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Abstract

In this dissertation we investigate the problem of reasoning over evolving structures

which describe the dependence among multiple, possibly vector-valued, time-series.

Such problems arise naturally in variety of settings. Consider the problem of object

interaction analysis. Given tracks of multiple moving objects one may wish to describe

if and how these objects are interacting over time. Alternatively, consider a scenario in

which one observes multiple video streams representing participants in a conversation.

Given a single audio stream, one may wish to determine with which video stream the

audio stream is associated as a means of indicating who is speaking at any point in

time. Both of these problems can be cast as inference over dependence structures.

In the absence of training data, such reasoning is challenging for several reasons.

If one is solely interested in the structure of dependence as described by a graphical

model, there is the question of how to account for unknown parameters. Additionally,

the set of possible structures is generally super-exponential in the number of time series.

Furthermore, if one wishes to reason about structure which varies over time, the number

of structural sequences grows exponentially with the length of time being analyzed.

We present tractable methods for reasoning in such scenarios. We consider two ap-

proaches for reasoning over structure while treating the unknown parameters as nuisance

variables. First, we develop a generalized likelihood approach in which point estimates

of parameters are used in place of the unknown quantities. We explore this approach

in scenarios in which one considers a small enumerated set of specified structures. Sec-

ond, we develop a Bayesian approach and present a conjugate prior on the parameters

and structure of a model describing the dependence among time-series. This allows

for Bayesian reasoning over structure while integrating over parameters. The modular

nature of the prior we define allows one to reason over a super-exponential number of

structures in exponential-time in general. Furthermore, by imposing simple local or
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global structural constraints we show that one can reduce the exponential-time com-

plexity to polynomial-time complexity while still reasoning over a super-exponential

number of candidate structures.

We cast the problem of reasoning over temporally evolving structures as inference

over a latent state sequence which indexes structure over time in a dynamic Bayesian

network. This model allows one to utilize standard algorithms such as Expectation

Maximization, Viterbi decoding, forward-backward messaging and Gibbs sampling in

order to efficiently reasoning over an exponential number of structural sequences. We

demonstrate the utility of our methodology on two tasks: audio-visual association and

moving object interaction analysis. We achieve state-of-the-art performance on a stan-

dard audio-visual dataset and show how our model allows one to tractably make exact

probabilistic statements about interactions among multiple moving objects.

Thesis Supervisor: John W. Fisher III

Title: Principal Research Scientist of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In this dissertation we investigate the problem of analyzing the statistical dependence

among multiple time-series. The problem is cast in terms of inference over structure

used by a probabilistic model describing the evolution of these time-series, such as an

undirected graphical model or directed Bayesian Network. We are primarily concerned

with the structure of dependence described by the presence or absence of edges in a

graphical model and as such we treat model parameters as nuisance variables. Building

upon the large body of work on structure learning and dynamic Bayesian networks we

present a model which yields tractable inference of statistical dependence relationships

which change over time. We demonstrate the utility of our method on audio-visual

association and object-interaction analysis tasks.

� 1.1 Motivation

When designing and building intelligent systems it would be beneficial to give them the

ability to combine multiple sources of sensory information for the purpose of interpreting

and understanding the environment in which they operate. Fusion of multiple sources

of disparate information enables systems to operate more robustly and naturally. One

inspirational example of such a system is the human being. Our five basic sensing

modalities of sight, hearing, touch, taste and smell are combined to provide a view of

our environment that is richer than using any single sense in isolation. In addition to

being inherently multi-modal, human perception takes advantages of multiple sources

of information within a single modality. We have two eyes, two ears and multiple

pathways for our sense of touch. Moving beyond the act of sensing, the human brain is

highly effective at extracting, combining and interpreting higher-level information from

these sources. For example, using our visual input we are able to track multiple moving

19



20 CHAPTER 1. INTRODUCTION

objects and combine this information with what we hear in order to help identify the

source of a sound.

There are two main challenges when designing systems that fuse information from

multiple time-series. The first challenge is choosing how to represent the incoming data.

The high dimensional nature of each data source makes processing the raw sensory

input computationally burdensome. Extracting features from each data source can

alleviate this problem by eliminating information that is irrelevant or inherently noisy.

For example, computation could be reduced if one were able to extract the location of

multiple objects in a scene to analyze their behaviors rather than processing the entire

visual scene as a whole. Even if dimensionality is low or features are extracted, the

important question of determine which features are informative for the specific task

remains. There has been considerable work on the task of general feature selection

[41, 8, 53, 55] and on learning informative representations across multiple data sources

[29, 84, 30]. This dissertation will assume the challenge of representation has been

addressed by one of these existing approaches or by carefully hand picking features

which are sufficiently informative for the application of interest.

The second challenge is that of integration. Once features are extracted the there

is a question of how information obtained from them can be effectively combined. Sim-

ple strategies can be devised assuming the data sources are independent of each other.

While computationally simple, such strategies neglect to take advantage of any shared

information among the inputs. The opposite extreme is to consider all possible relation-

ships among the inputs. This comes at the cost of a more complex model for integration.

Thus, a key task for fusing information among multiple data sources is to identify the

relationships among them. If one knew that the dependence among the data sources

this knowledge could be exploited to perform efficient integration. This is the main

focus of this dissertation: developing techniques for identifying the relationships among

the multiple sources of information. In many tasks, identify these relationships is the

main result one is interested in.

Consider a scene in which there are several individuals, each of whom may be

speaking at any given moment. Assume a recording of the scene produces a single

audio stream in addition to a wide angle video stream. For each individual in the scene

a separate video stream representing a region of the input video can be extracted. Given

this data over a long period of time, one useful task is to determine who, if anyone, is

speaking at each point in time. Humans are very effective at this task. The solution to
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this audio-visual association problem has wide applicability to tasks such as automatic

meeting transcription, social interaction analysis, and control of human-computer dialog

systems. The semantic label identifying who is speaking can be related to associating

the audio stream with many, one or none of the video streams. For example, the

identification that “Victoria is speaking” indicates that the video stream for Victoria is

associated with the audio stream.

Next, consider a scene with multiple moving objects. For example, think about a

basketball game in which the moving objects are the players on each team and the ball.

Given measurements of the position of these objects over a long duration of time, a

question one may ask is: Which, if any, of these objects are interacting at each point

in time? The answer to this question is useful for a variety of applications including

anomalous event detection and automatic scene summarization. In this specific example

of a basketball game, understanding the interactions among players can help one identify

a particular play, which team is on offense, and who is covering whom. This is a common

and natural task regularly performed by humans. Heider and Simmel [45] note that

when presented a cartoon of simple shapes moving on a screen, one will tend to describe

their behavior with terms such as “chasing”,“following” or being independent of one

another. These semantic labels describe the interaction between objects and allow

humans to provide a compact description of what they are observing.

Underlying both of these problems is the task of identifying associations or inter-

actions among the observed time-series. The words association and interaction both

describe statistical dependence. When we say the audio stream is associated with video

stream for Victoria, we are implying the two time-series share information and should

not be modeled as being independent of one another. Similarly, when we claim two

objects are interacting we are implying some statistical dependence between them. For

example, a “following” interaction implies a causal dependence between the leader’s

current position and the follower’s future position.

Note that with each of these dependence relationship there is the question of iden-

tifying the nature of that dependence. There are many ways in which time-series can

be dependent on each other. Associated with a particular dependence structure are

a set of parameters describing that dependence. For example, these parameters will

describe the tone of Victoria’s voice in the audio stream and exactly how motion in the

video stream is associated with changes in the audio. In the object interaction analysis

scenario the parameters describing the causal dependence for a “following” behavior
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will characterize how fast the objects are moving and how closely the leader is being

followed. Our primary interest is in identifying the presence or absence of dependence

rather than accurately characterizing the nature of that dependence describe by these

parameters.

� 1.2 Objective

We develop a general framework for the task of dynamic dependence analysis. The

primary input to a system performing dynamic dependence analysis is a finite set of

discrete-time vector-valued time-series jointly sampled over a fixed period of time. The

output of the system is a description of the statistical dependence among the time-series

at each point in time. This description may be in the form of a point estimate of or

distribution over dependence structure. The techniques presented in this dissertation

have additional inputs such as:

• The maximum number of possible dependence relationships the system should

consider modeling the time-series changing among over time.

• A specified class of static dependence models that will be used to described a fixed

dependence among the time-series.

• A prior on the dependence structures of interest and an optional prior on param-

eters describing the nature of dependence.

� 1.3 Our Approach

Past approaches to the problem of audio-visual association have either been based on

basic measures of dependence over fixed windows of time [46, 84, 30, 68] or on incorpo-

rating training data to help classify correct speaker association [68, 72]. Similarly, past

approaches for object interaction analysis have relied on measuring statistical depen-

dence among small groups of objects assuming the interaction is not changing [88] or on

trained classifiers to detect previously observed interacting behaviors [66, 49, 48, 69].

Building upon previous work we wish to address the issues that arise when per-

forming dependence analysis on data in which the structure may change over time.

Furthermore we wish to do so in the absence of large training datasets. Approaches

that rely on general measures of statistical dependence are powerful in that they do

not rely on any application specific knowledge and can be adapted easily to many other
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domains. Previous work has primarily focused on the use of windowed approaches

[68, 72]. That is, given a window of time they measure dependence assuming it is

static. By sliding this window over time such approaches attempt to capture changing

dependence. When using such an approach the window size used must be long enough

to get an accurate measure of dependence. At the same time it must be short enough

as to not violate the assumption of a static dependence relationship being active within

the window. That is, there is a tradeoff between window size and how fast dependence

structures can change. Approaches that use training data have the advantage of being

specialized to the domain of interest and may be able to overcome some of these issues

by only needing a few samples to identify a particular structure. However, domain

specific training data is not always available.

Our core idea is that rather than treating the problem as a series of windowed tasks

of measuring static dependence, we cast the problem of dynamic dependence analysis

in terms of inference on a dynamic dependence model. A dynamic dependence model

explicitly describes dependence structure among time-series and how this dependence

evolves over time. Using this class of models allows one to incorporate knowledge over

all time when making a local decision about dependence relationships. Additionally, it

allows one to take advantage of repeated dependence relationships from different points

in time. We demonstrate the advantage of this approach over windowed analysis both

theoretically and empirically.

� 1.4 Key Challenges and Contributions

This dissertation addresses a set of key challenges and makes the following contributions:

How does one map the associations in the audio-visual task and the

interactions in the object interaction analysis task to a particular sta-

tistical dependence structure?

We introduce two general static dependence models: a static factorization model

(FactM) and temporal interaction model (TIM). The FactM describes multiple

time-series as sets of independent groups. That is, it explicitly models how the

distribution on time-series factorizes. In the audio-visual association task, reason-

ing over associations between the audio and video streams is related to reasoning

over factorizations.
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The TIM allows one to provide more details about the dependence among time-

series. The model takes the form of directed Bayesian network describing the

causal relationships between the current value of a single time-series based on the

finite set of past values of other associated time-series. We treat the problem of

identify interactions as one of identifying the details of these causal relationships.

How many possible structures are there and is it tractable to consider

all of them?

The number of possible dependence structures among N time-series is super-

exponential in N , O(NN ). For many applications, such as the audio-visual as-

sociation task, there is a small number of specific structures one is interested in

identifying and thus inference is generally tractable. However, in other applica-

tions, one may want to consider all structures or significantly large subset that

grows with N . We show that a super-exponential number of structures can be

reasoned over in exponential-time in general by exploiting the temporal causality

assumptions in our TIM. We further show that by imposing some simple restric-

tions on the structures considered one can reason over a still super-exponential

number of them in polynomial-time.

How does one incorporate prior knowledge about dependence?

In some applications we may have some prior knowledge about which dependence

structures are more likely than others. When considering a tractable set of struc-

tures a simple discrete prior distribution can be placed over them. However, this

approach becomes intractable as the number of structures considered increases.

Building upon the type of priors used for general structure learning [62, 54, 33]

we present a conjugate prior on structures for a TIM which allows for efficient

posterior updates.

When analyzing a large number of time-series, trying to uncover a single “true

structure” active at any point in time is often less desirable than a full charac-

terization of uncertainty. Using this class of priors we obtain a distribution over

structure rather than a point estimate. In addition, the exact posterior marginal

distributions and expectations can be obtained tractably. This allows for a de-

tailed characterization of uncertainty in the statistical dependence relationships

among time-series.
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How does one separate the task of identifying dependence structure

from that of learning the associated parameters?

That is, an issue which arises when inferring dependence relationships is how to

deal with unknown parameters which describe the nature of dependence. In this

dissertation we will explore two approaches. We show how a maximum likelihood

approach can be used to obtain a point estimate of the parameters from the

data being analyzed. We show theoretically and empirically how this approach

causes problems for windowed dependence analysis techniques while it can help

our dynamic dependence approach. Alternatively, we present a conjugate prior

over parameters of a TIM and show how to tractably perform exact Bayesian

inference integrating over all possible parameters.

How does one model dependence that may change over time?

Building on the large body of work on dynamic Bayesian networks (DBNs) and

hidden Markov models (HMMs) we introduce a dynamic dependence model which

contains a latent state variable that indexes structure. In this dissertation we

assume the number of possible structures is known a priori. That is, the number of

possible latent state values is assumed to be known. A simple Markov dynamic is

placed on this latent variable to model how structure evolves over time. Adopting

such a model allows one to infer changes in structure via the use of standard

forward-backward message passing algorithms. This allows one to reason over

an exponential number of possible sequence of dependence relationships in linear

time.

Additionally, we formulate both audio-visual association and object interaction anal-

ysis tasks as special cases of dynamic dependence analysis. We show how state-of-the-art

performance on a standard dataset for audio-visual speaker association can be achieved

with our method. We demonstrate the utility of our approach in analyzing the inter-

actions among multiple moving players participating in a variety of games.

� 1.5 Organization of this Dissertation

We begin in Chapter 2 with a review of statistical dependence, graphical models, con-

jugate priors and time-series models. This will give the background needed for the

rest of the dissertation. Chapter 3 introduces our two static dependence models which
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assumed a fixed dependence structure over all time. We discuss conjugate priors over

structure and detail inference on such models in both a classical maximum likelihood

and Bayesian framework. Chapter 4 extends these models to become dynamic depen-

dence models by embedding them in hidden Markov model. We show theoretically how

such models have a distinct advantage over windowed approaches for dynamic depen-

dence analysis. Details are given for maximum likelihood inference using Expectation

Maximization and Bayesian inference using a Gibbs sampling approach. Chapters 5

and 6 present experiments using our models in audio-visual association and objective

interaction analysis tasks respectively. We conclude with a summary and discussion of

future work in Chapter 7.



Chapter 2

Background

In the previous chapter we introduced the general problem of analyzing dependence

relationships among multiple time-series. In this chapter we give a brief overview of

the basic technical background the rest of the dissertation relies on. We use statistical

models to describe time-series and the relationships among them. That is, we describe

time-series in terms of random variables and their associated probability distributions.

We assume the reader has a basic understanding of probability theory which can found

in introductory chapter of a wide variety of standard textbooks (c.f. [5, 70]).

We begin by defining statistical dependence. This is followed by a review of graphical

models and how they can be used to encode the structure of dependence relationships

among a set of random variables. Next, in Section 2.3, we discuss time-series in terms

of discrete-time stochastic processes and present the use of a simple Markov model for

describing temporal dependence. In Section 2.4 we overview the standard parametric

models which will be used in this dissertation along with a discussion of conjugacy,

inference and learning. Lastly, we briefly present select topics from information theory

and their relation to the problem of analyzing statistical dependence.

The intent of this chapter is to provide a brief overview of the selected material. We

refer the reader to standard text books for a more rigorous treatment and proofs (c.f.

[5, 70, 21, 73]).

� 2.1 Statistical Dependence

We start by defining statistical dependence. Intuitively, two random variables are de-

pendent if knowledge of one tells you something about the other. To formalize this

abstract concept on can more concretely define statistical independence. Two random

variables, x and y, are statistical independent if and only if their joint distribution is a

27



28 CHAPTER 2. BACKGROUND

product of their marginal distributions:

p (x,y) = p (x) p (y) . (2.1)

The notation x ⊥⊥ y is used to denote statistical independence. Using the fact that

p (x,y) = p (x) p (y|x) = p (y) p (x|y) this requirement is equivalent to saying that the

conditional distribution of one random variable given the other is not a function of what

is being conditioned on:

p (x|y) = p (x) and (2.2)

p (y|x) = p (y) . (2.3)

This definitions can be easily extended to more than two random variables. The joint

of distribution of a collection of independent random variables factorizes as product of

their marginals and all conditional distributions are independent of the random variables

conditioned on.

A simple example of statistical independence is when x and y are the results of coin

tosses of two separate coins. Each coin may have its own bias / probability of heads

versus tails, but if they are two physically separate coins tossed in isolation, knowledge

of whether x is heads or tails tells you nothing about the outcome y.

Statistical dependence is simply defined to be the absence of statistical indepen-

dence. That is, two random variables are dependent if their joint distribution is not

the product of their marginal distributions. Going back to a simple coin example, let

x be the result of a fair coin toss such that p (x = heads) = p (x = tails) = .5. Given

x, imagine placing a small weight on a second fair coin so that it is biased to be more

likely to land on the same side as x. Let y be the result of flipping this biased coin. To

be concrete, assume this bias favors x with probability .9, p (y = heads|x = heads) =

p (y = tails|x = tails) = .9 and p (y = tails|x = heads) = p (y = tails|x = heads) = .1.

Here, x and y are statistically dependent. Our description of the experiment clearly

indicates how knowledge of x tells us something about y. Using Bayes’ rule it is

easy to show that the reverse is also true and knowledge of y also tells us something

about x. Specifically, p (x = heads|y = heads) = .9 ∗ .5/(.9 ∗ .5 + .1 ∗ .5) = .9 while

p (x = heads|y = tails) = .1.

Another important concept is that of conditional independence. Two random vari-

ables x and y are conditionally independent given another random variable z, x ⊥⊥ y | z,

if and only if:

p (x,y|z) = p (x|z) p (y|z) (2.4)
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Independent Dependent

p (x1) p (x2) p (x1,x2)

Figure 2.1. Dependence: Undirected graphical models depicting independent and dependent distri-

butions for two random variables.

or equivalently

p (x|y, z) = p (x|z) and (2.5)

p (y|x, z) = p (y|z) (2.6)

It is important to note that conditional independence does not imply independence and

vice versa. We will give some specific examples in the following section when discussing

Bayesian networks.

� 2.2 Graphical Models

In the previous section we discussed the link between statistical independence of ran-

dom variables and the structure of their joint distribution. Probabilistic graphical

models combine the syntax of graph theory with probabilistic semantics to describe

the dependence structure among a set of random variables. Graphs are used to de-

scribed the overall joint probability of the random variables in terms of local functions

on subgraphs. This local decomposition allows for efficient reasoning over the random

variables represented. More importantly for this dissertation, graphical models provide

a convenient way to specify and understand conditional independence relationships in

terms of graph topology. For example, consider the two undirected graphical models

depicted in Figure 2.1. It is intuitive and simple to read dependence information from

these graphs.

In the following section we review basic graph theory to establish some notation.

We then discuss different classes of graphical models, each of which uses a different

graphical representation to described conditional independence. Again, these sections

provide a quick overview and we refer the reader to standard text books for a more

detailed treatment [73].
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� 2.2.1 Graphs

A graph G = {V,E} is a set of vertices/nodes V and a collection of edges E. Edges

(i, j) ∈ E connect two different nodes i, j ∈ V . Edges can be either undirected or

directed. In undirected graphs, the edge (i, j) is in E if and only if (j, i) is as well. A

vertex j is a neighbor of vertex i if (i, j) ∈ E and the set neighbors for vertex i is simply

the collection of all such j ∈ V . A path is defined as a sequence of neighboring nodes.

If there is a path between all vertices the graph is said to be connected. For undirected

graphs a clique C ⊂ V is a collection of vertices for which all pairs are have an edge

between them. If the entire graph forms a clique the graph is said to be complete.

In a directed graph, directed edges (i, j) connect a parent node i to its child j.

Throughout the dissertation we will use the notation Ē to represent a set of directed

edges and will represent them as arrows in figures. For example, see Figure 2.2(b).

The set of all parents pa
(
i, Ē

)
for a particular node i is the set of all j ∈ V such that

(i, j) ∈ Ē. For brevity we will often drop the Ē and refer to this set as pa (i).

A useful generalization of a graph is a hypergraph. A hypergraph H = {V, F} is

composed of vertices V and associated hyperedges F . Each hyperedge f ∈ F is specified

by any non-empty subset of V . That is, each hyperedge can connected one or more

vertices. Two vertices are neighbors in this hypergraph if they belong to a common

hyperedge. We represent a hypergraph as a graph with extra square nodes for each

hyperedge. All vertices which belong to that hyperedge are connected to the associated

square node. This makes the graph bipartite in that edges only occur between vertices

and the square hyperedge nodes. See Figure 2.2(c) for an example.

� 2.2.2 Factor Graphs

Factor graphs are a class of graphical models which use a hypergraph H to specify the

form of the joint probability distribution on a set of random variables [58]. Let xV

represent the set of all random variables {xi|i ∈ V }. Given a set of hyperedges F , a

factor graph represents the joint distribution p (xV ) as

p (xV ) =
1

Z

∏

f∈F

ψf (xf ), (2.7)

where each ψf is a non-negative function of their arguments and Z, often referred to as
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(a) (b) (c) (d)

Figure 2.2. Equivalent Graphical Models: Three graphical models using different representations to

describe the joint distribution of four random variables. (a) A markov random field (b) a directed

Bayesian network. (c) a factor graph. (d) a second factor graph with the same neighbor relationships

the partition function, guarantees proper normalization. That is,

Z =
∑

x
V

∏

f∈F

ψf (xf ) (2.8)

Figure 2.2(c) shows an example in which

p (x1,x2,x3,x4) =
1

Z
ψ1,2,3(x1,x2,x3)ψ3,4(x3,x4). (2.9)

In the equation above, and in general, ψf (xf ) does not correspond to the marginal

distribution p
(
xf

)
. However, in this dissertation we will use factor graphs in situations

in which each random variable belongs to a single hyper edge and the ψ functions

correspond to marginal distributions.

Conditional independence information can be read directly from a factor graph.

Any two random variables xi and xj are conditional independent given a set xZ for

Z ⊂ V if every path between xi and xj in the hypergraph passes through some vertex

k ∈ Z. Two random variables are marginally independent if there is no path between

them. In Figure 2.2(c), x4 ⊥⊥ x1 | x3. Using this fact it is simply to see that xi is

independent of all other random variables given its neighbors in the factor graph.

� 2.2.3 Undirected Graphical Models

Undirected graphical models, generally referred to as Markov Random Fields (MRFs),

encode conditional independence relationships in a graphG = {V,E}. Closely related to



32 CHAPTER 2. BACKGROUND

factor graphs, MRFs represent the joint distribution as a product of potential functions

on cliques c:

p (xv) =
1

Z

∏

c

φc(xc) (2.10)

where, again, Z is the normalization constant. MRFs have the same conditional in-

dependence properties as factor graphs in that two random variables xi and xj are

conditionally independent given a set of random variables that must be passed through

for every path between xi and xj .

Figure 2.2(a) shows an MRF with the same conditional dependence relationships

as the factor graph in Figure 2.2(c). In fact, in general, there are many factor graphs

which represent the same conditional independence relationships for a given MRF.

Figure 2.2(d) shows a second factor graph which has the same dependence properties as

Figure 2.2(a). Factor graphs have more flexibility in that they can explicitly specify how

potentials on cliques factor, further constraining the space of possible joint distributions

represented. This flexibility comes from their more general hypergraph specification.

� 2.2.4 Bayesian Networks

Bayesian networks are graphical models which can encode causality via a directed rep-

resentation. Given a directed graph G = {V, Ē} a Bayesian network represents a joint

probability which factors as a product of conditional distributions:

p (xV ) =
∏

i∈V

p
(
xi|xpa(i)

)
. (2.11)

If a node has no parents, pa (i) = ∅, the we define p
(
xi|x∅

)
= p (xi). This factorization

is only valid when Ē is acyclic. That is, it represents a graph in which there is no

directed path from one node back to itself. Figure 2.2(b) depicts a Bayesian network

with:

p (x1,x2,x3,x4) = p (x1) p (x2) p (x3|x1,x2) p (x4|x3) (2.12)

This decomposition exposes an underlying generative process.

Reading conditional independence from a Bayesian network is more complicated

than for undirected models and factor graphs. The Bayes Ball algorithm provides a

way of extracting independence relationships from Bayesian network structure [79].

One useful property is that a random variable is independent of all others conditioned
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on its parents, its children, and its children’s parents. A Bayesian network can be

moralized into an MRF by connecting the parents of each node with an undirected

edge and replacing all directed edges with undirected ones. Figure 2.2(a) is a moralized

version of Figure 2.2(b).

Bayesian networks can explicitly represent certain statistical dependence relation-

ships factor graphs and MRFs cannot. For example, consider the V structure found

between x1,x3 and x3 in 2.2(b). A classic example with this dependence structure is a

scenario when x1 and x2 represent the outcomes of two independent coin tosses. Let

x3 be an indicator of whether x1 and x2 had the same outcome. Causally x1 and x2

are independent, x1 ⊥⊥ x2, but conditioning on knowing x3 they become dependent.

Knowing whether the coin tosses where the same or not and the outcome of x1 tells you

a lot about x2. In order to capture this relationship in an MRF, the three random vari-

ables must form a clique (adding an edge between x1 and x2). This is a case in which

independence does not imply conditional independence. The reverse is true for x1 and

x4 in Figure 2.2(b). They are statistical dependent but are conditionally independent

given x3, x1 ⊥⊥ x4| x3.

� 2.3 Time-series

So far in this chapter we have been talking about statistical dependence among, and

distributions for, general sets of random variables. In this dissertation we a interested

in the dependence among time-series. A time-series can be modeled as a discrete time

stochastic process whose value at time t is represented by a random variable, xt. A

stochastic process is fully characterized by all joint distributions of the process at dif-

ferent points in time. A discrete stochastic process over a finite interval from 1 to T is

completely specified in terms of its joint p (x1,x2, . . . ,xT ). We will often use the nota-

tion x1:T to denote such a sequence. If T is not fixed, this distribution would have to be

specified for all possible T one expects to encounter. Such an approach is not tractable,

and thus it is common to make certain assumptions about the temporal dependence.

One simple model for time-series is to consider each time point to be independent

and identically distributed (i.i.d.) such that:

p (x1:T ) =
T∏

t=1

p (xt) (2.13)

While easy to represent, this approach does not capture the fact that information from
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(a) First order (b) Second order

Figure 2.3. Markov Models for Time-Series: Directed Bayesian network (DBN) (a) represents a first

order model and DBN (b) represents a second order model.

the past can help predict future time-series values. A Markov model is another tractable

model which can capture some of this dependence. Consider the fact that the full joint

distribution can always be factorized as

p (x1:T ) =

T∏

t=1

p
(
xt|x1:t−1

)
. (2.14)

An r-th order Markov model is obtained if one assume the right-hand side is only

dependent on the previous r time points. A first order model is simply

p (x1:T ) = p (x1)

T∏

t=2

p
(
xt|xt−1

)
. (2.15)

and is depicted as a directed Bayesian network in Figure 2.3(a). A second order model

is shown in Figure 2.3(b). Note that a zero order model is simply i.i.d.

We will use this class of models for our time-series throughout the dissertation.

Note, here we are describing a single time-series x1:T . In Chapter 3 we will discuss

models for jointly describing multiple time-series in which the temporal dependence is

fixed but the dependence across time-series is unknown.

� 2.4 Parameterization, Learning, Inference and Evidence

In the previous sections we discussed statistical dependence and how it can be encoded

by a graphical model. We discussed how these models specify the form of the joint

distribution in terms of local conditional probability distributions or potential func-

tions. Implicitly each of these local distributions and potential functions has a set of

parameters associated with it. The parameters fully specify its form. So far, we have

been hiding these parameters in the notation.

Here will make this parameterization explicit and use the notation p (x|Θ) rather

than p (x). Similarly for conditional distributions we will use p
(
x|y,Θx|y

)
rather than
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(a) (b)

Figure 2.4. Deterministic vs Random Parameters: Two graphical models depicting two different

treatments of parameters, Θ

(a) treats Θ as an unknown a deterministic quantity. (b) treats Θ as an unobserved

random variable whose prior distribution is specified by known hyperparameters Υ.

p (x|y). For example, a more explicit representation for a directed Bayesian network

on a set of random variables xV is

p (xV |Θ) =
∏

i∈V

p
(
xi|xpa(i),Θi|pa(i)

)
, (2.16)

where Θ contains Θi|pa(i) for all i ∈ V . Note that the actual parameterization is

still implicit in this notation. Only the parameter values are explicitly denoted by

Θ. For example, we must first say p (x|Θ) is a Gaussian distribution, before one can

identify that the parameters Θ describe the value of the mean and covariance for that

distribution.

It is also important to point out that, while this notation explicitly specifies param-

eters with Θ, the structure described by Ē in Equation 2.16 is implicit. To be fully

explicit one should use the notation p
(
xV |Ē,Θ

)
instead. In future chapters of this dis-

sertation we use this notation and focus on reasoning about this dependence structure.

However, in this section, for simplicity, we will leave the structure implicit or consider

it part of Θ.

Given a parameterization and parameter values one can calculate the probability of

an observation of x. However, throughout this dissertation we only be given observa-

tions of x without knowledge of the true underlying parameters. We can deal with this

situation in one of three possible ways.

First, treating the parameters Θ as deterministic unknown quantities, we can at-

tempt to learn them from the observed data. A common approach to learning is to

maximize the likelihood of Θ. That is, if we denote D = {D1,D2, ...DN} as N indepen-
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dent observations of the random variable x we wish to find:

Θ̂ = arg max
Θ

p (D|Θ) (2.17)

= arg max
Θ

N∏

n=1

p (x = Dn|Θ) (2.18)

We can also treat Θ as just another random variable. A prior, p0 (Θ|Υ) can be placed

on Θ to capture our prior belief on the value of Θ. Here, Υ is a set of hyperparameters

used to specify this prior belief. This is depicted in the graphical model shown in

Figure 2.4(b). In this figure rounded rectangle nodes are used to denote deterministic

quantities and shaded circular nodes indicate what is observed in D.

Given observed data, D, one can then calculate the posterior on Θ. A second

approach to deal with the unknown parameters is to find the maximum a posteriori

(MAP) Θ using this posterior:

Θ∗ = arg max
Θ

p (Θ|D) (2.19)

= arg max
Θ

p (D|Θ) p0 (Θ|Υ) (2.20)

Calculating the posterior and/or calculating the MAP estimate can be difficult depend-

ing on the form of the chosen prior p0 (Θ|Υ). However, the optimization and general

calculation of the posterior is simplified greatly when a conjugate prior exists and is

used. A family of priors specified by p0 (Θ|Υ) is conjugate if the posterior p (Θ|D,Υ)

remains in the family. That is, it is conjugate if p (Θ|D,Υ) = p0

(
Θ|Ῡ

)
and Ῡ is a

function of D and the original Υ.

A third approach is to marginalize over the parameters Θ and use the evidence when

calculating probabilities:

p (D) =

∫

Θ
p (D|θ) p0 (Θ|Υ) dΘ (2.21)

Integrating over the space of all parameters is difficult in general. However, again,

having a conjugate prior allows for tractable computation since the evidence can be

written as:

p (D) =
p (D|Θ) p0 (Θ|Υ)

p (Θ|D,Υ)
=
p (D|Θ) p0 (Θ|Υ)

p0

(
Θ|Ῡ

) (2.22)

In the following sections we will overview specific parameterized families of distribu-

tions, ML estimates of their parameters, corresponding conjugate priors and detail how
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to calculate evidence. Each of the distributions presented belongs to the exponential

family of distributions [3].

