
Collective Memory Transfers for Multi-Core Chips

George Michelogiannakis, Alexander Williams, John Shalf

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Email: {mihelog,awilliams,jshalf}@lbl.gov

Abstract

Future performance improvements for microprocessors have shifted
from clock frequency scaling towards increases in on-chip paral-
lelism. Performance improvements for a wide variety of parallel
applications require domain-decomposition of data arrays from a
contiguous arrangement in memory to a tiled layout for on-chip L1
data caches and scratchpads. However, DRAM performance suffers
under the non-streaming access patterns generated by many inde-
pendent cores. We propose collective memory scheduling (CMS)
that actively takes control of collective memory transfers such that
requests arrive in a sequential and predictable fashion to the mem-
ory controller. CMS uses the hierarchically tiled arrays formal-
ism to compactly express collective operations, which greatly im-
proves programmability over conventional prefetch or list-DMA
approaches. CMS reduces application execution time by up to 32%
and DRAM read power by 2.2×, compared to a baseline DMA
architecture such as STI Cell.

1. Introduction

In recent years, the primary constraint for microprocessors has
shifted from chip area to power consumption, leading to the
stall in clock frequencies and the move towards massive paral-
lelism [12, 36]. As we adopt a more aggressive many-core strategy,
the throughput, latency, and cost of DRAM has emerged to the
forefront of research. Memory bandwidth is not scaling rapidly
enough to satisfy the increasing number of processors, making
the performance of a wide variety of applications constrained by
memory bandwidth [15, 31]. In fact, current projections state that
chip pins increase by 10% every year whereas on-chip proces-
sors double every 18 months [31]. Examples of data-parallel mem-
ory bandwidth-bound applications include the Laplacian and wave
equations stencil kernel (used in a variety of applications such as
seismic simulation), combustion simulation, face recognition, im-
age processing, fluid simulation, embedded applications, and many
others. As another example, media applications have been reported
to require up to 300GB/s of bandwidth to utilize just 48 proces-
sors [29]. Even SPEC benchmarks can saturate memory bandwidth
in just eight-core chip multiprocessors (CMPs) [20]. In memory
bandwidth-bound applications, techniques that increase memory
bandwidth have a direct effect on execution time [29, 30].

Memory power consumption is also crucial, given the limited
power budget of large-scale chips. In current technology, read-
ing double-precision operands from DRAM for an addition costs
about 2000pJ, while the operation itself consumes approximately
100pJ [36]. This problem has already surfaced in datacenters,
where 25%–40% of total power is attributed to DRAM [38]. There-
fore, maximizing DRAM efficiency is critical, especially for future
systems where DRAM’s contribution will likely be proportionally
larger than today [4].

Numerous important applications depend on parallel speedups
achieved through bulk-synchronous single program multiple data

(SPMD) execution where all compute elements are employed in
tandem to speed up a single kernel. Bulk-synchronous kernels
typically rely on domain decomposition to expose data parallelism.
However, copying data from a contiguous representation in DRAM
to the domain-decomposed (tiled) layout in on-chip caches poses
significant challenges to modern memory subsystems.

Modern DRAMs are most efficient when presented with or-
dered unit-stride access patterns [29, 30, 42]. However, current chip
multi-processors presume each core operates independently, even
for SPMD execution. The result is that the memory is presented
with uncoordinated and stochastic requests that exhibit poor local-
ity [42], which degrades performance and power [38]. Even though
a plethora of memory controllers have been proposed, they are typ-
ically passive elements which do not control the order requests ar-
rive to them. Therefore, their degree of freedom is limited to the
entries in their finite-size transaction queues [27, 30, 41].

In this paper, we demonstrate a hardware approach to coordi-
nating on-chip data movement named collective memory schedul-
ing (CMS), and the programming constructs to make access to this
capability efficient and easy to express using the hierarchically tiled
array (HTA) abstraction [13]. We demonstrate the effectiveness of
CMS for stencil-based computations which are crucial for appli-
cations ranging from image processing in consumer or embedded
devices, to the largest-scale high performance computing (HPC)
applications such as climate modeling. We believe that the kinds
of algorithms that are the largest drivers for improved computa-
tional performance are in fact SPMD kernels that are seen in im-
age processing, face recognition, machine learning, kinetics simu-
lation, and others. We also show that the CMS engine is inexpensive
enough to be included even in general-purpose systems. When not
in use, such as with applications without collective transfers, the
CMS engine can power down like any accelerator.

In summary, CMS makes the following contributions:

• Provides a simple hardware extension to coordinate com-
plex access patterns across multiple processors to re-establish
a streaming access pattern for DRAM to achieve optimal
throughput, latency, and power. CMS reduces application ex-
ecution time by up to 32%, compared to independent direct
memory access (DMA) operations in each processor.

• Also due to re-establishing a streaming access pattern, CMS
reduces DRAM read power by 2.2× and DRAM write power
by 50%.

• Eliminates network congestion by replacing many independent
read and write requests with a handful of control packets.

• Modifies the HTA representation [13] to simplify the appli-
cation programming interface (API) since the same collective
function call is made by all processors, with no need to calcu-
late individual DMA address ranges, as in STI Cell [34].

Figure 1: Tiling divides a contiguous distributed array into tiles.
Each tile is assigned to a processor. Tiles may include read-only
ghost zones that replicate neighboring data. An example 5-point
stencil is shown.

while (data_remaining)
{

load_next_tile(); // DMA load
operate_on_tile(); // Local computation
write_resulting_tile(); // DMA write

}

Figure 2: A computation loop for a local-store architecture.

