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Abstract
This paper describes a compiler approach to communication-
avoiding optimizations in geometric multigrid (GMG), one of the
most popular methods for solving partial differential equations.
Communication-avoiding optimizations reduce vertical commu-
nication through the memory hierarchy and horizontal commu-
nication across processes or threads, usually at the expense of
introducing redundant computation. We focus on applying these
optimizations to the smooth operator, which successively reduces
the error and accounts for the largest fraction of the GMG ex-
ecution time. Our compiler technology applies both novel and
known transformations to derive an implementation comparable
to manually-tuned code. To make the approach portable, an un-
derlying autotuning system explores the tradeoff between reduced
communication and increased computation, as well as tradeoffs in
threading schemes, to automatically identify the best implementa-
tion for a particular architecture and at each computation phase.
Results show that we are able to quadruple the performance of
the smooth operation on the finest grids while attaining similar or
better performance than manually-tuned code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers, Optimization, Code Generation

Keywords Geometric Multigrid, Compiler Optimization, Auto-
tuning

1. Introduction
Geometric multigrid (GMG) is an important family of algorithms
used by computational scientists to accelerate the convergence of
iterative solvers for linear systems. In GMG, floating-point compu-
tation is dwarfed by the overhead of data movement, making man-
aging the memory hierarchy and cross-processor communication
critical to achieving high performance. Prior work on optimizing
the stencil computations that are contained within GMG have led
to techniques like cache oblivious algorithms, time skewing, wave-
front optimizations and overlapped tiling [7, 10, 11, 17, 18, 21, 25,
26, 31, 32]. For many of these efforts, the problems were simpli-
fied as compared to real-world applications, using 2-dimensional or
constant-coefficient stencils without control flow and starting from
a sequential specification rather than parallel specification.

As modern architectures continue to grow in core count and ex-
hibit a hierarchy of complex inter-thread and inter-process inter-
actions, new communication-avoiding techniques have been intro-
duced for GMG that encapsulate several of the optimizations men-
tioned above. Communication-avoiding optimizations reduce ver-
tical communication through the memory hierarchy and horizon-

tal communication across processes or threads, usually at the ex-
pense of introducing redundant computation. Programmers gener-
ally need to introduce these optimizations manually, while attempt-
ing to discern the optimal combination of parameters, thus result-
ing in a significant growth in code complexity and non-portability
across different architectures. This paper describes how to perform
these optimizations automatically by a compiler, generating high-
performing code from a relatively straightforward expression of
a set of operators in a scalable MPI implementation. Our starting
point is the miniGMG benchmark that is intended to represent use
of GMG in real-world scalable applications.

We focus on optimizations required for the smooth operator, the
most compute-intensive portion of GMG. Vertical communication-
avoiding optimizations necessitate the support for data-flow analy-
sis, which must be incorporated into the transformations to enable
(1) fusing several operators so that intermediate data remains in
cache from definition to use; (2) avoiding writes back to memory
of temporary data; as well as (3) creating a wavefront so that mul-
tiple planes can share data in cache with a minimal cache working
set. A horizontal communication-avoiding optimization adds ghost
zones to reduce the frequency of inter-processor communication at
the expense of redundant computation. While most of these opti-
mizations rely on composing standard loop transformations, most
would generally not be implemented in a standard compiler as they
are either domain-specific (introduction of ghost zones), or specifi-
cally effective for GMG classes of computations.

The compiler system of this research effort employs autotuning
to make these optimizations portable across different architectures.
Autotuning systems employ empirical techniques to evaluate the
suitability of a search space of possible implementations of a com-
putation. Communication-avoiding optimizations such as increas-
ing ghost zone depth tradeoff increased computation for less fre-
quent communication. The wavefront optimization exploits reuse
deeper in the memory hierarchy (L1/L2), but risks exceeding ca-
pacity limitations if applied too aggressively. The granularity of
profitable thread-level parallelism depends on both architecture and
the level in the GMG V-cycle. Through autotuning, these trade-
offs can be explored to select the context-specific optimal solutions,
across a variety of architectures.