� 2.4.1 Discrete Distribution

Let x be a discrete random variable taking on one of K possible values in the set

{1, . . . ,K}. A discrete distribution is a probability mass function with probability πk

that x takes on value k:

p (x|Θ) = Discrete (x;π) (2.23)

= πx (2.24)

=

K∏

k=1

π
δ(x−k)
k (2.25)

where Θ = {π1, . . . , πK} and δ(u) is the discrete delta function taking a value of 1 if

u = 0 and 0 otherwise. Given N samples of x as D = {D1, . . . ,DN}, the ML estimate

of Θ is simply:

Θ̂ = arg max
Θ

p (D|Θ) = {π̂1, . . . , π̂K} =
{n1

N
, . . . ,

nk

N

}
(2.26)

where nk is a count of the number data points which had value k, |{ i | Di = k}|.

Dirichlet Distribution

The conjugate prior for a discrete distribution is the Dirichlet distribution1. Given

hyperparameters Υ = α = {α1, . . . , αk} the Dirchlet distribution has the form:

p0 (Θ|Υ) = p (π|α) = Dir (π1, . . . , πK ;α1, . . . , αk) (2.27)

=
Γ (
∑

k αk)∏
k Γ (αk)

K∏

k=1

παk−1
k (2.28)

1The Dirichlet distribution is normally said to be conjugate for the multinomial distribution. Given

N discrete random variables each taking K values, the multinomial is a distribution on the counts nk

rather than the particular sequence. The Dirichlet is also conjugate for the simple discrete distribution,

used here, which models the sequence of N independent observations rather than just the counts.
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A uniform distribution can be obtained by setting all αk = 1. It is simple to see why

this distribution is conjugate. The posterior on the parameters Θ, given data is:

p (Θ|D,Υ) ∝ p (D|Θ) p0 (Θ|Υ) (2.29)

∝
K∏

k=1

παk+nk−1 (2.30)

∝ Dir (Θ;α1 + n1, . . . , αK + nK) (2.31)

or can equivalently be written as p (Θ|D,Υ) = p0

(
Θ|Ῡ

)
where Ῡ = {α1 + n1, . . . , αK + nK}.

The evidence is simply:

p (D|Υ) =
p (D|Θ) p0 (Θ|Υ)

p (Θ|D,Υ)
(2.32)

=
Γ (
∑

k αk)
∏

k Γ (αk + nk)

Γ (N +
∑

k αk)
∏

k Γ (αk)
(2.33)

The hyperparameters αk can be thought of as a prior/pseudo count of how many times

one saw the value K in
∑

k αk trials. Figure 2.5 shows several Dirichlet distributions

using different hyperparameters.

� 2.4.2 Normal Distribution

Perhaps the most commonly used distrib ution for continuous valued random vectors

x whose values are in Rd is the Gaussian or normal distribution. Given parameters

Θ = {µ,Λ} it takes the form:

p (x|Θ) = N (x;µ,Λ) (2.34)

=
1

(2π)d/2|Λ|1/2
exp

{
1

2
(x − µ)TΛ−1(x − µ)

}
(2.35)

where µ ∈ Rd is the mean and Λ ∈ Rd×d is a d× d positive definite matrix representing

the covariance among the elements in x.

Given N independent samples of x in D, the ML estimate of the Gaussian’s param-

eters are the sample mean and covariance:

µ̂ =
1

N

N∑

n=1

Dn , Λ̂ =
1

N

N∑

n=1

(Dn − µ̂)(Dn − µ̂)T (2.36)
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Figure 2.5. Example Dirichlet Distributions: Distributions for K = 3 are displayed on the simplex

(π1, π2, 1−π1 −π2). Dark represents high probability. (a) Uniform prior, (b) Prior biased toward equal

πks (c) Prior biased toward K = 1, (c) By setting αk < 0 one obtains a prior that favors a sparse π.

Normal-Inverse-Wishart Distribution

The conjugate prior for the normal distribution is the normal-inverse-Wishart distribu-

tion. It factorizes as a normal prior on the mean given the covariance and an inverse-

Wishart prior on the covariance given hyperparameters Υ = {ω, κ,Ξ, ν}:

p0 (Θ|Υ) = p0 (µ|Λ,Υ) p0 (Λ|Υ) (2.37)

= N (µ;ω,Λ/κ) IW (Λ; Ξ, ν) (2.38)
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Here the conditional prior on µ is a Gaussian with an expected value of ω ∈ Rd and

covariance scaled by κ ∈ R1. The hyperparameter κ can be thought of a count of prior

“pseudo-observations.” The higher κ is the tighter the prior on µ becomes around its

mean ω. The d-dimensional inverse-Wishart distribution with positive definite param-

eter Ξ ∈ Rd×d and ν ∈ R1 degrees of freedom has the form:

IW (Λ; Ξ, ν) =
|Ξ|ν/2|Λ|−

(d+ν+1)
2 exp

{
−1

2tr
(
ΞΛ−1

)}

2
νd
2 πd(d−1)/4

∏d
i=1 Γ

(
ν+1−i

2

) (2.39)

The expected value of this distribution is simply Ξ/(ν − d− 1). It can be shown that,

given N independent Gaussian observations the posterior distribution has the form:

p (Θ|D,Υ) = N (µ; ω̄,Λ/κ̄)IW
(
Λ; Ξ̄, ν̄

)
(2.40)

where the updated hyperparameters are

κ̄ = κ+N (2.41)

ν̄ = ν +N (2.42)

ω̄ =
κ

κ+N
ω +

1

κ+N

N∑

n=1

Dn (2.43)

Ξ̄ = Ξ +
N∑

n=1

DnDn
T + κωωT − ω̄ω̄T. (2.44)

Figure 2.6 shows an example normal-inverse-Wishart prior and an associated posterior

given samples drawn from a normal distribution.

Integrating out parameters, the evidence takes the form:

p (D|Υ) =

∏d
i=1 Γ ((ν +N + 1− i)/2)
∏d

i=1 Γ ((ν + 1− i)/2)

(
κ

κ+N

)d/2 |Ξ|ν/2

πNd/2|Ξ̄|(ν+N)/2
(2.45)

This is an evaluation of a multivariate-T distribution. We will show this is a special

case of the more general matrix-T distribution in the next section.

� 2.4.3 Matrix-Normal Distribution

Next consider the case when one needs to model a conditional distribution p (y|x) where

y ∈ Rd and x ∈ Rm. The normal distribution can be generalized to model a linear

Gaussian relationship such that

y = Ax + e, (2.46)
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Figure 2.6. Examples of the Normal-Inverse-Wishart distribution: (a) Shows 10 2-d normal distri-

butions with their parameters samples from a normal-inverse-wishart prior N (µ;0, 2Λ) IW (Λ; I2, 5).

Black dots represent the mean and the covariance is plotted as an ellipse. (b) Samples from a normal

distribution with mean [1 1]T and covariance I2. (c) Gaussians with their parameters sampled from the

posterior on parameters given the samples in (b).

where A ∈ Rd×m and the random variable e ∈ Rd is drawn from a zero mean normal

distribution with covariance Λ. The conditional distribution is thus

p (y|x,Θ) = N (y;Ax,Λ) . (2.47)

Under this model the ML parameter estimates given N observations of y and x, Dy

and Dx are

Â =

(
N∑

n=1

Dy
nD

x
n
T

)(
N∑

n=1

Dx
nD

x
n
T

)−1

(2.48)

Λ̂ =
1

N

N∑

n=1

(
Dy

n − ÂD
x
n

)(
Dy

n − ÂD
x
n

)T
(2.49)

Matrix-Normal-Inverse-Wishart Distribution

The conjugate prior for this model is a generalization of the normal-inverse-Wishart

distribution. Given Υ = {Ω,K,Ξ,K, ν} a matrix-normal-inverse-Wishart distribution

has the form

p0 (Θ|Υ) =MN (A; Ω,Λ,K) IW (Λ; Ξ, ν) , (2.50)
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where the matrix-normal distribution is

MN (A; Ω,Λ,K) =
|K|d/2

|2πΛ|m/2
exp

{
−

1

2
tr
(
(A−Ω)TΛ−1(A− Ω)K

)}
(2.51)

and Ω ∈ Rd×m, K ∈ Rm×m. If vec (A) represents the columns of A stacked into a

vector, then it is normally distributed as

p (vec (A) |Ω,Λ,K) = N
(
vec (A) ; vec (Ω) ,Λ⊗K−1

)
(2.52)

where ⊗ is the Kronecker product.

Given N independent observations, the posterior is

p (Θ|Dy,Dx,Υ) =MN
(
A; Ω̄,Λ, K̄

)
IW

(
Λ; Ξ̄, ν̄

)
(2.53)

where

κ̄ = κ+N ν̄ = ν +N (2.54)

Ω̄ = Σy,xΣ
−1
x,x Ξ̄ = Ξ + Σy|x (2.55)

with

Σx,x =

N∑

n=1

Dx
nD

x
n
T + K Σy,x =

N∑

n=1

Dy
nD

x
n
T + ΩK (2.56)

Σy,y =
N∑

n=1

Dy
nD

y
n
T + ΩKΩT Σy|x = Σy,y − Σy,xΣ

−1
x,xΣy,x

T (2.57)

The evidence is calculated via

p (Dy|Dx,Υ) =

∏d
i=1 Γ ((ν +N + 1− i)/2)
∏d

i=1 Γ ((ν + 1− i)/2)

|K|d/2

|Σx,x|d/2

|Ξ|ν/2

πNd/2|Ξ̄|(ν+N)/2
(2.58)

=MT
(
Dy; ΩDx,Ξ, IN −D

xTΣ−1
x,xD

x, ν +N
)

(2.59)

where Dx is being used as a m × n matrix, Ik represents a k × k identity matrix and

MT (A;M,V,K, n) is a matrix-T distribution which has the form:

∏d
i=1 Γ ((n+ 1− i)/2)

∏d
i=1 Γ ((n−m+ 1− i)/2)

|K|d/2

|πV|m/2

∣∣∣(A−M)TV−1(A−M)K + Im

∣∣∣
n/2

(2.60)

Note that one obtains a normal and corresponding normal-inverse-wishart distribution

for the case in which m = 1,x = 1 and A = µ.
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� 2.5 Select Elements of Information Theory

Information theory provides tools for quantifying uncertainty and statistical depen-

dence. In addition, it is closely connected to statistical inference and learning [59].

Here, we provide a quick overview of the select elements of information theory we will

use in this dissertation. We point the reader to Cover and Thomas [21] for more details.

Shannon’s entropy provides a measure of information and inherent uncertainty in a

random variable. For a discrete random variable withK possible values and distribution

p (x), entropy is defined as

H (x) = −
K∑

k=1

p (k) log p (k) (2.61)

The entropy is maximized when p (x) = 1/K is a uniform distribution, corresponding to

the most uncertainty. For continuous random variables, an extension of this definition

is that of differential entropy:

H (x) = −

∫
p (x) log p (x)dx (2.62)

Joint and conditional entropy can be defined similarly:

H (x,y) = −

∫ ∫
p (x,y) log p (x,y) dxdy (2.63)

H (y|x) = −

∫ ∫
p (x,y) log p (y|x) dxdy (2.64)

It is important to note that conditional entropy is obtained via an expectation over the

full joint. It can alternatively be defined in terms of an expectation of the entropy of

one variable given a particular value of the other.

H (y|x) = Ep(x) [H (y|x = x)] (2.65)

=

∫
p (x = x)H (y|x = x) dx (2.66)

= −

∫
p (x = x)

∫
p (y|x = x) log p (y|x = x) dydx (2.67)

= −

∫ ∫
p (x,y) log p (y|x) dydx (2.68)

With these definitions it is straightforward to show that the joint uncertainty can

be expressed as:

H (x,y) = H (x) +H (y|x) (2.69)
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and that conditioning is guarantied not to increase uncertainty:

H (y) ≥ H (y|x) (2.70)

Using this property one obtains a simple understanding of mutual information (MI):

I (x;y) = H (y) −H (y|x) (2.71)

= H (x)−H (x|y) (2.72)

That is, MI measures the decrease in uncertainty in one random variable when condi-

tioning on the other. For independent random variables p (y|x) = p (y), thus H (y|x) =

H (y), making the MI go to 0.

MI can be expressed as a Kullback-Leibler (KL) divergence. KL divergence measure

the relative entropy between two probability distributions p (x) and q (x):

D
(
p (x) q (x)

)
=

∫
p (x) log

p (x)

q (x)
dx (2.73)

= Ep(x)

[
log

p (x)

q (x)

]
(2.74)

Similar to conditional entropy, the KL divergence between two conditional distributions

is:

D
(
p (y|x) q (y|x)

)
=

∫
p (x,y) log

p (y|x)

q (y|x)
dydx (2.75)

Consider a binary hypothesis test for choosing a distribution on x in which hypoth-

esis H1 and H2 are defined as:

H1 : x ∼ p (x) (2.76)

H2 : x ∼ q (x) (2.77)

Assuming equation priors, p (H1) = p (H2), a log likelihood ratio test takes the form:

l1,2 , log
p (x)

q (x)

H1

>

≤

H2

0 (2.78)

It is easy to see the intimate connection between this hypothesis test and KL divergence.

In expectation under H1 the log likelihood ratio is simply a measure of relative entropy.



Sec. 2.6. Summary 45

Two alternative views of MI emerge. It can be thought of as the KL divergence be-

tween the joint distribution of two random variables and the product of their marginals,

I (x;y) = D
(
p (x,y) p (x) p (y)

)
(2.79)

or simply in terms of a hypothesis test on the presence of statistical dependence.

� 2.6 Summary

We defined statistical dependence and discussed how it can be encoded in a graphical

model. Markov models for time-series were presented as stochastic processes with a

fixed temporal dependence structure. Additionally, we presented a select set of para-

metric families of marginal and conditional distributions, along with conjugate priors

which allow for efficient learning, inference and evidence calculations. Lastly, we briefly

overviewed information theory and showed how entropy and KL divergence can be used

to provide a measure of uncertainty and statistical dependence.

This dissertation will build upon the basic foundation this chapter has provided.

In the next chapter we present graphical models for describing the dependence among

multiple time-series. We focus on understanding this dependence given a set of ob-

servations and use connections to information theory to characterize the difficulty of

a structural inference task. In addition, we will show how conjugate priors allow for

tractable inference and characterization of uncertainty in structure.
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Chapter 3

Static Dependence Models for

Time-Series

In this chapter we present the underlying probabilistic models we use to describe de-

pendent time-series. While our ultimate aim is to perform dependence analysis in a

dynamic setting, it is important to first understand the more restricted static case.

Given observations of multiple time-series over a set of times, the goal of a static de-

pendence analysis task is to describe the relationships among these observed time-series

in terms of a fixed dependence structure. Here, we examine static dependence analysis

in detail and cast the problem as inference over structure in a static dependence model.

A static dependence model is a probabilistic model which describes the evolution of

multiple time-series in addition to the relationships among them in terms of a common

dependence structure over all time. It is important to note that, while the framework

developed here can be used to learn predictive models for classification and examination

of time-series observed in the future, our primary focus is on structure discovery as a

tool for data analysis.

We begin by establishing some standard notation which will be used for the remain-

der of the dissertation. A general static dependence model for time-series is presented

along with a discussion of the key challenges for inference using these models. Next,

in Section 3.3 a specific static dependence model is introduced which describes the

dependence among multiple time-series in terms of sets of independent groups. Us-

ing this model, we focus on cases in which one is interested in identifying one active

structure from a relatively small (and therefore tractable) enumerated set of possible

dependence relationships. In the absence of any prior knowledge, inference over struc-

ture is discussed in a maximum likelihood framework and shown to be a point estimate

approximation to Bayesian inference.

47
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Moving beyond a tractable enumerated set of structures, in Section 3.4, we present

a more detailed directed static dependence model which explicitly encodes the causal

relationships among time-series in terms of directed structures. The number of possible

directed structures grows super-exponentially with the number of time-series being mod-

eled. A conjugate prior on the directed structure and parameters of this model is pre-

sented which allows one to reason over the set of all directed structures in exponential-

time complexity. Furthermore, by imposing simple local or global structural constraints

we show that one can reduce the exponential-time complexity to polynomial-time com-

plexity for reasoning over a still super-exponential number of candidate structures.

Specifically we focus on bounded in-degree structures with directed trees and forests

being special cases with global constraints. These constraints yield tractable Bayesian

inference over directed structures, allowing exact calculation of the partition function

as well as additional marginal event probabilities. The method we present for Bayesian

reasoning over structure is closely related to that of [33, 54], but extended to the

analysis of time-series for which the strict temporal ordering provides a computational

advantage.

� 3.1 Notation

We begin by introducing some notation for the purpose of explicitly denoting individual

time-series, past values of individual time-series as well as sets thereof. This notation

is summarized in Table 3.1 for future reference.

Consider N time-series and let xv
t be a random variable representing the vector

value of the v-th time-series at time t. The random variable Xt is the set of the

random variables for all N time-series at time t, i.e. Xt =
{
x1

t , . . . ,x
N
t

}
. Subsets

S ⊂ {1, . . . , N} of time-series can be indexed using the notation xS
t . For example, the

random variable representing values of times-series 1,2 and 4 at time t is x
1,2,4
t . For a

model of order r, the r past values of the v-th time-series at time t is represented by the

random variable x̃v
t . That is, x̃v

t is the set of
{
xv

t−1, . . . ,x
v
t−r

}
. As we will be explicit on

the temporal model order, r is suppressed in the notation, x̃v
t , for brevity. The random

variable X̃t = x̃
1,...,N
t =

{
x̃1

t , . . . , x̃
N
t

}
is the r past values for all N time-series.

Multiple time points can be indexed by a vector t = [t1, t2, ..., tT ] such that Xt =

{Xt1 , ...,XtT }. We will sometimes reference a continuous set of time using the notation

1 : T rather than t = {1, 2, . . . , T}. Note that the full past X̃t can be formed from
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N Number of time-series

r Order of Markov temporal dependence. The current time is

dependent on the r past values.

xv
t Random variable representing the vector value of the v-th

time-series at time t

xS
t = x

S1,...,Sm

t Random variable representing a set of time-series at time t

where S = {S1, . . . , Sm}. For example, x1,2
t represents x1

t and

x2
t . We will sometimes treat xS

t as a single random vector.

x̃v
t Random variable representing the r past of time-series v at

time t. Specifically, x̃v
t represents the set x̃v

t−1 through x̃v
t−r.

Three simple cases: If r = 0, x̃v
t = ∅. If r = 1, x̃v

t = xv
t−1. If

r = 2, x̃v
t =

{
xv

t−1,x
v
t−2

}

Xt Random variable representing all N time-series at time t.

Xt = x
1,...,N
t .

X̃t Random variable represent the r past of all N time-series at

time t. X̃t = x̃
1,...,N
t .

t = {t1, t2, ..., tT } A set of time points.

1 : T The set of numbers from 1 to T. In general, a : b represents

the set of numbers from a to b. Often we use this notation in

place of t = {1, . . . , T}.

Xt Random variable representing all time-series at the time

points specified by t, {Xt1 , . . . ,XtT }. Similarly xS
t is all time-

series specified in set S at the points specified in t.

D Observations of all time-series over all time.

DS
t Observation of xS

t

D̃ Observation of all past values X̃t. Note that D̃ can be formed

from D and additional information C.

C Set of initial conditions or extra observations needed to form

X̃t and/or D̃. For example, if t = {1, . . . , N} and r = 0, one

needs C = X0 to form X̃t.

Table 3.1. Notation Summary: Notation for time-series, past values of time-series and sets thereof.
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Xt and a set C containing values not available in Xt. For example, if r = 1, X̃1:T can

be formed from X1:T and initial conditions C = {X0}. We will often treat these sets

of random variables as random vectors or matrices when convenient. For example, one

can treat x
1,2
1:T as a matrix:

x
1,2
1:T =

[
x1

1:T

x2
1:T

]
=
[
x1,2

1 . . . x1,2
T

]
=

[
x1

1 . . . x1
T

x2
1 . . . x2

T

]
(3.1)

We extend this notation to describe observed data. Let D be a set of T complete

observations, {X1, . . . ,XT }. We use the notation DS to denote observations of specified

set of time-series, {xS
1 , . . . ,x

S
T }. An observation at time t of all time-series is denoted

as Dt and Dv
t specifies the observation for v-th time-series at time t. We use the

notation D̃ for observations of the past {X̃1, ..., X̃T } . It can be formed using D and

past information or initial conditions C.

� 3.2 Static Dependence Models

In this chapter, we focus on the design of a static dependence model for N time-series.

Given a specified structure E and set of parameters Θ, this model is assumed to be

r-th order Markov:

p (Xt|E,Θ, C) =

T∏

i=1

p
(
Xti |X̃ti , E,Θ

)
. (3.2)

That is, we assume a fixed temporal structure in which Xt is dependent on its r past

values X̃t. Here, the structure E represents the dependence among the N time-series

assuming this fixed temporal Markov relationship. In order to simplify notation we will

drop the C when it is clear from the context and use p (Xt|E,Θ).

Note that if r = 0 then X̃t = ∅ and one obtains a distributions that is independent

and identically distributed over time:

p (Xt|E,Θ) =

T∏

i=1

p (Xti |E,Θ) . (3.3)

Figure 3.1 summarizes the notation and general form of a static dependence model

for N = 2 time-series with r = 1. It shows three views. The upper left depicts the

two time-series in an abstract graphical model. The dependence structure E specifies

relationships among the time-series. In the figure E is left abstract as shaded blue re-

gions. Collapsing the time-series into single Xt at each point in time reveals the Markov
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1

2

Figure 3.1. Three Abstract Views of a Static Dependence Model: Three views of a static dependence

model for N = 2 time-series with accompanying notation are shown. The top left view shows an abstract

undirected graphical model for the static dependence model in which the structure E would describe

the relationships between the time-series in the shaded blue region. The bottom left view exposes the

the r-th order temporal structure by representing both time-series as a single random variable at each

t. The top right view collapses the time-series over all time and can be used to help understand the

dependence structure between the time-series. Again, here E is left abstract.

structure shown in the temporal view on the bottom. The upper-right graph depicts

each time-series collapsed over all time as a diamond shaped vertex. The dependence

structure E specifies the relationship among these vertices in this dependence graph.

We use diamond shaped vertices in the dependence graph so that it is not directly

interpreted as a graphical model, but instead provides a summary of the dependence

among time-series.

Concrete examples will be given in Sections 3.3 and 3.4 where we present two dif-

ferent static dependence models. The primary difference between the two models is the

way in which the structure is specified and how we will use each model to reason about

dependence among time-series. We will use the notation E when discussing a general

static dependence model. This notation will change for each specific models in order
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to directly reflect how their structure is specified. Specifically, in Section 3.3 we will

introduce a model which specifies structure in terms of hyperedges F , while in Section

3.4 we will discuss a model which uses directed edges Ē.

� 3.2.1 Structural Inference

Given a static dependence model our ultimate goal is that of structural inference. That

is, we are interested in inferring the structure E given a set of observed data D while

treating Θ as nuisance parameters . In structure inference problems, as in any Bayesian

inference problem, one would ideally like to calculate the posterior on structure given

the observed data D. Using Bayes rule and basic properties of probability we see that

the posterior has the form:

p (E|D) =
1

p (D)
p0 (E) p (D|E)

=
1

p (D)
p0 (E)

∫

Θ|E
p (D|E,Θ) p0 (Θ|E) dΘ.

(3.4)

where p0 () is used to indicate a prior distribution. There are three main challenges one

needs to address before being able to calculate the posterior:

1. One must define priors over the space of parameters and structures that can be

reasoned over efficiently.

2. One must be able to tractably compute the integral over the unknown parameters.

3. In order to obtain an exact posterior probability, the data evidence, p (D), must

be calculated. This involves integrating out both parameters Θ and structure E.

The first challenge is that of specifying prior knowledge about parameters and struc-

ture. That is, Equation 3.4 uses a prior on structure, p0 (E), in addition to a prior on

parameters given a specific structure p0 (Θ|E). What makes defining these terms diffi-

cult in general is threefold. First, depending on how the class of structures is specified,

the number of possible structures can be very large. In general the number of allowable

structures is super-exponential in the number of time-series. Second, one must provide

a prior on parameters for each possible structure. Each structure will generally have

a different number of parameters, each with a different role. For example, a structure

which describes independent time-series needs fewer parameters than those which en-

code more dependence. Third, there is the question of what should be done when no
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prior knowledge is available. Specifically, while one may be able to define uniform pri-

ors on the discrete set of structures, placing an uninformative prior over the continuous

space of parameters can be difficult. One may have to turn to placing very broad priors

as an approximation.

We will address the first challenge in two different ways using the two specific de-

pendence models described in the following sections. In Section 3.3, we focus on cases

in which we consider a small set of allowable structures and, in the absence of any

prior information, adopt a frequentist view by concentrating on the likelihood term

p (D|E,Θ) rather than the posterior. In Section 3.4, we introduce a model along with

a tractable conjugate prior on both the parameters and directed structure describing

causal relationships among time-series.

The second challenge in calculating Equation 3.4 is related to the fact that we are

primarily interested in making probabilistic statements regarding the structure and are

treating the parameters Θ as a nuisance. The integration over all parameters weighted

by their prior avoids having to estimate or choose one particular parameter, however,

this may be difficult to compute. We address this challenge in two different ways using

the two models presented in Sections 3.3 and 3.4. In Section 3.3.2 we discuss maximum

likelihood inference and show the sense in which it approximates this integration with

a point estimate. In Section 3.4.3, using a different model, we show how to calculate

this evidence term using a conjugate prior.

The third challenge in Equation 3.4 is that of calculating p (D). This is of concern

if one desires an exact calculation of the posterior. Maximum a posteriori and maxi-

mum likelihood estimates of E do not require this normalization term. However, if an

exact posterior can be obtained, a wide variety of useful statistics and exact marginal

posterior probabilities can be calculated. These quantities allow a full characterization

of uncertainty in the structure. In Section 3.4.3 we present priors which are conjugate

and allow for tractable exact posterior calculations.

� 3.3 Factorization Model

In the previous section we discussed the general form of static dependence models for

time-series. Here, we specialize the model such that the dependence among time-series

described in terms of independent groups. We denote these models as static factoriza-

tion models, FactMs, and will sometimes use the notation FactM(r) to explicitly specify
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Table 3.2. Example FactMs: Simple examples showing a specific factorization F and the form of the

resulting distribution with N = 2 and r = 1 or r = 0.

r F p
(
Xt|X̃t, F,Θ

)

1 {{1}, {2}} p
(
x1

t |x
1
t−1,Θ1

)
p
(
x2

t |x
2
t−1,Θ2

)

1 {{1, 2}} p
(
x2

t ,x
2
t |x

1
t−1,x

2
t−1,Θ1,2

)

0 {{1}, {2}} p
(
x2

t |Θ1

)
p
(
x2

t |Θ2

)

0 {{1, 2}} p
(
x2

t ,x
2
t |Θ1,2

)

the temporal order r. The independent groups are specified by a set of hyperedges F

which form a partitioning of the set {1, . . . , N}. Specifically, F is a set of |F | hyperedges

where each Fi ∈ F is restricted such that:

|F |⋃

i=1

Fi = {1, 2, . . . , N} (3.5)

Fi

⋂
Fj = ∅ ∀ i 6= j ∈ {1, 2, . . . , N}. (3.6)

That is, the union of all hyperedges is the full set {1, . . . , N} and no hyperedges share

elements. For N = 2, only F = {{1}, {2}} and F = {{1, 2}} are consistent with this

definition.

Given F and parameters Θ, a FactM conditional distribution takes the form:

p
(
Xt|X̃t, F,Θ

)
=

|F |∏

f=1

p
(
x

Ff

t |x̃
Ff

t ,ΘFf

)
. (3.7)

That is, the conditional distribution factorizes according to F with each factor hav-

ing its own set of parameters. Note the change in notation from the more general

p
(
Xt|X̃t, E,Θ

)
in Equation 3.2 to this specific form p

(
Xt|X̃t, F,Θ

)
. That is, in order

to be explicit about how structure is specified and to be consistent with the notation in

Chapter 2 we replace E with hyperedges F when describing a FactM. In this context,

will also often refer to the set of hyperedges F as a factorization and Fi ∈ F as the i-th

factor.

Table 3.2 presents some simple examples for N = 2. Perhaps the simplest model to

understand is the case in which r = 0. If one assumes a Gaussian form for each factor

model, each parameter ΘFf
contains the mean and covariance of the elements in x

Ff

t .

Thus, the difference between the last two rows in Table 3.2 is that of a Gaussian with
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Figure 3.2. Example FactM(1) Structure and Association Graph: The Markov structure of an

example FactM(1) model for N = 3 time-series is shown in (a) and corresponding association graph in

the form of a factor graph is shown in (b).

a block diagonal covariance formed by the two block elements specified by Θ1 and Θ2

(3rd row), versus one with a full covariance specified by Θ1,2 (4th row).

Figure 3.2 shows two views of a FactM(1) for N = 3 time-series with factorization

F = {{1, 2}, {3}}. This factorization is just one of the five possible for three time-series.

Figure 3.2(a) shows the structure of this FactM as an undirected graphical model.

Figure 3.2(b) provides an alternative view as a dependence factor graph. We will often

refer to this factor graph as the association graph to emphasize that one can think of all

time-series that belong to a common factor as being “associated”. Additionally, we will

use such graphs in Chapter 5 when describing an audio-visual association task. The

association graph hides the temporal structure and uses diamond shaped vertices with

a number to represent entire time-series.

� 3.3.1 The Set of Factorizations

Definition 3.3.1 (BN): BN is the set of all partitions of the set {1, . . . , N}

As just discussed, the dependence structure of a FactM is specified by an F ∈ BN .

An important question one may ask is: how many distinct dependence relationships

can one represent? That is, what is the size of the set BN . This is a well understood
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quantity called the Bell number1 BN = |BN |, [78]. For N = 1 there is only a single

partition, {{1}}, and thus B1 = 1. Higher Bell numbers can be obtained using the

recursion

BN = 1 +

N−1∑

k=1

(
N − 1

k

)
Bk (3.8)

In words, the recursion says that to find the number of partitions of N numbers you

sum up a series of terms from k = 1 to k = N − 1 each of which is the number of ways

you can partition a set of k numbers, Bk, multiplied by the number of ways you could

have chosen those k numbers from the a set of size N − 1,

(
N − 1

k

)
. The addition of 1

is due to the fact that there is always the partition which is the full set {{1, . . . , N}}.

Equation 3.8 provides an algorithm for calculating the number of factorizations for

a given N . Another important question is: how does this number grow with N? The

asymptotic form of the Bell number was derived by De Bruijin [22] and simplifies to

BN = eN(log N−log log N+O(1))

= NNeN(O(1)−log log N).
(3.9)

That is, the number of possible factorizations grows super-exponentially with N .

Reasoning over the full set, BN , is generally intractable for large N . However, in

this dissertation, we use FactMs for tasks in which there is a small tractable subset

of M factorizations one is interested in. Specifically, in Chapter 5 the factorization

structures considered are linked to a tractable number of possible sources of speech in

an audio-visual association task.