2. Background

2.1 Stencil Computations

Domain decomposition is commonly used to expose parallelism
for SPMD algorithms that range from linear algebra to stencil al-
gorithms, but poses significant challenges to memory performance
of CMPs and graphical processor units (GPUs). To illustrate the
benefits of CMS, we focus on stencil algorithms because of their
broad applicability, the memory bandwidth sensitivity of their ker-
nels [17], and their ubiquitous usage [28]. In particular, stencil algo-
rithms constitute a large fraction of consumer, embedded, HPC and
scientific applications in such diverse areas as image processing,
seismic imaging, heat diffusion, electromagnetics, fluid dynamics,
and climate modeling [25]. In a stencil operation, each point in
a multi-dimensional grid is updated with weighted contributions
from a subset of its neighbors in both time and space, thereby rep-
resenting the coefficients of the partial differential equation (PDE)
for that data element. Stencil sizes range from considering only its
immediate neighbors to 9-, 13-, 21- and 27-point stencils.

Stencil calculations perform global sweeps through data struc-
tures that are typically much larger than the available data caches.
As a result, data from main memory often cannot be transferred
fast enough to avoid stalling the computational units on modern
microprocessors [41]. Reorganizing these computations to fit into
the caches has principally focused on tiling optimizations. Tiling
for a regular mesh data array and a 5-point stencil that is used for
the heat PDE [5, 26] is shown in Figure 1.

With tiling, each processor is typically assigned a contiguous
block of stencils (a tile) to operate on within the local high-speed
L1 caches. However, stencils at the edge of a tile require data
that belongs to tiles of neighboring processors. Therefore, each
processor’s tile is extended to include read-only ghost zones at
the edges, which are owned and writable by a neighbor processor.
Ghost zones are also shown in Figure 1.

 Array = hta(name,
 {[1,3,5], // Tile boundaries before

 // rows 1 (start),3 and 5
 [1,3,5]},// Likewise for columns

 [3,3]); // Map to a 3x3 processor array

Figure 3: Example HTA declaration code.

An abstract computational loop is shown in Figure 2. In each
processor, each iteration operates on a different tile. Because tiles
are sized to fit in local caches, there is typically no data reuse across
iterations (across tiles of the same processor). Operations in a com-
putation loop can be pipelined by writing the previous iteration’s
results, computing on the current iteration, and loading the next it-
eration’s tile simultaneously; this requires triple buffering.

2.2 Memory Access Streams and Efficiency

Loading a tile causes processors to generate read requests to the
memory controller independently of other processors. This is done
with local independent hardware prefetch [19] or cache fill streams
for a cache-coherent CMP, a list of outstanding load-store requests
for a massively multithreaded architecture like a GPU, or via a
sequence of DMA requests for a local store architecture like STI
Cell [34]. In all of these cases, requests are sent independently over
an unpredictable network and thus arrive in nearly random order to
memory [38, 42].

Random access patterns degrade DRAM performance and
power [30, 38, 39] because they cannot take advantage of pre-
activated rows and therefore cause more row activations compared
to sequential access patterns. Depending on the access pattern, only
14%–97% of memory bandwidth can actually be utilized [29]. As
a result, in many workloads the number of times an open row is
used before being closed due to a conflict is often one or two [38].
This penalizes both latency and power because opening a new row
includes charging bit lines, amplification by sense amplifiers, and
then writing bits back to the cells. In addition, multiple independent
requests congest the network waiting for vacancies in the memory
controller’s queue.

2.3 Hierarchical Tiled Arrays Representation

HTAs are a polyhedral representation language that compactly and
efficiently expresses distributed tile arrays [13]. An example decla-
ration is shown in Figure 3. This declaration divides a 6×6 array
into 2×2 tiles and maps those tiles to a 3×3 array of processors,
as shown in Figure 4. The HTA library translates data operations to
remote data accesses if needed.

3. Collective Memory Transfers

3.1 Programming Interface

The CMS programming interface is responsible for making the col-
lective transfer capabilities of the hardware CMS engine accessible
to the programmer. For the CMS API we adopt the HTA syntax [13]
to define a 2D plane of data that a CMS operation handles. We also
modify the simple HTA syntax to compactly express ghost zones
by adding a parameter to denote the number of ghost zone cells in
each dimension.

Our extension to HTA is shown in Figure 5. The resulting
mapping is illustrated in Figure 4. HTAs have been extended to
offer an alternative and more complex but also more powerful
syntax to declare ghost zones of arbitrary shapes and sizes [13].

3.2 API

We choose to provide access to CMS functionality using a library
that exposes an API similar to DMA function calls [34]. This leaves

1

The larger rectangle is the
middle tile plus its ghost zones

2 3 4 5 6

1

2

3

4

5

6

Figure 4: The mapping from our example declaration. Only the
ghost zones for the shaded tile are shown.

Array = hta(name, {[1,3,5],[1,3,5]},
 1, // One ghost zone cell in each dimension
 [3,3]);

Figure 5: The added parameter denotes that there is one ghost zone
cell in each dimension.

Loading a HTA with a CMS read

HTA_instance = CMS_read (Starting_address,
 HTA_instance);

Loading the same HTA with DMA operations for each line of data

 Array[row1] = DMA (Starting_address_row1,
Ending_address_row1);
.
.
.

 Array[rowN] = DMA (Starting_address_rowN,
Ending_address_rowN);

Figure 6: Without CMS, the programmer needs to calculate starting
and ending address for each tile line in a local-store architecture,
including ghost zones.

the programming style intact. Once a CMS function call is made,
the processor generates a ready packet in the manner described later
in this Section. Similar to DMA function calls, the processor also
reserves local storage in architectures like STI Cell for incoming
data for read operations.

