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Abstract
This paper discusses our design and implementation of a recognizer
of stencil-like accesses in the Open64 compiler. This is a reference
implementation in a real production compiler and serves as an ex-
ample for supporting stencils on other compilers. We have devel-
oped the recognizer as part of our greater HERCULES framework
which extends the Open64 compiler with user-level formulation of
analysis and transformations. Our user base, which comprises com-
putational scientists utilize this capability for identifying kernels
that may benefit from a nested domain decomposition parallelizing
scheme.

Categories and Subject Descriptors D3.4 [Processors]: Compil-
ers

General Terms Stencil Code, Compiler

Keywords Open64, HERCULES, Array Accesses

1. Introduction
Stencil codes (nearest-neighbor) are a form of computation that
occurs frequently in scientific applications that include structured
grids as well as implicit and explicit partial differential equation
(PDE) solvers, and in domains ranging from thermo/fluid dynam-
ics, to climate modeling and electro-magnetics among others. An
iterative explicit methods comprises a computationally intensive
kernel. At each discrete time step, each point in the grid is updated
using the previous timestep’s data that its neighbors (in the grid)
hold; Figure 1 depicts such a kernel.

One key characteristic of most stencil computations is the over-
lap in input values used to update multiple neighboring points. Ex-
ploiting this with the proper memory hierarchy is crucial in achiev-
ing good performance. Stencil computations continue to generate
interest in the multicore era [5, 9–12, 14]. Due to their importance,
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DO I =1 ,NY
DO J =1 ,NX

UNEW( I , J ) = 0 . 2 5∗ (
UOLD( I−1, J ) + UOLD( I , J +1) +
UOLD( I +1 , J ) + UOLD( I , J−1))−
H∗H∗F ( I , J )

Figure 1. 2D Jacobi Sweep

they are often supported by Domain Specific Languages [2, 13, 15].
There is also growing interest in recognizing stencil kernels at the
compiler level. The work in [7] uses an AST-based hierarchical pat-
tern matching to identify kernels from a library of stencil templates.
PADS [3], which is an OpenUH-based ([8]; an Open64-based com-
piler), uses a similar technique to eventually apply optimization
strategies to stencils during GPU targeting. The Open64-based ap-
proach in [4] uses a new representation for loop nests and assign-
ments to detect a set of commonly recurring kernels, including
some stencils.

The HERCULES [6] framework extends the Open64 compiler
with user-level formulation of analysis and transformations. It ex-
tends Open64 with a new set of directives that users apply against
actual language sources (C/C++/Fortran) in order to generate pat-
terns. These patterns are of both a syntactical and performance na-
ture (e.g. a parallelizable for-loop nested in conditional code). At
the same time, it allows users to write transformation scripts that
may be applied on any of the sources that the pattern matches. The
transformation scripts consist of existing Open64 transformations
(e.g. permutation) as well as in-house ones. The framework makes
available the HERCULES-empowered Open64-derived compilers
via a wrapping scheme – we offer, for instance, hcc as the C
compiler and which is a wrapper around the HERCULES-aware
be (back-end). These compilers integrate the pattern matching and
transformation with the rest of the compilation process and are in-
terchangeable with the Open64 open* compilers.

The example in Figure 2 demonstrates how HERCULES op-
erates and also highlights how the stencil shape detection, which
this paper discusses, can be incorporated in a HERCULES pattern.
This pattern will match loop nests where the innermost contains a
5-point 2D stencil-like access against an array and where the array
is read-only. Searching for the pattern in the figure via HERCULES
against an input program, will prompt HERCULES to analyze the
candidate loop (id S) and array for resemblance of a stencil code.
In this paper we look at the algorithm that HERCULES uses to as-
sess if and what kind of a stencil a given set of memory accesses is
suggestive of.

The rest of the paper is organized as follows. We begin by giving
a background on a set of Open64 data structures, then we describe



DO T=1 ,N
DO J=JL , JU

! $ h e r c u l e s s t a t e m e n t b ind S
! $ h e r c u l e s +S : body ( B )
! $ h e r c u l e s +B : s t e n c i l ( ARRAY , 5 , 2 , [ J , I ] )
! $ h e r c u l e s +ARRAY : r o n l y ( )

DO I =IL , IU
! . . .

END DO
END DO

END DO

Figure 2. A HERCULES pattern utilizing the stencil property

DO I =1 ,N
DO J =1 ,M

A(2∗ I , 1+ I +3∗ J ) = . . .

Figure 3. A loop stack of depth 2

how our algorithm operates, and conclude with our findings and
some remarks on future work.