� 3.3.2 Maximum-Likelihood Inference of FactM Structure

Given observed data D, we wish to infer structure F . Here, using a FactM, we address

the challenges discussed in Section 3.2.1 by adopting a frequentist view and focus on

obtaining point estimates of structure rather than the full posterior. That is, in the

absence of any prior information, we choose a maximum likelihood approach. Maximum

likelihood (ML) seeks to find the structure which best explains the observed data. As

discussed in Section 3.2.1 inference over structure requires some way of dealing with

1In honor of Eric Temple Bell
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nuisance parameters Θ. A common approach in the ML framework is to use the max

over all parameters as well. That is, for a general static dependence model with structure

E we wish to find:

Ê = arg max
E

max
Θ

p (D|E,Θ) . (3.10)

One can view this ML optimization as an approximation to finding the maximum a

posterior (MAP) estimate of structure E. It is equivalent to setting a uniform prior on

structure, p0 (E) = β, approximating the evidence p (D|E) with the a point estimate

p
(
D|E, Θ̂

)
and maximizing Equation 3.4 over E:

arg max
E

p (E|D) = arg max
E

p0 (E)

∫

Θ|E
p (D|E,Θ) p0 (Θ|E) dΘ (3.11)

= arg max
E

β

∫

Θ|E
p (D|E,Θ) p0 (Θ|E) dΘ (3.12)

≈ arg max
E

p
(
D|E, Θ̂

)
(3.13)

≈ arg max
E

max
Θ

p (D|E,Θ) (3.14)

= Ê (3.15)

where the approximation made in Equation 3.13 is that the integral above can be well

approximated by only considering a single point Θ̂. Equation 3.14 further assumes that

the best single point is the one that maximizes p (D|E,Θ).

We will use this ML approach with a FactM in an audio-visual association task

in Chapter 5. Here, we examine this optimization in more detail specifically for the

FactM. Substituting a FactM into Equation 3.10 and using the monotonicity of the log

function one obtains

F̂ = arg max
F

max
Θ

p (D|F,Θ) (3.16)

= arg max
F

max
Θ

1

T
log p (D|F,Θ) (3.17)

= arg max
F

max
Θ

1

T

T∑

t=1

|F |∑

f=1

log p
(
D

Ff

t |D̃
Ff

t ,ΘFf

)
(3.18)

= arg max
F

|F |∑

f=1

max
ΘFf

1

T

T∑

t=1

log p
(
D

Ff

t |D̃
Ff

t ,ΘFf

)
(3.19)



58 CHAPTER 3. STATIC DEPENDENCE MODELS FOR TIME-SERIES

By simplifying notation, we see that ML inference of structure in a FactM involves

finding the factorization F which maximizes the product over a set of weights associated

with each factor:

F̂ = arg max
F

|F |∑

f=1

ŴFf
(3.20)

where

ŴFf
, max

ΘFf

1

T

T∑

t=1

log p
(
D

Ff

t |D̃
Ff

t ,ΘFf

)
(3.21)

= max
ΘFf

Ê

[
log p

(
D

Ff

t |D̃
Ff

t ,ΘFf

)]
(3.22)

= −min
ΘFf

Ĥ
(
D

Ff

t |D̃
Ff

t ; ΘFf

)
(3.23)

Here Ê [] is the sample average and Ĥ (; θ) is the empirical estimate of entropy using the

parameters θ. The weight, ŴFf
, is simply the log likelihood of the time-series indexed

by factor Ff maximized over all parameters for that factor. This is related to finding

the parameters which minimize the uncertainty, conditional entropy. For the simple

case of r = 0 and Gaussian factors, the weight for factor Ff is the likelihood of the data

within that factor, given the maximum likelihood estimate of the mean and covariance

of that factor.

When considering all factorizations, there are 2N − 1 unique possible factor sets to

calculate weights for. However, again, for our applications of interest we will restrict F

to be one of M possible factorizations which potentially have many factors in common.

This greatly reduces our search and the number of weights needed to be calculated.

A Closer Look at ML Inference of Structure

An alternative view of this particular ML inference task is as an M-ary hypothesis test

over M allowable FactMs, each with a unique structure but unknown parameters. Here,

we analyze how two hypothesized FactMs distinguish themselves from each other by

examining the form of the likelihood ratio used when performing such a test. We will

show that one can separate out the role of structure from that of parametric differ-

ences when deciding between two FactMs. When using an ML approach for estimating

parameters from data, we show that separability due to parametric differences is lost,
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making it more difficult to distinguish between hypothesized models. This form of anal-

ysis was originally presented by Ihler et al. [47]. Here, we specialize the analysis to our

particular problem formulation. We contrast this analysis with inference using dynamic

dependence models in Chapter 4.

Consider a case in which there are two hypotheses of interest:

H1 : D ∼ p
(
X1:T |F

1,Θ1
)

(3.24)

H2 : D ∼ p
(
X1:T |F

2,Θ2
)
. (3.25)

Hypothesis H1 states that a set of time-series are drawn from a FactM with structure

F 1 and parameters Θ1. Similarly H2 has a structure F 2 and parameters Θ2. Assuming

p (H1) = p (H2), A binary hypothesis test takes the form:

p
(
D|F 1,Θ1

) H1

R
H2

p
(
D|F 2,Θ2

)
(3.26)

l1,2 , log
p
(
D|F 1,Θ1

)

p (D|F 2,Θ2)

H1

R
H2

0 (3.27)

It is easy to see how this is equivalent to ML over the set of the two possible models:

max
h∈{1,2}

p
(
D|F h,Θh

)
(3.28)

When analyzing how these hypotheses distinguish themselves from each other it

will be useful to define a special factorization, F∩, which describes the common sets

of variables which are dependent under both H1 and H2. It can be formed by keeping

all the unique non-empty intersection sets F 1
i ∩ F

2
j for all i ∈ {1, . . . , |F 1|} and j ∈

{1, . . . , |F 2|}. For example, for N = 4 and

F 1 = {{1, 2, 3}, {4}} (3.29)

F 2 = {{1, 2, 4}, {3}} (3.30)

the common factorization is

F∩ = {{1, 2}, {3}, {4}}. (3.31)
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Using this common factorization F∩ we can define two conditional distributions using

the parameters associated with each hypothesis and the structure F∩: p
(
Xt|X̃t, F

∩,Θ1
)

and p
(
Xt|X̃t, F

∩,Θ2
)
. Specifically, for h ∈ {1, 2} we define:

p
(
Xt|X̃t, F

∩,Θh
)

=
∏

f∈F∩

p
(
x

f
t |x̃

f
t ,Θ

h
)

(3.32)

where

p
(
x

f
t |x̃

f
t ,Θ

h
)

=

∫
p
(
Xt, X̃t|F

h,Θh
)
dxR

t dx̃
R
t∫

p (Xt|F h,Θh) dxR
t

(3.33)

and R = {1, . . . , N} \f is set of elements not in factor f . That is, p
(
Xt|X̃t, F

∩,Θh
)

fac-

torizes according to the common structure F∩ with each factor distribution marginally

consistent with hypothesis Hh at time t.

If both the parameters and structure are known the log likelihood ratio for H1 and

H2 given data D takes the form :

l1,2 = log
p
(
D|F 1,Θ1

)

p (D|F 2,Θ2)
(3.34)

=

T∑

t=1

log
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F 2,Θ2

) (3.35)

=

T∑

t=1

log
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F∩,Θh

)
p
(
Dt|D̃t, F

∩,Θh
)

p
(
Dt|D̃t, F 2,Θ2

) (3.36)

where the last step is simply a multiplication by one and h is either 1 or 2. Given H1

is true, the expectation of the likelihood ratio for a finite realization is:

ED [l1,2|H1] =
T∑

t=1

D
(
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F

∩,Θ1
) )

(3.37)

+

T∑

t=1

D
(
p
(
Dt|D̃t, F

∩,Θ1
)

p
(
Dt|D̃t, F

2,Θ2
) )

(3.38)

and similarly under H2,

ED [l1,2|H2] = −
T∑

t=1

D
(
p
(
Dt|D̃t, F

2,Θ2
)

p
(
Dt|D̃t, F

∩,Θ2
) )

(3.39)

−
T∑

t=1

D
(
p
(
Dt|D̃t, F

∩,Θ2
)

p
(
Dt|D̃t, F

1,Θ1
) )

(3.40)
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A full derivation is provided in Appendix B.1. Under each hypothesis the expected log

likelihood ratio can be decomposed into two sets of KL divergence terms. The first

set of terms compares the true structure to the common structure under a consistent

set of parameters. They capture the differences in statistical dependence between the

hypotheses. The second set of terms compare differences in in both structure and

parameters.

As described above, when the true parameters are unknown an ML approach es-

timates them from the data. This corresponds to a generalized likelihood ratio test

(GLRT) in which point estimates of parameters Θ̂1 and Θ̂2 are used in place of the true

unknown parameters. A GLRT takes the form

l̂1,2 , log
p
(
D|F 1, Θ̂1

)

p
(
D|F 2, Θ̂2

)
H1

R
H2

0. (3.41)

Given a single data set D to analyze, the parameters Θ1 and Θ2 are both estimated

by maximizing the likelihood of same data, under different factorizations. This data

came from a single unknown hypothesis. The estimate of the parameters for the true

hypothesis will be asymptotically accurate given enough data and a consistent ML

estimator. However, the parameter estimates for the incorrect hypothesis will not.

Given a consistent estimator (and some assumptions of ergodicity and stationarity) the

estimated distribution for the incorrect hypothesis will converge to a FactM with the

common structure F∩ and parameters consistent with the true hypothesis. That is, if

the data came from H1,

p
(
Dt|D̃t, F

1, Θ̂1
)

H1→ p
(
Dt|D̃t, F

1,Θ1
)

(3.42)

p
(
Dt|D̃t, F

2, Θ̂2
)

H1→ p
(
Dt|D̃t, F

∩,Θ1
)

(3.43)

and if the data came from H2

p
(
Dt|D̃t, F

1, Θ̂1
)

H2→ p
(
Dt|D̃t, F

∩,Θ2
)

(3.44)

p
(
Dt|D̃t, F

2, Θ̂2
)

H2→ p
(
Dt|D̃t, F

2,Θ2
)

(3.45)

See Appendix B.2 for a full derivation and assumed conditions. Asymptotically the
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expected log likelihood ratio of the GLRT , l̂1,2, becomes:

ED

[
l̂1,2|H1

]
→

T∑

t=1

D
(
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F

∩,Θ1
) )

+ 0 (3.46)

ED

[
l̂1,2|H2

]
→ −

T∑

t=1

D
(
p
(
Dt|D̃t, F

2,Θ2
)

p
(
Dt|D̃t, F

∩,Θ2
) )

+ 0 (3.47)

The terms comparing both parametric and structural differences go to zero and all that

is left is the structural comparison under consistent parameters estimated from the

data. In other words, the consequence of estimating parameters for the two different

models from the same data is the loss of ability to exploit parametric differences.

Nested Hypotheses

Another issue arises when the structures that are being reasoned over are increasingly

expressive, yielding nested hypotheses. That is, problems arise when data generated

from a FactM using structure FA can be explained equally well by another which uses

a more expressive structure FB and a specific choice of parameters. A FactM using

FB is more expressive than one using FA if all factors in FA are subsets of factors

in FB . Another definition is that FB is more expressive than FA if their common

structure F∩ = FA. For example, all factorizations are more expressive than the fully

independent factorization.

As a consequence of using ML estimation, the more expressive model can always

achieve an equal or higher likelihood compared to those less expressive. This will result

in always choosing the most expressive model (or the best among a set of most expressive

models). Consider only two factorizations F 1 = {{1, 2}} and F 2 = {{1}, {2}}. An ML

approach would always choose F 1 when estimating the parameters from a single finite

realization of data and l̂1,2 will be greater than or equal to zero.

This is a common problem when reasoning over nested models using GLRTs. One

standard solution is to estimate significance. That is, estimate a p-value, which says

how likely it is that l̂1,2 is greater than or equal to the value obtained when data comes

from the less expressive model. The p-value is an estimate of probability of false alarm

if the more expressive model is chosen. It can be approximated by bootstrap sampling

new sets of data from D which are forced to obey the restrictions of the less expressive

model (c.f. [38, 77, 42, 47, 83]). A decision can be made by choosing a threshold. If

the p-value is below a set significance value threshold the less expressive hypothesis is
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rejected.

Illustrative Example: Dependent versus Independent Gaussians

In order to help understand the above analysis, here, we look at a simple example in

which N = 2, r = 0 and each factor distribution is Gaussian2. In this case, the time-

series have no temporal dependence and there are only two possible factorizations.

Consider the following two hypotheses:

H1 : Dt ∼ p
(
Xt|F

1,Θ1
)

= p
(
x1

t ,x
2
t |Θ

1
1,2

)
(3.48)

= N

([
x1

t

x2
t

]
;

[
0

0

]
,

[
1 ρ

ρ 1

])

H2 : Dt ∼ p
(
Xt|F

2,Θ2
)

= p
(
x1

t |Θ
2
1

)
p
(
x2

t |Θ
2
2

)
(3.49)

= N
(
x1

t ;∆, 1
)
N
(
x1

t ;∆, 1
)

= N

([
x1

t

x2
t

]
;

[
∆

∆

]
,

[
1 0

0 1

])

HypothesisH1 corresponds to a dependent factorization with zero mean and dependence

ρ, while H2 assumes independence with mean offset by ∆. Note that the common

structure F∩ = {{1}, {2}} = F 2 due to the fact that F 1 is more expressive than F 2.

Furthermore,

p
(
Xt|F

∩,Θ1
)

= N

([
x1

t

x2
t

]
;

[
0

0

]
,

[
1 0

0 1

])
(3.50)

p
(
Xt|F

∩,Θ2
)

= N

([
x1

t

x2
t

]
;

[
∆

∆

]
,

[
1 0

0 1

])
= p

(
Xt|F

2,Θ2
)

(3.51)

as defined in Equation 3.33.

Since we are dealing with Gaussian distributions, in this case, the expected log

likelihood ratio in Equations 3.38 and 3.40 can be computed in closed form. That is,

ED [l1,2|H1] = T

(
−

1

2
log(1− ρ2)

)
+T

(
2∆2

)
(3.52)

ED [l1,2|H2] = 0 −T

(
1

2
log(1− ρ2) + 2

1 + ∆2(1− ρ)

1− ρ2
− 2

)

(3.53)

2This is similar to the example presented in [47]. Here, the parametric differences are in terms of

the mean rather than marginal variance.
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These expectations are true when the parameters associated with each hypothesis are

known. When the parameters are unknown, an ML approach estimates the parameters

for each factorization from the data. In this case, one would obtain an ML estimate of

the mean and covariance of the given data D:

µ̂ =

[
µ̂1

µ̂2

]
, Λ̂ =

[
σ̂2

1 ρ̂σ̂1σ̂2

ρ̂σ̂1σ̂2 σ̂2
2

]
(3.54)

Using these ML parameter estimates in place of the true parameters we obtain

p
(
Xt|F

1, Θ̂1
)

= N

([
x1

t

x2
t

]
; µ̂,

[
σ̂2

1 ρ̂σ̂1σ̂2

ρ̂σ̂1σ̂2 σ̂2
2

])
(3.55)

p
(
Xt|F

2, Θ̂2
)

= N

([
x1

t

x2
t

]
; µ̂,

[
σ̂2

1 0

0 σ̂2
2

])
, (3.56)

to use when performing maximum likelihood inference. The mean and marginal variance

estimates will be the same for each factorization since the parameters are estimated from

the same data. Note that the only difference is that in the dependent model we use

the estimate of correlation ρ̂. p
(
D|F 1, Θ̂1

)
will always be greater than or equal to

p
(
D|F 2, Θ̂2

)
. Thus, F 1 would always be chosen. This can also be see by examining

the expected log likelihood ratios in the equivalent GLRT:

ED

[
l̂1,2|H1

]
= T

(
−

1

2
log(1− ρ̂2)

)
+0 (3.57)

ED

[
l̂1,2|H1

]
= 0 −0 (3.58)

All that remains are terms involving estimates of dependence. In this case, l̂1,2 is simply

an estimate of mutual information,I(x1
t ;x

2
t ).

An analytic form for the p-value can be obtained here since we are dealing with

Gaussian distributions3. However, in general, when performing a test of dependence for

N = 2 and r = 0 a p-value can be computed by simulating data from the independent

factorization. This can be done by simply permuting the time index for D1. Under

the independent hypothesis, all such permutations should be equally likely4. For each

3The GLRT takes the form a well studied problem of deciding whether ρ is non-zero given the

empirical estimate.
4If r > 0 one can approximate samples from the independent factorization by randomly shifting one

time-series relative to the other. Alternatively one could form an augmented sample Yt which contains

Dt and eDt, do permutations within each factor of this augmented joint sample, and then extract new

sets if Dt and eDt to be used in calculating l̂1,2.
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permutation a different estimate of ρ̂ and l̂1,2 can be computed. The p-value can be

calculated by counting the number of times a l̂1,2 exceed the value obtained on the

non-permuted data. This p-value can then be used to make the decision of whether to

reject the independent hypothesis H2.

� 3.4 Temporal Interaction Model

The factorization model presented in the previous section describes multiple time-series

in terms of collections of independent groups. It leaves the details of how the time-series

within a single group evolve abstract. That is, the details are problem dependent and

implicitly defined by choice of parameterization for p
(
x

Ff

t |x̃
Ff

t ,ΘFf

)
.

In this section, we introduce an alternative model. A temporal interaction model,

TIM(r), explicitly describes the details of the causal dependence among time-series

using a directed graph Ē. Specifically, Ē is a directed structure on N vertices. Each

vertex corresponds to a time-series and the directed edges in the graph represent the

causal dependence among time series. A TIM(r) model with structure Ē and parameters

Θ factorizes as

p
(
Xt|X̃t, Ē,Θ

)
=

N∏

v=1

p
(
xv

t |x̃
v,pa(v)
t ,Θv|pa(v)

)
, (3.59)

where, as defined in Chapter 2, pa (v) returns the parents of vertex v given the structure

Ē. The v-th time-series at time t is dependent on its own past x̃v
t as well as the past

of the time-series in its parent set S = pa (v), x̃S
t . The parameters Θv|S describe the

nature this dependence5.

Figure 3.3(a) illustrates a TIM(1) as a directed Baysian network for N = 3 time-

series. Here, Ē containing two edges; one from 2 to to 1, and one from 2 to 3 and

thus pa (1) = pa (3) = 2 and pa (2) = ∅. Note that Ē only describes the edges across

time-series and the edges representing temporal dependence on past values of the same

time-series are a result of our base Markov assumption in static dependence models.

Figure 3.3(b) shows the alternative dependence graph view of this model which hides

within time-series dependence by representing each time-series as a single vertex. We

5By definition, in a TIM(r), each time-series at time t is always dependent on its own past. Thus, we

use Θv|S rather than the more explicit notation Θv|v,S to represent the parameters of this relationship

for brevity. One can image alternative models in which this is not the case, but we leave such models

for future work.
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Figure 3.3. Example TIM(1) Model Structure and Interaction Graph: The directed structure of a

TIM(1) for N = 3 time-series is shown in (a) and the corresponding interaction graph is shown in (b).

will often refer to this form of dependence graph as an interaction graph in that it

details the interactions among time-series. There is a one to one mapping between

the Bayesian network for a TIM(r) and its interaction graph. A directed edge from

u to v in the interaction graph implies a directed edge from x̃u
t to xv

t in the TIM(r).

As mentioned previously, this interaction graph is not meant to be interpreted as a

graphical model. It simply provides a representation in which the structure Ē can be

easily read from.

Note that the TIM(1) in Figure 3.3(a) has an interaction graph that happens to be

fully connected and acyclic. However, in general it need not be. In other words, the

space of interaction graphs is the set of all directed graphs. Cycles in the interaction

graph do not result in cycles in the Bayesian network for the TIM(r). This is due to the

assumption of temporal causality. The edges specified in Ē specifically describe causal

dependence from past values of time-series to current values. We show in the Sections

3.4.2 and 3.4.3 that this causal assumption and lack of constraints on Ē will allow for

efficient reasoning over structure.

It is important to understand the differences between a TIM(r) and the previously

introduced FactM(r). A TIM(r) assumes that the time-series values at the t are condi-

tionally independent of each other given the past values of their parents. This assump-

tion is not made in a FactM(r). This begs the question, why not use a FactM(r) which

has fewer restrictive assumptions? While the FactM(r) has more modeling power, it
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achieves this by leaving its parameterization more abstract. The structure F in the

FactM only explicitly indicates independent groups of time-series. It leaves the details

on how current time-series within a group depend on their past to be implicitly defined

by the chosen parameterization and parameter values.

A TIM(r) explicitly describes these causal relationships via Ē. More can be un-

derstood about the statistical dependence relationships from obtaining an estimate of

structure rather than looking at the particular parameterization or values of the pa-

rameters. Take for example the TIM(1) shown in Figure 3.3(a). A FactM(1) with

structure F = {{1, 2, 3}} and an appropriate choice for Θ1,2,3 can equivalently model

data drawn from this TIM(1). However, very little information is given by structure

F . In fact, data from any TIM(1) that uses a fully connected directed structure can

be equivalently modeled with a FactM(r) whose structure F = {{1, . . . , N}} and the

appropriate choice of Θ1,...,N . In other words, the directed structure used by a TIM(r)

imposes more constraints on the dependence relationships among time-series.

Once these differences are understood, the choice of model is dependent on which

best matches the end application of interest. We will use a FactM for reasoning over

audio-visual associations in Chapter 5 and a TIM for understanding interactions among

moving objects in Chapter 6. In our audio-visual association task we are simply inter-

ested in whether not there is any dependence among an audio and video stream, while

in the object interaction analysis task our goal is to characterize the finer details of the

causal relationships among multiple moving objects.

� 3.4.1 Sets of Directed Structures

The structure of a TIM(r) is in the form of a directed graph on N vertices, with edges

specified by Ē. In this section, we explore how the size of the set of possible structures

grows as a function N . We begin by characterizing the set of all possible directed

structures.

Definition 3.4.1 (AN): AN is the set of all directed graphs on N vertices. These graphs

are allowed to have cycles but no self-loops, (v → v).

For Ē ∈ AN there are 2N−1 possible parent sets for each vertex in the graph. This
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yields a super-exponential number of possible directed structures:

|AN | =
(
2N−1

)N
= 2N2−N . (3.60)

It is simple to see from inspection that the set of all structures for a TIM(r) is larger

than that of a FactM(r), |AN | ≥ |BN |. Again, this is why a TIM can explicitly specify

more detailed dependence relationships in its structure. In the following sub sections

we will discuss increasingly restrictive subsets of AN .

Bounded Parent Set

It may be desirable to limit the types of directed structures considered for a TIM(r).

Constraining the set of structures can allow for more efficient modeling and inference.

One simple constraint is to limit the number of parents any vertex has in the graph

specified by Ē. That is, one can limit the in-degree of each vertex.

Definition 3.4.2 (PK
N ): PK

N ⊂ AN is the set of all directed structures on N vertices in

which each vertex has no more than K parents.

A TIM(r) with structure Ē ∈ PK
N constraints the maximum number of “influences”

for each time-series. Given N verticies, each has

K∑

k=1

(
N − 1

k

)
≤ NK (3.61)

possible parent sets of a size less than or equal to K. While this reduces the number of

possible structures, there is still a super-exponential number of them. That is |PK
N | is

O(NNK).

Directed Trees and Forests

The set PK
N imposes a local constraint on parent set size. However, there may be

situations in which a global structure constraint is desirable. For example, one may

want to only consider directed structures which are acyclic and connected.

Definition 3.4.3 (TN): TN ⊂ P
1
N is the set of all directed tree structures on N vertices.

A directed tree (rooted spanning arborescence) is a fully connected structure in which

N − 1 vertices have a single parent while the remaining vertex has no parents and is

designated as the root.
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If a TIM(r) has a structure Ē ∈ TN there exists a root time-series which has influence

on all others given enough time due to connectivity. In addition, each time-series can

never be influenced by one of its children or any time-series influenced by its children.

There are |TN | = NN−1 directed trees on N vertices. A simple proof comes from

first considering the space of all undirected trees. Cayley’s formula states that for any

integer N , the number of undirected trees on N labeled vertices is NN−2 [16]. An

undirected tree can always be converted to a directed tree by picking a root and then

directing all edges away from the root in succession. Since there are N ways to choose

the root there are N(NN−2) = NN−1 directed trees.

Definition 3.4.4 (FN): FN ⊂ P
1
N is the set of all directed forest structures on N ver-

tices. A directed forest is an acyclic graph with each vertex having at most one parent.

A directed forest can have multiple roots.

The set FN removes the fully connected assumption used to define TN . There are

(N + 1)(N−1) directed forests on N vertices. A simple proof, again, uses a mapping from

undirected trees. Given an undirected tree on N + 1 vertices, one can form a directed

forest on N vertices by choosing a special super-root vertex, creating a directed tree

outward from this super-root and then removing that vertex and all its outgoing edges.

The roots of each tree in the directed forest are the children of the super-root vertex

in the undirected tree. Thus, there are |FN | = (N + 1)(N+1−2) = (N + 1)N−1 possible

directed forests.

Note that TN ⊂ FN ⊂ P
1
N and all grow super-exponentially with N . Figure 3.4 plots

the number of structures for the various sets discussed in this section as a function of N .

We will use TIMs in scenarios in which N may be large and the allowable dependence

relationships are not specified by the problem of interest. That is, we wish to reason

over these large sets of directed structures. Specifically in Chapter 6 we will reasoning

over as many as 1110 structures of interactions among moving objects6.

� 3.4.2 Prior on TIM Parameters and Structure

We will focus on performing exact Bayesian inference as described in Section 3.2.1 when

using a TIM. In this section, we present prior models for the parameters and structures,

6We will consider directed tree structures when describing the relationships among 10 players and a

ball in a basketball game
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Figure 3.4. The Size of Sets of Directed Structure vs N : The number of possible structures as a

function of N for the set of all directed structures AN , directed structures with at most 2, P2
N , and 1,

P1
N parents, directed forests FN , directed trees TN , and factorizations BN .

allowing one to specify prior knowledge about these unobserved variables. We adopt a

prior on the structure and parameters similar to those presented in [62, 33], using the

factorization

p0 (E,Θ) = p0 (E) p0 (Θ|E) . (3.62)

Again, there are various challenges in designing these priors. The first challenge is

due to the fact that the number of the parameters specified by Θ (and potentially the

values) is a function of the specific structure. For example, in a TIM(r) the number of

parameters is a function of the number of edges in Ē. A second challenge was alluded to

in Section 3.4.1. That is, for TIMs there are a super-exponential number of structures

to consider. The question remains on how one places a tractable prior over this large

space of structures.

We begin by discussing the prior on parameters given a specified structure, p0

(
Θ|Ē

)
.

We adopt a form for this prior based on two key properties:

1. The distribution factorizes according to the structure and parameters are assumed

to be independent of each other.
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2. The parameters are modular. That is, the prior on parameters associated with the

v-th time-series given its parent set pa (v) is not a function of the global structure

describing the parent sets of all other time-series.

Given a structure Ē and hyperparameters Υ we assume the prior on parameters fac-

torizes according to the edge structure such that

p0

(
Θ|Ē

)
=

N∏

v=1

p0

(
Θv|pa(v)|Υ

)
. (3.63)

Here, p0

(
Θv|S|Υ

)
is modular. That is, it is the same for all structures Ē for which S is

the parent set of v. Thus, for each time-series one needs to specify a parameter prior

for all potential parent sets. Given this finite set of priors for each v one is able to

construct a full prior on parameters for any given structure Ē using Equation 3.63.

As discussed in Section 3.4.1 there is an exponential number, 2N−1, of possible

parent sets when Ē ∈ AN . However, by bounding the number of parents to K such

that Ē ∈ PK
N , one only needs to specify a polynomial number of prior terms.

Next we focus on specifying the structural prior, p0

(
Ē
)
. One desirable property

we wish to obtain is the ability to favor certain structures over others. Another is that

the prior lends itself to tractable inference. Tractability will be linked to computation

of the partition function. We adopt a structural prior which allows one to favor cer-

tain parent sets over others. While this prior is over a set of structures which grows

super-exponentially with N , we show that it can be reasoned over in exponential-time.

Furthermore, we show that by bounding the size of parents sets in Ē one can tractably

calculate the partition function in polynomial-time.

The structural prior we adopt has the form

p0

(
Ē
)

=
1

Z(β)

N∏

v=1

βpa(v),v, (3.64)

where, Z(β) is the partition function. Each scalar hyperparameter βS,v can be in-

terpreted as a weight on the parent set S for v-th time-series. The prior is simply

proportional to the product of these weights. Note that if all βS,v are set to 1, one

obtains a uniform prior and Z(β) is the number of possible structures. If all βS,v are

set proportional to the size of S, |S|, the prior will favor dense structures. Equivalently,

sparse structures are favored by making βS,v inversely proportional to |S|.

As noted in Section 3.4.1 there are 2N2−N possible structures Ē ∈ AN . This suggests

that one may need to explicitly sum over a super exponential number of terms when
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calculating Z(β). Fortunately, however, when Ē ∈ AN , all combinations of parent sets

are allowable and there are no global structural constraints limiting the parent set of

one vertex given another. Thus, one can calculate the partition function,

Z(β) =
∑

Ē∈A

N∏

v=1

βpa(v),v

=
∑

S1

. . .
∑

SN

N∏

v=1

βSv ,v

=

N∏

v=1

∑

Sv

βSv,v

,
N∏

v=1

γv(β),

(3.65)

as a product of N summations where a sum over Sv is simply the sum over all 2N−1

allowable parent sets for v. Each γv(β) is defined to be this summation for a particular

v. The switch of the product and sums in the above equation is possible due to fact that

parent set for one vertex is independent of all others. This allows Z(β) to be calculated

a product of N summations, each of which contains 2N−1 terms. Thus, one can reason

over all structures in exponential time, N2N−1, rather than super-exponential time.

While this is a large improvement, the exponential number of terms quickly becomes

intractable for large N . In the next sections we show how using the simple constraints

discussed in Section 3.4.1 one can obtain Z(β) in polynomial time while still considering

a super-exponential number of candidate structures.

Bounded Parent Sets

Bounding the size of the parent set for each time-series, Ē ∈ PK
M , yields a partition

function that has the same form as Equation 3.65 with

γv(β) =
∑

Sv , s.t. |Sv|≤K

βSv ,v. (3.66)

This is again due to the fact that the constraint imposed PK
M is local and the parent set

of each vertex (time-series) can be treated independently of all others. The partition

becomes a sum of all possible parent sets of size less than or equal to K. One can

bound the order of the summation by
∑K

k=1

(
N − 1

k

)
≤ NK . Thus, only polynomial
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computation time, O(NK+1), is needed to calculate Z(β) even though the total number

of structures is still super exponential, O(NNK).

Directed Trees and Forests

If Ē ∈ TN , it is restricted by both local and global constraints. The local constraint

ensures each vertex has at most one parent, while the global constraints restrict the

structure to be acyclic and fully connected. Due to the local single parent constraint,

in this context, β can be thought of as an N × N matrix with each hyperparameter

βu,v 6=u being interpreted as a weight on the edge u→ v, and β∅,v , βv,v as a weight on

a vertex being a root. The edge set corresponding to the nonzero entries of β form a

support graph. We will assume this support graph is connected and contains at least

one directed tree.

While there are NN−1 possible directed trees on N vertices, the Matrix Tree Theo-

rem allows one to calculate Z(β) in polynomial time. This theorem was used by Meila

and Jaakkola [62] for reasoning over undirected trees. The undirected version of theo-

rem is a special case of the often rediscovered, real-valued, directed version, originally

developed by Kirchhoff [51] in 1847. The theorem allows one to calculate the weighted

sum over all directed trees rooted at r, Zr(β) via

Zr(β) =
∑

Ē rooted at r

∏

u→v

βu,v = Cofr,r
(
Q̄(β)

)
, (3.67)

where Q̄(β) is the Kirchhoff matrix with its u, v entry defined as

Q̄u,v(β) =

{
−βu,v 1 ≤ u 6= v ≤ N
∑N

u′=1 βu′ ,v − βu,u 1 ≤ u = v ≤ N
(3.68)

and Cofi,j (M) is the i, j cofactor of matrix M . Cofi,r
(
Q̄(β)

)
is invariant to i and gives

the sum over all weighted trees rooted at r. A proof can be found in [90].