A CMS read or write function call requires only the HTA in-
stance and its starting address in memory as parameters. Since the
caller’s identifier is implicit and the HTA instance contains all the
tiling and layout information, the CMS library translates virtual to
physical memory addresses if necessary and infers exactly what
address ranges each processor requires for reading and writing, or
only for reading (for its ghost zones). Therefore, all processors that
wish to read or write the same HTA make the exact same function
call.

The CMS API is considerably simpler than DMA operations in
local-store architectures such as STI Cell, where the programmer
has to calculate address ranges individually in order to configure
each processor’s DMA engine [34]. In the common case that a
processor’s tile consists of non-contiguous memory addresses [14],

1 Routers in each row send ready packets to the
router in the same column as the CMS engine

CMS

2
The shaded routers send a ready
packet for their row to the CMS

engine. Once all arrive, transfer starts.

Figure 7: Initiating a synchronous read CMS operation.

a potentially large number of DMA calls is required, which in turn
require deep transaction queues in each DMA engine. In contrast,
the equivalent CMS operation requires only one function call, as
shown in Figure 6.

Although we demonstrate CMS in a local-store architecture
with an explicit API, this is not a requirement. GPU programming
languages can identify collective transfers abstractly from the pro-
grammer. Also, compilers or run-time systems can analyze mem-
ory access patterns and data structure layouts to identify collective
operations. Finally, in hardware-managed cache-coherent CMPs,
prefetching and cache miss handling can be performed collectively
at a HTA granularity instead of locally by each processor.

3.3 Read Operations

In reads, the CMS engine reads memory sequentially and dis-
tributes data to the appropriate processors according to the HTA
mapping. We implement synchronous and asynchronous reads. In
the synchronous case, the CMS engine initiates the transfer when
all processors make the synchronous read function call for the same
HTA. Asynchronous reads are used when the implicit barrier of
synchronous reads is not desired. With asynchronous reads, the
transfer initiates when the first processor is ready. This requires
non-ready processors to buffer the next iteration’s HTA.

To coordinate operation start in the synchronous case we em-
ploy a simple hierarchical communication pattern, shown in Fig-
ure 7. As shown, a processor sends its ready packet—generated
after making the CMS read function call—to the processor which
shares a dimension (e.g., column) with the CMS engine. Once these
intermediate processors receive a ready packet from their entire
row, they send a collective ready packet on behalf of their row to
the CMS engine. Transfer initiates when the CMS engine receives
a collective ready packet from each row. Ready packets contain the
base address, transfer count and the HTA information (such as the
tiling and layout).

Once transfer initiates, the CMS engine reads memory sequen-
tially and sends each tile line to the appropriate processor as speci-
fied by the HTA declaration. For ghost zone data, the CMS engine
sends a copy of the packet that it sent to the owner processor, to the
reader processor. This occurs as data is read from memory, ensuring
that all data is read only once.

3.4 Write Operations

To easily guarantee memory access order, CMS write operations
are performed as reads from the standpoint of the CMS engine. In
other words, the CMS engine is reading data from the processors
and writing it into memory. When the processor that holds the
first tile line of the HTA is ready to write its tile, it sends a write
ready packet to the CMS engine containing the HTA information

Reorder
buffer

for writes

Network interface

Memory interface

Mem.
read
buffer

Mem.
read
buffer

Active
trans.
info

Request issue

Figure 8: CMS engine outline.

to initiate the write operation. That information includes the base
address, transfer count and HTA information such as tiling and
layout. The CMS engine then sends read requests in units of tile
lines to retrieve the HTA in memory address order. In the mapping
of Figure 4, the first read request for elements (1, 1) and (2, 1) is
served by processor 1, (3, 1) and (4, 1) by processor 2, (5, 1) and
(6, 1) by processor 3, (1, 2) and (2, 2) by processor 1, and so on.

Because the network guarantees no ordering, the CMS engine
uses a small reorder buffer to enqueue read replies write to mem-
ory in address order. The number of outstanding read requests de-
fines the size of the reorder buffer, which needs to be deep enough
to eliminate memory idle cycles. In our 8×8 2D mesh, the op-
timal size for the reorder buffer is six transactions for HTAs of
512×512 elements, four transactions for 1024×1024, and three for
2048×2048 HTAs.

3.5 Collective Memory Scheduling Engine

We implement the CMS engine as a ”stencil engine” atop a typical
DMA engine. As illustrated in Figure 8, the CMS engine has a
memory interface side and a network interface side. When a valid
read or write command appears at the network interface, the CMS
engine records the HTA’s starting address and its 4 dimensions
(elements in a tile’s row, elements in a tile’s column, tiles in a
HTA row, tiles in a HTA column). The engine then breaks the large
operation into smaller memory-sized ones and tracks its position
in the operation with counters representing each dimension of the
HTA. At the memory interface side, the CMS engine either sends
read requests as fast as the memory controller allows, or it sends
write requests whenever it has valid data to write from the network
interface side.

The allowed number of pending memory transactions depends
on the size of the stencil engine’s buffers. Read operations use two
small 16×128 bit buffers (“mem. read buffers”) for the outstanding
DRAM read requests and to permit duplicating ghost zone packets
(in this implementation the memory controller interface is 128
bits).

The reorder buffer for write operations tags requests to tiles for
their tile lines and uses that tag to write the returned data into the
correct location in the reorder buffer such that memory address
order is preserved when data is read from the reorder buffer and
written to memory.

The CMS engine can be integrated into the memory controller
instead of remaining a separate entity like a DMA engine, but we
leave this for future work. Furthermore, to reduce communication
delay, we co-locate a CMS engine with each memory controller.
With multiple memory controllers, a large collective transfer is
divided into smaller ones, each of which is assigned to a CMS
engine. Therefore, a chip-wide operation will activate all CMS
engines, each performing a portion of the operation.