The main contribution of this work is the first exploration
of compiler-directed communication-avoiding optimization for
GMG. As compared to prior research on domain-specific compil-
ers for the stencil computations that are included within GMG [13,
22, 33], our work more closely addresses the needs of real-world
applications because it optimizes in the context of an existing scal-
able parallel benchmark (miniGMG), and it examines the complex



progress within V-cycle	


Figure 1. The Multigrid V-cycle for solving Luh = fh. Su-
perscripts represent grid spacing. For large problems, a high-
performance, iterative solver is employed at the bottom (coarsest
grids).

and more representative operator Gauss-Seidel Red Black rather
than the simpler Jacobi. Additionally, we enable autotuning across
the ghost zone depth as well as the tuning strategies, thus allowing
the automation of differing optimization schemes across individual
levels of the V-cycle. This infrastructure is therefore adaptable to
next-generation platforms with increasing memory-hierarchy and
threading complexity. Overall, we demonstrate portability with a
4x improvement for the most time consuming smooth of the V-
cycle, while attaining the performance of previously published,
high performance hand-tuned code[29].

2. Geometric Multigrid
Multigrid solvers calculate a correction to the solution at the cur-
rent grid resolution using a solution on a coarser grid. This process
may be expressed recursively. Geometric multigrid (GMG) begins
with a structured mesh, where each progressively coarser grid con-
tains half the grid points in each dimension. Given the fact that the
operators are the same irrespective of grid spacing, this exponential
reduction in grid sizes can bound multigrid’s computational com-
plexity to O(N) where N is the number of variables. When perfor-
mance is highly correlated to computational complexity, the time
spent on the finer grids will dominate the run time.

Figure 1 visualizes the structure of a multigrid V-cycle for
solving Luh = fh in which L is the operator, u is the solution, f
is the right-hand side, and superscripts represent grid spacings. At
each grid spacing, multiple smooth operators reduce the error in the
solution. The smooth can be a simple relaxation such as Jacobi, or
something more complex like a Gauss-Seidel, Red-Black (GSRB).

The right-hand side of the next coarser grid is defined as the
restriction of the residual (fh−Luh). Eventually, the grid (or col-
lection of grids) cannot be coarsened any further using geometric
multigrid. At that point, most algorithms switch to a bottom solver
that can be as simple as multiple relaxations or as complicated as al-
gebraic multigrid, a Krylov iterative solver, or a direct sparse solver.
Once the coarsest grid is solved, the multigrid algorithm applies the
solution (a correction) to progressively finer grids. This requires an
interpolation of u2h onto uh. At each level, a smooth operator is
applied to the new correction.

For problems on relatively few nodes, the performance of
smooth on the finer grids dominates the run time. In this paper,
we therefore focus on the smooth bottleneck, optimizing both the
simpler Jacobi that is common to compiler papers [13, 16, 21],
and the more complex Gauss-Seidel, Red-Black (GSRB), which
predominates real-word applications and requires data-flow anal-
ysis and other support for control flow. Overall we demonstrate
that our compiler infrastructure can successively optimize both of
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Figure 2. Visualization of the domain/process/subdomain hierar-
chy in miniGMG (left) and the threaded GSRB wavefront strategy
within the application of smooth() to each subdomain (right).

these relaxation techniques and deliver high performance across
our evaluated platforms.

2.1 miniGMG Benchmark
Our work builds on the compact multigrid solver benchmark of
Williams et al. [29], called miniGMG. As shown in Figure 2(left),
the miniGMG benchmark creates a global 3D domain, and parti-
tions it into subdomains of sizes similar to those found in real-world
AMR multigrid applications. The list of subdomains is then par-
titioned amongst MPI processes. All subdomains must exchange
ghost zones after each computation phase, via an MPI call. How-
ever, when on the same node, the code is optimized to perform a
buffer copy.

To provide direct comparisons to [29], we use the same double-
precision, finite volume discretization of the variable-coefficient
operator a~αI − b∇~β∇, with the same periodic boundary condi-
tions, and replicate the 2563 problem (per compute node) on all
platforms. Developers often wish to maintain flexibility and thus
create smooth operators by composing multiple simpler operators,
as captured in the excerpt of the baseline miniGMG benchmark
shown in Figure 3. In this code, the Helmholtz operator requires
calculation of the Laplacian. Thus, the smooth operator in the input
code calculates the Laplacian, Helmholtz and either a Gauss-Seidel
or Jacobi relaxation in sequence. The Laplacian operator is a seven
point, variable-coefficient stencil derived from a finite-volume cal-
culation, while the Helmholtz and relaxation codes nominally scale
and add vectors (grids) together. In the code, these become nested
loops over the box list, and the spatial dimensions update either
every or every other element.