2. Relative Open64 Structures
Open64 ([1]) is a production-grade open-source compiler, with C,
C++ and Fortran frontends, rich optimizing mid-ends, and back-
ends for a few architectures. The Open64 intermediate represen-
tation (IR) is called WHIRL; the abstract syntax tree is a tree of
WHIRL nodes (WN). Subroutines have an entry-point WN, and are
associated with a Program Unit (PU). Open64 is organized as a se-
ries of phases through which the IR passes and gets “lowered” as
the optimizations intensify and and target architecture nears. Our
work occurs at the Loop Nest Optimizer (LNO) phase – a phase
where the compiler provides structures and analysis to facilitate
loop transformations. We give an overview of the core structure we
use.

Open64 stores a summary of array accesses into instances of the
ARRAY ACCESS class, which, in turn, provides a summary on a per-
dimension basis under instances of the ACCESS VECTOR class. The
ACCESS_*-related API is located in file be/lno/access_vector.h.
The access vector allows one to test very quickly if an index ex-
pression is an affine expression of the governing loop stack’s index
variables, to test if the expression is constant, etc.

Consider the loop nest in Figure 3. In the rest of this paper, we
will be referring to similar simple loop nests by the index variables
in a stack-oriented way; the nest in the figure, for instance, will be
called an “I-J loop stack”. The access against array A is indeed an
affine expression of loop index variables I and J; the per-dimension
accesses have the canonical form, which is shown in Figure 4.

The ACCESS_ARRAY corresponding to these accesses will con-
tain two ACCESS_VECTOR instances, accessible via ACCESS_ARRAY
::Dim(UINT16), with minor dimensions appearing first; in our
example, this would be the vector corresponding to 1+I+3*J.
Within each vector, the factors of the affine expression are encoded
in ACCESS_VECTOR:: _lcoeff (the list of linear coefficients) in
terms of the coefficient of each loop index variable. Open64 main-
tains a loop stack (the DOLOOP_STACK), with loop indices increas-
ing as we descent the stack; in our example, the I-th loop is the
first loop while the J-th loop is the second. As such, the first vector
would contain coefficients {1, 3}, which would then be followed
by vector with coefficients {2, 0}. The constant 1 in the 1+I+3*J
expression is held in the ACCESS_VECTOR::Const_Offset field.

0 + 2 · I + 0 · J
1 + 1 · I + 3 · J

Figure 4. Array accesses in canonical form

For each innermost DO_LOOP that appears in a simple DO_LOOP-
only nest and each assignment-like statement:

1. Group array accesses by array id; for each group:

(a) Initialize the set of candidate stencils.

(b) Obtain the corresponding STENCIL_ACCESS_ARRAY in-
stances; skip group if not possible.

(c) Shrink candidates set.

(d) Produce the STENCIL_SHAPE_SUMMARY and normalize.

(e) Iterate the candidates looking for an exact match.

Figure 5. The main stencil shape extracting algorithm.

Note, also, of the convention of setting coefficients to zero to indi-
cate that the respective index variable is not used in the expression.

3. Algorithm and Implementation
A very high-level view of the algorithm is shown in Figure 5. The
algorithm operates by selecting a set of array load WNs, examining
distances among index expressions and their relevance to the loop
stack, and summarizing the gathered information.

We will now give a more low-level description. Starting from
a given PU, the algorithm begins by identifying simple loop nests
of DO LOOPs only. For each such loop, we have the right hand side
(RHS) tree of all of its assignment-like WNs (STID, ISTORE, etc.)
extracted from the body of the innermost loop. For each such RHS
WN, we collect the set of “promising” array loads nested in it, i.e.
loads that pass some of the qualifying criteria. These criteria in-
clude loads whose relative ACCESS_ARRAY suggests that bounds
are not messy1 and the only participant symbols in the index ex-
pressions draw symbols from the loop stack’s index variable space
(affine expressions). This selection, which is based on the RHS of
assignments, is a heuristic in that the set could have as well been as-
sembled from accesses scattered over the body of the DO LOOP that
is being processed as opposed to the RHS of individual statements.
Nonetheless, the WNs are then grouped according to the array they
access.

We use our own array identifier, called the Array Unique Identi-
fier, which is backed by structure ARRAYUID, for the following rea-
son. While the symbol table index (ST_IDX) can be used for iden-
tifying symbols that are of an array type, this mechanism does not
work well with composite types that contain arrays. For instance, a
structure that has an array member nested in it, while it may be that
variables of this structure are identifiable by symbol table entry, the
nested field is somewhat anonymous (no symbol entry obviously),
yet retrievable via the field operations.