Because the CMS engine guarantees memory address order,
the memory controller need not be more complex than a FIFO
scheduler with just enough transaction queue entries for memory

pipelining. The additional complexity of the CMS engine com-
pared to a typical DMA engine is outweighed by the vastly reduced
memory controller complexity compared to modern memory con-
trollers with large transaction queues and complex scheduling poli-
cies [27, 30]. Moreover, CMS engines replace individual processor
DMA engines or prefetch units because the CMS engine performs
the entire operation instead of individual processors. Simplifying
the memory controller to FIFO scheduling and removing prefetch
units may be inefficient in systems that do not predominantly use
collective data transfers. That’s because the performance degrada-
tion for non-collective transfers may become a significant factor in
system performance. However, as we show in Section 4.2.5, CMS
engines are inexpensive enough to be included even in general pur-
pose systems that do not frequently perform collective transfers.
When those systems execute non-stencil algorithms, CMS engines
remain inactive and can power down, similar to any other accelera-
tor.

4. Evaluation

4.1 Methodology

We use a heavily-modified version of the Booksim network sim-
ulator to model a local-store architecture similar to STI Cell [34]
including processors, memory controllers, and local storage [16].
Initially we simulate writes and synchronous reads operations of
single HTAs. HTAs are 2D and range from 64×64 to 2048×2048.
Variables are 8-byte double precision. We use 5-point stencils such
as for the heat PDE [5]. Therefore, each processor tile requires two
ghost zone elements per row and two per column (one element on
each side).

We then present application results for the following impor-
tant stencil-based applications: fluid animation from the PARSEC
benchmark suite [3], geometric multi-grid calculations (GMG) [40],
seismic wave propagation simulation (RTM) [23], the SOBEL fil-
ter used extensively for image processing [10], and a collection
of Laplacian stencil kernels [18]. For the application results, we
model Intel Phi co-processors. For each application, we calculate
the processing time per variable as well as the ghost zone sizes,
and simulate ten iterations of each application’s execution loop,
shown in Figure 2. We use the typically-used row-major mapping
of each distributed array to memory (column-major mapping would
produce comparable results).

Our default proxy CMP consists of an 8×8 grid of processors.
Four memory controllers are placed at the corners. Each memory
controller is co-located with a CMS engine. We use static address-
based mapping to map tile lines (memory addresses) to memory
controllers. A 2D mesh on-chip network is used with dimension-
order routing (DOR) and four-stage input-buffered routers [8]. In-
put buffers have 4 virtual channels (VCs), with eight flit slots stat-
ically assigned to each. Two VCs are used for request packets,
and two VCs for replies. The datapath is 128 bits wide. Data-
transferring packets carry one line of a processor’s tile, plus one
head flit.

For the memory, we use DRAMSim2 to simulate a Micron
16MB DDR3 1600MHz memory module with a 64-bit data path
and two ranks with 8 banks each [32]. There is a single mem-
ory controller for the two ranks. The memory controller has 32-
slot transaction and DRAM command reorder queues, and First
Ready First Come First Served (FRFCFS) scheduling [30, 42].
Our FRFCFS scheduler uses an open-row policy which respects
row buffer locality by prioritizing transactions to open DRAM
rows. We compare CMS against FRFCFS because FRFCFS max-
imizes memory throughput compared to a variety of other con-
trollers [30]. FRFCFS does not necessarily minimize application
execution time because maximizing memory throughput may be

unfair to threads [27]. However, we do not model and therefore
hold these adversary effects against the baseline case. We assume
the same frequency of 1600MHz for the simple cores and the net-
work.

4.2 Results

4.2.1 Memory Throughput Degradation:

First, we illustrate the performance of DRAM in response to an un-
coordinated access pattern that results from a SPMD algorithm run-
ning on a conventional many-core memory subsystem. In this case,
our FRFCFS memory controller tries to maximize performance by
reconstructing a linear access pattern and respecting row buffer lo-
cality using transaction reordering. However even a sophisticated
controller’s reordering capability is inherently limited by the depth
of the transaction queue.

To set up this experiment, we use DRAMsim2 [32] to simulate
a synthetic 16MB in-order trace of loads to represent the “coordi-
nated” CMS case, and an out-of-order trace to simulate the uncoor-
dinated case where loads or stores are presented to the memory con-
troller in random order. The uncoordinated requests are randomly-
ordered in sizes of 128 bytes, representing one tile line. Experi-
ments with access traces larger than 16MB produce comparable
results.

Our results show that for the uncoordinated access pattern
(baseline), DRAM throughput drops by 25% for loads and 41%
for stores. Also, median latency increases by 23% for loads and
64% for stores, maximum latency increases by 2× in both cases,
and power increases by 2.2× for loads and 50% for stores. Com-
pared to the maximum theoretical throughput, reads achieve 80%
and writes 75% with CMS compared to 60% and 44% respectively
for the uncoordinated case. Even streaming unit-stride traces can-
not achieve 100% throughput due to refresh operations.

The uncoordinated case exhibits higher power consumption due
to an increase in activate and precharge power (5.2× for loads
and 3.4× for stores due to a similar decrease in row buffer hit
rates). Past work has found similar results, and not even the best-
performing memory transaction scheduler can bridge the gap be-
tween random and in-order accesses [30, 38, 39]. For example, the
row-buffer hit rate drops from 60% for a single processor to 35%
in a baseline 16-processor CMP, in a variety of benchmarks [38].
For the rest of our evaluations, we use a 25% lower DRAM read
throughput for the baseline case, and 41% for write operations.