3. Optimizations for Smooth
Starting with the baseline miniGMG code of Figure 3(a), we now
describe how our compiler transforms the code to realize both ver-
tical and horizontal communication-avoiding optimizations. The
compiler first fuses the multiple smooth operators together. In the
case of GSRB relaxation, the control flow guarding the update to
phi may prevent fusion in some compilers. Incorporating data-flow
analysis allows us to fuse the loops safely by contracting the iter-
ation space of the first two statements (see next section). Fusion is
itself a vertical communication-avoiding optimization, since the re-
sults computed by one operator will remain in cache when used as
input by the next operator; an additional communication-avoiding
optimization is to replace the array temp with a scalar and not write
it back to memory on completion. The compiler generates the code
in Figure 4(a), with placeholders for the statements corresponding
to Figure 3(a).



/* Laplacian(phi) = b div beta grad phi */

for (k=0;j<N;k++)
for (j=0;j<N;j++)

for (i=0;i<N;i++)
/* statement S0 */
temp[k][j][i] =b*h2inv*(
beta i[k][j][i+1]*( phi[k][j][i+1] -phi[k][j][i] )
-beta i[k][j][i] *( phi[k][j][i] -phi[k][j][i-1])
+beta j[k][j+1][i]*( phi[k][j+1][i]-phi[k][j][i] )
-beta j[k][j][i] *( phi[k][j][i] -phi[k][j-1][i])
+beta k[k+1][j][i]*( phi[k+1][j][i]-phi[k][j][i] )
-beta k[k][j][i] *( phi[k][j][i] -phi[k-1][j][i]));

/* Helmholtz(phi) = (a alpha I - laplacian)*phi */

for (k=0;j<N;k++)
for (j=0;j<N;j++)

for (i=0;i<N;i++)
/* statement S1 */
temp[k][j][i] = a * alpha[k][j][i] *phi[k][j][i]-temp[k][j][i];

/* GSRB relaxation: phi = phi - lambda(helmholtz-rhs) */

for (k=0;j<N;k++)
for (j=0;j<N;j++)

for(i=0;i<N;i++){
if((i+j+k+color)%2==0)
/* color is 0 for Red pass, 1 for black */
/* statement S2 */
phi[k][j][i] = phi[k][j][i]-lambda[k][j][i]*(temp[k][j][i]-rhs[k][j][i]);

}

(a) Smooth operator with Gauss-Seidel Red-Black.

/* Go down the v-cycle.... */

for(level=0; level<NumLevel; level++){
d=ghostZoneDepth[level];

for ( smooth=0; smooth<NumSmooths; smooth+=d ){
/* communication phase...the boxes exhange boundaries with neighbors */
exchange boundary phi();
exchange boundary rhs();
/* Apply smooth on each box in parallel */
# pragma omp parallel for private (box) num threads(y)
for (box=0; box<NumBoxInSubdomain; box++){

color=smooth;
gsrb smooth function(Domain→SubDomain[box],phi,rhs,color);

}
}
compute residual();
/* Restrict to form the coarse and smaller grid */
/* We go down the v-cycle, ie. from a 64 ∧ 3 grid to a 32 ∧ 3 grid */
compute restriction();

}/* down....*/

/* bottom solve.... */
d=ghostZoneDepth[bottom level];
for (smooth=0; smooth<NumBottomSmooths; smooth+=d){

exchange boundary phi();
exchange boundary rhs();
/* Apply smooth on each box in parallel */
# pragma omp parallel for private (box) num threads(y)
for (box=0; box<NumBoxInSubdomain; box++){

color=smooth;
gsrb smooth function(Domain→SubDomain[box],phi,rhs,color);

}
}/* bottom solve */

/* back up the v-cycle..... */

(b) Pseudo-code for a single iteration of the V-cycle.

Figure 3. Baseline smooth code using Gauss-Seidel Red-Black and outer V-cycle code that includes domain decomposition.

In the pseudo-code that invokes smooth in Figure 3(b), for each
subdomain, the smooth operation is called on all the boxes in par-
allel. After the smooth operator, the boxes go through a communi-
cation phase, where they exchange boundary data with their neigh-
bors. An important communication-avoiding optimization is to cre-
ate ghost zones, which replicate some of the input data across pro-
cesses and threads. Through the use of ghost zones, the compu-
tation can perform several sweeps of the grid per communication
step, trading off increased computation for lower communication
costs. For the seven-point second-order stencil we consider for our
study, an N -deep ghost zone allows N sweeps of the grid between
communication. For higher order stencils, the ghost zone depth re-
quired increases with order.