By summing over all N possible roots one obtains

Z(β) =

N∑

r=1

βr,rZr(β). (3.69)

Thus, a straightforward implementation yields O(N4) time for calculating the partition

function: O(N3) for each of the N Zr(β) terms. However, as pointed out by Koo et. al

[56], a useful observation allows for only O(N3) time computation of Z(β). That is, it
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can be calculated via a single determinant,

Z(β) = |Q̂(β)|, (3.70)

where

Q̂u,v(β) =

{
βu,u u = 1

Q̄u,v(β) u > 1
(3.71)

The proof follows from the construction of Q̂u,v and the invariance of Cofi,r
(
Q̄(β)

)
to

i:

|Q̂(β)| =
N∑

v=1

Q̂1,v(β)Cof1,v

(
Q̂(β)

)
(3.72)

=
N∑

v=1

βv,vCof1,v

(
Q̄(β)

)
(3.73)

=

N∑

v=1

βv,vZv(β) (3.74)

= Z(β) (3.75)

Consider a simple case in which N = 2 and all βs are set to 1. In this case Z(β)

is a count of the number of trees on two vertices. The matrix Q̄(β) =

[
1 −1

−1 1

]
,

Z1(β) = Z2(β) = 1 and thus Z(β) = 2 which is the number of possible directed trees

on two vertices.

Directed forests, Ē ∈ FN , remove the fully connected assumption of TN and can

have multiple roots. While this yields a larger set of structures, Z(β) can still be

calculated in O(N3) time, as show in [56]. Specifically,

Z(β) = |Q̄(β) + diag(β1,1, . . . , βN,N )| (3.76)

where diag(a1, ..., aN ) is a diagonal matrix with the vector a on its diagonal. This is a

consequence of that fact that any directed forest can be turned into a directed tree by

the addition of one virtual super-root vertex which has no parents and connects to all

the roots of the trees within the forest. Each βv,v can be interpreted as a weight on an

outgoing edge from this super-root vertex to vertex v.

Again, consider the case when N = 2 and all βs are set to 1. Here, Z(β) =∣∣∣∣∣

[
2 −1

−1 2

]∣∣∣∣∣ = 3, corresponding to the fact there are three possible forests.
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Note that while TN ⊂ FN ⊂ P
1
N , both directed trees and forests require O(N3)

computation even though the larger class of P1
N only requires O(N2). This is due to

the imposed global acyclic constraint which limits the parent set of one vertex based

on the parent sets of others.

� 3.4.3 Bayesian Inference of TIM Structure

Now that we have described the generative model used by a TIM and placed tractable

priors on the parameters and structures, we turn to the task of Bayesian inference over

these structures. Specifically we wish to calculate (as presented in Equation 3.4):

p
(
Ē|D

)
=

1

p (D)
p0

(
Ē
)
p
(
D|Ē

)

using the priors presented in the previous section. We show that both the prior

over structure and the prior on parameters given structure are conjugate, allowing

for tractable inference. In addition, given the full posterior over structure we show how

to calculate substructure appearance posteriors and expectations. Lastly, we discuss

MAP estimates of structure.

Conjugacy

We begin by examining the joint posterior over structure Ē and parameters Θ given

data D. Consider the following factorization of the posterior:

p
(
Ē,Θ|D

)
= p

(
Θ|Ē,D

)
p
(
Ē|D

)
. (3.77)

Below we examine each posterior term and show that the priors presented in Section

3.4.2 are conjugate. We begin with the posterior over parameters given structure,

p
(
Θ|Ē,D

)
.

Proposition 3.4.1 : If one chooses priors p0

(
Θv|pa(v)|Υ

)
that are conjugate for their cor-

responding conditional distributions p
(
xv

t |x
v,pa(v)
t ,Θv|pa(v)

)
, then the full prior p0

(
Θ|Ē

)

presented in Equation 3.63 is conjugate for a TIM(r).

Proof. Using the form of prior on parameters given structure specified in Equation 3.63
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the posterior is:

p
(
Θ|Ē,D

)
=
p
(
D|Θ, Ē

)
p0

(
Θ|Ē

)

p
(
D|Ē

) (3.78)

=

T∏

t=1

N∏

v=1

p
(
Dv

t |D
v,pa(v)
t ,Θv|pa(v,Ē)

)
p0

(
Θv|pa(v)|Υ

)

p
(
Dv

t |D̃
v,pa(v)
t , Ē

) (3.79)

=

T∏

t=1

N∏

v=1

p
(
Θv|pa(v)|D

v
t , D̃

v,pa(v)
t ,Υ

)
(3.80)

=

N∏

v=1

p
(
Θv|pa(v)|D

v,pa(v),Υ
)
. (3.81)

It takes the same form as the prior. That is, it is independent over each time-series

and modular. Each term is the posterior on parameters for the v-th time-series given

its parents. Choosing a p0

(
Θv|pa(v)|Υ

)
which is conjugate results in a fully conjugate

prior on parameters given structure. Thus, the posterior can be obtained by a simple

update to the hyperparameters Υ for each term in prior using the data D. �

Next, we turn to the posterior on structure p
(
Ē|D

)
, which is our primary quantity

of interest.

Proposition 3.4.2 : The prior p0

(
Ē
)

presented in Equation 3.64 is conjugate for a

TIM(r).

Proof. We follow a similar derivation to that used in [62] for obtaining the posterior on

undirected trees7. Using the prior on structure given in Equation 3.64, we start with

the following form:

p
(
Ē|D

)
=

1

p (D)
p
(
D|Ē

)
p0

(
Ē
)

(3.82)

=
1

p (D)
p
(
D|Ē

) 1

Z(β)

N∏

v=1

βpa(v),v. (3.83)

7That is, while here we are deriving the posterior for a different and much broader class of structures,

the steps in the derivation are similar to [62].
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Next, we examine the data evidence given structure by integrating out parameters:

p
(
D|Ē

)
=

∫
p
(
D|Θ, Ē

)
p0

(
Θ|Ē

)
dΘ (3.84)

=

∫ [ T∏

t=1

N∏

v=1

p
(
Dv

t |D̃
v,pa(v)
t ,Θv|pa(v,Ē)

)
p0

(
Θv|pa(v)|Υ

)
]
dΘ (3.85)

=

N∏

v=1

∫ T∏

t=1

p
(
Dv

t |D̃
v,pa(v)
t ,Θv|pa(v,Ē)

)
p0

(
Θv|pa(v)|Υ

)
dΘv|pa(v) (3.86)

=
N∏

v=1

p
(
Dv|D̃v,pa(v),Υ

)
(3.87)

,
N∏

v=1

Wpa(v),v (3.88)

The data evidence given structure is a product of terms, each of which is the evidence

of the v-th time-series given its parents specified by Ē. That is, for parent set S the

evidence for the v-th time-series is :

WS,v = p
(
Dv|D̃v,S,Υ

)

=

∫
p
(
Dv|D̃v,S,Θv|S

)
p0

(
Θv|S|Υ

)
dΘv|S

(3.89)

As mentioned in Chapter 2, for continuous observations and a linear gaussian model

with parameters Θv|S one can choose p0

(
Θv|S|Υ

)
to be a matrix-normal-inverse-Wishart

distribution with hyperparameters Υ. This will yield efficient updates for Equation 3.81

and Wv|S will be the evaluation of a Matrix-T distribution. For discrete observations,

one can use Dirichlet priors and have analytic forms for the evidence. Specific examples

will be given in Chapter 6.

Substituting Equation 3.88 into Equation 3.83 one obtains

p
(
Ē|D

)
=

1

p (D)

1

Z(β)

N∏

v=1

βpa(v),vWpa(v),v. (3.90)
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Using the fact that the distribution must sum to 1 we solve for the data evidence p (D):

1 =
∑

Ē

p
(
Ē|D

)
(3.91)

1 =
1

p (D)

1

Z(β)

∑

Ē

N∏

v=1

βpa(v),vWpa(v),v (3.92)

1 =
1

p (D)

1

Z(β)
Z(β ◦W ) (3.93)

p (D) =
Z(β ◦W )

Z(β)
, (3.94)

where ◦ is an element wise (Hadamard) product. Each βS,v is multiplied by WS,v. This

yields the posterior,

p
(
Ē|D

)
=

1

Z(β ◦W )

N∏

v=1

βpa(v),vWpa(v),v. (3.95)

Thus, the prior is conjugate and the posterior is obtained by updating the hyperparam-

eters β via multiplication of data evidence weights W . �

Structure Event Probabilities and Expectations

The ability to compute the partition function and conjugacy of the prior enables exact

computation of a wide variety of useful prior and/or posterior event probabilities. Here,

we present some examples in terms of the prior distribution on structure. However,

conjugacy allows one to convert these to posterior events by substituting β ◦W in place

of β.

The probability of a particular edge being present is:

p (Iu→v = 1) = E [Iu→v] = 1−
Z(β−(u→v))

Z(β)
(3.96)

where Iu→v is an indicator variable that has value 1 when the edge u → v is present.

β−(u→v) is β with all elements involving edge from u to v set to zero. In words, Equation

3.96 calculates the probability of an edge as 1 minus the probability of that edge not

appearing. Interpreting the partition function as a weighted count of possible structures,

the probability of an edge not appearing is the ratio of a weight count of structures

which do not include that edge to the weighted count of all structures.

Using the same approach one can calculate the joint edge appearance probability of

one set of edges conditioned on another set. Similarly, one can calculate the probability
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a time-series has no parents (is a root) or no children (is a leaf):

p (Iv is a root) =
Z(β−in(v))

Z(β)
(3.97)

p (Iv is a leaf) =
Z(β−out(v))

Z(β)
(3.98)

where in(v) and out(v) return the set of all edges in and out of time-series v respectively.

β−e indicates all elements of β which involve any edge in the set e are zero.

The indicator variables used in the examples above can be expressed as a general

multiplicative functions of the form

g(Ē) =
N∏

v=1

gpa(v),v. (3.99)

The expected value of a general multiplicative function can be calculated by:

E
[
g(Ē)

]
=
∑

Ē

p0

(
Ē
)
g(Ē) (3.100)

=
∑

Ē

1

Z(β)

N∏

i=1

βpa(i),i

N∏

j=1

gpa(j),j (3.101)

=
1

Z(β)

∑

Ē

N∏

v=1

βpa(v),vgpa(v),v (3.102)

=
Z(β ◦ g)

Z(β)
(3.103)

Note that variance or other higher order moments of multiplicative functions can also

calculated in this manner (e.g. using Z(β ◦ g2) in calculating posterior variance).

In addition, one can calculate the expectation of additive functions of the form

f(Ē) =
N∑

v=1

fpa(v),v. (3.104)

Additive functions allow calculation of quantities such as the expected number of chil-

dren or parents of a particular time-series. For example, by setting fS,v to |S| for a

single v and all other f.,u 6=v = 0, f(Ē) will count the number of parents vertices v has

in structure Ē.

For Ē ∈ A or Ē ∈ BM the expectation takes the form:

E
[
f(Ē)

]
=

N∑

j=1

γj(β ◦ f)

γj(β)
(3.105)
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For directed trees, Ē ∈ T ,

E
[
f(Ē)

]
=

N∑

r=1

Zr(β)

Z(β)
tr
(
Mr,r

(
Q̄(β ◦ f)

)
Mr,r

(
Q̄(β)

)−1
)

(3.106)

where Mi,j (M) is the matrix M with its ith row and jth column removed. A similar

form is obtained for directed forests. Derivations of Equations 3.105 and 3.106 can be

found in Appendix B.3.

Maximum a Posteriori Structure

If a point estimate of structure is desired, using prior information, one can turn to a

MAP estimate. It is easy to see from Equation 3.95 that the MAP directed structure

Ē is obtained via

Ē∗ = arg max
Ē

N∏

v=1

β
pa(v,Ē),vWpa(v,Ē),v. (3.107)

When Ē ∈ AN or Ē ∈ PK
N each vertex v can be treated independently. That is, Ē∗ can

be found by N independent optimizations, each of which finds the maximum βS,vWS,v

over all parent sets S for time-series v.

For directed forests and trees the optimization becomes more complex due to the

global acyclic constraint on Ē. It is equivalent to the max weighted directed tree

problem. Solutions to this problem were developed independently by Chu and Liu [18],

Edmonds [25] and Bock [10]. Appendix A.3.1 gives the details of their algorithm.

Algorithm for Bayesian Inference over Structure

In the previous sections we described how to perform exact Bayesian inference on the

structure Ē given observed data D using a TIM. Algorithm 3.4.1 summarize the neces-

sary steps when analyzing N time-series.

It is important to note that each evidence term WS,v in Equation 3.89 is calcu-

lated using the same data D. In Section 3.3.2, we discussed how the ability to exploit

parametric differences is lost when point estimates of parameters are obtained from a

single D. Additionally, issues arose when comparing increasing expressive structures

using these point estimates of parameters. Equation 3.89 avoids some of these issues

by integrating over all parameters rather than obtaining point estimates. In particular,

the integral has a built in penalty for larger parent sets which would result in more
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Algorithm 3.4.1 Bayesian Inference of TIM Structure for Static Dependence Analysis

Require: Observations of N time-series in D.

% Define a TIM

Choose r

Choose the set in which Ē belongs. (e.g. Ē ∈ AN ).

Choose a parameterization for each p
(
xv

t |x̃
v,pa(v)
t ,Θv|pa(v)

)
.

Choose a conjugate prior p0

(
Θv|pa(v)|Υ

)
for each conditional.

Using these prior terms to form p0

(
Θ|Ē

)
using Equation 3.63.

Choose βs and form p0

(
Ē
)

using Equation 3.64.

% Get the posterior

for all v ∈ {1, . . . , N} do

for all valid parent sets S do

Calculate WS,v using Equation 3.89

end for

end for

Use Equation 3.95 to form the posterior p (E|D)

% Output desired form of result

if A point estimate is desired then

Calculate and report the MAP estimate of Ē

else if Posterior structural events, expectations and/or marginal probabilities are

desired then

Report them using Equations 3.96 through 3.106

else

Report the full posterior p (E|D)

end if

expressive structures. That is, the integral is over the full space of parameters given

a parent set S. More elements in S result in a larger space of parameters to integrate

over. The posterior over this space must integrate to 1 and thus each unormalized pos-

terior term in the integral contributes less to the evidence as |S| increases. However, it

remains the case that even this Bayesian approach loses something by using the same

data D to calculate evidence for all substructures. Knowing the true parameters which
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generated the data will always yield a better result. That, is if the true underlying

parameters, Θv|S, were known we could simply use WS,v = p
(
Dv|Dv,S,Θv|S

)
. It is im-

portant to note that in the Bayesian context we do not assume the exists of a “true set”

of parameters, by instead a distribution over them with each new draw of D potentially

using a different Θ drawn from this distribution.

� 3.5 Summary

In this chapter we introduced the general class of static dependence models which are

specified by fixed dependence structure and associated parameters. We discussed the

main challenges associated with performing structural inference on this class of models,

particularly when the parameters are unknown and treated as a nuisance. Namely, the

challenge of specifying priors on a large set of structures and integrating over unknown

parameters. Two different specific static dependence models were introduced. The

challenges associated with inference were addressed in a different way for each model.

A FactM describes time-series in terms of independent groupings. We will use

such models for reasoning over a finite set of associations, thus keeping the space of

structures tractable. In the absence of prior information we presented an ML approach

to structural inference and showed how it is an approximation to the MAP solution

which avoids integrating over unknown parameters. An alternative hypothesis testing

view of ML inference was presented which exposes the role of structure and parametric

differences when choosing among FactMs. This analysis allowed us to characterize what

is lost when performing ML inference. That is, it was shown that parametric differences

cannot be exploited.

A TIM uses a directed structure to specify more detailed causal relationships among

time-series. A conjugate prior on structure and parameters was presented which allowed

for exact Bayesian inference using a TIM. This prior allows one to reason over a set of

structures which is super-exponential in the number of time-series in exponential-time,

in general. Furthermore, it was shown that by imposing simple local or global structural

constraints, computation was reduced to polynomial-time complexity. The ability to

calculate the exact posterior further allows one to calculate exact marginal posterior

event probabilities and statistics.

Note that, while we presented two different approaches for inference for these two

models, it is straightforward to define appropriate priors and perform exact Bayesian
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inference using a FactM and one can easily perform ML estimation on a TIM. The

specific inference technique we chose to present for each model is directly a consequence

of the applications in which these models will be used in Chapters 5 and 6.
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Chapter 4

Dynamic Dependence Models For

Time-Series

In Chapter 3, we presented two static dependence models and examined how they could

be used to analyze the dependence relationships among multiple time-series. These

models assumed that the dependence relationship among time-series was fixed over

all time. In this chapter, we remove the static structure assumption and look at the

problem of dynamic dependence analysis. That is, given multiple time-series we wish to

analyze the way in which their dependence structure evolves over time. As we will see,

incorporating the notion of dynamically evolving dependence structures complicates

inference. In the dynamic framework, we consider both point estimates and a full

characterizations of posterior uncertainty on structure over time.

As discussed in Chapter 3, the number of possible structures used in a static depen-

dence model generally grows super-exponentially with the number of time-series being

analyzed. An obvious challenge for a dynamic dependence analysis tool is that, by al-

lowing the structure to change over time, the number of possible sequences of structure

increase exponentially as the number of time points grows. That is, if on considers S

allowable structures at each time point, there are ST possible sequences of structure

over a period of T time points.

In this chapter, we discuss ways to efficiently reason over these sequences of changing

dependence relationships. We assume dependence relationships have some temporal

persistence and that they may be revisited over time. These two assumptions are useful

in that they simplify aspects of inference and provide benefits in terms of estimation

quality. Two applications are explored in Chapters 5 and 6 in which both assumptions

are reasonable. For example, in an audio-visual speech association task it is common to

assume that individuals produce continuous speech segments rather than short bursts

85
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of sound. It is also expected that each person will speak multiple times during a

conversation.

We begin in Section 4.1 with a discussion of standard windowed approaches for dy-

namic dependence analysis. Next, we introduce the concept of a dynamic dependence

model in Section 4.2. These models extend the static dependence models presented in

Chapter 3 via the introduction of a dynamically evolving latent state variable. The

state variable indexes structure, allowing switching among a finite set of dependence

relationships over time. In Section 4.3, we detail inference using a dynamic dependence

model in a maximum likelihood setting in which a point estimate of the sequence of

active structures is desired. Following a similar analysis to that presented in Section

3.3.2 we show that, in contrast to static dependence models, dynamic dependence mod-

els allow one to take advantage of parametric differences to help identify structure. A

set of illustrative examples is provided in Section 4.2.1. In Section 4.4 we introduce a

tractable prior for dynamic dependence models and discuss Bayesian inference of struc-

ture sequences. Lastly, in Section 4.5 we discuss our model in the context of related

work.

� 4.1 Windowed Approaches

Using our assumption that dependence relationships do not switch rapidly, one approach

for performing dynamic dependence analysis is to treat the problem as a series of static

dependence inference tasks. That is, one can start by assuming the structure is fixed

within a window of time tw = [t − w/2, . . . , t, . . . t + w/2]. Within this window, static

dependence analysis as described in Chapter 3 can be performed onDtw . In order to deal

with the structure changing over time, this window is moved forward to a future time

point t+δ and analysis is repeated. Such an approach treats each window independently,

transforming the inference problem from one of inference over an exponential number

of sequences of structure to one which is linear in the number windows.

There are two main issues that one must consider when using a windowed approach.

First is the open question of what window size to pick. There is a bias-variance tradeoff

as a function of window size. That is, long windows bias your result since they more

likely to contain times in which structure changes. Within shorter windows structure is

more likely to be stationary, but as a consequence of using fewer samples the estimate

of this structure is less accurate / has higher variance. In fact, there is no fixed window
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size that is guaranteed to never violate the static dependence assumption. A fixed

length window will eventually overlap a change of structure as it is moved forward over

time.

A second issue with windowed approaches is that they inherit the challenges as-

sociated with structural inference for static dependence models due to their myopic

windowed view of data. That is, the inference performed for a particular window only

uses information from the data observed within that window. By definition, a win-

dowed approach cannot take advantage of information from data observed in the past

or future which may share the same structure and/or parameters as the data observed

within the window analyzed. As discussed in Section 3.3.2, parametric differences can

improve structural inference due to increased separability of hypothesized models. In

a windowed approach, parameters for different structures are estimated or integrated

over using the same data for each hypothesized structure. Thus, such an approach

cannot uncover or exploit the true underlying parametric differences. In addition, if

a maximum likelihood approach is utilized, significance must also be estimated when

reasoning over nested hypothesized structures. That is, one can always increase the

likelihood by using a more complex model and thus one must turn to estimation of

significance when deciding if a less complex model should be rejected. These issues are

explored and discussed using simple illustrative experiments in Section 4.3.2

� 4.2 Dynamic Dependence Models

In this section, we present the concept of a dynamic dependence model (DDM). A DDM

explicitly models evolving dependence structure among time-series. We will show that

dynamic dependence analysis can be mapped to inference using this model rather than

to a series of independent static dependence inference tasks. A DDM can be represented

as a dynamic Bayesian network as depicted in Figure 4.1. A hidden discrete state at

time t, zt, indexes one of K specific structures, Ezt , and parameters, Θzt. The observed

time-series at time t are modeled using a static dependence model, as presented in

Chapter 3, with structure specified by Ezt and parameters specified by Θzt . Assuming

r-th order temporal dependence and K possible states, the generative model for a
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K

z1 z2 z3

X1 X2 X3X0

Θk

π

Figure 4.1. First Order Dynamic Dependence Model: A graphical model representing a generic first

order (r = 1) dynamic dependence model is shown. The square box around the structure Ek and

parameters Θk is a plate indicating there are K independent copies of these parameters and structure.

π is the set of parameters describing the transition probabilities for evolving latent state z.

DDM(r,K) over a time period t = {1, . . . , T} takes has the following form:

p (Xt, zt|E,Θ) = p (Xt|zt,E,Θ) p (zt) (4.1)

=

T∏

t=1

p
(
Xt|X̃t, E

zt ,Θzt

)
p (zt|π

zt−1) , (4.2)

where z0 , 0, E = {E1, . . . , EK} is a set of structures, and Θ = {π0, . . . , πK ,Θ1, . . . ,ΘK}

is a set of all parameters for the model. The state sequence, z1:T , is modeled as a first

order Markov process with a discrete transition distribution,

p (zt|zt−1,Θ) = p (zt|π
zt−1) (4.3)

= πzt−1
zt

. (4.4)

The parameters πj = {πj
1, . . . , π

j
K} are the transition probabilities to all K states from

state j. Each state k indexes an r-th order static dependence model which defines



Sec. 4.2. Dynamic Dependence Models 89

the form of p
(
Xt|X̃t, E

k,Θk
)
. If a FactM is used with the structure specified in

terms of a factorization/hyperedges F , we refer to the DDM as a hidden factorization

Markov model, HFactMM(r,K) [81]. If a TIM is used with structure specified in terms

of directed edges Ē, we refer to the DDM as a switching temporal interaction model,

STIM(r,K) [82].

Note that a DDM assumes that the number of states, K, is known and that struc-

tures (and parameters) can be revisited over time. We note that the static dependence

models presented in Chapter 3 can also easily be embedded into other alternative dy-

namic models. For example, one may use a parts partition model (PPM) similar to that

used by Xuan and Murphy [94]. A PPM allows for an unknown number of states that

are never revisited. Similarly, one may adopt nonparametric Bayesian models such as

the hierarchical Dirichlet process hidden Markov model (HDP-HMM)[87] to allow for

an unknown number of potential revisited states. The appropriate choice of model is

highly dependent on the how well the underlying assumptions of the model match the

application of interest. While there are interesting details within each of these modeling

choices, here, we focus on dynamic estimation when the number states is know and each

state is likely to be revisited. That is, the applications presented in this dissertation

focus on the use of DDMs, leaving the above straightforward modifications/extensions

for future work.

� 4.2.1 Dynamic Dependence Analysis Using a DDM

We now turn to the core task of dynamic dependence analysis. Given observations D

of multiple time-series for over a period of time t = {1, . . . , T}, the goal of dynamic

dependence analysis is to characterize the dependence among these time-series at each

point in time t ∈ t. Dynamic dependence analysis can be carried out using a DDM.

That is, using a DDM we are interested in inferring information about z1:T and E given

observed data. The set E contains the dependence structure for each of the K states

and z1:T indicates which state is active at each point in time. If prior information is

available, ideally, one would like to calculate the posterior

p (z1:T ,E|D) =

∫
p0 (z1:T ,E,Θ|D) dΘ. (4.5)

From this joint posterior on the set of structures E and state sequence z1:T , a wide

variety of useful statistics can be calculated. For example, the MAP state sequence and

structures can be obtained. Unfortunately, no simple analytic form exists for Equation
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4.5 and brute force calculation is intractable due to the size of the joint space. There

are KT possible state sequences, z1:T , and potentially a super-exponential number of

structures for each of the K elements, Ek, in E.

Fortunately, however, DDMs have a well studied structure. They are nothing more

than specialized hidden Markov models (HMMs) or switching vector autoregressive

(SVAR) models. They differ from these standard models in that the form of the de-

pendence among the observations is controlled by the values of the hidden structure

E1. In the following two sections we discuss both maximum likelihood and Bayesian

approaches to structural inference using a DDM. Both approaches will take advantage

of two key properties of the model:

1. The likelihood p (D|E,Θ) as well as the posterior on each state zt given the

data and all other unobserved random variables, p (zt|D,E,Θ), can be calculated

tractably using standard forward-backward message passing [4].

2. Given the state sequence z1:T one can pool information from time points that share

a common state k in order to help one infer the structure Ek and parameters Θk.

� 4.3 Maximum Likelihood Inference

In the absence of prior information, one can adopt a classical maximum likelihood

approach for estimating the unobserved structures E and parameters Θ. That is,

similar to the approach presented in Section 3.3.2, we wish to find

{Ê, Θ̂} = arg max
E,Θ

p (D|E,Θ) (4.6)

= arg max
E,Θ

∑

z1:T

p (D|z1:T ,E,Θ) p0 (z1:T |Θ) . (4.7)

Given an estimate of the structures Ê and parameters Θ̂, one can then find the

MAP state sequence:

ẑ1:T = arg max
z1:T

p
(
z1:T |D, Ê, Θ̂

)
. (4.8)

Again, as discussed in Section 3.3.2, such an approach is related to generalized likeli-

hood methods for dealing with nuisance parameters. We will discuss the details of the

optimization in Equation 4.7 in following section along with an analysis of how state

sequences distinguish themselves from each other when calculating Equation 4.8.

1We will put our model in the context of previous work in Section 4.5
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� 4.3.1 Expectation Maximization

The optimization in Equation 4.7 is complicated by the fact that one must sum over

all KT possible state sequences and no closed form analytical solution exists. In this

dissertation, we use the standard approach of Expectation Maximization (EM) to find

a local maxima of p (D|E,Θ) [23]. Given an initial estimate of the structure and pa-

rameters, E(0) and Θ(0), the EM algorithm iteratively updates its estimate by repeating

two basic steps. For iteration i, these two steps are:

1. E-Step: Find a function which is a tight lower bound for p
(
D|E(i−1),Θ(i−1)

)
.

2. M-Step: Given this function, find a new set of structures and parameters, E(i),Θ(i),

which maximize it.

(c.f. [65]). For a DDM (or general HMM or SVAR), the function which provides the

tight bound is simply the posterior p
(
z1:T |D,E

(i−1),Θ(i−1)
)
. The M-Step is a series of

K independent maximization problems each of the form:

{Ek(i),Θk(i)} = arg max
Ek,Θk

T∑

t=1

γk
t log p

(
Dt|D̃t, E

k,Θk
)

(4.9)

where γk
t was calculated in the E-Step using standard forward-backward message pass-

ing [4, 76] such that

γk
t = p

(
zt = k|D,E(i−1),Θ(i−1)

)
. (4.10)

That is, the M-Step does a weighted ML estimate of structure and parameters for each

state. The weights are a function of the posterior probability of being in state k at each

point in time. For a DDM, the weighted ML step is performed on a static dependence

model. For example, if one is using an HFactMM, the optimization in Equation 4.9

would be a simple modification of Equation 3.19 in Section 3.3.2. That is, for each

state k, the M-Step is:

{
F̂ k, Θ̂k

}
= arg max

F,Θ

T∑

t=1

γk
t

|F |∑

f=1

log p
(
D

Ff

t |D̃
Ff

t ,ΘFf

)
(4.11)

= arg max
F

|F |∑

f=1

arg max
ΘFf

T∑

t=1

γk
t log p

(
D

Ff

t |D̃
Ff

t ,ΘFf

)
(4.12)
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where we have switched to the notation F to indicate we are specifically discussing ML

inference on an HFactMM here. This optimization can be expressed as two steps. First,

one must find the maximum weighted likelihood for each factor:

Θ̂Ff
= arg max

ΘFf

T∑

t=1

γk
t log p

(
D

Ff

t |D̃
Ff

t ,ΘFf

)
(4.13)

= arg max
ΘFf

W γ
Ff

(ΘFf
) (4.14)

For Gaussian distributions the parameters Θ̂Ff
will be weighted estimates of the mean

and covariance, while for discrete distributions weighted counts will be used for esti-

mating symbol probabilities. Given W γ
Ff

(Θ̂Ff
) for every allowable factor Ff , Equation

4.12 becomes

{
F̂ k, Θ̂k

}
= arg max

F,Θ

|F |∑

f=1

W γ
Ff

(ΘFf
). (4.15)

In addition to estimating structure and parameters Θ, the M-Step also updates the

transition distribution parameters π0, . . . πk. The E-step and M-step are iterated until

convergence. Convergence can be defined in terms of stable parameter estimates or

overall likelihood of the data given the current parameter estimates. A summary of the

EM algorithm for a DDM is given in Algorithm 4.3.1 and forward backward message

passing is outlined in Algorithm 4.3.2 . In practice we run multiple EM optimizations,

each starting with a different random initialization. The parameters with the highest

likelihood over all initializations is taken as the final result. We refer the reader to [76]

for a basic tutorial on EM for HMMs.

Analysis of Parametric Differences

The MAP state sequence in Equation 4.8 can be calculated efficiently via dynamic

programing using the Viterbi algorithm [92, 31]. Viterbi decoding implicitly performs

an M -ary hypothesis test comparing all M = KT possible state sequence. Much like the

analysis shown in Section 3.3.2, this alternative hypothesis testing view helps expose

how state sequences distinguish themselves from each other.

We examine how state sequences drawn from an HFactMM(0,K) with corresponding

estimates of structures F̂ and parameters Θ̂ distinguish themselves from each other. We

examine the case in which r = 0 here for simplicity and to match with our experiments
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Algorithm 4.3.1 The EM Algorithm for a Dynamic Dependence Model

Require: N observed time-series from 1 : T in D, and specific parameterization/choice

of a DDM.