We have created a new representation, the Stencil Access Ar-
ray (SAA), which is backed by structure STENCIL_ACCESS_ARRAY
and which is a compact summarization of an ACCESS_ARRAY aimed
at stencil-oriented reasoning. The representation is optimized to-
wards accesses which are characterized by index expressions that

1 See Bound Is Too Messy(..)



are affine expressions of single, non-scaled, loop variables with
information recorded on a per-dimension basis. Assuming, for
instance an I-J-K loop stack, the access A(J,I-1,K-2) satis-
fies the criterion since the index expression of each individual
dimension is an affine expression of a single loop index vari-
able; however, the access A(I+J,J,K) and A(J,J,K) fail to meet
the criterion. We may write the summary for A(J,I-1,K-2) as
{(1, 0), (0,−1), (2,−2)}, i.e. as a list of stack-depth and displace-
ment pairs. Information is recorded in a “WYSIWYG” manner,
i.e. the left-most array index expression is the first in the list. A
STENCIL_ACCESS_ARRAY is constructed using an ARRAY-operator
WN as input.

In step 1 of the algorithm, the WHIRL nodes have been
grouped by array id. We then attempt to obtain the SAA for
each individual node. If this is not possible (e.g. if too messy),
then the array is skipped. The SAA instances are maintained
in a list. The first entry in the list dictates the order that the
loop stack’s index variables should appear in the next SAA in-
stances. To clarify, assume an I-J-K loop stack, and two accesses:
A(I,J-1,K-1) and A(J,I,K-1). The corresponding SAAs are:
{(0, 0), (1,−1), (2,−1)} and {(1, 0), (0, 0), (2,−1)}. When these
two arrays are contrasted to each other, we find that stack-depth
mismatch occurs (pair (0, 0) in the first SAA is inconsistent with
the first pair of the second SSA, (1, 0) – different stack depths), and
as such, array A has to be skipped. An array may be accidentally
discarded if more than one stencil patterns are present in the same
set of WNs that are being examined; this is discussed in the future
work section.

We proceed now with a summarization phase that help us opti-
mize the classification process and also spot further irregularities;
we call this the “symmetry test”. We examine how the displace-
ments vary on a per dimension basis. Generally speaking, the goal
is to tell whether a set of (unique) integer displacements D ≡
{d1, ..., dn|di ∈ Z}) is of the form {−s1, ...,−sk, q∗, tk, .., t1},
such that for every i ∈ {1..k}, (1) si−1 − si = 1 (if k ≥ 2) (2)
the difference ti − si stays constant. These properties ensure that
there is some contiguity in how grid points are accessed. Item q∗ is
optional; when present, it must be the midpoint of s1 and t1, other-
wise t1 − s1 must be an odd number. This later remark means that
accesses are centered around some point, albeit that point is not
necessarily accessed. Value k captures what potentially is the order
of the stencil. The following sets, for instance, satisfy these criteria:
(1) {−1, 0, 4, 8, 9} suggests, for instance, that we may be dealing
with an order 2 stencil, with accesses beginning 4 units away from
the central point, which is likely accessed too; while on the other
hand, (2) {4, 5, 6, 8, 9, 10} suggests an order 3 stencil, a single unit
distance from the center, which is probably not accessed.

The cost of the test is mainly due to the sort operation; how-
ever, since set sizes scale by the number of accesses examined and
these are few (generally the average number of syntax-level array
accesses found in a loop body), this is not a concern. For each di-
mensions, its information can be expressed compactly by the triplet
(min(di), k, t1 − s1) in a 32-bit word, since these amounts are
rather small and can be packed in smaller bitfields. Thus, for a set
of n-dimensional accesses we will obtain n different summaries.
Different tests on the summaries can give us an idea of what might
be going on and bitwise operations can have surprising results. As-
sume a 3D array. If the last two fields of the triplets are the same
across all summaries – something that can be tested with bitwise
operations – this could be a cubic or spherical shaped stencil, with
accesses beginning at a fixed distance from the center of the struc-
ture. However, had the last field varied and this would have signi-
fied an ovoid shaped stencil.

Let us define the STENCIL_SHAPE_SUMMARY as an object that
“knows”, i.e. encodes, where the points of the stencil lie on the

DO K=1 ,N−2
DO J =1 ,N−2

X( J +1 ,K+1) =
H∗ (C1∗U( J−1,K+1)+C2∗U( J ,K+1)−C3∗U( J +1 ,K+1)+

C2∗U( J +2 ,K+1)−C1∗U( J +3 ,K+ 1 ) ) +
H∗ (C1∗U( J +1 ,K−1)+C2∗U( J +1 ,K)−C3∗U( J +1 ,K+1)+

C2∗U( J +1 ,K+2)−C1∗U( J +1 ,K+ 3 ) )
DIFF = ABS(B( I +1 , J +1) − A( I +1 , J + 1 ) ) + DIFF

END DO
END DO

Figure 6. A 9-point, 2-D, stencil.