We have added a domain-specific compiler transformation to
automatically generate a loop over the depth of ghost zones, and
modify the iteration space of the operator accordingly to perform
the redundant computation. Each sweep of the grid consumes a
layer of the ghost zone, and this gives rise to a hyper-trapezoidal
iteration space of computation, where the volume shrinks in all
dimensions on every smooth to perform computation only on valid
data. The GSRB smooth has a red and a black pass, where the
points updated depend on their coordinate and the value of color.
As shown in Figure 3(b), for a grid with a one-deep ghost zone,
the value of color is updated every time smooth is called. Adding
ghost zones requires that the code track the value of color and
modify the if-condition accordingly. The compiler merges the if-
condition into the loop bounds of the innermost loop to generate
the transformed code in Figure 4(b).

Adding ghost zones increases DRAM traffic from multiple
sweeps over the grid; this vertical communication can be reduced
by a streaming strategy called wavefront [30]. A number of planes
(up to the number of ghost zones) can be held in memory at once, as
shown in Figure 2, and the number of sweeps of the grid reduced
by the depth (the number of planes). Keeping multiple planes in
memory increases the working set, which may exceed on-chip
memory. We generate multi-threaded code via OpenMP to share
planes across threads and reduce the working set per thread. Larger
grids have a bigger working set than the smaller grids down the V-
cycle, which suggests that the system should assign more threads
per box for the larger grids, and fewer threads for the smaller grids
— ultimately the thread distribution is optimized via autotuning.
The threaded wavefront code is in Figure 4(c), which assigns x
OpenMP threads per box (intra-box parallelism). Outer-loop paral-
lelism in the harness code of Figure 3(b) assigns y threads to each
box (inter-box parallelism).

The autotuning phase tunes the ghost zone depth at each level
(ghostZoneDepth[level] in Figure 3(b)) and the number of threads
x and y controlling intra- and inter-box parallelism, respectively.
During the tuning process, constant values for these are bound
during code generation, resulting in very efficient context-specific
specialized code such as in Figure 4(d).

4. Compiler Implementation
We now describe the compiler implementation that generates the
desired code from the previous section. This compiler is domain
specific, in that it employs optimizations that are designed for



for (k=0;j<N;k++)
for (j=0;j<N;j++)
for (i=0;i<N;i++){
if((i+j+k+color)%2==0){
S0(k,j,i); /* Laplacian */
S1(k,j,i); /* Helhmoltz */
S2(k,j,i); /* GSRB */

}
}

(a) Fused operators.

/* d = ghost zone depth */
if (1 <= d && 3<=2*d+N && 3<=2*d+N)
for (k =-d+1; k<=N+d-2; k++)
for (t = 0; t<=min(min(min(d-1,(2*d +N-3)/2),

(d+k-1)/2),(2*d+N-3)/2); t+=1)
#pragma openmp parallel for private (j,i) num_threads(x)

for (j = -d+t+1; j<=d+N-t-2; j++)
for (i =-d+t+1+(-k-color-j-(-d + t + 1)) % 2;

i<=d-t+N-2; i+=2) {
S0(t,k-t,j,i); /* Laplacian */
S1(t,k-t,j,i); /* Helhmoltz */
S2(t,k-t,j,i); /* GSRB */

}

(c) Wavefront and threading.

/* d = ghost zone depth */
for (t=0;j<d;t++)
for (k=t-(d-1);j<N+(d-1)-t;k++)
for (j=t-(d-1);j<N+(d-1)-t;j++)
for (i=t-(d-1);i<N+(d-1)-t;i++){
if((i+j+k+color+t)%2==0){
S0(t,k,j,i); /* Laplacian */
S1(t,k,j,i); /* Helhmoltz */
S2(t,k,j,i); /* GSRB */

}
}

(b) After adding ghost zones.

#pragma omp parallel private (...) num_threads(y)
{

tid=omp_get_thread_num();
for (k = -3; k <= 66; k++) {

for (t = 0; t <= min(3,intFloor(t+3,2)); t++) {
for (j = 6*tid-3; j <= min(6*tid+2,66); j++) {

for (i= t-3+intMod(-k-color-j-(t-3),2); i<=-t+66; i+=2)
{

S0(t,k-t,j,i); /* Laplacian */
S1(t,k-t,j,i); /* Helhmoltz */
S2(t,k-t,j,i); /* GSRB */

}
}

}
#pragma omp barrier (or explicit locks)

}
}

(d) Final code specialized for box size 643, 4-deep ghost zone and 12 threads.