4.2.2 Operation Completion Time:

Figure 9 (left) shows execution times for completing a single read
or write CMS operation. Compared to the baseline with FRFCFS,
CMS reduces completion time by 39% for reads and 38% for
writes. These gains are due to:

• The lower throughput the DRAM provides with random (unco-
ordinated) access patterns.

• Eliminating redundant memory reads in read CMS operations
compared to the baseline, since data is read only once and
submitted to the owner and reader processors, instead of each
processor retrieving its ghost zones separately. With a 256×256
HTA, there are 12% fewer reads with CMS.

We then repeat the experiments, but with a uniform random
(UR) background traffic pattern with a 10% flit injection rate. A
10% injection rate provides non-negligible traffic, but not enough to
saturate the network by itself. This traffic is composed of read and
write requests and replies similar to DMA traffic, and represents
innocent bystander traffic.

As shown in Figure 9 (center), the reduction in execution time
for CMS in the mesh is 46% for reads and 36% for writes. While

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Elements per dimension of the distributed 2D array

C
M

S

e
x
e
c
u
ti
o
n
 t
im

e
 n

o
rm

.
to

 F
R

F
C

F
S

Application execution time

Fluidanimate

GMG

RTM

Sobel

Laplacian stencils

Figure 10: Application speedup for CMS.

background traffic degrades performance for CMS, it is more ad-
versary to the baseline because read and write requests are queued
in the network. Figure 9 (right) better illustrates the impact to the
background traffic. Baseline operations saturate the network and
raise the average background traffic latency to thousands or mil-
lions of clock cycles in our simulations (latencies in saturated net-
works are unbounded). In contrast, CMS keeps the average back-
ground traffic latency to 30–50 cycles. These gains for CMS are
due to:

• Replacing the large number of read or write requests in the
uncoordinated case with a few ready packets for the entire
transfer. This alleviates contention in the network.

• Bounding the number of in-flight read reply packets, which
carry data from processors to memory in CMS write operations,
because of the reorder buffer in the CMS engine. This also
alleviates network congestion.

4.2.3 Impact on Application Execution Time:

We show our application benchmark results in Figure 10. The
gains depend on the ratio of the time spent computing in each it-
eration versus completing a read and a write operation. Applica-
tions that are compute-bound in our system (RTM and GMG) re-
ceive minimal (0%–1%) execution time benefit from CMS. In con-
trast, memory bandwidth-bound applications directly benefit from
CMS. Specifically, by average across HTA sizes, fluidanimate re-
quires 21% fewer cycles, the Sobel filter 31% fewer cycles and the
Laplacian stencils kernel 32% fewer cycles. The energy reduction
benefits from CMS remain for both compute-bound and memory
bandwidth-bound applications.

4.2.4 Sensitivity to System Configuration:

We then repeat our operation completion experiments with a 144-
processor system and then the original 64-processor system with
a ghost zone of twice the size using a 9-point stencil such as for
S3D which models turbulent combustion [6]. Operation comple-
tion gains for CMS are comparable to Section 4.2.2. This remains
true except for a large ghost zone size to tile size ratio which ben-
efits CMS, because CMS’s benefit of reading data destined to two
processors only once is amplified with larger ghost zones. Finally,
repeating our experiments with only one or two memory controllers
slightly favors CMS because the baseline case produces more se-
vere network hotspots.

4.2.5 CMS Engine Implementation Results and Energy:

We implement a CMS engine and a typical DMA engine in RTL
and synthesize them using Synopsys Design Compiler and a 40nm
general-purpose technology library. We also synthesize the same

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Elements per dimension of the distributed 2D array

C
M

S
 e

x
e

c
u

ti
o

n
 t

im
e

 n
o

rm
.

to
 F

R
F

C
F

S

Read and write of one 2D plane. 8x8 Mesh. DOR

Read

Write

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Elements per dimension of the distributed 2D array

C
M

S
 e

x
e

c
u

ti
o

n
 t

im
e

 n
o

rm
.

to
 F

R
F

C
F

S

10% UR background traffic. 8x8 Mesh. DOR

Read

Write

500 1000 1500 2000
0

20

40

60

80

100

120

140

160

Elements per dimension of the distributed 2D array

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
lo

c
k
 c

y
c
le

s
)

10% UR background traffic latency. 8x8 Mesh. DOR

FRFCFS saturates the network
Average latencies: thousands to million cycles

CMS read

CMS write

Figure 9: CMS read and write operation completion time normalized to the baseline, and the impact on background traffic.

Table 1: RTL synthesis results.

DMA CMS

ASIC

Combinational area (µm2) 743 16231

Non-combinational area (µm2) 419 61313

Minimum cycle time (ns) 0.6 0.75

FPGA

LUTs for logic 245 856

Minimum cycle time (ns) 4.4 5.1

designs using the Xilinx FPGA design flow for a Virtex-5 FPGA.
The CMS and DMA engines are configured for the DDR3 Micron
modules with 64 bit datapaths used in our evaluations. For the CMS
engine, the reorder buffer for write operations is sized to hold eight
transactions of 16×128 bits each, for a total of 2KB. In the ASIC
flow, the reorder buffer as well as the small read buffer in the CMS
engine are implemented using flip-flop (FF) arrays. The results are
presented in Table 1.

As shown, cycle time for the CMS engine increases by 25%
in the ASIC flow and 16% in the FPGA flow. To make the CMS
engine operate at the same clock frequency as the DMA engine,
we can simply pipeline the CMS engine by adding one more stage.
The one extra cycle is a negligible timing overhead compared to the
duration of an operation.