grid; in our implementation, we have allocated a number of such
objects for the stencils of interest, e.g. 7-point 3D heat transfer,
25-point finite difference, etc. A point is currently encoded com-
pactly in a 32-bit word, providing b32/(n + 1)c bits for nD co-
ordinates – the additional bit is for the sign since points lie on
both directions of the axes. The previous phase of the algorithm
(steps b and c in Figure 5) helps us discard objects that mis-
match grossly (number of points, dimensions, etc.). Given, now,
the set of SAAs that we gathered earlier, we would like to con-
vert them to an STENCIL_SHAPE_SUMMARY and compare this in-
stance against our remaining candidates set. The comparison oc-
curs by comparing the instances’ sorted lists of points, but we have
to do this for every candidate until we find a match. This com-
prises the classification process. To do so we need to normalize
the offsets of the SSAs. The normalization happens by subtracting
min(di) + ki from the i-th component of each coordinate. This is
because (min(d1) + k1, ...,min(dn) + kn) must be the midpoint
of all SAAs in an nD space.

4. Example
Assume the 2D stencil in Figure 6. The bounds have been intention-
ally shifted by 1 unit on both dimensions to highlight properties of
the algorithm – one would usually expect a J=2,N-1 and I=2,N-1
for (1:N,1:N) arrays. Such a fragment would normally be part of
a larger program with additional statements surrounding and inter-
leaving this loop nest. We use Open64’s infrastructure to identify
simple loop nests such as the one above. The algorithm then pro-
ceeds by identifying assignment-like statements – two in this case.
For each statement, the algorithm processes the RHS expressions.
We will look at the first statement (X(J+1,K+1)) only. There is
only one array used here, U; the algorithms records the 10 accesses
against it. K-J is our “loop stack”. The algorithm then examines
how the two induction variables K and J are used. Every access i
is of the form (J+αi,K+βi) (αi and βi are constants); this is what
the algorithm expects. Being of the form (K+αi,J+βi) would be
indifferent.

There are 9 unique accesses (U(J+1,K+1) is accessed twice),
which can be written in terms of displacements as: (−1, 1), (0, 1),
..., (1, 3) – (1, 3), for instance, corresponds to the last access,
C(J+1,K+3). The next step of the algorithm is to summarize
the per-dimension displacement information. The displacements
for the first dimension (all displacements from J) are placed
into a list, i.e. {−1, 0, 1, 2, 3, 1, 1, 1, 1, 1}. The list gets dedu-
plicated and sorted to yield {−1, 0, 1, 2, 3}. The algorithm con-
cludes that the symmetry test has been passed and summarizes
information into (−1, 2, 2); −1 is the minimum value, 2 is the
order, and 2 is the t1 − s1 difference. For the second dimension,
the list {1, 1, 1, 1, 1,−1, 0, 1, 2, 3} similarly reduces to summary
(−1, 2, 2). These are identical due to the “cross-like” access pat-
tern. At this point, the classification process has to only focus on
9-point stencils, 2nd order, inclusive of accesses to the center point.



The algorithm subtracts the minimums from the last summaries,
i.e. (−1,−1) from all displacements, leading to displacements list
(−1, 1), (0, 1), ..., (1, 3) being converted to (0, 2), (1, 2), (2, 2),
(3, 2), (4, 2), (2, 0), (2, 1), (2, 3), (2, 4). Each such pair, gets packed
into a 32-bit word (e.g. (4, 2) becomes (4<<32)|2), and the
list gets converted to a list of integers. This is how an instance
of STENCIL SHAPE SUMMARY looks like. The classification con-
cludes by iterating the classifiers, which are themselves instances
of STENCIL SHAPE SUMMARY too, until an instance carrying an
identical list has been identified.

5. Conclusions and Future Work
The purpose of this paper was to discuss our effort towards a
compiler-based analysis for recognizing what stencil shape a set
of memory accesses resemble. We have implemented the anal-
ysis and supporting structures under our Open64-backed HER-
CULES framework, which groups different tools for detecting pat-
terns in programs. We presented a set of complementary Open64
data structures, namely the STENCIL_ACCESS_ARRAY, ARRAYUID
and STENCIL_SHAPE_SUMMARY, which contribute towards a sten-
cil shape identification framework.

We plan to add support for periodic accesses. Given, for in-
stance, an array A(1:N), we want to regard the accesses set A(I),
A(I+N-2) and A(I+2) as a periodic stencil shape of stride 2, i.e.
identify the occurrence of a wraparound. We are also working to
improve our WN selection heuristic which is currently limiting the
approach in that it is only array access operators under the same ex-
pression tree that can only be considered as stencil shape defining.
The algorithm also is quite strict in that the group of array accesses
that are being examined must much the classifier exactly; if after
the classification there are still a few accesses remaining unpaired,
the classification is aborted.
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