Figure 4. Steps of optimization process.

multigrid applications. The input to the compiler is the code ex-
cerpt shown in Figure 3. We performed the implementation using
CHiLL, which is a polyhedral transformation and code generation
framework [4]. The remainder of this section describes the abstrac-
tions used in CHiLL, how these abstractions are used to represent
the transformations described in the previous section, the algorithm
that performs these transformations, and how autotuning is em-
ployed to optimize the code for different architectures.

4.1 Abstractions in CHiLL
CHiLL is polyhedral transformation and code generation frame-
work designed specifically for autotuning. A polyhedral model rep-
resents each statement’s execution in the loop nest as a lattice point
in the space constrained by loop bounds, known as the iteration
space. Then a loop transformation can be simply viewed as map-
ping from one iteration space to another, and various transforma-
tions can be composed. CHiLL manipulates iteration spaces de-
rived from the original program, using a data dependence graph
as an abstraction to reason about the safety of the transformations
under consideration [1].

In a polyhedral model, optimized code is generated from the
rewritten iteration spaces by scanning the polyhedra representing
the iteration spaces of an optimized loop nest from the first dimen-
sion to the last. The quality of the generated code directly impacts
performance. Therefore, at the heart of CHiLL is a code generator
called CodeGen+ that has advanced the state of the art in polyhedral
scanning in the presence of conditionals [3], as arise in the GSRB
code. CodeGen+ seamlessly combines iteration spaces and guards
through a specialized polyhedral AST, as detailed elsewhere [3].

The input to CHiLL is a source code written in C or Fortran,
and optionally, a transformation recipe describing the set of trans-
formations to be composed to optimize the provided source [12].

This recipe can be written by an expert programmer, or derived au-
tomatically by a compiler decision algorithm [14].

4.2 Communication-Avoiding Transformations
As we describe each of the communication-avoiding transforma-
tions for GMG, we show how the previously-described abstractions
are manipulated by CHiLL.
Operator fusion: The input code in Figure 3 consists of three
statements S0, S1, and S2, that correspond to the three smooth op-
erators Laplacian, Helmholtz and GSRB, respectively. Once parsed
by CHiLL, the iteration spaces corresponding to these operators are
as follows:
S0 := { [k,j,i] : 0 ≤ k<N && 0 ≤ j < N && 0 ≤ i <N};
S1 := { [k,j,i] : 0 ≤ k < N && 0 ≤ j < N && 0 ≤ i<N};
S2 := { [k,j,i] : 0 ≤ k < N && 0 ≤ j < N && 0 ≤ i<N &&

k + j + i + 2α + color = 0};

Note that S2 has an additional term in its iteration space related
to checking the color for the current element. Operator fusion falls
out implicitly from the iteration space alignment algorithm, which
attempts to carve out a unified iteration space for the imperfect loop
nest of the original code [4]. With smooth operators such as Jacobi,
iteration space alignment is performed by default in CHiLL. In
GSRB, the difficult challenge is to rule out any fusion-preventing
dependences when the iteration spaces are not a perfect match.

By default, CHiLL reports a fusion-preventing dependence be-
tween S2 and S0 related to the reads and writes of phi. However,
we make the observation that the iteration spaces for the Laplacian
and Helmholtz operators (statements S0 and S1) may compute val-
ues of temp that are never used by the GSRB of S2. Array data-flow
analysis can be used to analyze the iteration spaces and access ex-
pressions and derive a conservative approximation of the elements



of temp defined in S0 and S1 and used in S2 [9]. Our compiler
determines that the array region read by S2 is a proper subset of
the regions defined by S0 and S1. Since temp is a local variable
redefined on every sweep and it is not live after the smooth oper-
ator is completed, it is safe to contract the iteration spaces of S0
and S1 to match that of S2. After the compiler contracts the iter-
ation space, the fusion-preventing dependences are eliminated and
CHiLL is able to safely fuse the loops. The iteration space con-
traction used here is an example of a domain-specific optimization
that was proven safe by the compiler, but is more likely to be prof-
itable for GMG operators where Red-Black conditional execution
is common.

In the fused code, the compiler recognizes that array temp is
a local variable, and does not need to be rewritten back to mem-
ory. Because there are no dependences on temp crossing iteration
boundaries, scalar replacement is then employed to make this a
scalar that is overwritten on each iteration of the loop.
Introducing ghost zones: Once fused, the iteration spaces from
the previous section end up with a combined iteration space that
matches that of statement S2. We observe that introducing ghost
zones as in the previous section is really just introducing a new loop
t and changing the bounds for each of the loops in the fused loop
nest to compute ghost regions and generate a hyper-trapezoidal
iteration space.