Despite the increased complexity of the CMS engine, CMS
can significantly simplify other parts of the system. Specifically,
when performing collective operations, CMS requires only a sim-
ple FIFO memory scheduler with just enough transaction queue
entries for memory pipelining. Compared to modern memory con-
trollers, this is a significant reduction in cycle time because mod-
ern controllers typically hold a few tens of transactions [30] and
perform an associative comparison of all requests in the transaction
queue every cycle (therefore requiring comparators for every queue
entry), and then issue a transaction from any position in the queue
based on multi-level priority and other complex schemes [30, 42].
As an example of the savings obtained by the shallower transac-
tion queue, a ternary content addressable memory (TCAM) that
holds eight transactions has a 10%–130% shorter cycle time, is 4×
smaller, and requires up to 1.5×–4× less access energy compared
to a transaction queue of 32 entries which is typical for a modern
memory controller transaction queue TCAM [2, 30]. CMS also re-
places DMA engines in each processor.

CMS also reduces DRAM access power because the baseline
case consumes 2.2× more dynamic power for reads and 50% more
for writes. This is because of the extra row activations in the
baseline case, which increases activate and precharge power. Given
that today’s DDR3 technology consumes about 70pJ per bit, a
system with only 0.2 bytes per FLOP memory bandwidth requires

over 160mW of DRAM power [36]. These projections, combined
with attributing 25%–40% of total datacenter power to the DRAM
system [38], make CMS’s DRAM power reductions critical.

5. Discussion

CMS readily applies to GPU architectures, due to their similarity
with our local-store architecture and the wide variety of stencil
algorithms they execute with similar memory access patterns as our
evaluations, such as image processing [1]. Furthermore, while in
local-store architectures such as STI Cell [34] we choose to identify
collective transfers by using a software API that replaces DMA
function calls, typical cache coherent CMPs can use hardware
prefetch units. In such systems, individual prefetch units in each
processor can transmit their predictions to the CMS engine, which
can identify collective transfer opportunities. Prefetch decisions
can also be performed in the CMS engine by observing the access
stream, without prefetch engines at each processor.

Future work on the concept of CMS will focus on more flexible
memory access scheduling by having the software construct the
address-order memory access pattern in a distributed manner, such
as the communication pattern of Figure 7. This way, the CMS
hardware engine will simply execute the generated stream and need
not make any assumptions for data layout, such that CMS can apply
to more than stencil-based computations.

6. Related Work

Past work has researched similar collective data transfer techniques
in very different contexts. In wide-area networks, coordinating the
nodes in a TCP/IP network to send their data to a common destina-
tion in with a common transfer schedule that avoids conflicts sub-
stantially reduces network congestion [7]. Alternative techniques
for wide-area networks focus on heterogeneity and use of shared
resources by transferring different chunks of the same file from
replicas and taking network bandwidth into account [22]. Collec-
tive data transfers have also been applied for server disk-directed
I/O, because the access bandwidth for traditional hard disk drives
significantly improves with sequential accesses [35].

Classic vector machines such as the Cray-1 [33] overcome the
inefficiencies of DRAM overfetch and access granularity by using
massive bank-switching to offer word-granularity accesses. How-
ever, vector core designs and memory controllers are costly due
to their limited market and sizable engineering costs [11]. In addi-
tion, the Impulse memory controller overcomes the inefficiency of
sparse access patterns due to cache-line granularity issues by reor-
ganizing the memory address stream so that sparse address pattern
appears contiguously in the cache hierarchy [43]. However, with
Impulse the data arrays remain scattered in the DRAM, thereby
leading to inefficient DRAM performance due to overfetch.

Sophisticated memory schedulers use complex scheduling poli-
cies, and can use different policies for threads according to their
memory access characteristics or quality of service guarantees [27,
30, 41]. Many schedulers, such as PAR-BS, perform limited re-
ordering by attempting to exploit row buffer locality and bank par-
allelism among other metrics [27]. Still, even a memory controller
with an ideal policy is inherently incapable of fully reconstructing
the memory access stream. That is because controllers are passive
elements which do not control the order requests arrive to them and
decide which one to serve next only from within their transaction
queues. CMS has similar goals with “memory access scheduling”
proposed for stream processors, but memory access scheduling is
merely an algorithm that applies to the memory controller, and
thus is inherently limited by the size of the memory controller’s
transaction queue [29]. Since transaction queues are not of infi-
nite size, the result is far from the complete memory address order
that CMS achieves because CMS actively takes charge of collec-
tive memory operations. As we explain in Section 4.1, we compare
against FRFCFS with an open-row policy because FRFCFS maxi-
mizes throughput compared to many other controllers

Because sophisticated memory schedulers require associative
comparison of all queued transactions every cycle, past work has
simplified memory controllers by using the on-chip routers to re-
order requests [42]. However, because decisions are made with lo-
cal knowledge and processors still issue requests independently,
this scheme performs slightly lower than a FRFCFS scheduler. Al-
ternative work uses admission control to inject only requests for
open DRAM rows [24]. However, this uses a centralized scheme
and thus faces limited scalability, and also risks idling memory due
to propagation delay. Frequently-accessed data can be placed in the
same row to favor open row DRAM policies [37]. Modifications
to DRAM internals have been proposed to mitigate the negative
power effects of random-order sequences, by avoiding activating
all the bitlines in a row before the exact read request is known [38].

Past work has repeatedly reported that a wide variety of applica-
tions are constrained by memory bandwidth [9, 15, 31, 36]. In those
cases, while local and last-level caches can eliminate DRAM ac-
cesses during the computation phase of a loop, data is still retrieved
from main memory when loading new and storing old HTAs, which
is the focus of CMS. Last-level caches can partially reconstruct ad-
dress order for writes with a write back policy. However, stream-
ing (write-through) writes are preferable to write back policies in
stencil-based computations to avoid polluting higher-level caches
because the results of a computation loop are not reused in the next
iteration [15]. Even with a write-back policy, caches are constrained
by their size and the unpredictability of the incoming packers, sim-
ilar to a memory controller. Memory prefetching techniques focus
on reducing latency and offer little benefit in systems that are bound
by memory bandwidth. Prefetching techniques typically perform
predictions independently at each processor and thus create out-of-
order access patterns [19].