% Initialize

Randomly set E(0) and Θ(0)

i← 0

% Expectation Maximization

repeat

i← i+ 1

% E-Step

{γ, ξ} ← ForwardBackward(D,E(i−1),Θ(i−1),K) % See Algorithm 4.3.2

% M-Step
{
π0

1 , . . . , π
0
K

}
(i) ←

{
γ1
1 , . . . , γ

K
1

}

for k = 1 to K do
{
Ek(i),Θk(i)

}
← arg maxE,Θ

∑T
t=1 γ

k
t log p

(
Dt|D̃t, E,Θ

)

for j = 1 to K do

πk
j
(i) ←

∑T−1
t=1 ξk,j

t /
∑T−1

t=1 γk
t

end for

end for

until Convergence

% Report Results

Output E(i) and Θ(i) along with a calculation of p
(
D|E(i),Θ(i)

)
.

in Chapter 5. Consider a binary hypothesis test between two different state sequences

in which

H1 : z1:T = a1:T (4.16)

H2 : z1:T = b1:T (4.17)

(4.18)

We define a common factorization, F∩t , in similar manner to that shown in Section

3.3.2. That is , F∩t is the factorization common to the factorizations F at and F bt .
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Algorithm 4.3.2 The Forward-Backward Algorithm

function ForwardBackward(D,E,Θ,K)

Let pk
t , p

(
Dt|D̃t, E

k,Θk
)

% Forward: αk
t = p (D1:t, zt = k|E,Θ)

for k = 1 to K do

αk
1 ← pk

t π
0
k % Initialize forward messages

end for

for t = 1 to T − 1 do

for k = 1 to K do

αk
t+1 ←

(∑K
j=1 α

j
tπ

j
k

)
pk

t+1

end for

end for

% Backward: βk
t = p

(
D(t+1):T |zt = k,E,Θ

)

for k = 1 to K do

βk
T ← 1 % Initialize backward messages

end for

for t = T − 1 down to 1 do

for k = 1 to K do

βk
t ←

∑K
j=1 π

k
j p

j
t+1β

j
t+1

end for

end for

% Calc γk
t = p (zt = k|D,E,Θ) and ξk,j

t = p (zt = k, zt+1 = j|D,E,Θ)

for t = 1 to T − 1 do

for k = 1 to K do

γk
t ← αk

t β
k
t /
(∑K

j=1 α
j
tβ

j
t

)

for j = 1 to K do

ξk,j
t ←

(
αk

t π
k
j p

j
t+1β

j
t+1

)
/
(∑K

m=1

∑k
n=1 α

m
t π

m
n p

n
t+1

)

end for

end for

end for

return γ and ξ

end function
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Given learned parameters and structures the hypothesis test takes following form:

l̂1,2 , log
p
(
D|a1:T , F̂, Θ̂

)

p
(
D|b1:T , F̂, Θ̂

)
H1

R
H2

log
p
(
a1:T |Θ̂

)

p
(
b1:T |Θ̂

) . (4.19)

The test compares the log likelihood ratio to a threshold formed from comparing the

dynamics of the two hypothesized state sequences. Using the same form as Equation

3.36 one can show that in expectation under H1, with r = 0, the likelihood ratio is

ED

[
l̂1,2|H1

]
=
∑

t∈d

D
(
p
(
Dt|F̂

at , Θ̂at

)
p
(
Dt|F

∩t , Θ̂at

) )

+
∑

t∈d

D
(
p
(
Dt|F

∩t , Θ̂at

)
p
(
Dt|F̂

bt , Θ̂bt

) ) (4.20)

and similarly when H2 is true

ED

[
l̂1,2|H2

]
= −

∑

t∈d

D
(
p
(
Dt|F̂

bt , Θ̂bt

)
p
(
Dt|F

∩t , Θ̂bt

) )

−
∑

t∈d

D
(
p
(
Dt|F

∩t , Θ̂bt

)
p
(
Dt|F̂

at , Θ̂at

) ) (4.21)

where d = {t | at 6= bt} is the set of all time points in which the hypothesized state

sequences disagree. See Appendix B.4 for details. Much like in the static case, we see

that the expected log likelihood ratio can be decomposed into two terms. The first term

compares structure of the true hypothesis to the common structure under a consistent

set of parameters. The second term exploits both structural and parametric differences.

However, unlike the situation in the static case, the parameters Θ̂k are estimated

via the weighted maximum likelihood estimate in Equation 4.9. Each parameter is

estimated using the observed data differently and thus parametric differences can be

exploited. That is, the second set of terms will not drop out as they did in the static

case as discussed in Section 3.3.2.

� 4.3.2 Illustrative Examples

In the previous section we discussed how ML inference using an HFactMM can exploit

both structural and parameter differences among the time-series to help identify changes

in their dependence relationships. In this section, we present a set of simple illustrative

experiments in order to provide some more intuition about these models and their uses.

That is, we present experiments to help answer the following questions:
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1. How much can be gained by using an HFactMM over standard window ap-

proaches? That is, how is the performance of both windowed analysis and ML

inference using a HFactMM affected as we change both the structural and para-

metric differences between the dependence relationships found in the data.

2. When are state dynamics important?

3. What can be done when the correct model parameterization is unknown?

We begin with a simple experiment involving two (i.e. N = 2) 1-d time-series.

We create a HFactMM(r = 0,K = 2) with the factorizations for each state set to be

independent F 1 = {{1}, {2}} and dependent F 2 = {{1, 2}}. Since r = 0, this model

produces i.i.d. samples. Gaussian factor models are chosen such that parameters for

state k = 1, Θ1
1,Θ

1
2, describe zero mean, unit variance distributions. The parameters

for state 2, Θ2
1,2, are set such that the joint mean is [0 ∆]T, and the covariance is full,

with unit marginal variance and correlation ρ. The transition dynamic parameters are

set such that starting in either state is equally likely, π0
1 = π0

2 = .5, and that there is

0.95 probability of self transition, π1
1 = π2

2 = 0.95, π1
2 = π2

1 = 0.05. This yields a model

with a simple state dynamic and a control on structural and parametric differences via

ρ and D respectively.

For each setting of ρ and ∆, 200 samples (i.e. T = 200) of the joint process z1:T

and X1:T are drawn. That is, z1:T is drawn using the transitions distribution and then

X1:T is drawn to form observations D given this state sequence. Figure 4.2 shows one

realization. The top of the figure shows D colored by which state each sample came from

along with an indication of how the Gaussian conditional models are parameterized. ∆

controls the separation between each conditional FactM distribution and ρ controls the

correlation in the FactM used for state 2. The bottom of the figure shows the sampled

state sequence as sequence of colors representing which state is active at each point in

time.

We compare 3 different approaches for dynamic dependence analysis on this data.

The first is an ML windowed approach reasoning over two possible factorization models.

The second approach performs ML inference using a HFactM(0,2) with the correct

structures given but with unknown parameters. The third performs ML inference using

a modified model which has no temporal dynamic on the state sequence. We will refer

to this model as a factorization mixture model, FactMM(0,2). Each approach outputs a

labeling for each time point indicating whether or not the observations are dependent.
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Figure 4.2. A Sample Draw from an HFactMM(0,2): The top part of the figure shows the samples

colored by their state (black=state 1, red=state 2). The parametric differences between the two possible

dependence models is controlled via ∆, and the structural difference controlled by ρ. The bottom part

of the figure depicts zt using the same colors.

This is compared to the known z1:T to calculate performance.

The ML windowed approach reduces to calculating the correlation between observed

time-series as shown in the example in Section 3.3.2 and as was the case in that example,

the factorizations of interest here are nested. Thus we also estimate significance via

calculation of a p-value for each window. Window sizes of 5, 10, 20, and 40 samples

were each tested. We record results obtained in an unrealistic, best-case scenario for

the windowed analysis. That is, for each data set analyzed, we find the threshold on

the p-value that yielded the best performance for each window size and then reported

the best result over all window sizes.

Results are shown in Figures 4.3 and 4.4. Each plot shows the average probability

of error over 100 trials for various settings of ∆ and ρ. Consistent with the analysis

presented in Section 3.3.2, Figure 4.3 shows that the performance of the windowed

analysis is not affected by changes in the non-structural parameter, ∆. The slight
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Figure 4.3. 2D Gaussian Experimental Results Using a Windowed Approach: Performance is mea-

sured in terms of average % error over 100 trials. Results are shown as a function ρ for various settings

of ∆.
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Figure 4.4. 2D Gaussian Experimental results Using an HFactMM and FactMM: The HFactMM

results are shown as solid lines while the FactMM results are shown as dashed lines. Performance is

measured in terms of average % error over 100 trials. Results are shown as a function ρ for various

settings of ∆.
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decreases in performance as ∆ increases is due to the fact that larger ∆ makes the

data look more dependent when a window overlaps a transition between dependent and

independent samples.

As predicted by our analysis in Section 4.3 and in contrast to the windowed test,

both the HFactMM and FactMM dramatically improve as ∆ increases. In general, all

approaches improve in performance with increasing ρ, with more rapid improvements

for the HFactMM and FactMM for larger ∆. Dynamics help most when ∆ is small, i.e.

when the state conditional distributions overlap. For example, when ∆ = 2 the gap

in performance between the HFactMM and FactMM is particularly large and there is

great benefit to incorporating dynamics by using an HFactMM.

In the previous experiment we used a simple gaussian parameterization for our

state conditional distributions/FactMs. More complex parameterizations can be used.

However, as the next example shows, certain ambiguities may arise. Such ambiguities

can be overcome when an underlying dynamic is present. Consider the data shown

in Figure 4.5(a). This data was generated with an HFactMM(0,2) using the same

dependent and independent factorizations as in the previous example. However, in this

case the factor models are no longer single Gaussians. When the data is independent

it is sampled from the product of two Gaussian mixture models, each of which has two

mixture components each with spherical unit covariance. The result is a four component

mixture model in the joint space (indicated by black circles in the figure). When the

data is dependent it comes from a four component joint mixture (indicated by the red

circles).

Figures 4.5(b) and 4.5(c) show FactMM and HFactMM models learned from 200

samples of this mixture model using the true parameterization (i.e. correct number of

mixtures) but unknown parameters. Using mixture models for each state conditional

FactM complicates the M-Step in EM slightly. The M-step itself must use an embedded

EM step to learn the mixture model for each state.

Note that for this particular model there are many possible combinations of inde-

pendent and dependent mixtures. In fact, the FactMM model estimated/learned one

of these alternative mixtures in Figure 4.5(b). This is because by assuming indepen-

dent samples and ignoring the state dynamic all valid combinations of dependent and

independent mixtures are equally likely. By incorporating dynamics, the HFactMM

finds the correct solution. Over 100 trials the HFactMM and FactMM models had an

average performance of 64% and 99% accuracy in labeling samples as dependent or not
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respectively.

A lingering question is what to do when the “correct” parameterization is not known.

One approach is to utilize a nonparametric model for each factor in the state conditional

FactMs. A non-parametric sample-based kernel density estimate (KDE) can be used

for each factor f of factorization F k such that:

p

(
x

F k
f

t |Θ
k

)
=

1

T

T∑

j=1

γk
jK

(
x

F k
f

t − θ
F k

f

j ;σk

)
(4.22)

=
1

T

T∑

j=1

γk
jK

(
x

F k
f

t − x
F k

f

j ;σk

)
(4.23)

where K() is a valid kernel function with a kernel size σk and γk
j is defined in Equation

4.10. Note here, in addition to specifying σk, the parameters Θ are the observations in

D, with θj = Xj . Given mixture data used in the previous example, Figure 4.5(e) shows

the learned HFactMM model using a KDE with a Gaussian kernel for its state condi-

tional distributions . The figure shows the difference in state conditional distributions

at each point in the observation space: p
(
Xt|zt = 2, F 1, Θ̂2

)
− p

(
Xt|zt = 1, F 1, Θ̂1

)
.

Leave-one-out likelihood was used to learn the kernel size σk. It is important to note

that one must be careful when using more powerful state-conditional distributions. If

a single state conditional distribution is flexible enough to describe all of the data and

the state transition probabilities are learned an HFactMM can describe the data over

all time well using a single state. One way to deal with this issue to modify learn-

ing to favor non-degenerate state transition distribution parameters πk or to limit the

complexity of the state conditional models.

An alternative approach to using nonparametric density estimators is to operate

on vector quantized versions of each time-series. A separate codebook, Cv, for each

observed time-series Dv is obtained via vector quantization. This can be done using

the k-means algorithm or fitting a Gaussian mixture model (cf. [24]) which treats each

time point independently. These codebooks are then used to encode the data as discrete

time-series D̂. Each time-series is quantized separately prior to dependence analysis.

Figure 4.6 depicts this process as signal processing block diagram. The quantized data

is modeled with dynamic dependence model with discrete state conditional distribu-

tions. Creating an separate eight symbol codebook for each time-series, and then using

the corresponding discrete quantized versions each time-series for dynamic dependence

analysis using an HFactMM, we estimate/learn parameters which yield the state condi-
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Figure 4.5. A More Complex 2D Example: a) True distribution, F 0=thin black, F 1=thick red b)

Learned FactMM w/ correct parameterization c) learned HFactMM with correct parameterization d)

learned HFactMM with Discrete Code. e) Learned HFactMM w/ KDE. The mean accuracy over 50 trials

was FactMM=64%, HFactMM=99%, HFactMM w/ Discrete Code=98%, HFactMM w/ KDE=98%
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Figure 4.6. Quantization of Each Observed Time-Series Dv: A codebook is learned for the input

data treating each sample t independently. Using the codebook Dv is quantized to form a new D̂v.

Note that each time-series is quantized separately.

tional models shown in Figure 4.5(d). This technique produced an average accuracy of

98% in 100 trials. Note that while the model is a crude approximation to the true dis-

tribution it captures enough information about dependence to make a correct decision.

We will take a similar approach in Chapter 5.

� 4.4 Bayesian Inference

In the previous section we examined how ML inference can be used to obtain point

estimates of K structures and a state sequence indexing which structure is active at each

point in time. In this section we return to the problem of obtaining a full posterior on

structure and state sequence given the observed time-series rather than point estimates.

Again, this is a difficult task due to the number possible state sequences, KT , and

requires one to define priors over the unobserved parameters and structure.

Our primary motivation for developing a method for Bayesian inference is that

obtaining the posterior on dependence structure is desirable over point estimates in

applications such as moving object interaction analysis. That is, in Chapter 6 we

make no assumptions as to the existence of a “true/correct” sequence of dependence

structure and focus on characterizing posterior uncertainty in the relationships among

multiple moving objects. We use a STIM for this task and specialize our discussion

and notation in this section to such models. That is, we adopt a dynamic dependence

model which uses TIM state conditional distributions specified by directed structures

Ēk and parameters Θk.

In the next section we define a tractable prior over the structure and parameters of a

STIM. We then consider a Markov chain Monte Carlo (MCMC) approach for obtaining

samples from the joint posterior rather than an exact/full characterization (cf. [1, 36]).

We show that, while the joint samples of z1:T and E drawn using our MCMC approach
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Figure 4.7. A STIM(0,K) shown as a directed Bayesian network: The latent state zt indexes the

directed structure Ēk and parameters Θk of a TIM to describing the evolution of all time-series Xt.

Hyperparameters α specify a prior on the transition distribution described by π. Hyperparameters β

and Υ are used to define priors on directed structure and parameters respectively.

are used as a proxy to the true posterior, given a specific set of labeled time points in

which zt = k one can always obtain exact posteriors over structure Ēk as discussed in

Section 3.4.3.

� 4.4.1 A Prior for STIMs

The generative model for a STIM(1,K) was introduced in Section 4.2. Here, we discuss

placing priors on the parameters of this model. We assume the prior on all parameters

and structures factorizes as:

p0 (E,Θ) = p0

(
π0, . . . , πK

) K∏

k=1

p0

(
Ek,Θk

)
. (4.24)
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Each state transition parameter set πk is treated independently and a Dirichlet prior

distribution is used (which is conjugate for a multinomial):

p0 (π) =

K∏

k=0

p0

(
πk|αk

)
(4.25)

=
K∏

k=0

Dir
(
πk;αk

1 , ..., α
k
K

)
. (4.26)

Each hyperparameter αk
j can be interpreted as a pseudo-count of how many times one

has seen a transition from state k to state j. State persistence (approximating a semi-

markov process) can be favored by setting

αk
j = c ∀ j 6= k and αk

k = bc, (4.27)

where c is a constant number of pseudo counts and b > 1 is a multiplier for c to favor

self transitions.

The prior for the structure and parameters of the state conditional TIMs takes the

form described in Section 3.4.2:

p0

(
Ēk,Θk

)
= p0

(
Ek|β

)
p0

(
Θk|Ēk,Υ

)
(4.28)

An alternative model could place state specific priors with each state having its own βk

and Υk. Figure 4.7 depicts a STIM(0,K) along with its priors as a dynamic Bayesian

network.

� 4.4.2 MCMC Sampling for a STIM

Given observed time-series in D and a prior over parameters and structure of a STIM,

we wish to characterize the posterior over structure at each point in time. Again, this

is a difficult task due to the large space of KT possible state sequences. Here, we take

an MCMC approach. Iterative MCMC methods are a useful for drawing samples from

an otherwise intractable target distribution. These methods construct a Markov chain

that has the target distribution of interest as its equilibrium distribution. That is, after

a large number of iterative steps a sample from this chain is a valid sample from the

target distribution. The question of how many iterations are sufficient is a difficult

one to answer and guarantees on obtaining valid samples are only asymptotic [1, 36].

In practice we tend to initialize multiple samplers and run them for a fixed period of
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time, examining their output in the context of the problem of interest to determine if

sufficient time was given.

Here, we design a Gibbs sampler for drawing samples from the posterior using a

STIM. A Gibbs sampler is specific type of MCMC method that is well suited to our

hidden state dynamic dependence model in that it uses exact conditional distributions

that are tractable to compute using a STIM [37]. Our Gibbs sampler has three main

steps which are outlined in Algorithm 4.4.1.

Algorithm 4.4.1 The Three Main Steps a STIM Gibbs Sampler.

Require: previous sample of the set of structures Ē(i−1) and parameters Θ(i−1)

% The three main steps

Step 1. z1:T
(i) ∼ p

(
z1:T |D, Ē

(i−1),Θ(i−1)
)

Step 2. {π0(i), . . . , πK(i)} ∼ p
(
π|z1:T

(i), α
)

Step 3. {Ē(i),Θ(i)} ∼ p
(
Ē,Θ|D, z1:T

(i)
)

The first step samples the state sequence given a previous sample of structures

and parameters. This is done efficiently with backward message passing followed by

forward sampling. High level details of Step 1 are shown in Algorithm 4.4.2. A simple

modification of Step 1 is used to initialize the sampler by sampling a state sequence

using only the transition prior rather than incorporating information from the data.

In Step 2, the sampled counts of state transitions are recorded. Let nk
j for k ∈

{0, ..,K} and j ∈ {1, ...,K} be a count of the number times zt−1
(i) = k and zt

(i) = j.

Given these quantities we then sample the transition probabilities using Algorithm 4.4.3.

In Step 3, a vector tk is formed with all the time points with zt = k. The structure

and parameters are then sampled given Dtk
for each k. See Algorithm 4.4.4. Step 3

requires one to sample from the posterior over structure and parameters. Details can

be found in Appendix ??. It is important to note when using a switching temporal

interaction model, one can efficiently calculate exact event probabilities and posterior

over structures given a specific state sequence as described in Section 3.4.3. That is,

one can perform static dependence analysis on the data Dtk
for each k.

Algorithm 4.4.4 exposes how information about each parameter Θk and structure

Ēk is obtained from distinct parts of the data Dtk
. Thus, there is more information

to take advantage of when determining the structure / state at each point in time, in

contrast to a windowed approach. We refer the reader to Chapter 6 for illustrative
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Algorithm 4.4.2 Step 1 of the STIM Gibbs Sampler During Iteration i

Require: The previous sampled structures Ē(i−1) and parameters Θ(i−1)

% Generate backward messages mt
k = p

(
D(t+1):T |zt = k, D̃t+1, Ē

(i−1),Θ(i−1)
)

for k = 1 to K do

mT
k ← 1 % Initialize Messages

end for

for k = 1 to K do

for t = T − 1 down to 1 do

mt
k ←

∑K
j=1 π

k
j
(i−1) p

(
Dt+1|D̃t+1, Ē

j(i−1),Θj(i−1)
)
mt+1

j

end for

end for

% Sample state sequence z1:T
(i) working sequentially forward in time

for t = 1 to T do

for k = 1 to K do

% Using probability fk = p
(
zt = k|z1:(t−1),D

)

fk ← π
zt−1

(i)

k
(i−1)p

(
Dt|D̃t, Ē

k(i−1),Θk(i−1)
)
mt+1

k

end for

% Sample the state assignment for zt
(i)

zt
(i) ∼ Discrete (zt; f)

end for

Algorithm 4.4.3 Step 2 of the STIM Gibbs Sampler During Iteration i.

Require: nk
j , for each k ∈ {0, ..,K} based on zt−1

(i) = k

% Sample πk

πk(i) ∼ Dir
(
πk;αk

1 + nk
1, ..., α

k
K + nk

K

)

Algorithm 4.4.4 Step 3 of the STIM Gibbs Sampler During Iteration i

Require: Sampled z1:T
(i), for each k ∈ {1, ...,K}

Let tk = {t |zt
(i) = k}

% Calculate the posterior given data at points tw and sample
{
Ēk(i),Θk(i)

}
∼ p

(
Ēk,Θk|Dtw , D̃tw , β,Υ

)
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experiments and specific examples using this Gibbs sampler.

� 4.5 Related Work

As discussed in the sections above, our DDM is closely related to a standard HMM. A

DDM differs in that the latent state indexes not only parameters, but structures as well.

Specifically, the dependence structure among observations is a function of the value of

the hidden state. A standard graphical model cannot capture the relationship between

the value of a random variable and dependence structure. We hid this relationship

in Figure 4.1 by representing all time series as a single random variable, Xt. If one

wishes to expose the details of how structure changes as a function the value of nodes

in a graphical representation, a new set of semantics beyond that of standard graphical

models is required.

The study of models that can encode structure as a function of the value of a ran-

dom variable/node can be traced back to Heckerman and Geiger’s similarity networks

and Bayesian multinets [44, 35]. These models can represent asymmetric independence

assertions, i.e. variables are independent for some but not all their values. Similarity

networks are represented as a collection of Bayesian networks, each of which holds true

for a particular setting of a hypothesis random variable. These networks were used

primarily in expert diagnosis systems for various diseases. The representation allows

for an expert on a particular disease to design a Bayesian network that only includes

the variables/symptoms that are relevant for diagnosing that disease. They did not dis-

cuss inference in the context of these similarity networks. Their focus was primarily on

providing a way to convert a similarity network to a full Bayesian network. The asym-

metric independence assumptions were then encoded in the parameters of conditional

probability distributions rather than in the topology of the network. Thus, a standard

inference algorithm would not have access to the added independence information and

could not take explicit advantage of it to reduce computation.

Bayesian multinets were introduced in an effort to enhance similarity networks and

provide more efficient inference techniques. Multinets, much like similarity networks,

are represented by a multiple Bayesian networks each centered around a single hy-

pothesis variable/node. Each individual network holds true for a particular subset of

hypotheses. However, unlike similarity networks, each network in a multinet contains

all variables. Geiger [35] describes a general algorithm for efficient inference on multi-
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nets and showed how the encoded asymmetric independence assumptions can reduce

storage requirements and reduce computation. He also showed how this algorithm can

be used for general inference on similarity networks by providing a way to convert a

similarity network into a Bayesian multinet. Seeking even more flexible models Geiger

and Heckerman also introduced the concept of a generalized similarity network in which

there may be multiple hypothesis nodes with relationships between them.

This class of models was further explored and formalized by Boutilier, et al.’s

Context-Specific Independence (CSI) [11]. CSI is a general notion that encompasses

the idea of asymmetric independence discussed by Heckerman and Geiger. CSI de-

scribes situations in which two variables, X and Y, are independent given a certain

context c, i.e. a particular setting of values to certain random variables. Boutilier, et

al. showed how to verify global CSI statements given a set of local CSI statements

in a network. Their work also showed how CSI yields regularities in the conditional

probability tables (CPTs) for each variable in a Bayesian network. Unlike Geiger and

Heckerman who used multiple networks to encode additional independence assump-

tions, [11] used a structured representation for their condition distributions to encode

CSI. They focused on the use of decision-tree structured conditional probability tables

(CPT) and show how this particular representation for CSI is compact and can be

used to support effective inference algorithms. In a companion paper Friedman and

Goldszmidt [32] showed how this structured representation of CPTs can aid in learning

Bayesian networks from data.

More recently Milch, et al. have discussed further generalizations of Bayesian net-

works that focus on making CSI explicit [64]. They introduced the concept of partition-

based models (PBMs) in which the conditional probability distribution of each variable

is determined by a particular partitioning of the outcome space rather than on a set

of parents. They provide a specific implementation of a PBM called a contingent

Bayesian network (CBN). A CBN combines the use of structured CPTs (as in [11])

with labeling edges in a Bayesian network with contexts/conditions in which the edges

are active/present. This edge labeling provides a simple representation in which CSI

relationships can be more easily read from a graphical depiction of the model. A CBN

can also contain cycles and have an unbounded number of latent variables. Milch et

al. discuss the conditions in which a CBN defines a unique distribution and provide an

algorithm for approximate inference.

In [7], Bilmes introduced a model for time-series that makes use of CSI. His dynamic
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Bayesian multinet is a hidden state model in which the value of the hidden state at

time t encodes the dependence structure among the observations within a local time

window surrounding t. Bilmes’ work focused on techniques for learning the state con-

ditional dependence structure from labeled training data to help improve classification.

These techniques use a greedy pairwise criteria for adding new edges to encode causal

relationships in a network. He focused on the problem domain of speech recognition

and demonstrated how learning class-specific (state-specific) discriminative structure

can help improve performance.

Our DDM belongs to this general class of models as do the related models of [7,

52, 94]. It is most closely related to Bilmes’ dynamic Bayesian multinet in that when

using a TIM we are reasoning over directed causal structures. However, our inference

task is that of unsupervised discovery of structure rather than learning a better model

for predictive analysis given training data. In addition, by using the static dependence

models and inference tools discussed in Chapter 3 we are able to provide exact Bayesian

reasoning over structure. That is, we do not rely on greedy search or other approximate

methods for structural discovery.

� 4.6 Summary

In this chapter, the static dependence models discussed in Chapter 3 were extended

to allow structure to change over time. This was done by introducing the class of

DDMs. A DDM uses a dynamically evolving latent variable to index both structure

and parameters of an underlying static dependence mode over time. We discussed how

dynamic dependence analysis can be performed via inference on a DDM and contrasted

this approach with standard windowed analysis. In contrast to ML inference on static

dependence model, we showed how ML inference on a DDM can take advantage of

parametric differences when distinguishing structure. This analysis was supported by

a set of illustrative experiments. By placing priors on the transition distribution of the

DDM along with those presented in Chapter 3 for a TIM, we demonstrated how one

can using a Gibbs sampler for Bayesian inference. While this approach only produces

samples from the posterior, given a sampled state sequence exact marginal posterior

statistics can be calculated.
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Chapter 5

Application: Audio-Visual

Association

As technology rapidly advances, electronics used for digital audio-visual recording and

storage have become less expensive and their presence in our environment more ubiqui-

tous. In addition to movies, television shows and news broadcasts, inexpensive recording

devices and storage have allowed for business meetings, judicial proceedings and other

less formal group meetings to be digitally archived. At the same time, technologies such

as automatic speech recognition [60] and face detection and recognition [91, 89, 95] have

allowed for useful metadata to be extracted from these archives. Searches can then be

performed to quickly find videos which contain certain phrases or involve particular

individuals. In this chapter, we explore the problem of determining which, if any, of the

individuals in the video are speaking at each point in time. Whereas one could make

use of strong prior models of audio-visual appearance when they are available, here we

show that the problem can be cast as one of audio-visual association, demonstrating the

utility of the previous development and bypassing the need for strong prior assumptions.

Specifically, we frame the problem in terms of dynamic dependence analysis.

Hershey and Movellan have previously showed how measuring correlation between

audio and video pixels can help detect who is speaking in a scene [46]. Nock and

Iyengar [68] provided an empirical study of this technique on a standardized dataset,

CUAVE [72]. Further study of detecting and characterizing the dependence between

audio and video was carried out by Slaney and Covell [84] and Fisher et al. [30]. All of

these techniques process data using a sliding window over time assuming a single audio

source within the analysis window. As such, they do not incorporate data outside of

the analysis window. In this chapter, we show empirically that by treating the problem

as a dynamic dependence analysis task in which data over all time is considered, one

111
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can exploit audio and visual appearance changes associated with who is speaking. In

doing so, we achieve the best performance to date on a standard dataset for audio-visual

speaker association. This performance was achieved without any window parameters

to set, without a silence detector or lip tracker and without any labeled training data.

We begin by introducing the three datasets used in our experiments. We then briefly

discuss the basic audio-visual features extracted for input to our dynamic dependence

analysis in Section 5.2. In Section 5.3 we map reasoning over audio-visual association

to reasoning over the dependence structures of a static dependence model. Lastly, we

present results in Section 5.4.

� 5.1 Datasets

For our audio-visual speaker association experiments we use three separate datasets.

Each involves recordings of a pair of individuals taking turns speaking. All datasets

contain video recorded at 29.97 frames per second. We convert each video frame to a

256 value grayscale image. The audio for each dataset was resampled at 16kHz and

broken up into segments aligned with the video frames.

� 5.1.1 CUAVE

The CUAVE dataset [72] is a multiple speaker, audio-visual corpus of spoken connected

digits. We use the 22 clips from the groups set in which two speakers take turns reading

digit strings and then proceed to utter two different strings simultaneously. In order to

compare to prior work [68, 40], we only consider the section of alternating speech. In

each clip both individuals face the camera at all times. Ground truth was provided by

Besson and Monaci [6].

A separate video stream is extracted for each speaker in the CUAVE corpus. This

is done using a face detector [91] and simple correlation tracking of the nose region

in order to obtain a stabilized face. Figure 5.1.1 shows a sample frame from raw

video in addition to extracted faces for each individual in the dataset. As seen in the

Figure 5.1.1, the CUAVE dataset, has fairly high-resolution frames with an uncluttered

background. As such empirical results are useful for relative comparisons rather then

absolute performance.
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(a) Sample frame from one sequence in the CUAVE dataset

(b) Extracted Faces for all CUAVE sequences

Figure 5.1. The CUAVE Dataset: a) A sample video frame from one sequence. b) Individual frames

from the automatically extracted video streams for each face for all 22 sequences. Faces were extracted

using a face detector and simple correlation tracking to stabilize the region around a person’s nose.

� 5.1.2 Look Who’s Talking

While the CUAVE corpus provides a standardized dataset for comparing performance

with prior work, the individuals recorded do not interact with each other and are always

facing the camera. Our second dataset is a single video recorded in the same style as

the CUAVE database in which two individuals take turns speaking digits. However,

while the speaker looks into the camera, the non-speaking turns to look at the speaker.
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(a) Sample Frame (b) Extracted Faces

Figure 5.2. “Look Who’s Talking” Data: a) A sample video frame b) The extracted hand-labeled

face regions.

This provides a dataset in which there is a strong appearance change associated with

who is speaking, as may be the case in a meeting where participants look toward the

current speaker.

A separate video stream is extracted for each individual. In this video the individuals

change their head pose throughout the video. One could develop an extension to the

simple face tracker used for the CUAVE dataset and attempt to extract a representation

for each person’s face which is stabilized and normalized for head pose. However, such

an approach would throw out potentially informative features. That is, in this video

head pose is an excellent cue as to who is speaking. Ideally, one would extract the

head pose information and uses them as additional observed features. Here, we take

the simple approach of hand labeling a rectangular region in the video for each person

and crop the video accordingly. That is, we sacrifice perfectly tracked faces for a simple

representation that can still capture strong appearance changes that occur with a change

of speaker. Figure 5.1.2 shows a sample frame from the raw video and extracted face

regions.