Due to the presence of the if-condition in the GSRB smooth,
the iteration space is a hyper-trapezoid with holes. The iteration
space IS has two distinct components, arising from the loop nest
and also the relation (k+j+i+2α+color=0) which represents the if-
condition; the iteration space is the conjunction of these terms. We
added a new domain-specific transformation add ghost zones,
which maps the old iteration space with the new loop t using the
following mapping:

IS : iteration space of the input loop nest
IS′ : iteration space in the modified loop nest
map := { [k,j,i]→ [t,k′,j′,i′] :

0 ≤ t<d && k-d+1+t ≤ k′ < k+d-t &&
j-d+1+t ≤ j′ < j+d-t && i-d+1+t ≤ i′ < i+d-t}

IS′ := map ( IS );
The variable color gets updated with every sweep of the grid, so
its value will also be affected by the additional loop. For this pur-
pose, we apply another mapping to color:

map′ := { [color]→ [color+t] }
This will cause the value of color to be updated everywhere it
appears, including within the statements. Although in our current
implementation this relation is provided to the implementation, it
could be derived automatically through analysis or domain knowl-
edge. This gives a new relation (k+j+i+2α+color+t=0) for the if-
condition. The conjunct of the new loop-nest iteration space and
the new term gives us the final modified iteration space.
Wavefront and Multithreading: The compiler next generates a
wavefront computation [30] using a loop skew and permute, skew-
ing the outermost loop which sweeps the grid, loop k in Figure 4(b),
against the smooth iteration loop added in the last optimization.
Skewing is used to break a dependence that would otherwise pre-
vent permute, using an integer factor in each dimension that de-
pends on the dependence distance in the stencil operation. The k
and t loops are then permuted. The j loop is then tiled and each
tile is assigned to an OpenMP thread. We can use an OpenMP bar-
rier or generate explicit locks to synchronize the threads. Code with
explicit locks achieves higher performance.
Autotuning Opportunities: We employ autotuning for two sets
of parameters:

Parallel 

Decomposition

Inter-Box Parallelism
Thread Configuration 

<6,1>

Nested Parallelism
Thread Configuration 

<2,3>

Intra-Box Parallelism
Thread Configuration 

<1,6>

Figure 5. Figure shows possible thread decompostion on Hopper,
which has 6-cores per chip. All the boxes in a subdomain may work
in parallel, or only one maybe computed with all the theads working
collaboratively on it, or nested parallelism can be used.

• Ghost zone and wavefront depth: The ghost zone depth governs
both amount of redundant computation performed, and frequency
of MPI communication. In the current code generation strategy,
the ghost zone depth and number of planes in the wavefront are
identical. As memory bandwidth is a key limitation only for larger
box sizes, the optimal value for ghost zone depth varies for different
box sizes in the V-cycle.
•Multithreading: As shown in Figure 5, the possible multithread-
ing strategies are inter-box, intra-box and nested parallelism, where
x boxes are computed in parallel, and y threads collaboratively
work inside each box. The baseline implementation uses inter-box
parallelism, where one thread works on a box. As box size varies
across the V-cycle, the number of threads working collaboratively
on a box also varies.
Putting it together: As the goal of this work is to develop
domain-specific optimization techniques for GMG, the compiler
algorithm can be specialized for MG implementations that involve
composing a set of operators together. The code for the smooth
operators was generated by instantiating a template transforma-
tion recipe that is then applied to the input code to generate the
optimized code. The recipe that is generated for the smooth that
includes GSRB is the following:

original()
add_ghosts([S0],L1,d) #ghost depth is d
skew ([S0], L2, [1,1]) #skew L2 : L2 <- 1.L1 + 1.L2
permute ([L2,L1,L3,L4]) #new loop order
tile (S0, L3, TJ, 2, counted) #tile loop L3 (j-loop)
gen_omp_parallel_region(locks,y)#parallelize with y threads per box

The commands in this recipe refer to applying a transformation
to a statement at a particular loop level. Once fused, the same
transformations are applied to the set of statements S0, S1 and S2
when applied to S0. The tile command tiles the j-loop, and each tile
is assingned to a thread. The command gen omp parallel region
generates parallel code. The boolean locks is used to generate
OpenMP code with either an OpenMP barrier or low level explicit
locks. During code generation, the value for ghost zone depth and
box size and number of threads are bound to constants.