Polyhedral representations alternative to HTAs are also appli-
cable to CMS [21]. Polyhedral representations are not a prerequi-
site for CMS because collective memory transfers can be expressed
even with basic language constructs.

7. Conclusion

To make optimal use of the limited memory bandwidth of current
and future systems, we present CMS to coordinate parallel data
access in a chip multi-processor such that distributed arrays of
data are read from or written to the DRAM in strict memory
address order. CMS is a hardware technique that programming
constructs access. CMS maximizes memory throughput beyond
that possible even by the most aggressive transaction schedulers in
modern memory controllers, reduces memory power and latency,

simplifies the API to manage bulk-synchronous DMA operations
of SPMD codes, and alleviates network congestion. These gains
result in up to 32% lower application execution time, up to 2.2×
less power for memory reads, and 50% less power for memory
writes.

Acknowledgments

This work was supported by the Director, Office of Science, of
the U.S. Department of Energy under Contract No. DE- AC02-
05CH11231.

Disclaimer

This document was prepared as an account of work sponsored by
the United States Government. While this document is believed to
contain correct information, neither the United States Government
nor any agency thereof, nor the Regents of the University of Cali-
fornia, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or the Regents of the University
of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Gov-
ernment or any agency thereof or the Regents of the University of
California.

Copyright Notice

This manuscript has been authored by an author at Lawrence
Berkeley National Laboratory under Contract No. DE-AC02-
05CH11231 with the U.S. Department of Energy. The U.S. Gov-
ernment retains, and the publisher, by accepting the article for pub-
lication, acknowledges, that the U.S. Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to
do so, for U.S. Government purposes.

References

[1] A. Abdelfattah, J. Dongarra, D. Keyes, and H. Ltaief. Optimizing
memory-bound numerical kernels on GPU hardware accelerators. July
2012.

[2] B. Agrawal and T. Sherwood. Ternary CAM power and delay model:
Extensions and uses. IEEE Transactions on VLSI, 16(5):554 –564,
2008. .

[3] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[4] S. Borkar and A. A. Chien. The future of microprocessors. Commu-

nications of the ACM, 54(5):67–77, 2011. ISSN 0001-0782. .

[5] R. Chamberlain. Solving partial differential equations on a parallel su-
percomputer. In IEEE Colloquium on Parallel Processing: Industrial

and scientific applications, 1991.

[6] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende, and C. S. Yoo. Terascale direct numerical
simulations of turbulent combustion using S3D. Computational Sci-

ence and Discovery, 2(1):015001, 2009.

[7] W. C. Cheng, C.-F. Chou, L. Golubchik, S. Khuller, and Y.-C. Wan.
A coordinated data collection approach: design, evaluation, and com-
parison. IEEE Journal on Selected Areas in Communications, 22(10):
2004–2018, 2006. ISSN 0733-8716. .

[8] W. J. Dally and B. Towles. Principles and Practices of Intercon-

nection Networks. Morgan Kaufmann Publishers Inc., 2003. ISBN
0122007514.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures. In Pro-

ceedings of the 2008 ACM/IEEE conference on Supercomputing, SC,
pages 4:1–4:12, 2008.

[10] W. Gao, X. Zhang, L. Yang, and H. Liu. An improved sobel edge de-
tection. In Computer Science and Information Technology (ICCSIT),

2010 3rd IEEE International Conference on, volume 5, pages 67–71,
2010. .

[11] J. Gebis, L. Oliker, J. Shalf, S. Williams, and K. Yelick. Improving
memory subsystem performance using ViVA: Virtual vector architec-
ture. In Proceedings of the 22nd International Conference on Archi-

tecture of Computing Systems, ARCS ’09, pages 146–158, Berlin, Hei-
delberg, 2009. Springer-Verlag. ISBN 978-3-642-00453-7. .

[12] M. Ghasemazar, E. Pakbaznia, and M. Pedram. Minimizing the power
consumption of a chip multiprocessor under an average throughput
constraint. In International Symposium on Quality Electronic Design,
ISQED ’10, pages 362–371, 2010. ISBN 978-1-4244-6455-5.

[13] J. Guo, G. Bikshandi, B. B. Fraguela, and D. Padua. Writing produc-
tive stencil codes with overlapped tiling. Journal on Concurrency and

Computation: Practice and Experience, 21(1):25–39, 2009. .

[14] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam,
and P. Sadayappan. Data layout transformation for stencil com-
putations on short-vector SIMD architectures. In Proceedings of

the 20th international conference on Compiler construction: part of

the joint European conferences on theory and practice of software,
CC’11/ETAPS’11, pages 225–245, 2011. ISBN 978-3-642-19860-1.

[15] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
code generation for stencil computations on GPU architectures. In
Proceedings of the 26th ACM international conference on Supercom-

puting, ICS, pages 311–320, 2012. .

[16] N. Jiang, D. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. Shaw, J. Kim, and W. Dally. A detailed and flexible cycle-accurate
network-on-chip simulator. In IEEE International Symposium on

Performance Analysis of Systems and Software, ISPASS ’13, pages
86–96, 2013. .

[17] S. Kamil, C. Chan, S. Williams, L. Oliker, J. Shalf, M. Howison, E. W.
Bether, and Prabhat. A generalized framework for auto-tuning stencil
computations. In Cray User Group, 2009.