� 5.1.3 NIST Data

Lastly, we move away from scripted speech scenarios and explore more realistic data

involving meeting conversations. The third dataset is a single camera recording of

a sequence from the NIST meeting room pilot corpus [34] (sequence 20011115-1050
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(a) Sample Frame (b) Extracted Faces

Figure 5.3. NIST Data: a) A sample video frame b) The extracted face regions using face detection

information provided to the VACE program.

camera 1). This data was provided as part of the Advanced Research Development

Agency (ARDA) Video Analysis and Content Exploitation (VACE) program.

This sequence is a recording of four individuals taking turns speaking. Face location

information was provided by participants in the VACE program. We took the supplied

face track information and extracted a video sequence for two individuals facing the

camera in the sequence being analyzed. Figure 5.1.3 shows a sample frame and the

extracted faces. Note that in this dataset the extracted face regions have poor resolution

relative to the previous datasets.

� 5.2 Features

While there has been much work in exploring and learning informative features for

audio-visual association tasks [68, 40, 46, 84, 30], the focus of this dissertation is on

performing dynamic dependence analysis given a pre-specified set of features. To this

end, we choose video and audio features that capture the basic dynamics of each modal-

ity as well as their static appearance.

We use frame-based features for the video streams extracted for each individual in

scene as well as the audio. That is, a set of features is extracted for each frame of

video. There are two basic types of features for each time-series. Static features for

frame t are calculated based on the data within that frame. Dynamic features at frame
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t incorporate information from neighboring frames.

� 5.2.1 Video Features

For each sequence there are two video time-series; one for each individual in the scene.

Given the raw grayscale video sequence for each individual we extract a simple set

of static appearance features for each frame. These static features are calculated by

by first performing principal component analysis (PCA) [74] (c.f. [50]) on the entire

sequence and extracting the top 40 principal components. On average using 40 com-

ponents captured over 90% of the energy for each sequence. The video sequence is

then transformed by projecting each frame onto this 40 component basis, yielding 40

coefficient values for each frame of video.

We calculate dynamic features by first taking raw pixel-wise frame differences. At

frame t, a difference image was formed from the raw frame at time t + 1 and t − 1.

This yields a difference video for each sequence. Similarly to the static features, PCA is

performed on this video sequence and 40 coefficients for each frame are then extracted.

Each of these feature streams is then vector-quantized. A 20 symbol codebook

is learned separately for the dynamic and static features by learning a 20 component

Gaussian mixture model using EM. Each stream is then encoded using its corresponding

codebook, yielding a discrete observation for each stream at each frame 1. Figure 5.4(a)

summarizes how the video features are obtained via a block diagram.

� 5.2.2 Audio Features

For each sequence analyzed there is a single audio stream broken up into segments

corresponding to video frames. We calculate 13 Mel-frequency cepstral coefficients

(MFCCs) for each of these frames [63, 13] to form what we will refer to as our static

audio features. MFCCs are common perceptually motivated feature used in automatic

speech recognition. Dynamic features at frame t are, again, formed by taking the

difference between the raw static MFCC features at frame t+ 1 and t− 1. These audio

feature streams are separately vector quantized using learned 20 symbol codebooks.

Figure 5.4(b) summarizes how the video features are obtained via a block diagram.

1We arbitrarily chose 20 symbols at first. Some quick analysis of smaller and larger codebooks

showed little change in performance. However, more thorough analysis must be done before drawing

any conclusions about codebook size. Here, we simply provide a fixed video extract technique for all

datasets.
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(a) Video Processing

(b) Audio Processing

Figure 5.4. Video and Audio Feature Extraction Block Diagrams: Sub-blocks are explained in Figure

5.5. (a) A block diagram summarizing how both the static DV S
i and dynamic DV D

i video features for

person i are obtained. (b) A block diagram summarizing how the static DAS

and dynamic DAD

audio

features are obtained.

� 5.2.3 Inputs to Dynamic Dependence Analysis

For each sequence analyzed, this yields three quantized static feature time-series; one

representing the audio, xAS

1:T , and two representing the video for each person in the

scene, xV1
S

1:T and xV2
S

1:T . In addition, there are three corresponding dynamic feature

streams, xAD

1:T , xV1
D

1:T and xV2
D

1:T . These are the N = 6 time-series input for analysis. For

clarity, we will index them as AS , AD, V1
S, V1

D, V2
S and V2

D, rather than 1 through 6,

where the superscript denotes (S)tatic or (D)ynamic features and the subscript indexes

the speaker.

It is important to note that the dimensionality reduction with PCA and codebook

learning is done separately for each stream and for each data sequence analyzed. That

is, no user or dataset specific training is being performed.
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(a) (t + 1, t − 1) Difference (b) Dimensionality Reduction

(c) Quantization

Figure 5.5. Sub-blocks for Audio and Video Processing: (a) A diagram showing how the the (t+1, t−1)

sub-block works. It outputs the difference between a positive and negative temporal delay of its input.

(b) A diagram showing how dimensionality reduction is performed. Treating each sample independently

PCA is performed on all of the input data to learn a basis Φ with a specified number of components. All

the data is then projected onto this basis. (c) A diagram showing how vector quantization is performed.

All the data input data is used to learn a codebook with a specified number of symbols. We form this

codebook by learning a Gaussian mixture model. The data is then quantized using this codebook,

encoding each sample with the index of the mixture component best describes the sample.

� 5.3 Association via Factorizations

Our goal is to determine which, if any, of the people in a given sequence are producing

the recorded audio at each point in time. We map this problem to that of determining

which video observation is associated with the audio observation. We describe this

association in terms of a factorization on the input time-series. For this task we define

a finite set of factorizations we wish to identify.

When individual 1 is speaking we expect the audio to be associated with the video for

individual 1. Similarly, we expect the audio to be associated with the video individual 2

when her or she is speaking. When neither of the individuals are speaking we expect no

association among the input time-series. Thus, we consider three possible factorizations
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(a) F 1 : Person 1 is speaking

(b) F 2 : Person 2 is speaking

(c) F 3: Neither person is speaking

Figure 5.6. The Three Audio and Video Factorizations Considered: The factorizations are shown as

association graphs. When person 1 is speaking we assume the feature time-series factorize as shown

in (a). When person 2 is speaking we assume (b). When neither person is speaking we assume all

observed time-series are independent.

being active at any point in time:

F 1 = {{AD, V1
D}, {V2

D}, {AS}, {V1
S}, {V2

S}} (5.1)

F 2 = {{AD, V2
D}, {V1

D}, {AS}, {V1
S}, {V2

S}} (5.2)

F 3 = {{AD}, {V1
D}, {V2

D}, {AS}, {V1
S}, {V2

S}} (5.3)

Figure 5.6 shows association graphs for these three factorizations. Note that the struc-

tural differences between these 3 factorizations are only in the dynamic features. The

implicit assumption is that the dependence information is primarily capture by the

dynamics of the audio-visual speech process while static features primarily exhibit ap-

pearance changes (i.e. parametric) rather than dependence changes. As discussed in

Chapter 4 while a windowed approach for analysis will only be able to take advantage

of the structural differences, a dynamic dependence model can use these static features

to help distinguish which is the correct factorization.
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� 5.4 AV Association Experimental Results

We perform dynamic dependence analysis on these datasets using three different ap-

proaches. The first approach performs windowed analysis comparing FactMs using the

three possible factorizations defined in Equations 5.1, 5.2 and 5.3. We use the abbre-

viation WFT to denote this as a windowed factorization test. For the WFT, at each

frame, the likelihood ratios l̂1,2, l̂1,3 and l̂2,3 are calculated using a window of samples

centered around that frame. Note that, by virtue of an additional edge, both F 1 and

F 2 are more expressive than the fully independent F 3. Thus, additionally, p-values for

l̂1,3 and l̂2,3 are calculated via 100 permutations. If l̂1,2 is positive (negative) then we

eliminate F 2 (F 1) as a possible hypothesis and use the p-value for l̂1,3 ( l̂2,3 ) to choose

between F 1 ( F 2 ) and F 3. That is, we first compare which video stream is most likely

associated with the audio by looking at l̂1,2. Given the most likely of the two we then

look at the p-value for that hypothesis when compared to no association, F 3, to decide

if we should reject F 3. Window sizes of 8, 15, 30, 60, 90 and 120 frames with various

p-value thresholds are tested. For each sequence, the final result recorded is the one

with the window size and p-value threshold that gives the best performance for that

particular sequence. While selection of the settings which yield the best performance

is not reasonable in practice, our purpose is to use these results as a best-case baseline

for comparison to the dynamic approach.

The second approach uses an HFactMM with(0,3) with each state linked to a single

factorization. That is, state i indexes the factorization F i allowing the semantic label

of “Who is speaking” to be directly read from the state sequence inferred by the model.

Similarly, the third approach uses a FactMM(0,3) which removes the Markov structure

on the state sequence. We perform ML inference using both of these models to get the

most likely state sequence after learning parameters via EM. For EM, 100 random ini-

tializations are used with a maximum of 80 iterations each. The most likely parameters

are kept. In most cases EM converges before 40 iterations and the maximum is found

by multiple initializations.

� 5.4.1 CUAVE

All three approaches were applied to all 22 sequences in the CUAVE corpus. Table 5.1

shows a summary of the average performance for each method. Performance is reported

in terms of the percentage of frames correctly classified according to the ground truth



Sec. 5.4. AV Association Experimental Results 121

HFactMM FactMM Best WFT
Nock and

Iyengar[68]

Gurban and

Thiran[40]

Mean Accuracy (%) 80.24 78.51 83.86 75 87.4

Mean Accuracy C(%) 88.11 86.38 83.42 NA NA

Table 5.1. Results Summary for CUAVE: The Best WFT accuracy corresponds to the WFT with

settings that maximized the average performance for the entire dataset. C= silence constraint imposed

100 200 300 400 500 600 700

FactMM C

HFactMM C

WFT

FactMM

HFactMM

Ground Truth

100.0 %

80.6 %

75.3 %

86.1 %

94.8 %

82.1 %

Frame Number

Figure 5.7. Results for CUAVE Sequence g09: The top row indicates the ground truth labeling of

who is speaking. White = neither person is speaking, light red = person 1, dark blue = person 2. The

following rows display the output of dynamic dependence analysis using an HFactMM, a FactMM, and

a windowed approach (WFT). The bottom two rows show post processed results for the HFactMM and

FactMM in which short (< 25 frames) segments of silence/neither person speaking are removed to be

consistent with the ground truth labeling procedure. The accuracy of each result is shown below the

labeling.

provided by [6]. The first row of Table 5.1 shows that all the techniques give around

80% accuracy. Typically, the maximum average performance of the WFT was obtained

with a window length of 30 frames, approximately one second. This shows that, with

some training data to set window length and p-value thresholds, the WFT method

would do well with these features. However, these results are somewhat misleading, as

we will explain.

Figure 5.7 shows the estimated labels for a typical sequence in the corpus (g09). The

top line shows the ground truth labeling. The next two are the outputs of the HFactMM
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and FactMM. Notice that these methods disagree with the ground truth by consistently

putting non-speaking (fully independent) blocks between speaker transitions and within

speaking blocks. Examination of these sections in the original video reveals that they are

actually short periods of silence. Consequently, the HFactMM and FactMM correctly

labeled these sections. The WFT does not exhibit this behavior and smoothes over the

short silence regions.

This disagreement with the provided ground truth is an artifact of how the ground

truth was defined. In [6], it is stated that:

A group of frames is labeled as silent when it is composed of at least 25

frames.

That is, periods of silence less than 25 frames within speech are considered part of

the speech according to the ground truth. While one might question this constraint,

we can easily incorporate it into our analysis to gain a fairer comparison. We impose

the constraint by post processing the outputs to remove any periods of labeled silence

(zt = 3) less than 25 frames. The constrained outputs are shown in the last two lines

of Figure 5.7. With this constraint the HFactMM and FactMM outperform all other

methods, improving to 88% and 86% respectively as shown in Table 5.1. To the best of

our knowledge these results are equivalent to or better than all other reported results for

audio-visual speaker association on the CUAVE group set. Nock and Iyengar [68] report

75% accuracy with a windowed Gaussian MI measure and Gurban and Thiran [40] get

87.4% with a trained audio-visual speech detector. Both methods use a silence/speech

detector and only perform a dependence test when there is speech. Our method obtains

better performance without the benefit of separate training data or a silence detector.

Full detailed results for the CUAVE Corpus are found in Table 5.2.

� 5.4.2 Look Who’s Talking Sequence

In the CUAVE database, much of the information about who is speaking comes from

the changes in dependence structure between the audio and the video. This is evident

in the fact that a windowed approach performs reasonably well, yielding 83% accuracy.

Appearances changes in the CUAVE dataset are primarily a result of differences in the

voice characteristics of each individual and the fact that each individual only moves
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HFactMM FactMM HFactMM C FactMM C
WFT

8

WFT

15

WFT

30

WFT

60

WFT

90

WFT

120

g01 84.77 80.19 94.61 93.67 69.54 77.49 80.73 80.19 80.19 80.19

g02 84.42 80.65 92.09 89.57 65.08 80.28 78.27 71.48 74.50 74.37

g03 87.37 78.26 92.75 93.89 67.49 79.92 80.43 74.53 75.78 72.05

g04 88.06 86.91 96.06 93.63 73.00 87.60 88.88 90.15 87.14 86.67

g05 87.58 83.30 95.38 90.99 59.67 68.57 76.70 82.20 83.41 76.04

g06 68.49 65.76 68.17 68.33 71.22 79.58 84.41 85.21 82.15 76.21

g07 83.78 82.16 96.49 93.78 70.81 83.24 89.73 90.54 89.19 92.16

g08 80.95 75.73 92.46 84.82 71.28 77.56 80.56 82.40 82.79 80.66

g09 80.62 75.28 94.78 82.11 74.16 88.32 86.09 77.52 75.90 81.86

g10 78.14 72.78 80.41 74.02 69.28 81.03 80.41 84.12 81.44 80.62

g11 74.76 79.47 83.80 83.99 83.24 84.56 89.83 93.41 89.27 86.63

g12 61.91 64.20 69.85 72.81 59.08 67.70 78.47 75.10 71.33 70.79

g13 80.31 76.31 88.85 86.24 72.82 83.28 86.59 83.97 85.37 84.32

g14 83.25 78.93 93.19 82.59 71.34 79.84 80.50 80.50 79.97 80.24

g15 85.92 84.02 93.11 90.47 70.82 80.35 82.70 81.23 85.34 82.11

g16 69.86 77.40 71.78 84.52 70.96 85.75 85.89 85.21 83.97 82.74

g17 85.36 81.66 93.65 93.12 90.48 90.12 95.41 93.65 90.83 88.01

g18 64.23 82.37 72.06 87.84 51.86 59.28 69.48 72.16 77.53 74.64

g19 89.16 83.05 85.34 85.80 58.32 75.27 77.86 76.95 71.30 68.85

g20 84.81 80.11 97.01 90.80 78.07 90.16 91.23 88.56 86.20 85.13

g21 82.58 81.52 92.42 88.70 77.39 85.90 85.51 84.18 80.98 83.11

g22 78.81 77.13 94.21 88.57 80.18 85.21 88.26 89.79 86.74 83.08

Mean 80.24 78.51 88.11 86.38 70.73 80.50 83.54 82.87 81.88 80.48

Table 5.2. Full Results on CUAVE Group Dataset: C=silence constraint imposed outputs (non-

speaking segments shorter than 25 frames removed) WFT # indicates a windowed factorization test

with window length #. Note that the WFT results are obtained by finding a p-value threshold to give

the maximum mean accuracy over the entire dataset. The best result for each sequence is highlighted

in bold.

his or her mouth when speaking2. In our second dataset there is also a significant

appearance change when there is a transition of who is speaking. When one person

is speaking the other subject changes his or her gaze. The results for this sequence

are shown in Figure 5.8. Both the HFactMM and FactMM greatly outperform the

WFT as predicted in our theoretical analysis. The poor results of the WFT show that

there is not sufficient dependence information in the features at all times. However,

the HFactMM and FactMM take advantage of the static appearance differences (in this

case head pose) to help group the data and correctly label the video.

� 5.4.3 NIST Sequence

Lastly, we explore performance on the NIST data. Note that, in this dataset, when

neither tracked person is speaking there is often an individual off-camera who is speaking

rather than simple silence. Consequently, the independent factorization, F 3, must

2Note that this is not entirely true. Most people are continuously moving their mouth in some way

while anticipating his or her turn to speak in the CUAVE dataset
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Figure 5.8. Results for the “Look Who’s Talking” Data: White = neither person is speaking, light

red = person 1, dark blue = person 2. The top row shows the ground truth. Results are shown for the

HFactMM, a FactMM and windowed test. The accuracy of each result is shown below the labeling.

Note here the HFactMM and FactMM do significantly better than the windowed approach. This is due

to the fact they can cluster data from far way time-points when making a local decision.

model more than just silence. Figure 5.9 shows the results of all three approaches when

applied to this data. The HFactMM again achieves the best performance, but only

obtains 76% accuracy when compared to the ground truth. We see that the best choice

of parameters for the WFT favor the independent factorization. This, again, indicates

there is little dependence information in the feature and much is gained by using a

dynamic model.

This data also reveals that the problem of audio-visual association is much more

challenging than the controlled CUAVE dataset indicates. Note that we purposely

choose simple features and focused on demonstrating the advantage of using a dynamic

dependence model when treating this problem as a generic dynamic dependence analysis

task. We expect one can improve performance by incorporating better face tracking

and robust audio and video features.

� 5.4.4 Testing Underlying Assumptions

In the previous sections we explored the use of a dynamic dependence model on three

audio-visual speaker association datasets. We focused on comparing the results obtained

using an HFactMM with those obtained using a windowed approach. Performance was

discussed in the context of the overall “difficulty” of each dataset. Difficulty was loosely

defined in terms of how well each technique performed, the type of speech activity and

the amount audio-visual appearance change associated with changes of speaker in the

data. Here, we provide some additional analysis. We explore how well the underlying
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Figure 5.9. Results for NIST data: White = neither person is speaking, light red = person 1, dark

blue = person 2. The top row shows the ground truth. Results are shown for the HFactMM, a FactMM

and windowed test. The accuracy of each result is shown below the labeling. Again, here the HFactMM

and FactMM significantly out perform the windowed approach, which sees very little dependence in the

data. The dynamic models overcome this by pooling data over all time.

assumptions made when mapping the audio-visual association problem to a dynamic

dependence analysis task hold for each dataset.

The main underlying assumption we make in treating the speaker association prob-

lem as a dynamic dependence analysis task is that dependence structure among the

observations is tied to who is speaking. That is, when person i is speaking we as-

sume video i is dependent on the audio and independent of all other observations. We

also assume there is no dependence among the observations when none of the observed

individuals are speaking.

We test this assumption on all datasets by measuring the mutual information be-

tween the audio and video for each person over various window sizes. That is we measure

I(A;Vi) for each i ∈ {1, 2} within a specified window of time. As discussed in Chapter

3, mutual information is a natural choice of statistic to measure due to its relationship

to the likelihood of association under the factorization model . Here, we simplify our

notation such that the audio, A, within a window tw, is the set of both static and dy-

namic audio features, Atw =
{
DAs

tw
,DAd

tw

}
, and similarly for video Vi,tw =

{
D

V s
i

tw
,D

V d
i

tw

}
.

Recall that these audio and video features were computed over the entire sequence. In

particular, this means that the codebook has to represent both speakers in the case of

the audio measurements.

Figure 5.4.4 shows a summary of this analysis for a single sequence in the CUAVE
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dataset. The summary is broken down into three rows of plots, each of which cor-

responds the state of who is speaking. Each plot summarizes the measured mutual

information for each person, I(A;V1) and I(A;V2), over various window lengths given

a particular state. The x axis indicates the window length. For each window length

we plot the mean and standard deviation of mutual information measured within all

windows with that specified length as a bar graph with error bars. Each plot also

shows two horizontal lines, one for each person, which display the mutual information

measured using all of the data within the specified state.

Examining Figure 5.4.4 we see that, for this CUAVE sequence, when neither person

is speaking our assumptions hold and there is no dependence among the audio and

video of either person overall all such times or within windows. The second and third

rows show that I(A;Vi) is highest when person i is speaking. However, they also show

that there is some measured dependence between the audio and the person who is not

speaking. While within a window this measured dependence may be spurious or a

result of using a small amount data, we see that when using all the data (the horizontal

lines) the dependence is still present. The results for different window lengths show

that variance of measured dependence decreases with window length and that smaller

window lengths tend to have higher mutual information. These results also show that

it is the difference in dependence that matters, not the presence of dependence, in this

sequence.

Figure 5.4.4 shows results for the “Look Who’s Talking” data. We see trends similar

to that of the CUAVE data. However, the there is some measured dependence when

neither person is speaking, the measured dependence is lower over all states, and the

difference in mutual information for each speaker is less. That is, the analysis seems to

indicate there is less dependence information in this data. Results for the NIST data

are shown in Figure 5.4.4. We see that while the average dependence within windows

for all states is generally higher than the other two sets of data, there is more variance

and the mutual information measured using all the data within a state is actually

lower than that in CUAVE and the “Look Who’s Talking” data for each state. Such

characteristics can help explain why we obtained slightly worse performance on the

NIST sequence relative to the others.

Next we explore how well we can distinguish the state of who is speaking from the

overall distribution of the data. While the previous analysis looked at dependence infor-

mation, here we wish to analyze both parametric and dependence differences among the
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Figure 5.10. Dependence Analysis for CUAVE Sequence g09: Each row is a separate state. The x

axis is the window length used. For each window length two bar graphs show the average and standard

deviation of I(A;V1) (red) and I(A;V2) (blue) measured using all windows of the specified length within

the specified state. The horizontal lines show I(A;V1) (red) and I(A;V2) measured using all the data

within the given state.

distribution of observations for each state. In our model we assume that distribution

on observations changes depending who is speaking. We test this assumption by mea-

suring the mutual information of the state z with the data D. We also look at I(z;A),

I(z;V1) and I(z;V2) to help understand which observations are most informative about

the state. Figures 5.13(a), 5.13(b), and 5.13(c) shows results of this analysis for each
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Figure 5.11. Dependence Analysis for the “Look Who’s Talking” Sequence: Each row is a separate

state. The x axis is the window length used. For each window length two bar graphs show the average

and standard deviation of I(A;V1) (red) and I(A;V2) (blue) measured using all windows of the specified

length within the specified state. The horizontal lines show I(A;V1) (red) and I(A;V2) measured using

all the data within the given state.

dataset. The bars display the measured mutual information, while the horizontal line

is the entropy of the state label H (z) which serves as an upper bound. Figure 5.13(a)

shows that for a CUAVE sequence the mutual information is close to the upper bound

and that most of information comes from the video observations rather than the audio.

Figure 5.13(b) shows a similar trend for the “Look Who’s Talking dataset”. However,
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Figure 5.12. Dependence Analysis for the NIST Sequence: Each row is a separate state. The x axis

is the window length used. For each window length two bar graphs show the average and standard

deviation of I(A;V1) (red) and I(A;V2) (blue) measured using all windows of the specified length within

the specified state. The horizontal lines show I(A;V1) (red) and I(A;V2) measured using all the data

within the given state.

the mutual information is higher and closer to the upper bound. Lastly, Figure 5.13(c)

shows that for the NIST data the state is less distinguishable than in the other datasets.

However, it is important to again note that this analysis is dependent on our feature

choices. Perhaps features other than MFCCs might result in stronger dependence in

the audio features.
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Figure 5.13. Analysis of State Distinguishability: Each subfigure shows the analysis for a different

dataset. The bars show the mutual information between the state label z and all observations D or

just the audio A or video V1/V2. The horizontal line is the entropy of the state label H (z) which is an

upper-bound on the mutual information
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In our experiments, we use an HFactMM with a single state for each dependence

structure, implicitly assuming the model is stationary when that state is active. The

windowed method is largely insensitive to the model varying so long as the dependence

is measurable. Next, we test this stationarity assumption by looking at two different

windows of data that both occur within a specified state. We measure the mutual

information between the label of which window the data came from and the data.

Low mutual information indicates that the statistics are similar in both windows and

indicate our assumption of stationarity may be true. Figures 5.14, 5.15, 5.16 show our

analysis results. Note that the upper bound on mutual information is 1 bit assuming

each window is equally likely. We plot the average mutual information and variance

as bar plots for multiple window lengths for each state. We break up the analysis into

comparing two windows that occur within the same utterance (the state label does not

change any time between when the windows occur) versus those which occur in different

utterances.

Figures 5.14, 5.15, 5.16 show that, over all datasets and states, within utterance

stationarity improves with larger window sizes. This trend is most evident in the

CUAVE and “Look Who’s Talking” data, and much less in the NIST data. That is, even

within the same utterance the distribution varies a lot in the NIST data. Windows with

different utterances seem to be very distinct in general. This is somewhat unexpected,

as one would expect more of a downward trend with larger window lengths. Even

though the utterances are different one would expect the visual appearance and audio

characteristics would be similar.

Reviewing all the analysis presented in this section we now summarize our findings.

Our assumptions about changing dependence structure more or less hold in that the

video for the speaker tends to be most dependent on the audio. This was first strongly

hinted at by the fact we achieved state-of-the-art performance on each of these datasets.

Ranking how closely each dataset agrees with our assumption they can be ordered as:

CUAVE, “Look Who’s Talking”, NIST. Second, our assumption of each state having

a distinct distribution seems to hold true as well. Ranking the datasets based on

this assumption we order them as: “Look Who’s Talking”, CUAVE, NIST. This is

consistent with fact that we achieved a large improvement in performance by using

an HFactMM rather than a windowed approach on the “Look Who’s Talking” data.

Lastly, our assumption of stationarity seems to be violated in each data sequence we

explored. This raises the question of whether this is a poor assumption or that the
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Figure 5.14. Stationarity Analysis for CUAVE Sequence g09: Each row is a separate state. The x

axis is the window length used. For each window length, two windows are extracted within the specified

state. For each pair of windows the mutual information I(W ;D) in bits is measured where W is the

label indicating which window the data came from. We summarize the results for each window in two

bar plots. The first (green) gives the mean and variance of the mutual information when the windows

are within the same utterance. The second (light blue) is the same for when the windows are in different

utterances. The blank bars for window lengths above 60 frames in the first plot are due to lack of data

meeting those criteria.
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Figure 5.15. Stationarity Analysis for the “Look Who’s Talking” Sequence: Each row is a separate

state. The x axis is the window length used. For each window length, two windows are extracted within

the specified state. For each pair of windows the mutual information I(W ;D) in bits is measured where

W is the label indicating which window the data came from. We summarize the results for each window

in two bar plots. The first (green) gives the mean and variance of the mutual information when the

windows are within the same utterance. The second (light blue) is the same for when the windows are

in different utterances. The blank bar for different utterances of window length 120 is due to lack of

data meeting those criteria.
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Figure 5.16. Stationarity Analysis for the NIST Sequence: Each row is a separate state. The x axis is

the window length used. For each window length, two windows are extracted within the specified state.

For each pair of windows the mutual information I(W ;D) in bits is measured where W is the label

indicating which window the data came from. We summarize the results for each window in two bar

plots. The first (green) gives the mean and variance of the mutual information when the windows are

within the same utterance. The second (light blue) is the same for when the windows are in different

utterances.
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lack of stationarity is a result of the features we choose or particular data we looked at.

Either way, it suggests some future avenues to explore when analyzing and/or extending

the models proposed in this dissertation.

� 5.5 Summary

In this chapter, we looked at the problem audio-visual speaker association. We cast

the problem in terms of dynamic dependence analysis using an HFactMM to reason

over factorizations. Consistent with the theoretical analysis provided in Chapter 4,

we have empirically shown that by modeling dependence as a dynamic process the

HFactMM can exploit both structural and parameter differences to distinguish between

hypothesized states of dependence. This is in contrast to sliding window methods which

can only discriminate based on structural differences. State-of-the-art performance was

obtained on a standard dataset for audio-visual association. Significantly, this was

achieved without benefit of training data.
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Chapter 6

Application: Object Interaction

Analysis

In this chapter, we use dynamic dependence models for the purpose of analyzing the

interactions among multiple moving objects. Such analysis can provide information

and insight into coupled behavior for automated surveillance and tracking of multiple

objects [85, 20]. Much of the past work in this area has focused on modeling and

classifying object activity [39, 2, 14], specific single object behaviors [15, 9, 71] and

anomalous events [12, 66]. In contrast, we focus on the unsupervised identification of

interactions among multiple moving objects.

Our approach is closely related to the recent work of Tieu [88] who has formulated

the problem of detecting and describing interaction explicitly in terms of statistical de-

pendence and model selection. That is, interactions are defined in terms of dependence

structure rather than specific behavior models learned from training data. Represent-

ing object trajectories as time-series, [88] assumes a single dependence structure among

them over all time. The strength of interactions are described in terms of statisti-

cal measures of dependence. While similar to this preliminary proof of concept, our

approach differs in that, here, we are primarily concerned with characterizing a full

posterior distribution over interactions described by the structure of a graphical model.

More importantly, using the dynamic dependence models presented in Chapter 4, we

efficiently reason over a larger set of interaction structures which are allowed to evolve

over time.

We begin in Section 6.1 by casting the problem of reasoning over object interactions

as one of Bayesian inference over the structure of a temporal interaction model (TIM).

We discuss how to parameterize a TIM and provide an illustrative example using data

generated from the model. A series of experiments on various datasets of moving objects

137
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1 and 2 are moving independently
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1 and 2 are influencing each other
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Figure 6.1. Interaction Graphs for Two Objects: Four possible directed interaction graphs describing

the behavior of two objects. Under each graph are two descriptions of object interactions that would

yield the structure above.

are conducted and analyzed in Section 6.2.

� 6.1 Modeling Object Interaction with a TIM(r)

ConsiderN objects moving within an environment. We assume we are given information

jointly about each object’s location over a regularly sampled time interval, 1 to T .

Time indexes the trajectory of the i-th object as time series xi
1:T , which describes

the kinematic state1 of that object at each point in time. We map the problem of

identifying interactions among these objects to a dynamic dependence analysis task

using these observed time-series. Specifically, we use an, r-th order temporal interaction

model, TIM(r), whose directed structure Ē describes the causal relationships among

the positions of the N objects under analysis.

For example, consider the case in which there are only two objects. Figure 6.1

shows the four possible direct structures Ē depicted as interaction graphs. Underneath

each interaction graph are two possible semantic descriptions of interactions that may

yield the depicted structure above. However, one must be careful to not invert the

relationship and claim a semantic description can be read from the interaction graph

alone. While generic terms such as “influence” may be appropriately read from the

interaction graph, other terms such as “follow” cannot. That is, a directed edge from

1In our experiments, kinematic state is simply the 2-D position of the object.
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1 to 2 indicates that the observation for object 2 at the current time is dependent on

or “influenced” by the past of object 1. Terms such as “follow” are more complex and

involve describing the nature of this particular influence. That is, the label “2 follows

1” is usually interpreted to mean object 2 is physically behind object 1. Such a label

cannot be read from the dependence graph in Figure 6.1(c). The structure depicted

can also be associated with an interaction involving “2 stays ahead of 1”. The missing

information telling us which description is more appropriate is captured by the value

of the parameters associated with the edge from 1 to 2 (which we treat as a nuisance).

In other words, Ē, as depicted in the interaction graph, only describes the structure

of the interaction, while the parameters associated with that structure describe the

nature of the interaction. In this chapter, we are primarily concerned with quantify-

ing uncertainty in the structure of the interaction given observed data. However, as

discussed in Chapter 4, the parameters describing to nature of object interactions will

help to pool information when reasoning over interactions that may change over time.

If interested in characterizing the nature of interaction, priors can be chosen for the

parameters which favor certain behaviors and then the posterior on these parameters

can be calculated given the observed data as discussed in Section 3.4.3.

