (A) of the MCMC algorithm Lavielle

and Lebarbier, 2001) is significant (see above).

The reason why this MCMC algorithm performs so well is because the posterior proba-

bility of the parameters is concentrated in a small region of the parameter space. Over

this small region, the parameters are almost independent; the maximum absolute value

of the correlation between any pair of parameters is 0.01. Furthermore, the conditional

distribution of the changepoints changes little over this range of parameter values, which

means that the average acceptance probability in step (1) of the algorithm is high. This

situation is likely to occur in other situations where there is a large and informative

data set with many changepoints.

Alternative Models

The model used in the previous Section is based around those previously used in the

literature for this data. However the realisations from the posterior distribution have

many more changepoints, and thus suggest many more rock strata, than is realistic. It

appears that the piecewise constant model used is overly simplistic for the data, and

that this has resulted in the need for too many changepoints in order to fit the data.

We have considered numerous extensions to the model. Two possibilities are: (i) to

allow different noise variances for different segments; and (ii) to model each segment

using a mean-shifted AR(1) model (Albert and Chib, 1993). Both of these models can

be analysed via our direct simulation method, though for (ii) we need to numerically

integrate out the autoregressive coefficient (this can be done in a similar way to that

described below). However neither of these extensions enable the data to be fit with

substantially fewer change points (results not shown).

Instead we consider the following state-space model for the data within a segment,

where if t − 1 and t both lie within segment i

µt ∼ N(µt−1, τ
2
i )

yt ∼ N(µt, σ
2).

The initial µ value for each segment is drawn from the same independent normal priors

as before. This is an extension of the piecewise constant model which allows the signal

within a segment to perform a random walk. We allow the variance of the random walk

to vary among segments, and assume a Gamma prior for τi with parameters 2 and 1/40.

This prior places most probability mass on values of τi which lie in the interval [0, 150].
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The idea of this model is that the random walk element can fit the small-scale variation

in the underlying signal without the need to infer changepoints.

If τi were known for each segment then it would be straightforward to apply our direct

simulation method, using the Kalman Filter (Harvey, 1989) to integrate out the under-

lying signal. To incorporate a prior on τi we resort to numerical integration to calculate

the P (t, s) values required by our algorithm. A simple, but adequate, approach to nu-

merical integration is based on using a grid of τi values, and we obtained such a grid as

follows. For a grid with K points, first simulate for k = 1, . . . , K, a realisation, uk, of

a uniform random variable on [(k − 1)/K, k/K]; then fix the kth grid point to be the

ukth quantile from the prior for τi.

In practice we found that a grid of 100 points produced accurate results; and for such

a grid it took less than 19 minutes to simulate 10,000 draws from the joint posterior

distribution of changepoint positions on a 3.4GHz PC. The results of the analysis (as-

suming σ = 2, 500 and p = 0.013) are shown in Figure 2. This model gives more realistic

inferences about the number and positions of the changepoints.

5 Discussion

We have described ways in which recursions, based on the Forward-Backward algo-

rithm, can be used to perform Bayesian analysis of multiple changepoint problems.

As mentioned previously, the work we present is closely related to work by Barry and

Hartigan (1992). The main novelty of what we propose is that we demonstrate how

the recursions can be used for perfect simulation from the posterior distribution of the

number and position of change-points, and hence from the posterior distribution of

the parameters. Presenting results from a Bayesian analysis via simulations from the

posterior distribution is both quicker than calculating the posterior means (as done

by Barry and Hartigan, 1992, where the cost is cubic in the number of observations),

and also encapsulates information about uncertainty about parameters, which is one of

the advantages of Bayesian inference. We have also extended the use of recursions to

inference conditional on the number of changepoints. Further extensions to allow for

model-choice within segments (Fearnhead, 2005b) and online inference Fearnhead and

Liu (2005) are also possible.

The ability to simulate from posterior distributions also enables the algorithms we
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present to be used in analysing more complex models, for example by embedding our

algorithm within an MCMC algorithm (see Section 4.2). While it may seem natural in

such cases just to use standard MCMC algorithms, the use of direct simulation enabled

us to construct an MCMC algorithm for the Well-log data that had exceptional mixing

properties.
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Appendix

To simulate in linear time a sample of size n from a discrete distribution Pr(τ), which

takes values of τ = 1, 2, . . .:

1(a) for i = 1, . . . , n+1, simulate xi a realisation from an exponential distribution with

rate parameter 1;

1(b) Calculate S =
∑n+1

i=1 xi;

1(c) Set u1 = x1/S and for i = 2, . . . , n ui = ui−1 + xi/S.

2 Set Q = 0, U = u1, j = 1 and i = 1.

3 If U < Q + Pr(τ = j) then output j and set U = ui+1 and i = i + 1; otherwise set

Q = Pr(τ = j) and j = j + 1. Repeat until i = n + 1.
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