[18] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-
tuning framework for parallel multicore stencil computations. In IEEE

International Symposium on Parallel Distributed Processing, pages 1–
12, 2010. .

[19] M. Kandemir, Y. Zhang, and O. Ozturk. Adaptive prefetching for
shared cache based chip multiprocessors. In Design, Automation Test

in Europe Conference Exhibition, 2009. DATE ’09., 2009.

[20] D. Kaseridis, J. Stuecheli, and L. K. John. Minimalist open-page: a
dram page-mode scheduling policy for the many-core era. In Pro-

ceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-44 ’11, pages 24–35, 2011. .

[21] K. Keahey, P. Fasel, and S. Mniszewski. PAWS: collective interactions
and data transfers. In Proceedings of the 10th IEEE International

Symposium on High Performance Distributed Computing, pages 47–
54, 2001. .

[22] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayappan, and
J. Saltz. A dynamic scheduling approach for coordinated wide-area
data transfers using GridFTP. In IEEE International Symposium on

Parallel and Distributed Processing, IPDPS ’08, pages 1 –12, 2008. .

[23] J. Krueger, D. Donofrio, J. Shalf, M. Mohiyuddin, S. Williams,
L. Oliker, and F.-J. Pfreund. Hardware/software co-design for energy-
efficient seismic modeling. In Proceedings of 2011 International Con-

ference for High Performance Computing, Networking, Storage and

Analysis, SC ’11, pages 73:1–73:12, 2011. .

[24] D. Lee, S. Yoo, and K. Choi. Entry control in network-on-chip for
memory power reduction. In Proceedings of the 13th international

symposium on Low power electronics and design, ISLPED, pages
171–176, 2008. ISBN 978-1-60558-109-5. .

[25] J. Meng and K. Skadron. Performance modeling and automatic ghost
zone optimization for iterative stencil loops on GPUs. In Proceedings

of the 23rd international conference on Supercomputing, ICS ’09,
pages 256–265, 2009. .

[26] M. Mohiyuddin, M. Murphy, L. Oliker, J. Shalf, J. Wawrzynek, and
S. Williams. A design methodology for domain-optimized power-
efficient supercomputing. In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, SC, 2009.
.

[27] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: En-
hancing both performance and fairness of shared dram systems. In
Proceedings of the 35th Annual International Symposium on Com-

puter Architecture, ISCA ’08, pages 63–74, 2008. .

[28] L. Peng, R. Seymour, K.-i. Nomura, R. K. Kalia, A. Nakano,
P. Vashishta, A. Loddoch, M. Netzband, W. Volz, and C. Wong. High-
order stencil computations on multicore clusters. In IEEE Inter-

national Symposium on Parallel Distributed Processing, IPDPS ’09,
pages 1–11, 2009. .

[29] S. Rixner. A bandwidth-efficient architecture for a streaming media

processor. PhD thesis, 2001. AAI0803043.

[30] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory access scheduling. In Proceedings of the 27th annual inter-

national symposium on Computer architecture, ISCA ’00, pages 128–
138, 2000. ISBN 1-58113-232-8. .

[31] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Soli-
hin. Scaling the bandwidth wall: challenges in and avenues for CMP
scaling. In Proceedings of the 36th annual international symposium

on Computer architecture, ISCA ’09, pages 371–382, 2009. .

[32] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle
accurate memory system simulator. IEEE Computer Architecture

Letters, 10(1):16 –19, 2011. .

[33] R. M. Russell. The CRAY-1 computer system. Communications of the

ACM, 21(1):63–72, 1978. ISSN 0001-0782. .

[34] S. Schneider, J.-S. Yeom, and D. S. Nikolopoulos. Programming
multiprocessors with explicitly managed memory hierarchies. IEEE

Computer, 42(12):28–34, 2009. ISSN 0018-9162. .

[35] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-
directed collective I/O in Panda. In Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis, SC
’95, 1995. .

[36] J. Shalf, S. S. Dosanjh, and J. Morrison. Exascale computing tech-
nology challenges. In International Meeting on High Performance

Computing for Computational Science, VECPAR ’10, 2010.

[37] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramo-
nian, and A. Davis. Micro-pages: increasing DRAM efficiency with
locality-aware data placement. In Proceedings of the 15th edition of

ASPLOS on Architectural support for programming languages and op-

erating systems, ASPLOS ’10, pages 219–230, 2010. .

[38] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi. Rethinking DRAM design and organiza-
tion for energy-constrained multi-cores. In Proceedings of the 37th

annual international symposium on Computer architecture, ISCA ’10,
pages 175–186, 2010. ISBN 978-1-4503-0053-7. .

[39] D. T. Wang. Memory DRAM memory systems: performance analysis

and a high performance, power-constrained DRAM scheduling algo-

rithm. PhD thesis, University of Maryland, 2005.

[40] S. Williams, D. Kalamkar, A. Singh, A. Deshpande, B. Van Straalen,
M. Smelyanskiy, A. Almgren, P. Dubey, J. Shalf, and L. Oliker. Op-
timization of geometric multigrid for emerging multi- and manycore
processors. In High Performance Computing, Networking, Storage

and Analysis (SC), 2012 International Conference for, pages 1–11,
2012. .

[41] D. Xu, C. Wu, and P.-C. Yew. On mitigating memory bandwidth con-
tention through bandwidth-aware scheduling. In Proceedings of the

19th international conference on Parallel architectures and compila-

tion techniques, PACT ’10, pages 237–248, 2010. .

[42] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity effective
memory access scheduling for many-core accelerator architectures. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO, pages 34–44, 2009. .

[43] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B.
Carter, W. C. Hsieh, and S. A. McKee. The impulse memory con-
troller. IEEE Transactions on Computers, 50(11):1117–1132, 2001.