� 6.1.1 Parameterization

Before we can use a TIM(r) to infer interactions, we need to supply its parameterization.

That is, we need to choose a parametric form for p
(
Xt|X̃t, Ē,Θ

)
that can describe

trajectories of objects. Recall from Section 3.4 that a TIM factorizes as

p
(
Xt|X̃t, Ē,Θ

)
=

N∏

v=1

p
(
xv

t |x̃
v,pa(v)
t ,Θv|pa(v)

)
. (6.1)

Thus, ultimately we must describe the form of p
(
xv

t |x̃
v,S
t ,Θv|S

)
that models the de-

pendence of a time-series v given its past in addition to the past of a parent set S.

We adopt a simple r-th order vector auto-regressive model, VAR(r), for these con-

ditional relationships [70]. While other models are possible, this particular choice is

useful as it leads to a tractable conjugate prior. That is, assuming xi
t describes the

d-dimensional position of object i at time t (xi
t ∈ R

d), we adopt the following linear

model

xv
t = Av|S x̃

v,S
t + w, (6.2)
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where Av|S is a d× d(1+ |S|)r dynamic matrix and w is zero-mean Gaussian noise with

d × d covariance Λv|S. The parameter Θv|S = {Av|S,Λv|S}. Recall that x̃
v,S
t contains

the past r values of time-series v in addition to the past values of all time-series in set

S. The VAR(r) model describes the current value of time-series v as a linear function

of these past values plus Gaussian noise. Here, the parameter Av|S captures the nature

or form of dependence.

Consider a simple case with r = 1 in which time-series v has single parent u. In this

situation, Equation 6.2 is

xv
t =

[
Av,v Av,u

] [xv
t−1

xu
t−1

]
+w (6.3)

which is a simple VAR(1) model. Higher order models (r > 1) can be used to cap-

ture higher dependence on motion. For example a VAR(2) can be used to capture

dependence on velocity when xv
t represents position.

In this chapter, we will focus on Bayesian inference of structure while integrating

out parameters. We wish to define prior on these parameters so that one can efficiently

integrate over them.. Equation 6.2 is a linear regression model. As mentioned in

Chapter 2 a conjugate prior for the parameters of this model is the matrix-normal-

inverse-Wishart distribution:

p0

(
Θv|S

)
= p0

(
Av|S|Λv|S

)
p0

(
Λv|S

)

=MN
(
Av|S; Ωv|S,Λv|S,Kv|S

)
IW

(
Λv|S; Ξv|S, νv|S

) (6.4)

Thus, posterior updates given observed data D can be performed using Equation 2.53,

and the evidence WS,v can be calculated using the Matrix-T distribution given in Equa-

tion 2.59. This is done by mapping Dy = Dv, Dx = D̃v,S and the hyper-parameters

Ω,K,Λ, and ν to their v|S indexed versions in Equation 6.4.

While all of our experiments will involve one or two-dimensional position informa-

tion, it is straightforward to extend our approach to higher dimensional data.

� 6.1.2 Illustrative Synthetic Example of Two Objects Interacting

In this section, we perform an illustrative experiment on two (N = 2) one-dimensional

time-series. We wish to examine the degree to which one can distinguish whether

a certain dependence relationship is present as a function of the number of samples
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and strength of that dependence. We design a TIM(1) with a static structure of x1
t

influencing x2
t . That is, Ē contains a single edge, 1→ 2, as depicted in Figure 6.1(c).

The time-series x1
t is set to be a random walk such that A1|∅ = 1 and Λ1|∅ = 1.

That is,

x1
t = x1

t−1 + w1 (6.5)

where w1 is zero mean, unit variance Gaussian noise. The amount of influence x1
t has

on x2
t is controlled via a variable ρ such that A2|1 =

[
(1− ρ) ρ

]
and Λ2|1 = 1. That

is,

x2
t = (1− ρ)x2

t−1 + ρx1
t−1 + w2 (6.6)

where w2 is unit variance. Note that if ρ = 1, x2
t is the position x1

t−1 plus noise, and if

ρ = 0 it simply follows its own random walk independent of the other time-series.

Using a weak matrix-normal-inverse-Wishart prior on the parameters2 and a uniform

prior on structure (all β set to 1), we calculated the the posterior probability of edge

1 → 2 given a set of samples from our model. This is done for various settings of

ρ and T . For each setting, 100 trials are performed and the average posterior edge

probabilities are recorded. Note that, for N = 2, the set of all structures A2 (set of all

structures) = P1
2 (set of single parent structures) and the number of structures in each

set is: |T2| = 2 (directed trees), |F2| = 3 (directed forests) and |A2| = 4 (all directed

structures).

Figure 6.2(a) and Figure 6.2(b) show results for structure sets T2 andA2 respectively.

The results follow one’s intuition: few samples or ρ < 0.1 results in an edge posterior

close to chance, i.e. a uniform posterior over structure (1/2 for T2, 1/4 for A2). Once

ρ > 0.1 there is a sharp increase in the posterior on the the edge being present.

Note that, here, we are quantifying uncertainty in terms of posterior edge appearance

probabilities. As discussed in Section 3.4.3 the posterior probability of edge appearance

is the same as the posterior mean of a multiplicative indicator function f on that edge,

2Throughout this chapter, when we use the term “weak” prior for matrix-normal-inverse-wishart

distribution we generally set the prior to have the following parameters for all conditional relationships

v|S: The matrix-normal is set to be zero mean Ω = 0 and K set to be the identity matrix. For the

inverse-wishart we set the degrees of freedom ν to be the dimension of the data plus 2. Ξ is either set

to be the identity for synthetic data or 2Λ̂ where Λ̂ is the ML estimate of the covariance given all of the

data being analyzed. These priors are “weak” in the sense that they do not heavily bias the posterior

and the data term easily dominates the prior.
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Figure 6.2. The Average Edge Posterior for Different ρ and # of samples T : The average was taken

over 100 trials for each setting of ρ and T . (a) shows results when we restrict Ē ∈ T2 (b) shows results

when there are no restrictions placed on Ē.

Ep(Ē|D)
[
f(Ē)

]
. One can also calculate higher-order information such as the posterior

variance using Ep(Ē|D)
[
f(Ē)2

]
. For example, running a single trial with T = 50, ρ = 0.1

one obtains a posterior edge probability of .6327 and posterior variance of .2324 when

considering T2.

� 6.2 Experiments

In this section we present a series of experiments on datasets involving the interaction of

multiple, N > 2, tracked moving objects, At first, we look at a simple static dependence

analysis task and then explore situations in which interactions are changing over time.

Specifically, we are interested in quantifying uncertainty in the dependence structure

describing interactions rather than obtaining point estimates. When analyzing data

we do not assume there is a “true or correct structure”, rather, our goal is to fully

characterize the uncertainty over the structure of interactions.

� 6.2.1 Static Interactions

We begin by considering a dataset comprised of recordings of three individuals playing

a simple interactive computer game. This “Interaction Game” is similar to that used

by Tieu [88]. Multiple players are each given a screen to look at which displays multiple
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1

2

3

Figure 6.3. A screenshot from our “Interaction Game”: Each player is represented by a round marker.

Here, we see the interface from the point of view of player 1.

numbered markers. Each player’s computer mouse controls the position of one specific

marker on their screen while the other markers represent the positions of the other

players. A screenshot of the interface for this interaction game is shown in Figure

6.3. Three players are instructed to perform a particular interactive behavior. The

position of each player is recorded at 8 samples per second. Each behavior is recorded

for approximately 30 seconds, T ≅ 240.

The players are first instructed to follow each other in order. That is, player 1 is told

to move their marker around the screen while player 2 is instructed to follow player 1.

Player 3 is instructed to follow player 2. Using a uniform prior on structure and weak

matrix - normal - inverse - Wishart prior on parameters, the posterior on structure is

calculated given this data using a TIM(1). For increasingly restrictive sets of allowable

structures results are shown in Figure 6.4(a).

Visualization of the uncertainty over interaction structure is challenging in general.

This fact will motivate the use of more focused probabilistic evaluations as the data sets

we consider grow in complexity. Here, we visualize the resulting posterior as weighted

interaction graphs. In these graphs, edge intensity represents the posterior probability

of that edge (darker is higher). Node intensity represents the probability a time-series

has no parents and is a root. White indicates a probability of 0 while black indicates
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a probability of 1. Note that this type of following behavior is described well by all

sets of structures we consider. The posterior is the most peaked (exhibits the least

uncertainty) when considering the most restrictive set, directed trees T3.

In a different sequence players 2 and 3 are instructed to move freely, while player 1 is

told to follow player 2. The resulting posteriors are shown in Figure 6.4(b). While the

posterior on structure agree with one’s intuition, there is some uncertainty as to wether

or not the edge 1 → 2 exists. Given the short sequence of data, this uncertainty may

be related to disambiguating “1 following 2” versus “2 evading 1”. Note this behavior

is not described well by a directed spanning tree since player 3 is independent of all

others.

Lastly, players 2 and 3 are told to move freely while player 1 does his best to stay

between both of them. The results in Figure 6.4(c) show that this behavior only seems

represented well in set A3; it is the only set that allows more than a single parent for

a time-series. Restricting the the structures to have no more than one parent leads to

the posterior using sets P1
3 and F3 to strongly favor an independent explanation. This

independence is not allowed in the set of trees, T3, and thus the posterior exhibits the

most uncertainty.

� 6.2.2 Dynamic Interactions

Next we consider situations in which interaction changes over time. The first set of

experiments, again, involve data collected from our interaction game. However, this

time the players are told to switch among a specific set of behaviors. The second set of

experiments explores data obtained from a recorded basketball game.

Follow the Leader

Using the same interactive game setup, we record three individuals playing a game of

follow the leader. One player is designated the leader. The leader moves his or her

marker randomly around the screen while the other players are instructed to follow.

Here, the designated leader changes throughout the game. That is, a fourth person

observing the game tells the players when to switch leaders. In this case, the latent

variable indicating the change of leader is known, and consequently, nominal ground

truth is available by which to evaluate performance.

We begin by performing dynamic dependence analysis on this sequence using a

switching temporal interaction model STIM(1,3) with Ē ∈ T3. That is, we will use
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(c) 1 stays between 2 and 3

Figure 6.4. Resulting Posterior Interaction Graphs for Specific Behaviors: The results for each specific

behavior enacted by three players using the “Interaction Game” are shown as weighted interaction

graphs. The darkness of a node in the graph is probability of that time-series being a root. The darkness

of an edge is a function of the probability of that edge being present. Black represents probability 1

while white is probability 0. Each subfigure/row is a separate behavior. Each column shows results

when Ē is restricted to be a specific set. From left to right the columns represent increasingly restricted

sets starting with the set of all structures to the set of directed trees.

the fact there are only three possible leaders and knowledge that directed trees may

sufficiently describe the interaction among players. A uniform prior on structures and

equivalently weak prior on parameters is used. A weak self biased prior on the state

transition distribution is imposed with a bias towards self transition.

Given the data and the prior model, 100 samples of the structure, parameters and

the hidden state sequence are obtained with a Gibbs sampler as described in Section
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Figure 6.5. Samples of z Using a STIM(1,3) on the Follow the Leader Dataset: The very top plot

shows the ground truth with color indicating who was designated the leader. Leaders changed in order

from player 1 (blue) to player 3 (red). 100 state sequences drawn from our Gibbs sampler are displayed

below the ground truth. The state sequence samples are ranked according to their log likelihood with

the top state sequence representing the sample with the highest likelihood. The state sequence labels

were permuted such that they minimized the hamming distance to the ground truth. This provides a

consistent coloring. The hamming distance for each state sequence sample is shown on the right. The

hamming distance is highly correlated with the log likelihood.

4.4. The two primary steps of the sampler are:

1. Jointly sampling a state sequence condition on the data and the current sample

of parameters and structure.

2. Jointly sample the structure and parameters using exact updates of the posterior

conditioned on the data and the sampled state sequence.

Burn-in required approximately 60 iterations, with little change in the sampled state

sequence or data likelihood in future iterations. A detailed view of the results can be

found in Figure 6.5. The ground truth state sequence is shown on top with players
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taking turns being the leader in order. This figure shows each of the Gibbs sampled

state sequences. The labels were permuted to give a consistent coloring with the ground

truth segmentation shown on the top. The results are ranked by the log likelihood of the

data given the sampled parameters and structures, with the top being the most likely.

The side of the plot shows the normalized Hamming distance of the best mapping to

the ground truth [43]. Note that this error metric is highly correlated with the log

probability of the data. Each sample falls in one of two general categories. The top

third of the samples match the ground truth closely, the bottom two thirds suggests a

consistent alternative explanation.

By themselves, the state labels only indicate a change of distribution over structure.

While this segmentation information is useful and interesting, we are interested in the

details of the distribution. Given this segmentation we look at the posterior distribution

on structure to analyze the interaction among the players. Figures 6.6 and 6.7 show a

more detailed breakdown of two sampled models. The first row of each figure shows the

most likely segmentation given the model. The second row shows weighted interaction

graphs representing the posterior probability of the structure for each state. Recall that

while the state sequence is sampled using an MCMC method, via the details outlined

in Section 3.4.3, we can obtain an exact posterior conditioned on this sequence.

Figure 6.6 is a sample with low Hamming distance and high log likelihood. Notice

that the posterior distribution on structure for each state is essentially a delta function

on three distinct structures. These structures agree with our intuition in that each root

is consistent with who was designated as the leader and the followers are conditionally

independent given the root.

Figure 6.7 is a sample with a mid-range Hamming distance (ranked 34 out the 100

samples). It has errors consistent with the majority of sequences shown in 6.5. The

confusion between the first and third state is most noticeably reflected in the structure

posterior for state 3. The above analysis assumed three states, consistent with our

knowledge of the ground truth, Figure 6.7 gives evidence for additional states. That

is, for each phase of the game a better model may be a mixture of processes each with

similar structure but different parameter distributions. In order to test this hypothesis,

we repeat the experiment using K = 6 states. Figure 6.8 is a sample from this model.

The second row shows the occurrence of the learned states. We see that the ambi-

guity in Figure 6.7 is resolved by splitting the first and third state into two different

models, each with a posterior on structure consistent with the ground truth. Interest-
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Figure 6.6. Highest Log Likelihood Sample for Follow the Leader Data: The sampled state sequence

with the highest log likelihood out of 100 samples drawn using a STIM(1,3) is shown at the top. The

tree graphs under the state sequence depict the posterior over structure for each state in terms of a

weighted interaction graph. The states are lined up with the sampled state sequence. Note that this

sample closely matches the ground truth and the posterior on structure for each state peaked at a

structure which is indicative of who was leading.

Hamming Dist = 0.22, logProb=−1.493586e+03
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Figure 6.7. Typical Sample for Follow The Leader Data: Here the the sample state sequence ranked

34th in terms of log likelihood out of 100 samples drawn using a STIM(1,3) is shown at the top. The

tree graphs under the state sequence depict the posterior over structure for each state in terms of a

weighted interaction graph. The states are lined up with the sampled state sequence. Note there is

some disagreement with the ground-truth and confusion between states 1 and 3. This reflected in some

posterior uncertainty in the structure for state 3.
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Figure 6.8. Sample Drawn using a STIM(1,6) on the Follow the Leader Data: The top row displays

the sampled state sequence. The second row shows the amount of time each state was active in this

sampled sequence. The third row shows posterior interaction graphs for each state aligned with the

states in the middle row. Note that this sample explained player 1 being the leader with two states,

each with a strong posterior time-series 1 being the root. States 5 and 6 both occur when player 3 is

the leader with some uncertainty in structure for state 5. State 4 is never used in the sample and thus

the posterior over structure is uniform for that state.

ingly, state 4 indicates uniform uncertainty in structure. However, this state is never

used and our prior is uniform, thus its posterior distribution remains uniform. This

suggests that perhaps 5 states were sufficient to capture the dynamic behavior of the

observations.

Basketball

Next we consider analysis of player interactions in sports data. Automatic analysis of

player interactions could be a valuable tool for understanding and learning individual

player and team strategies. That is, information about the pattern and structure of

interactions among teammates and their opposition could be used to learn a playbook

for each team. Here, we focus on the core task of characterizing player interactions and

leave the lofty goal of extracting strategic information for future work.

We explore a basketball game recording from the CVBASE 06 dataset [75]. Players

are tracked in two cameras and their positions are mapped to a common coordinate

system and recorded at each frame. Tracking is performed using a simple template

correlation tracker which is corrected by hand using an interactive tool. A total of 11

tracks are obtained; five players on each team plus the ball. A coarse annotation of the
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Figure 6.9. Sample Frame from Basketball Data: The top two images show the raw input from the

two cameras recording the game. The bottom image shows the un-warped common coordinate frame

with each player labeled.

current phase of the game is also created. Four phases are noted: team A on offense,

team B on offense, team A transitioning to offense, and team B transitioning to offense.

A sample frame with player positions is shown in Figure 6.9.

A STIM(2,10) model with Ē ∈ T is used for analysis; a second order model incor-

porates velocity information. Again, we use a weak prior on parameters and uniform

prior on structures. Note that here, with 11 time-series and Ē ∈ T , we are reasoning

over 1110 structures for each state. However, as shown in Chapter 3, given a state, one

can reason over these structures with approximately 113 operations. That is, we can

reason over 25 billion structures with, on the order of, 2 thousand computational steps.

A sampled state sequence obtained from a Gibbs sampler is shown in the bottom

row of Figure 6.10. The middle row shows the best many-to-one mapping of the sampled

state sequence to the coarse annotation. That is, it uses a mapping which minimizes
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Figure 6.10. Sampled State Sequence for the Basketball Data: Sampled z from STIM(2,10) compared

with the annotation describing which phase of the game is currently active. The top row shows the

annotation which each annotated state using a different color. The bottom row shows the sampled

state sequence z. The middle row shows the many-to-one mapping from the sampled sequence to the

annotation that minimizes hamming distance.

Table 6.1. Basketball Results Showing Probability of Root: The probability of being a root during the

four annotated phases of the game is shown for each team and the ball. bold and underlined values

are the maximum and second highest in each column respectively

A on offense B on offense
B transitioning

to offense

A transitioning

to offense

Team A .2475 .0832 .0420 .4769

Team B .0468 .2902 .4234 .0459

Ball .7057 .6266 .5346 .4771

the hamming distance. Note that while the sampled sequence is somewhat predictive

of the annotation, a direct comparison is misleading as within each phase of the game

multiple structures may be active.

Given a sampled state sequence, the posterior on Ē is obtained for each point in

time. With 11 time-series and 10 states, displaying all posterior interaction graphs is

impractical. As an alternative, we focus on calculating posterior event probabilities

over time intervals. Table 6.1 shows the probability of the root being on either team

or the ball given each phase in the coarse annotation. Over all phases of the game the

ball has the highest probability of being the root. When on offense or transitioning to

offense a player on team A has a higher probability of being the root than one on B

and vice versa. Similarly, Table 6.2 shows the probability of being a leaf averaged over

each team and the ball. Here the ordering is reversed and has a connection to which

team is on defense. We see how analysis of these posterior event probabilities can give

one a statistical prediction of the state of the game.
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Table 6.2. Basketball Results Showing the Average Probability of Being a Leaf: The average probability

someone on Team A, Team B, or the ball is a leaf during the four annotated phases of the game is

shown. bold values are the maximum in each column respectively

A on offense B on offense
B transitioning

to offense

A transitioning

to offense

Team A .3942 .4097 .4880 .3254

Team B .5515 .0493 .4234 .6512

Ball .1685 .0671 .1133 .2986

Lastly, we calculate the expected number of children for each player and the ball

over all time. As discussed in Section 3.4.3, the number of children can be expressed

as an additive function and the expectation is calculated using Equation 3.106. The

additive function f used to calculate the number of children of time-series v is set such

that fS,u = 1 if v ∈ S and 0 otherwise. The top four time-series, in terms of expected

number of children, are the ball, point guard A (PG A), forward 1 A (F1 A), and

forward 1 B (F1B) with expectations of 1.76, 1.73, 1.08, and 0.95. Not surprisingly, the

ball has the largest influence on the dynamics of the game. The point guard generally

controls the flow of the game and is usually the best ball handler.

As a consequence of the framework developed in Chapters 3 and 4 we can pose more

complex probabilistic questions with regard to the posterior distribution over interac-

tion structures. For example, now that we know that point guard A has significant

influence we can look at his interactions in more detail. Figure 6.11 shows the posterior

probability of an edge from the PG A to every other player over all time given a sampled

state sequence. Notice that the switching among states can be seen in terms of changes

in edge posteriors. PG A tends to influence his own forward as well as the point guard

and forward on the other team.

� 6.3 Summary

In this chapter, we have cast the problem of object interaction analysis in terms of

static and dynamic dependence analysis. Vector autoregressive TIM(r)s were used to

described causal relationships among observed trajectories of objects and the priors

defined in Chapter 3 allowed for tractable Bayesian inference.

We illustrated the utility of our framework via experiments characterizing posterior



Sec. 6.3. Summary 153

p(edge from PG A to ... )

PG A

F1 A

SG A

F2 A

C A

F1 B

SG B

F2 B

PG B

C B

Ball

Figure 6.11. Influence of Point Guard A (PG A): Using a sampled state sequence each row represents

the amount of influence PG A has on a specific player as a function of time. Influence is expected number

of edges leaving PG A’s time-series. Lighter colors mean higher probability of influence.

structural uncertainty among the observed object trajectories. Static dependence anal-

ysis was performed on the output of a simple multi-person interactive computer game

and results were obtained which were consistent with one’s intuition.

Using a STIM we were able to analyze data in which interactions changed over

time. The posterior uncertainty in structure revealed the potential for improvements

to our model by hypothesizing more interactive states. Lastly, we analyzed data from

a real basketball game. While we are not at the level of discovering playbooks, detailed

structural inference using our model yielded posterior statistics predictive of who was

on offense and defense. In addition, further analysis identified the key influential players

and how their influence changed over time.
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Chapter 7

Conclusion

In the preceding chapters we have developed a framework for analyzing changing rela-

tionships among multiple time-series. We cast this dynamic dependence analysis task

in terms of inferring the underlying structure of probabilistic models describing ob-

served time-series. By doing so we were able to leverage a large body of existing work

on statistical modeling and structure inference. Motivated by two distinct problems

of audio-visual association and object interaction analysis, our primary focus was on

structural inference and description of uncertainty in inferred dependence rather than

learning and recognition. That is, our goal was to describe the dependence among ob-

served time-series in the absence of training data rather than building predictive models

for future recognition tasks.

� 7.1 Summary of Contributions

We introduced two static dependence models for time-series.

A FactM allows one to model the evolution of multiple time-series in terms of

independent groups. A TIM allows one to model detailed causal relationships

among multiple time-series.

We presented a decomposable conjugate prior on the structure and

parameters of a TIM.

Taking advantage of temporal causality, this prior allows a super-exponential num-

ber of structures to be reasoned over in exponential-time in general. Restricting

the class of structures such that each time-series has a bounded number of influ-

ences allows a still super-exponential number of structures to be reasoned over

in polynomial-time. Conjugacy yields tractable calculation of exact joint and

marginal posterior probability of structure in addition to posterior expectations.
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Furthermore, an exact characterization of uncertainty can be tractably obtained

with nuisance parameters integrated out.

We introduced a DDM for reasoning about dependence relationships

changing over time.

A DDM extends the static dependence models presented in Chapter 3 to allow for

changing dependence structure. Building on the large body of work on dynamic

Bayesian networks and HMMs, one can reason over an exponential number of

sequences of dependence relationships in linear-time. Inference using a DDM can

exploit past and future data when making a local decision about dependence. We

showed both theoretically and empirically how this property yields advantages

over standard windowed analysis.

We demonstrated state-of-the-art performance on an audio-visual speaker

association task.

This performance was achieved without the benefit of training data or a silence

detector. In addition, there were no window size or threshold parameters to set.

The semantic label of who is speaking was naturally mapped to a specific structure

of association among the observed audio and video time-series using a FactM.

We demonstrated the utility of dynamic dependence analysis to char-

acterize the interaction of multiple moving objects.

Object interaction analysis was formulated in terms of inference over TIM de-

pendence structure. A conjugate prior allows one to fully characterize posterior

structural uncertainty among observed object trajectories. Results obtained when

analyzing simple multi-person interactive computer games were consistent with

the behavior of the instructed participants. Analyzing the trajectories of basket-

ball players revealed key influential players and who they influenced over time.

Additionally, posterior statistics on structure were predictive of the overall state

of the game.

� 7.2 Suggestions for Future Research

In this dissertation we discussed the general concept of a dynamic dependence analysis

task, presented two specific dependence models and explored their use in two distinct
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applications domains that best matched their strengths. We believe our models and

extensions thereof can be useful for a wide variety of other problems. Below we overview

some possible extensions and open research directions for future work.

� 7.2.1 Alternative Approaches to Inference

In Chapter 3 we presented two approaches to inference. For the FactM we used a

maximum likelihood approach, while for the TIM we presented priors which allowed for

exact Bayesian inference. The choice of which approach to use was based primarily on

the end applications of interest. In audio-visual speaker association task, our end goal

was to make a decision about who was speaking. Thus, point estimates obtained from

an ML approach using a FactM were suitable. However, one could also place a discrete

prior on the set of factorizations of interest, along with a conjugate prior on parameters

for the FactM, and calculate the MAP structure. Some initial experiments using MAP

estimates of structure on the CUAVE dataset yielded comparable performance to the

ML approach. A more extensive analysis and experiments on other datasets would be

beneficial to those interested in the audio-visual association problem.

In the object interaction analysis task our primary goal was to explore a large set

of structures and give a full characterization of dependence. Thus, using a Bayesian

approach was well justified. However, an ML approach could be also applied to this

problem. A combination of using exact Bayesian inference over structure with ML point

estimates of parameters is another alternative that could be explored.

� 7.2.2 Online Dynamic Dependence Analysis

We defined dynamic dependence analysis as a batch analysis task. This allowed one

to combine past and future information to make a local decision about dependence

relationships. The end applications we explored were in this batch context: provid-

ing metadata to describe who was speaking in an archived video and post analysis of

interactions among tracked objects.

A future avenue of research is to extend our approach to allow for online inference of

dependence relationships. Since our DDM is simply an HMM at the highest level, one

can take advantage of the large body of existing work on online learning and inference in

dynamic Bayesian networks (c.f. [67, 27]). As briefly mentioned in Chapter 4, our static

dependence models can also be embedded in other alternative dynamic models such as

the Parts Partition model for which efficient online Bayesian inference algorithms have
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been developed [26, 28]. It is important to note that an online approach will still have

an advantage over windowed approaches in that it can incorporate past information

when performing inference.

� 7.2.3 Learning Representation and Data Association

As mentioned in our introduction a key challenge in fusing information from multiple

sources is that of representation. In this dissertation we assumed a sufficiently infor-

mative representation was given to us and focused on identifying dependence among

sources. An interesting path for future research is explore efficient ways to simultane-

ously learn the representation and structure of dependence. We expect that knowledge

of which sources of data are dependent and when could help one learn more informative

representations.

Similarly, we assumed each observed time-series was consistent and represented a

single underlying source over all time. That is, we assumed that data association

was solved. Specifically, we assumed that a tracker provided consistent moving object

trajectories. Obtaining consistent trajectories is a difficult task for tracking systems,

particularly when objects are close together and may occlude one another. Thus, one

may wish to jointly track and reason about dependence. Knowing which objects are

interacting (and how) should help a tracker better predict future positions and obtain

more consistent tracks.

� 7.2.4 Latent Group Dependence

Figure 7.1. Latent Group Dependence: True interaction model for 4 time-series (left). Grouping

representation (right) where there are 3 latent groups a,b, and c. Group b “clusters” streams 2 and 4

together. Solid arrows represent temporally causal influence from the past to the future. Dotted arrows

represent an instantaneous relationship.

Our static dependence models allowed one to reason over the dependence among
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a set of observed time-series. They did not consider the potential for unobserved fac-

tors causing dependence among what was observed. Consider a parade with multiple

floats/vehicles following each other down a street. Each float has a group of many peo-

ple walking next to it. If we were given trajectories for the people and not the floats,

the inferred dependence relationships might be overly complex. That is, each person

would appear to be influenced by the others surrounding the same float and at the same

time be influenced by the people surrounding the float ahead. If the trajectories of the

floats were also observed the less complex description may emerge. Each float can be

described as being influenced by the float ahead and each person being conditionally

independent given the float they are surrounding. Similarly, when analyzing the inter-

action of many people in a crowd , it may be advantageous to model interactions among

groups of people rather than interactions among individuals.

Figure 7.1 depicts a scenario in which one observes 4 time-series. If these time-

series correspond to positions of moving objects, the left portion of the figure shows an

interaction graph that may emerge when object 3 is being followed by objects 2 and

4 moving together as a group with object 1 following them. The right portion of the

figure shows an alternative view in which three latent groups or clusters are considered.

A latent group dependence model can be designed in which each of the N observed

time-series are assigned a label associated it with one of M groups. Each latent group

is represented as a time-series. Each observed time-series is modeled to be conditionally

independent given their group assignments. Given samples of the latent group time-

series one can reason about their dependence using one of the static dependence models

presented in this dissertation. Such a group dependence model would require a more

complex inference procedure. In a Bayesian inference task a Dirichlet prior could be

placed on group assignments and a Gibbs sampler used to generate samples from the

posterior. This latent group dependence model could be further extended to allow

group assignments, parameters and structure to change over time.

� 7.2.5 Locally Changing Structures

The latent states used in our DDM index into a finite set of structures and parameters.

A change in latent state value over time indicated a global change in structure. If

one removed global constraints on dependence structure, an alternative model could

be designed in which each time-series has its own latent state zv
t . The latent state for

time-series v could specify which, if any, of the other time-series it depends on.
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If there are N time-series, each with its own latent state taking on K values such a

model could reason over KNT
possible sequences of dependence structures. While the

DDM presented in this dissertation withKN states could also model as many sequences,

a locally switching model has the advantage of being able to pool information from times

which share the same local structure. Figure 7.2(a) shows a general graphical model

for allowing local dependence changes in a TIM. A specific example with N = 2 is

depicted in Figure 7.2(b) in which each latent state is a binary value indicating whether

a particular edge is present or not. Color is used to indicated which latent states are

controlling which edges.
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Figure 7.2. Graph Models for the Proposed Local Dependence Switching: (a) The high level structure

of the model. (b) A specific example with N = 2 and K = 2 two possible states. z1
t controls the

presence of (red) edges going into x1
t while z2

t controls (blue) edges going into x2
t .

� 7.2.6 Long Range Temporal Dependence

The static dependence models presented in this dissertation assumed r−th order tempo-

ral dependence. The current value of each time-series could only be directly dependent

on the value other time-series within the window of r past time points. This restric-

tion was reasonable for the applications we looked at. However, consider using a TIM

to model a teacher student relationship among moving objects. That is, imagine one

teacher object demonstrating a behavior for a student object. The student can observe

the teacher and then recreate the behavior. The student object is clearly dependent

on the teacher, but this dependence is delayed by some lag l. In order to capture this
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relationship using a TIM, the temporal order r must be set to be greater than or equal

to l. If l is large, this will result in an overly complex model since a TIM assumes

dependence on all r past values. Thus, a useful modification of the TIM to explore in

the future may be one that can incorporate lags such that:

p
(
Xt|X̃t, L, Ē,Θ

)
=

N∏

v=1

p
(
xv

t |x̃
v
t , x̃

pa(v)
t−lv ,Θv|pa(v)

)
, (7.1)

where L =
{
l1, . . . , lN

}
is a set of lags for each time-series. Each time-series is dependent

on its own r-th order past x̃v
t and the r-th order past of a parent set of time-series lagged

by lv. A distribution can be placed over these lags p (L). Depending on the form of the

lag distribution inference may still be tractable in a Bayesian setting. That is, if one

only considers a small set of possible discrete lags, the complexity of inference will only

increase linearly with the size of this set.

