Overview

- Technique assesses upgrade safety
 - Unsound tool builds abstractions
 - Check property of combined abstractions
- Goal: prove checking step sound
- Results to date:
 - Formalization of upgrade safety problem
 - Approach for relative soundness proof
 - Improvements to previous algorithm
 - Proof outline for soundness result

Our approach

Abstractions:

- should be stated in an expressive language
- should describe concrete implementations
- should be created automatically
- need not be sound over arbitrary executions

Comparison of run-time behavior

- Compare run-time behaviors of component
 - Old component, in context of the application’s use
 - New component, in context of vendor test suite
- Compatible if the vendor tests all the functionality that the application uses (and gets the right output)

Operational abstraction

- Abstraction of run-time behavior
- Set of program properties — mathematical statements about module behavior
- For x++:
 - Precondition: x is an integer
 - Postcondition: x' = x + 1
- Depends on how the module is used
Operational abstraction

- Abstraction of run-time behavior
- Set of program properties — mathematical statements about module behavior
- For `x++`, **used on even values**:
 - Precondition: `x` is **even**
 - Postcondition: `x' = x + 1, x' is odd`
- Depends on how the module is used

Modules: inputs and outputs

- Consider just the behavior of modules at their boundaries
- The outputs of one module are connected to the inputs of another via procedure calls and returns
- Connections just represent identity

Flow and summary relations

- Combined flow relations must imply summaries
- Do we have the right combination?
- Snag: what formal property to aim for?
- Describe idealized version that should be sound
 - Postulate existence of sound abstractions
- Final result is relative soundness, up to abstractions
Abstraction and formalization

Concrete program \Rightarrow Formal program (in a simple language)

Daikon \Rightarrow Operational abstraction \Rightarrow Idealized abstraction \Rightarrow abstraction (sound)

A formal imperative language

- Consider a simple language:

 $\begin{align*}
 C ::= C & | \text{skip} & | \text{assert}(P) & | v ::= E \\
 & | \text{if } P \text{ then } C & \text{else } C & \text{if } v := M.f(v_1, \ldots, v_k)
 \end{align*}$

- Procedures f are grouped in modules M that share some variables
- ‘assert’ doesn’t affect control flow
- Goal: Correct execution without assertion failure

Example of modules

- Inc.i(x): $r := x + 1$

- C.c(v): $r := \text{Inc.i}(v)$

- B.b(y): $r := C.c(2*y) + D.d(2*y + 1)$
Example of modules

Main.m(x): r := B.b(x); assert(r > 4*x)

Ideal flow relations
- Idealized flow relations are sound over a module’s code
- Valid properties for any possible module inputs
- Some represent pure data flow
- Others also model control flow, with a ‘guarding condition’

Reality vs. formalism
- Real operational abstractions are correct only with respect to observed inputs
 - ‘if x = 271828 then y := 2 else y := 1’ might produce ‘y = 1’
 - Idealized abstractions come are sound with respect to any input
 - Could be ‘y = 1 ∨ y = 2’

Ideal summary relations
- Idealized summary relations guarantee no assertion failures
- If they hold over module inputs, assertions in the module will succeed
- Capture the well-tested subset of behavior
- Includes program input-output relation as a special case

Consistency condition
- If holds, combined system satisfies expectations
 - (∨_i φ_i) ⇒ σ
 - Flow relations φ_i
 - Summary relation σ
- To construct:
 - Find relevant flow relations
 - Transform relations for sound combination
 - Conjoin

Context-free language reachability
- Graph with edges labelled by symbols
- Context-free language over the symbols
- Is there a path from u to v whose labels are a word of the language?
- Determine by dynamic programming
Selecting relevant flow relations

- Label calls and returns with parenthesis kinds
- Exclude paths with mismatched returns
- Data-flow edges can reset the ‘stack’
 - Gadget allows arbitrary returns then calls
- Take anything on a CFL path

Soundness transformations

- Goal: consistent variable references, so conjunction \((\bigwedge_i \phi_i)\) is sensible
- **Guard** conditional flows
- **Duplicate** procedures by calling context
- **Mix** data flow between replicas

Guarding conditional control flow

- Suppose \(u\) is only sometimes followed by \(v\)
- From \(v\), looks like \(\psi(u, v)\)
- Rewrite as \(\gamma(u) \Rightarrow \psi(u, v)\) where \(\gamma\) holds only on those instances of \(u\) followed by \(v\).

Duplication by calling context

- If \(\text{Inc}.i_{\text{exit}}\) is procedure exit and \(C.i_{\text{ret}}\) is return in caller, \(\text{Inc}.i_{\text{exit}}.r = C.i_{\text{ret}}.x\)
- Similarly \(\text{Inc}.i_{\text{exit}}.r = D.i_{\text{ret}}.x\) for second call site
- Uh-oh, but \(C.i_{\text{ret}}.x \neq D.i_{\text{ret}}.x\) in general
- Avoid problem if every call is distinct

Mixing data flow

- After duplicating, what about pure data flow (e.g. from shared state)?
- Conservatively allow flow between any replicas
- Every input gets at least one output, but not vice-versa

Soundness proof outline

- Suppose \((\bigwedge_i \phi_i) \Rightarrow \sigma\)
- Each \(\phi_i\) is sound by assumption
- Conjunction is legitimate, by transformations
- LHS is true, so RHS \((\sigma)\) must be true
- Summary relation truth implies safety
Contributions

- Model and algorithm correct bugs in previous versions
- Formalization for soundness checking
- Complete proof for single component case (see paper)
- Proof outline for general case

Future work

- Avoid need for duplication
 - Sound treatment of repeated calls
- Complete detailed soundness proof
- Add more language features
 - Loops, recursion, higher-order procedures

Questions?