5. Experimental Results
In this section we present an overview of our experimental plat-
forms and a detailed analysis of our performance results.

Through an external python script, autotuning varies d from 1
to 2*n where n ranges from 1 to 2, and the thread values x and y (
x∗y = 6 for Hopper and 12 for Edison) for the fused and wavefront
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(b)
Box	  Size	  	   Ghost	  Zone	  

Depth	  
Thread	  
Decomposi7on	  

Code	  Variant	  

64^3	   4	   <2,3>	   Wavefront	  

32^3	   4	   <2,3>	   Wavefront	  

16^3	   2	   <6,1>	   Wavefront	  

8^3	   2	   <6,1>	   Fused	  

4^3	   4	   <6,1>	   Fused	  

(c)

Box	  Size	  	   Ghost	  Zone	  
Depth	  

Thread	  
Decomposi7on	  

Code	  Variant	  

64^3	   4	   <4,3>	   Wavefront	  

32^3	   4	   <4,3>	   Wavefront	  

16^3	   2	   <12,1>	   Wavefront	  

8^3	   2	   <12,1>	   Fused	  

4^3	   2	   <12,1>	   Fused	  

(d)

Figure 6. Speedups relative to the baseline code with tuned fusion/wavefront, ghost zone depth and threading as a function of level in the
V-cycle for the 2563 problem for smooth time (a,b) and code configuration (c,d).

variants. Tile size TJ is related to the number of threads y and loop
bounds (box size and ghost zone depth). This search space can be
explored in a few hours, but with additional optimizations, sophis-
ticated search algorithms are needed to increase the efficiency of
the search (e.g., [23]). The resulting application will select the best
implementation among precompiled choices.

5.1 Evaluated Platforms
We evaluate the benefits of our compiler technology on two com-
modity processor architectures similar to those used by Williams
et al. in [29]. Our code was compiled with icc version 13.0.1
with flags -O3 -fno-alias -fno-fnalias (Hopper:-msse3, Edison:-
xSSSE3).
Edison: is a Cray XC30 MPP at NERSC. Each node contains two
12-core Xeon Sandy Bridge chips. Each chip has four DDR3-1866
memory controllers.Each superscalar out-of-order core implements
the 4-way AVX SIMD instruction set and includes both a 32KB L1
and a 256B L2 cache. The cores on a chip are connected by a ring
to a 30MB L3 cache. The relatively large last-level cache makes
capturing locality easier for 643 boxes. Experiments were run on
the pre-production Edison Phase II.
Hopper: is a Cray XE6 MPP at NERSC. Each node is in effect
four 6-core Opteron chips each with two DDR3-1333 memory con-
trollers.There are thus four (non-uniform memory access) NUMA
nodes per compute nodes. Each superscalar out-of-order core im-
plements the 2-way SSE3 SIMD instruction set and includes both
a 64KB L1 and a 512KB L2 cache, while each socket includes a
6MB L3 cache with 1MB reserved for the probe filter. The rela-
tively small last-level cache makes capturing locality difficult on
fine grid operations.

5.2 GSRB Demonstration and Analysis
To provide a base case, we first ran the 2563 problem using a GSRB
relaxation (from Figure 3) with one process per NUMA node on
Edison and Hopper. Figure 6 presents tuned performance for the
smooth operation (top) and the code configurations selected by the
autotuner to achieve the best performance (bottom). Performance
(speedup) has been normalized to the baseline implementation on
either Hopper or Edison. Figure 7 shows the overall speedup for the
MG solver on the finest box (643).

By fusing the operators in smooth, the compiler yields dramatic
speedups in smooth time on the finer grids. However, the benefit
degrades as one descends through the V-cycle. This effect is caused
by the fact that in the baseline implementation, the working set
of each triply-nested loop within smooth exceeds cache capacity
for the fine grids. As a result, to construct the Helmholtz, the
Laplacian must be refetched from DRAM. Eventually this working
set becomes small enough that it fits in the last-level cache at
which point the disparity between on chip-bandwidth and compute
capability limits the performance benefit.

Our compiler may now insert additional ghosts zones and gener-
ate a wavefront-based update for the smooth operation. Once again,
on the finer (large) grids, the performance benefit arises from trad-
ing DRAM accesses for cache accesses. The benefit of a wavefront
computation is likely smaller on Edison as its massive 20 MB cache
is nearly capable of capturing the locality required on the finest
grids.