� 7.2.7 Final Thoughts

Modeling and understanding evolving dependence structure has been a challenging and

intriguing research topic. While this dissertation has focused on two specific appli-

cations, we believe the ideas and models presented here can be readily adapted and

extended to a wide variety of other domains. Stepping back and reassessing ones own

research is often a humbling experience. It is easy to question the meaning or impact of

what many times turns into a very personal endeavor. I only hope the models and ideas

presented in this dissertation will be helpful to others in their own research pursuits.
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Appendix A

Directed Structures

In Section 3.4.2 we discussed a prior on the directed structure Ē which encodes the

dependence relationships in a temporal interaction model (TIM). The prior has the

following form:

p0

(
Ē
)

=
1

Z(β)

N∏

v=1

βpa(v),v. (A.1)

In Section 3.4.3 we showed that this prior is conjugate and thus the posterior takes the

same form. In this Appendix we detail methods for sampling Ē using this prior and/or

the posterior. In addition, we discuss how to sample parameters for a TIM given a

structure Ē, how to obtain the MAP structure, and discuss potential numerical issues.

� A.1 Sampling Structure

We begin by outlining how to sample Ē given it has the distribution shown in Equation

A.1. First, we discuss the sampling procedure for when Ē has no global constraints (i.e.

Ē ∈ AN or Ē ∈ PK
N ). Next, we discuss how to sample Ē when it is restricted to be a

directed tree (Ē ∈ TN) or forest (Ē ∈ FN ).

� A.1.1 Sampling Without Global Constraints

If there are no global constraints on edges in the structure Ē, the parent set for each of

the N time-series can be sampled independently. By enumerating all valid parent sets

for each time-series one can sample a parent set using a discrete distribution. That is,

let R
(i)
v be the i-th possible parent set for time-series v. The index i can range from 0

to the total number of possible parent sets, qv. A parent set can be then be sampled

using a discrete distribution over qv possible values. For example, if N = 3 and Ē ∈ AN

163
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(can be any directed structure), then q1 = q2 = q3 = 4 and

R
(1)
1 = {} , R

(2)
1 = {2} , R

(3)
1 = {3} , R

(4)
1 = {2, 3} (A.2)

R
(1)
2 = {} , R

(2)
2 = {1} , R

(3)
2 = {3} , R

(4)
2 = {1, 3} (A.3)

R
(1)
3 = {} , R

(2)
3 = {1} , R

(3)
3 = {2} , R

(4)
3 = {1, 2} . (A.4)

If N = 3 and Ē ∈ P1
N (has at most 1 parent), then q1 = q2 = q3 = 3 and

R
(1)
1 = {} , R

(2)
1 = {2} , R

(3)
1 = {3} (A.5)

R
(1)
2 = {} , R

(2)
2 = {1} , R

(3)
2 = {3} (A.6)

R
(1)
3 = {} , R

(2)
3 = {1} , R

(3)
3 = {2} . (A.7)

Algorithm A.1.1 outlines the sampling procedure. Note that the sampling procedure

requires one to enumerate all allowable parent sets for each v ∈ {1, . . . , N}. When all

structures are allowed, Ē ∈ AN , each v has 2N−1 allowable parent sets that must be

indexed into. In practice, we store a bidirectional mapping between an N bit number

representing a parent set and an index. The non-zero bits in the N bit number indicate

which time-series are parents. When Ē ∈ AN this map is straightforward and one can

use the N bit number itself as the index. When the size of the parent set is restricted,

Ē ∈ PK
N , we form the map explicitly by recursively looping over all parent sets of size

0 to K.

� A.1.2 Sampling Directed Trees and Forests

When Ē is restricted to be a directed tree or forest one can no longer treat each parent

set independently. Fortunately, sampling directed trees is a well studied problem and

one can easily transform existing procedures for trees to also sample directed forests.

Most directed tree sampling algorithms can be categorized as either determinant or

random walk based approaches. All approaches can be initialized by randomly choosing

a root based on Equation 3.97.

Determinant based approaches such as [19] randomly choose an edge based on the

edge probabilities calculated using the Matrix Tree Theorem, subsequently contracting

chosen edges until a tree is formed. A straightforward implementation has a complexity

of O(N4) while improvements can be made to reduce the running time to O(M(N))

where M(N) is the complexity of multiplying two N ×N matrices.

Random walk based algorithms simulate a random walk on a stochastic graph de-

fined by β starting at a randomly sampled root. While walking on the graph one notes
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Algorithm A.1.1 Sampling Ē Without Global Constraints

Require: The full set of parameters β, and an enumerated set of all possible parents

for each of the N vertex (time-series) R.

function SampleEBarWithoutGlobalConstraints(β,R)

% Start with no edges

Ē ← {}

for v = 1 to N do

% Define probabilities for each possible parent set

z ←
∑qv

i=1 βR
(i)
v ,v

for i = 1 to qv do

πi ←
1
zβR

(i)
v ,v

end for

% Sample a parent set index

k ∼ Discrete (.;π1, . . . , πqv)

% Add the edges for the indexed parent set to v

for each u ∈ R
(k)
v do

Add edge (u, v) to Ē

end for

end for

return Ē

end function

each vertex that has been visited, erasing cycles as they are created until the walk

has generated a tree. The algorithm presented by [93] has an expected running time

proportional to the mean hitting time on the stochastic graph. The mean hitting time

is the expected time to go from any random vertex to any other given the steady state

distribution of the stochastic graph.

Both approaches have advantages and disadvantages. Wilson’s algorithm is very

simple to implement and for many graphs the mean hitting time is much less than

N3. However, it possible to have a β that yields graphs with exponentially large hit-

ting times. While determinant based algorithms have fixed complexity, they are more
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complex and require careful implementations to ensuring adequate precision [19]. We

discuss related numerical issues further in Section A.4.

In this dissertation, we use a simple modification of Wilson’s RandomTreeWith-

Root procedure for sampling both directed trees and forests. Algorithm A.1.2 outlines

the sampling procedure given β in matrix form. Note that in order to be consistent

with Wilson’s original description in [93] Algorithm A.1.2 samples a directed tree with

all its edges reversed (i.e. the root is defined to have no children and leaves have no

parents). We convert between this edge reversed tree and our desired form with the

supporting functions shown in Algorithm A.1.3.

We modify Wilson’s algorithm by setting a limit to the number of iterations.

This allows us to restart, try a different approach, or adjust our β to approximate

our distribution with one which has a lower mean hitting time.

If we wish to sample a directed forest we can simply create a virtual root vertex

N + 1 and modify β such that the weights from node N + 1 to any v is the root

weight for v. That is set βN+1,v = βv,v for all v ∈ {1, . . . , N}. We can then call

RandomTreeWithRoot(N+1,β,maxIter) to get a random forest.

� A.2 Sampling Parameters

Given a sampled structure we can also sample parameters from the prior p0

(
Θ|Ē

)
or

posterior p
(
Θ|Ē,D

)
. As discussed in Section 3.4.2 our prior on parameters is conjugate

and both tasks involve sampling from the form:

N∏

v=1

p0

(
Θv|pa(v)|Υ

)
. (A.8)

where the hyperparameters Υ are updated as a function of the observations D when

obtaining the posterior. This modular and independent structure of the distribution

allows one to sample each parameter independently as shown in Algorithm A.2.1.
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Algorithm A.1.2 The RandomTreeWithRoot Algorithm with Iteration Limit

Require: β in matrix form with element i, j being βi,j.

function RandomTreeWithRoot(r, β,maxIter)

Ḡ← MakeGBar(β)

for i = 1 to N do

InTree[i] ← false

end for

Next[r] ← nil

InTree[r] ← true

for i = 1 to N do

Iter ← 0

u← i

while not InTree[u] do

Next[u] ← RandomSuccessor(u,Ḡ)

u← Next[u]

Iter ← Iter +1

if Iter > maxIter then

failed

end if

end while

u← i

while not InTree[u] do

InTree[u] ← true

u← Next[u]

end while

end for

Ē ← NextToEbar(Next)

end function
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Algorithm A.1.3 The RandomTreeWithRoot Supporting Functions

function MakeGBar(β)

% Transpose beta to reverse edge directions

% This allows us to be consistent with Wilson’s algorithm

β ← βT

for v = 1 to N do

βv,v ← 0

z ←
∑N

i=1 βv,i

for u = 1 to N do

Ḡv,i = 1
zβv,i

end for

end for

return Ḡ

end function

function RandomSuccessor(u,Ḡ)

n ∼ Discrete
(
.; Ḡu,1, . . . , Ḡu,N

)

return n

end function

function NextToEbar(Next)

Ē ← {}

for v = 1 to N do

if Next[v] not nil then

% Note again, we are reversing the roll of Next

Add edge (Next[v],v) to Ē

end if

end for

end function

Algorithm A.2.1 Procedure for Sampling Parameters Given Structure

Require: A sampled structure Ē and hyperparameters Υ

for v = 1 to N do

Θv|pa(v) ∼ p0

(
Θv|pa(v)|Υ

)

end for
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� A.3 Obtaining the MAP Structure

In some situations one may wish to obtain the MAP structure. That is, find

Ē∗ = arg max
Ē

N∏

v=1

β
pa(v,Ē),v (A.9)

= arg max
Ē

N∑

v=1

log β
pa(v,Ē),v (A.10)

When no global constraints are imposed on Ē the MAP structure can be found by iden-

tifying the MAP parent set independently for each time-series. Thus, it the procedure’s

complexity is proportional to the N times the size the set of allowable parents for each

vertex. Algorithm A.3.1 outlines this procedure.

Algorithm A.3.1 Obtaining MAP Ē without Global Constraints

Require: The full set of parameters β, and an enumerated set of all possible parents

for each of the N vertex (time-series) R.

function MAPEBarWithoutGlobalConstraints(β,R)

Ē∗ ← {}

for v = 1 to N do

m← -Inf

z ←
∑qv

i=1 βR
(i)
v ,v

for i = 1 to qv do

πi ←
1
zβR

(i)
v ,v

if πi > m then

m← πi

k ← i

end if

end for

for each u ∈ R
(k)
v do

Add edge (u, v) to Ē∗

end for

end for

return Ē∗

end function
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� A.3.1 Directed Trees and Forest

Finding the MAP directed tree or directed forest is well studied problem. Finding the

MAP structure can be thought of as a maximum weight branching (forest) problem,

a minimum weight arborescence (directed tree) problem, or a minimum weight rooted

arborescence problem (c.f. [57]). Each of these problems are equivalent and algorithmic

solutions were found independently by Chu and Liu [18], Edmonds [25] and Bock [10].

Here, for completeness, we provide the algorithm in the context of the maximum

weight rooted directed tree problem. Given a set of directed edges Ē, a designated root

r and a positive weighting function w(u, v) ∈ R+ for each edge (u, v) ∈ Ē we wish to

find the subset Ē∗ which maximizes the sum of weights
∑

(u,v)∈Ē∗ w(u, v). The steps of

the solution are outlined Algorithm A.3.2. We assume there exists at least one directed

tree from root r.

At a high level there are four phases. First, one greedily selects edges. If the result

is a directed tree, the algorithm returns. If not, second, it finds a cycle in the resulting

edge set and modifies the problem such that the cycle is represented by a new vertex

and new edges and weights are added to and from this new cycle vertex. This step is

outlined in Algorithm A.3.3. The third phase takes this modified graph and recursively

calls the algorithm. The fourth phase takes the result from this recursive call and

cleans up by expanding the contracted cycle node and remapping edges using book

keeping established in Algorithm A.3.31. A straightforward implementation has worst

case performance O(N3). Each greedy edge selection step is O(N2) and one can recurse

a maximum of N times. More efficient implementations such as [86] are O(N2).

We can map the problem of calculating the MAP directed tree (Ē ∈ TN ) to the

maximum weight rooted directed tree problem. First, we use logp0

(
Ē
)

and map

w(u, v) = log βu,v. Note that while the log is likely to produce negative weights one can

always shift the weights by a constant so they are non-zero as the solution is invariant

to constant shifts (or equivalently multiplying the posterior by a constant). Second,

we have to address the fact that we do not know the root. We can deal with this in

two ways. One way is to simply call ChowLiuEdmondsBock for all N roots r and

compare the results, pick the resulting directed tree with the highest probability.

Another approach is to add a virtual root node vr and create an edge from vr to all

1We found the algorithmic description and example in [61] to be helpful when implementing these

functions. We only add them here for completeness and to be explicit about the extra book keeping

steps.
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Algorithm A.3.2 The Chu-Liu, Edmonds, Bock Algorithm

Require: A set of allowable edges Ē on vertices V , a designated root r and a weighting

function w.

Ensure: The returned edge set Ē∗ forms a directed spanning tree at root r with max-

imum weight
∑

(u,v)∈Ē∗ w(u, v)

function ChuLiuEdmondsBock(V, Ē, r, w)

% Greedy Seletion

Ēg ← {}

for each v 6= r in V do

Ēg ← Ēg ∪ arg max(p,v)∈Ē w(p, v) % Add best incoming edge

end for

if Ēg has no cycles/loops then

return Ēg

end if

% Cycle contraction and graph re-weighting

Find a cycle C in Ēg

{
Vc, Ēc, wc,Ψ,Φ, vc

}
← Contract(C, V, Ē, w) % A.3.3

% Recursive call on modified graph

Ē∗ ← ChuLiuEdmondsBock(Vc, Ēc, r, wc)

% Clean up edges into C

y ← pa
(
vc, Ē

∗
)
, z ← Φ(y, vc), x← pa (z,C)

Ē∗ ← Ē∗ \ (y, vc)

Ē∗ ← Ē∗ ∪ (y, z) % Add true incoming edge

Ē∗ ← Ē∗ ∪ C % Add back the cycle

Ē∗ ← Ē∗ \ (x, z) % Break the cycle

% Clean up edges out of C

for each y s.t. (vc, y) ∈ Ē
∗ do

z ← Ψ(vc, y)

Ē∗ ← Ē∗ \ (vc, y)

Ē∗ ← Ē∗ ∪ (z, y)

end for

return Ē∗

end function
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Algorithm A.3.3 Contract Function used by Algorithm A.3.2

Require: A cycle C, a set of vertices V , allowable edges Ē and a weighting function w

Ensure: Return a modified graph
{
Vc, Ēc

}
in which all vertex in C have been collapsed

into a single vectex vc and edge weights are modified to be wc. The edge weights are

calculated such that finding the maximum spanning tree in this modified graph can

be mapped back to the original problem using book keeping information Ψ and Φ.

function Contract(C, V, Ē, w)

Let vc be a new vertex representing C

Vc ← V \ vertices(C) ∪vc

Ēc ← Ē \ C

wc ← w

% Deal with edge into C

Tc ←
∑

(u,v)∈C w(u, v) % Total cost of cycle

for each vertex y /∈ C s.t. there exists an edge (y, z) with z ∈ C do

z ← arg maxz′ w(y, z′) + T − w(pa (z′, C) , z′)

wc(y, vc)← w(y, z) + T − w(x, z)

Ēc ← Ēc ∪ (y, vc)

Φ(y, vc)← z % Remember z is the true end of this edge

end for

% Deal with edges out of C

for each vertex y /∈ C s.t. there exists an edge (z, y) with z ∈ C do

z ← arg maxz′ w(z′, y)

wc(vc, y)← w(z, y)

Ēc ← Ēc ∪ (vc, y)

Ψ(vc, y)← z % Remember z is the true start of this edge

end for

return
{
Vc, Ēc, wc,Ψ,Φ, vc

}

end function

other vertices v with weights w(vr, v) = f(log βv,v). The function f() must make the

weights such that the resulting maximum weight directed tree found for this modified

graph only has one edge from vr which points to the true root. This can be achieved
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by using

f(a) = a−
1

N

(
N∑

v=1

log βv,v −min
(u,v)

w(u, v)

)
. (A.11)

This function ensures that w(vr, v) = f(log βv,v) is small enough such that even if you

picked all edges from vr the sum total weight will be less than picking the smallest edge

among the vertices other than vr. It also keeps the same relative relationships among

the root weights. Calling ChowLiuEdmondsBock with vr designated as the root will

produce the MAP directed tree after removing vr from the result.

The problem of estimating the MAP directed forest (Ē ∈ FN ) is also straightfor-

ward. We again use the mapping w(u, v) = log βu,v and create a virtual root node vr.

However this time the root weights w(vr, v) are simply log βv,v . Calling ChowLiuEd-

mondsBock with vr designated as the root will produce the MAP directed forest after

removing vr from the result.

� A.4 Notes on Numerical Precision

It is important to note that one must be careful with numerical precision when using the

temporal interaction model (TIM) presented in this dissertation. While performing and

storing results of calculations in the log domain is good practice, there are situations

in with issues which floating point accuracy cannot be avoided. For example, when

dealing with large datasets (large T ) the evidence weights, W , calculated in Equation

3.89 become extremely small. In addition, the ratio of the smallest evidence term to

the largest can also become quite large. When reasoning over directed trees or forests

these extreme values cause ill conditioned matrices Q̄(β ◦W ) (see Equation 3.68) and

makes accurate calculation of determinants of this matrix difficult. A determinant is

required when calculating the partition function and estimating event probabilities (see

Sections 3.4.2 and 3.4.3).

The datasets used in this dissertation were small enough such this issue did not

arise when dealing with the partition function. However, issues arose when sampling

directed trees or forests from a posterior. The evidence weights caused Wilson’s Ran-

domTreeWithRoot algorithm to take a long time to complete or in some cases loop

indefinitely. The root cause of such behavior was that the stochastic graph formed using

these weights had extremely large mean hitting times. Our solution to this problem was
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to set a maximum number of iterations for the algorithm2. If the maximum number of

iterations was reached we resort to an importance sampling technique using a proposal

distribution based on a modified set of evidence weights. The proposal distribution

used evidence weights which were rescaled so that they fit in the range [−K, 1] in the

log domain. Rescaling in the log domain is a nonlinear operation but maintains the rel-

ative ordering of the evidence weights, effectively broadening the proposal distribution

over structure with respect to the true posterior. A similar approach was taken by [17]

for undirected trees. [17] also use a library (NTL) [80] which allows them to calculate

determinants to a desired precision (at the cost of speed).

2For the basketball data this was set to a number such that the sampler took no longer than 20

seconds to finish



Appendix B

Derivations

In this Appendix we provide details on and derivations for various equations presented

in this dissertation.

� B.1 Derivation of Equations 3.38 and 3.40

Recall that the log likelihood ratio has the following form:

l1,2 =
∑

t

log
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F 2,Θ2

) (B.1)

Taking the exception under H1 yields:

ED [l1,2|H1] =

∫

D
p
(
D|F 1,Θ1

)∑

t

log
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F 2,Θ2

)dD (B.2)

=
∑

t

∫

Dt, eDt

p
(
Dt, D̃t|F

1,Θ1
) p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F 2,Θ2

)dDtdD̃t (B.3)

=
∑

t

∫

Dt, eDt

p
(
Dt, D̃t|F

1,Θ1
) p

(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F∩,Θ1

)
p
(
Dt|D̃t, F

∩,Θ1
)

p
(
Dt|D̃t, F 2,Θ2

) dDtdD̃t

(B.4)

=
∑

t

D
(
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F

∩,Θ1
) )

+
∑

t

∫

Dt, eDt

p
(
Dt, D̃t|F

1,Θ1
)

log
p
(
Dt|D̃t, F

∩,Θ1
)

p
(
Dt|D̃t, F 2,Θ2

) dDtdD̃t (B.5)

It breaks up into two terms in Equation B.5. The first term is well defined, but the

second is not. Let us look at this second term and simplify notation. It can also be
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broken down into two sub-terms:

∫

Dt, eDt

p1(F
1, F̃ 1) log

p1(F
∩|F̃∩)

p2(F 2|F̃ 2)
=

∫

Dt, eDt

p1(F
1, F̃ 1) log p1(F

∩|F̃∩)−

∫

Dt, eDt

p1(F
1, F̃ 1) log p2(F

2|F̃ 2) (B.6)

where we use the notation pB(FA|F̃A) , p
(
Dt|D̃t, F

A,ΘB
)

and drop the dDt and dD̃t

for space. Each sub-term can be looked at separately, starting with the first sub-term:

∫

Dt, eDt

p1(F
1, F̃ 1) log p1(F

∩|F̃∩) =

∫

Dt, eDt

p1(F
1, F̃ 1) log

|F∩|∏

k=1

p1(F
∩
k |F̃

∩
k ) (B.7)

=

|F∩|∑

k=1

∫

Dt, eDt

p1(F
1, F̃ 1) log p1(F

∩
k |F̃

∩
k ) (B.8)

=

|F∩|∑

k=1

∫

F∩
k

, eF∩
K

p1(F
∩
k , F̃

∩
k ) log p1(F

∩
k |F̃

∩
k ) (B.9)

=

|F∩|∑

k=1

∫

Dt, eDt

p1(F
∩, F̃∩) log p1(F

∩
k |F̃

∩
k ) (B.10)

=

∫

Dt, eDt

p1(F
∩, F̃∩) log p1(F

∩|F̃∩) (B.11)

The progression from Equation B.8 to B.9 is due to the fact that all terms other than

F∩
k get marginalized and that F∩

k is a subset of one of the factors in F 1. Equation B.9

becomes B.10 by adding back terms which will be marginalized out, this time in terms

of the common factorization F∩.
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The second sub-term is

∫

Dt, eDt

p1(F
1, F̃ 1) log p2(F

2|F̃ 2) = −

∫

Dt, eDt

p1(F
1, F̃ 1) log

|F 2|∏

j=1

p2(F
2
j |F̃

2
j ) (B.12)

= −

|F 2|∑

j=1

∫

Dt, eDt

p1(F
1, F̃ 1) log p1(F

2
j |F̃

2
j ) (B.13)

= −

|F 2|∑

j=1

∫

F 2
j , eF 2

j

∫

Dt\F 2
J

, eDt\F 2
j

p1(F
1, F̃ 1) log p2(F

2
j |F̃

2
j ) (B.14)

= −

|F 2|∑

j=1

∫

F 2
j , eF 2

j

|F 1|∏

i=1

p1(F
1
i ∩ F

2
j , F̃

1
i ∩ F̃

2
j ) log p2(F

2
j |F̃

2
j ) (B.15)

= −

|F 2|∑

j=1

∫

Dt, eDt

p1(F
∩, F̃∩) log p2(F

2
j |F̃

2
j ) (B.16)

= −

∫

Dt, eDt

p1(F
∩, F̃∩) log p2(F

2|F̃ 2) (B.17)

where, here, Equation B.14 is marginalizing p1(F
1|F̃ 1) over all terms but F 2

j . This

marginalization yields a factorization which is formed by intersecting each factor in F 1

with F 2
j as in Equation B.15. These intersection terms are by definition consistent with

F∩ and Equation B.16 simply reintroduces all terms of p1(F
∩|F̃∩) which were being

marginalized out.

Plugging Equations B.11 and B.17 into Equation B.6 and expanding notation yields

∫

Dt, eDt

p1(F
1, F̃ 1) log

p1(F
∩|F̃∩)

p2(F 2|F̃ 2)
(B.18)

=

∫

Dt, eDt

p1(F
∩, F̃∩) log p1(F

∩|F̃∩)−

∫

Dt, eDt

p1(F
∩, F̃∩) log p2(F

2|F̃ 2) (B.19)

=

∫

Dt, eDt

p1(F
∩, F̃∩) log

p1(F
∩|F̃∩)

p2(F 2|F̃ 2)
(B.20)

= D
(
p1(F

∩|F̃∩) p1(F
2|F̃ 2)

)
(B.21)

= D
(
p
(
Dt|D̃t, F

∩,Θ1
)

p
(
Dt|D̃t, F

2,Θ2
) )

(B.22)

Plugging this into Equation B.5 we get the final result:
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ED [l1,2|H1] =
∑

t

D
(
p
(
Dt|D̃t, F

1,Θ1
)

p
(
Dt|D̃t, F

∩,Θ1
) )

(B.23)

+
∑

t

D
(
p
(
Dt|D̃t, F

∩,Θ1
)

p
(
Dt|D̃t, F

2,Θ2
) )

(B.24)

The form of ED [l1,2|H2] can be symmetrically derived.

� B.2 Consistent ML Estimates: Equations 3.42 through 3.45

The definition of a consistent estimator is that the estimate Θ̂ from data D1:T asymp-

totically converges true parameter Θ as the amount of data, T , grows without bound.

There are many forms of convergence. Here, we will define consistency in terms of weak

convergence in distribution such that as T → ∞, p
(
Θ̂
)

will asymptotically approach

a delta function on Θ. By this definition, if our ML estimate of Θ1 is consistent then,

given enough data under H1, Equation 3.42 holds true. That is,

p
(
Dt|D̃t, F

1, Θ̂1
)

H1→ p
(
Dt|D̃t, F

1,Θ1
)
. (B.25)

Next we look at what happens to p
(
Dt|D̃t, F

1, Θ̂2
)

given data under H1. For

simplicity, we first explore the case in which r = 0 and the quantity of interest becomes

p
(
Dt|F

1, Θ̂2
)
. This distribution, by definition of a FactM(0) is invariant to t. An ML

estimate of Θ2 given data from H1 takes the form:

Θ̂2 = arg max
Θ

1

T

T∑

t=1

log p
(
Dt|F

2,Θ
)

(B.26)

As T → ∞, using the law of large numbers the sample average converges to the

expectation:

Θ̂2 = arg max
Θ

ED|H1

[
log p

(
Dt|F

2,Θ
)]

(B.27)

= arg max
Θ

∫

Dt

p
(
Dt|F

1,Θ1
)
log p

(
Dt|F

2,Θ
)
dDt (B.28)

= arg max
Θ

∫

Dt

p
(
Dt|F

1,Θ1
)
log

p
(
Dt|F

2,Θ
)

p (Dt|F∩,Θ1)
dDt (B.29)

= arg min
Θ

∫

Dt

p
(
Dt|F

1,Θ1
)
log

p
(
Dt|F

∩,Θ1
)

p (Dt|F 2,Θ)
dDt (B.30)

= arg min
Θ

D
(
p
(
Dt|F∩,Θ1

)
p
(
Dt|F 2,Θ

) )
(B.31)
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where B.29 introduces a term which is constant with respect to Θ and the last line uses

our derivation of Equation B.22 above. Note that p
(
Dt|F

2,Θ
)

is a more expressive

model than p
(
Dt|F

∩,Θ1
)

since the factors in F∩ are subsets of the factors in F 2 by

definition. Thus,

arg min
Θ

D
(
p
(
Dt|F

∩,Θ1
)

p
(
Dt|F

2,Θ
) )

= 0 (B.32)

and

p
(
Dt|F

2, Θ̂2
)

H1→ p
(
Dt|F

∩,Θ1
)

(B.33)

That is, the ML estimate of Θ2 is the one that produces p
(
Dt|F

2, Θ̂2
)

most consistent

with the true hypothesis under the common factorization.

The r = 0 case is used in all the examples and experiments presented in this disser-

tation. Intuitively, a similar relationship should hold true for r > 0. However, for r > 0

one cannot use the law of large numbers to turn the sample average into an expectation

because one does not obtain independent samples over time. That is, for r > 0:

Θ̂2 = arg max
Θ

1

T

T∑

t=1

log p
(
Dt|D̃t, F

2,Θ
)

(B.34)

where each Dt is no longer independent of all other times. If one could prove that as

T →∞,

1

T

T∑

t=1

log p
(
Dt|D̃t, F

2,Θ
)
→ ED|H1

[
log p

(
Dt|D̃t, F

2,Θ
)]

(B.35)

then one could follow the same form of analysis above to show:

p
(
Dt|D̃t, F

2, Θ̂2
)

H1→ p
(
Dt|D̃t, F

∩,Θ1
)

(B.36)

Equation B.35 holds true when our static dependence model is ergodic and station-

ary. If stationary, all joint distributions are invariant to t. If ergodic, sample averages

over time converge to ensemble averages.
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� B.3 Derivation of Expectations of Additive Functions over Structure

Equation 3.105: For Ē ∈ AN or Ē ∈ PK
N the expectation over additive function f takes

the form

E
[
f(Ē)

]
=
∑

Ē

p0

(
Ē
)
f(Ē) (B.37)

=
∑

Ē

1

Z(β)

∏

i=1

βpa(i),i

N∑

j=1

fpa(j),j (B.38)

=
1

Z(β)

∑

S1

. . .
∑

SN

∏

i=1

βSi,i

N∑

j=1

fSj ,j (B.39)

=
1

Z(β)

∑

S1

. . .
∑

SN

N∑

j=1

fSj ,j

∏

i=1

βSi,i (B.40)

=
1

Z(β)

N∑

j=1

∑

S1

. . .
∑

SN

fSj ,j

∏

i=1

βSi,i (B.41)

=
1

Z(β)

N∑

j=1

∑

Sj

fSj ,jβSj ,j

∑

Sk ∀ k∈V \j

∏

i∈V \j

βSi,i (B.42)

=
1

Z(β)

N∑

j=1



∑

Sj

fSj ,jβSj ,j





∏

i∈V \j

∑

Si

βSi,i


 (B.43)

=
1

Z(β)

N∑

j=1

(γj(β ◦ f))



∏

i∈V \j

γi(β)


 (B.44)

=
1

Z(β)

N∑

j=1

(γj(β ◦ f))

(
Z(β)

γj(β)

)
(B.45)

=
N∑

j=1

γj(β ◦ f)

γj(β)
(B.46)

Equation 3.106: If Ē ∈ TN then

E
[
f(Ē)

]
= Er

[
E
[
f(Ē)|the root is r

]]

=

N∑

r−1

p (r) E
[
f(Ē)|r

]

=
N∑

r=1

Zr(β)

Z(β)
tr
(
Mr,r

(
Q̄(β ◦ f)

)
Mr,r

(
Q̄(β)

)−1
)

(B.47)
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The last line use the form for the probability of a root and the expectation over an

additive function given a root follows the form shown in [62] substituting in the directed

tree partition function in place of the undirected version.

� B.4 Derivation of Equations 4.20 and 4.21

The likelihood ratio comparing two hypothesized state sequences with r = 0 takes the

form:

l̂1,2 = log
p
(
D|a1:T , F̂, Θ̂

)

p
(
D|b1:T , F̂, Θ̂

) (B.48)

=

T∑

t=1

log
p
(
Dt|F̂

at , Θ̂at

)

p
(
Dt|F̂ bt , Θ̂bt

) (B.49)

=
∑

t∈d

log
p
(
Dt|F̂

at , Θ̂at

)

p
(
Dt|F̂ bt , Θ̂bt

) (B.50)

=
∑

t∈d

log
p
(
Dt|F̂

at , Θ̂at

)

p
(
Dt|F̂∩t , Θ̂at

)
p
(
Dt|F̂

∩t , Θ̂at

)

p
(
Dt|F̂ bt , Θ̂bt

) (B.51)

=
∑

t∈d

log
p
(
Dt|F̂

at , Θ̂at

)

p
(
Dt|F̂∩t , Θ̂bt

)
p
(
Dt|F̂

∩t , Θ̂bt

)

p
(
Dt|F̂ bt , Θ̂bt

) (B.52)

where d = {t|at 6= bt} is the set of all time points in which the hypothesized state

sequences differ. Equations 4.20 and 4.21 are obtained by taking the expectation of

l̂1,2 over data drawn from each hypothesized state sequence and using the same form

of derivation shown in Section B.1 with r = 0. That is, for each t we simply map at to

H1 and bt to H2.
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