Formalizing Lightweight Verification of Software Component Composition

Stephen McCamant and Michael D. Ernst

{smcc,mernst}@CSAIL.MIT.EDU

http://pag.csail.mit.edu/

MIT Computer Science and Artificial Intelligence Laboratory
Upgrade safety

- Will it still work with this new component?
- We have a system that vetted this upgrade
Overview

- Technique assesses upgrade safety
 - Unsound tool builds abstractions
 - Check property of combined abstractions

- Goal: prove checking step sound

- Results to date:
 - Formalization of upgrade safety problem
 - Approach for relative soundness proof
 - Improvements to previous algorithm
 - Proof outline for soundness result
Our approach

Abstractions:

- should be stated in an expressive language
- should describe concrete implementations
- should be created automatically
- need not be sound over arbitrary executions
Comparison of run-time behavior

- Compare run-time behaviors of component
 - Old component, in context of the application’s use
 - New component, in context of vendor test suite
- Compatible if the vendor tests all the functionality that the application uses (and gets the right output)
Operational abstraction

- Abstraction of run-time behavior
- Set of program properties — mathematical statements about module behavior
- For $x++$:
 - Precondition: x is an integer
 - Postcondition: $x' = x + 1$
- Depends on how the module is used
Operational abstraction

- Abstraction of run-time behavior
- Set of program properties — mathematical statements about module behavior
- For $x++$, used on even values:
 - Precondition: x is even
 - Postcondition: $x' = x + 1$, x' is odd
- Depends on how the module is used

Obtained using the Daikon tool
Operational abstraction

- Abstraction of run-time behavior
- Set of program properties — mathematical statements about module behavior
- For \(x++ \), used on even values:
 - Precondition: \(x \) is even
 - Postcondition: \(x' = x + 1 \), \(x' \) is odd
- Depends on how the module is used
- Obtained using the Daikon tool
Consider just the behavior of modules at their boundaries

The outputs of one module are connected to the inputs of another via procedure calls and returns

Connections just represent identity
Flow and summary relations

Flow relations \(M_1(b \mid a), \; M_1(e \mid c, d) \)

\[b.x > a.y, \; e.y = c.y + e.z \]

Summary relations \(\overline{M}_2(v \mid u), \; \overline{M}_2(z \mid x, y) \)

\[v.\text{ret} = u.\text{arg} + 3, \; x.i \neq z.j \cdot y.j \]
Formalizing the upgrade condition

- Combined flow relations must imply summaries
- Do we have the right combination?
- Snag: what formal property to aim for?
- Describe idealized version that should be sound
 - Postulate existence of sound abstractions
- Final result is relative soundness, up to abstractions
Abstraction and formalization

Concrete program

\[\Downarrow \]

Daikon

\[\Downarrow \]

Operational abstraction
Abstraction and formalization

Concrete program \(\Rightarrow \) Formal program

(in a simple language)

\(\Downarrow \)

Daikon

\(\Downarrow \)

Operational abstraction \(\Rightarrow \) Idealized abstraction

(sound)
A formal imperative language

Consider a simple language:

\[C ::= C ; C | \text{skip} | \text{assert}(P) | \nu ::= E \]

\[| \text{if } P \text{ then } C \text{ else } C | \nu ::= M.f(\nu_1, \ldots, \nu_k) \]

- Procedures \(f \) are grouped in modules \(M \) that share some variables
- ‘assert’ doesn’t affect control flow
- Goal: Correct execution without assertion failure
Example of modules
Example of modules

\[
\text{Inc}.\ i(x) : r := x + 1
\]
Example of modules

\[\text{C.c(}\nu\text{): } r := \text{Inc.i}(\nu) \]
Example of modules

\[B.b(y) : r := C.c(2*y) + D.d(2*y + 1) \]
Example of modules

Main.m(x): $r := B.b(x);$
assert($r > 4*x$)
Ideal flow relations

- Idealized flow relations are sound over a module’s code
- Valid properties for any possible module inputs
- Some represent pure data flow
- Others also model control flow, with a ‘guarding condition’
Reality vs. formalism

- Real operational abstractions are correct only with respect to observed inputs
 - ‘if $x = 271828$ then $y := 2$ else $y := 1$’ might produce ‘$y = 1$’
- Idealized abstractions come are sound with respect to any input
 - Could be ‘$y = 1 \lor y = 2$’
Ideal summary relations

- Idealized summary relations guarantee no assertion failures.
- If they hold over module inputs, assertions in the module will succeed.
- Capture the well-tested subset of behavior.
- Includes program input-output relation as a special case.
Consistency condition

- If holds, combined system satisfies expectations
- \((\bigwedge_i \phi_i) \Rightarrow \sigma\)
 - Flow relations \(\phi_i\)
 - Summary relation \(\sigma\)

To construct:
- Find relevant flow relations
- Transform relations for sound combination
- Conjoin
Context-free language reachability

- Graph with edges labelled by symbols
- Context-free language over the symbols
- Is there a path from u to v whose labels are a word of the language?
- Determine by dynamic programming
Selecting relevant flow relations

- Label calls and returns with parenthesis kinds
- Exclude paths with mismatched returns
- Data-flow edges can reset the ‘stack’
 - Gadget allows arbitrary returns then calls
- Take anything on a CFL path
Soundness transformations

- Goal: consistent variable references, so conjunction \((\bigwedge_i \phi_i)\) is sensible
- **Guard** conditional flows
- **Duplicate** procedures by calling context
- **Mix** data flow between replicas
Guarding conditional control flow

- Suppose u is only sometimes followed by v
- From v, looks like $\psi(u, v)$
- Rewrite as $\gamma(u) \Rightarrow \psi(u, v)$ where γ holds only on those instances of u followed by v.
Duplication by calling context

- If Inc.i_{exit} is procedure exit and C.i_{ret} is return in caller, Inc.$i_{exit}.r = C.i_{ret}.x$
- Similarly Inc.$i_{exit}.r = D.i_{ret}.x$ for second call site
- Uh-oh, but C.$i_{ret}.x \neq D.i_{ret}.x$ in general
- Avoid problem if every call is distinct
Mixing data flow

- After duplicating, what about pure data flow (e.g. from shared state)?
- Conservatively allow flow between any replicas
- Every input gets at least one output, but not vice-versa
Soundness proof outline

- Suppose $(\bigwedge_i \phi_i) \Rightarrow \sigma$
- Each ϕ_i is sound by assumption
- Conjunction is legitimate, by transformations
- LHS is true, so RHS (σ) must be true
- Summary relation truth implies safety
Contributions

- Model and algorithm correct bugs in previous versions
- Formalization for soundness checking
- Complete proof for single component case (see paper)
- Proof outline for general case
Future work

- Avoid need for duplication
 - Sound treatment of repeated calls
- Complete detailed soundness proof
- Add more language features
 - Loops, recursion, higher-order procedures
Questions?