The local computation (smooth) for the wavefront performs
poorly on the coarsest grids as the size of those grids has ballooned
from approximately 12KB per box to nearly 100KB. The increase
in data movement impedes performance. Although smooth may be
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Figure 7. Overall speedup for the multigrid solver on the finest
grid compared to baseline and hand-optimized code.

slower on the coarse grids, the reduction in inter-box communica-
tion can actually accelerate the multigrid operations. We see this
benefit applies to all levels of the V-cycle. However, where as on
the coarsest grids, the benefit of reduced inter-box communication
compensates for reduced smooth performance, the additional cost
of communication actually impedes smooth performance on the
fine grids. This presents an interesting tuning space for our com-
piler infrastructure, which was addressed via autotuning.

Figure 6 presents smooth performance as a function of fusion,
wavefront, ghost-zone depth and parallel decomposition. We see
that for fine large grids (64, 32, 16) it is profitable to use a wavefront
computation, but for smaller grids fused code with smaller ghost
zone depths are better. Results also show that for finer grids (64,32)
with larger working sets, it pays to have collaborative nested thread-
ing, but for smaller boxes overhead of collaborative threading im-
pedes performance.

5.3 Overall Speedup
As the focus of this paper was the time-dominating smooth opera-
tion, we see the biggest gains there: speedups of 3.81× and 4.32×
over the baseline, and within 1.05× and 1.01× of hand-tuned per-
formance on Hopper and Edison, respectively. Figure 7 summa-
rizes the overall speedup for the finest box (643) CHiLL attains
over the baseline optimized by the icc compiler, and compares with
the hand-tuned code of Williams et al. [29]. As smooth is only one
component in a multigrid solver, the benefits are amortized in the
full GMG application.

6. Related Work
In the past, operations on large structured grids could easily be
bound by capacity misses in cache, leading to a variety of studies
on blocking and tiling optimizations [6, 8, 15, 19, 20, 27, 28]. How-
ever, a number of factors have made such approaches progressively
obsolete on modern platforms. On-chip caches have grown by or-
ders of magnitude and are increasingly able to capture sufficient
locality for the fixed box sizes associated with typical MG meth-
ods. The rapid increase in on-chip parallelism has also quickly out-
stripped available DRAM bandwidth resulting in bandwidth-bound
performance.

Thus, in recent years, numerous efforts have focused on increas-
ing temporal locality by fusing multiple stencil sweeps through
techniques like cache oblivious, time skewing, wavefront or over-
lapped tiling [7, 10, 11, 17, 18, 21, 25, 26, 31, 32, 34]. Many of

these efforts examined 2D or constant-coefficient problems — fea-
tures rarely seen in real-world applications.

Chan et al. explored how, using an autotuned approach, one
could restructure the MG V-cycle to improve time-to-solution in the
context of a 2D, constant-coefficient Laplacian [2]. This approach
is orthogonal to our implemented optimizations and their technique
could be incorporated in future work.

Closely related work from Treibig implements a 2D GSRB on
SIMD architectures by separating and reordering the red and black
elements [24], additionally a 3D multigrid on an IA-64 (Itanium) is
implemented via temporal blocking.

The most closely related work are domain-specific compilers
for parallel code generation from a stylized stencil specification [5,
22, 33] or from a code excerpt [13]. Pochoir uses a cache oblivious
strategy, which limits the control over the code generation [22]. The
other compilers introduce parallelism and ghost regions through
tiling and expanding both the data set and the tile size, rather than
starting with already parallel code [13, 33]. These tiling approaches
do not produce the hyper-trapezoidal loop nests of this paper, but
rather compute and then ignore some incorrect results. None of
these approaches appear capable of supporting the optimization of
a collection of operators, particularly if GSRB is included.

Our work expands on all of these efforts by providing a unique
set of optimization strategies for multi- and manycore architectures.

7. Conclusion
In this paper, we have described autotuning compiler technol-
ogy to automate communication-avoiding optimizations for the
smooth operator in a geometric multigrid computation. Our re-
sults show that the optimizations lead to speedups as high as 4×,
and that different optimization strategies are needed at different
levels of the V-cycle. As compared with related domain-specific
compiler research, our work is distinguished by focusing on the
needs of scalable GMG applications, starting with a parallel code
and considering the composition of smooth operators including
the complex Gauss-Seidel Red-Black operator. As compared with
manually-tuned codes, the automatically-generated code captures
the communication-avoiding optimizations, while attaining equiv-
alent performance.
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